
 
 
 
 

DISCUSSION PAPER SERIES 

 
 
 

     ABCD 
 

www.cepr.org 
 
 

Available online at: www.cepr.org/pubs/dps/DP8402.asp
 www.ssrn.com/xxx/xxx/xxx

  

 
 

 
 
 
 

No. 8402 
 

DYNAMIC HEDGING IN INCOMPLETE 
MARKETS: A SIMPLE SOLUTION 

 
 

Suleyman Basak and Georgy Chabakauri 
 
 

  FINANCIAL ECONOMICS 
 
 

 



ISSN 0265-8003 

DYNAMIC HEDGING IN INCOMPLETE MARKETS: A 
SIMPLE SOLUTION 

Suleyman Basak, London Business School and CEPR 
Georgy Chabakauri, London School of Economics 

 

Discussion Paper No. 8402 
May 2011 

Centre for Economic Policy Research 
77 Bastwick Street, London EC1V 3PZ, UK 

Tel: (44 20) 7183 8801, Fax: (44 20) 7183 8820 
Email: cepr@cepr.org, Website: www.cepr.org 

This Discussion Paper is issued under the auspices of the Centre’s research 
programme in FINANCIAL ECONOMICS.  Any opinions expressed here are 
those of the author(s) and not those of the Centre for Economic Policy 
Research. Research disseminated by CEPR may include views on policy, but 
the Centre itself takes no institutional policy positions. 

The Centre for Economic Policy Research was established in 1983 as an 
educational charity, to promote independent analysis and public discussion 
of open economies and the relations among them. It is pluralist and non-
partisan, bringing economic research to bear on the analysis of medium- and 
long-run policy questions.  

These Discussion Papers often represent preliminary or incomplete work, 
circulated to encourage discussion and comment. Citation and use of such a 
paper should take account of its provisional character. 

Copyright: Suleyman Basak and Georgy Chabakauri 



CEPR Discussion Paper No. 8402 

May 2011 

ABSTRACT 

Dynamic Hedging in Incomplete Markets: A Simple Solution* 

Despite much work on hedging in incomplete markets, the literature still lacks 
tractable dynamic hedges in plausible environments. In this article, we provide 
a simple solution to this problem in a general incomplete-market economy in 
which a hedger, guided by the traditional minimum-variance criterion, aims at 
reducing the risk of a non-tradable asset or a contingent claim. We derive fully 
analytical optimal hedges and demonstrate that they can easily be computed 
in various stochastic environments. Our dynamic hedges preserve the simple 
structure of complete-market perfect hedges and are in terms of generalized 
"Greeks," familiar in risk management applications, as well as retaining the 
intuitive features of their static counterparts. We obtain our time-consistent 
hedges by dynamic programming, while the extant literature characterizes 
either static or myopic hedges, or dynamic ones that minimize the variance 
criterion at an initial date and from which the hedger may deviate unless she 
can pre-commit to follow them. We apply our results to the discrete hedging 
problem of derivatives when trading occurs infrequently. We determine the 
corresponding optimal hedge and replicating portfolio value, and show that 
they have structure similar to their complete-market counterparts and reduce 
to generalized Black-Scholes expressions when specialized to the Black-
Scholes setting. We also generalize our results to richer settings to study 
dynamic hedging with Poisson jumps, stochastic correlation and portfolio 
management with benchmarking. 
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1. Introduction

Perfect hedging is a risk management activity that aims at eliminating risk completely. In theory,
perfect hedges are possible via dynamic trading in frictionless complete markets and are obtained by
standard no-arbitrage methods (e.g., Cvitanić and Zapatero, 2004). In reality, however, “perfect
hedges are rare,” as simply put by Hull (2008). Despite the unprecedented development in the
menu of financial instruments available, market frictions render markets incomplete, making perfect
hedging impossible. Consequently, hedging in incomplete markets has much occupied the profession.
The traditional approach is to employ static minimum-variance hedges (e.g., Stulz, 2003; McDonald,
2006; Hull, 2008) or the corresponding myopic hedges that repeat the static ones over time. While
intuitive and tractable, these hedges are not necessarily optimal in multi-period settings and may
lead to significant welfare losses (e.g., Brandt, 2003). Moreover, they do not generally provide
perfect hedges in dynamically complete markets. The alternative route is to consider richer dynamic
incomplete-market settings and characterize hedges that maximize a hedger’s preferences or provide
the best hedging quality. The latter is measured by various criteria in terms of means and variances
of the hedging error, as given by the deviation of the hedge from its target value. Despite much
work, the literature still lacks tractable dynamic hedges in plausible stochastic environments, with
explicit solutions arising in a few settings (typically with constant means and volatilities of pertinent
processes).

In this paper, we solve the hedging problem by employing the traditional minimum-variance
criterion and provide tractable dynamically optimal hedges in a general incomplete-market economy.
We demonstrate that these hedges retain the basic structure of perfect hedges, as well as the
intuitive elements of the static minimum-variance hedges. Towards that, we consider a hedger
who is concerned with reducing the risk of a non-tradable or illiquid asset, or a contingent claim
at some future date. Notable examples include various commodities, human capital, housing,
commercial properties, various financial liabilities, executive stock options, structured products.
The market is incomplete in that the hedger cannot take an exact offsetting position to the non-
tradable asset payoff by dynamically trading in the available securities, a bond and a stock (or
futures or any other derivative) that is correlated with the non-tradable. We employ the familiar
minimum-variance criterion for the quality of the hedging but considerably differ from the literature
in that we account for the time-inconsistency of this criterion and obtain the solution by dynamic
programming. We here follow a methodology developed in the context of dynamic mean-variance
portfolio choice in Basak and Chabakauri (2010). In dynamically complete markets, there is no time-
inconsistency issue (unlike the problem in Basak and Chabakauri) and our dynamically optimal
minimum-variance hedges reduce to perfect hedges, unlike their static or myopic counterparts.
In incomplete markets, we show that the variance criterion becomes time-consistent only when
the stock has zero risk premium or when considered under any risk-neutral probability measure
(which is not unique here). Our dynamically optimal hedge can then alternatively be obtained by
minimizing such a criterion under a specific risk-neutral measure.

We obtain a fully analytical characterization of the dynamically optimal minimum-variance
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hedges in terms of the exogenous model parameters. The complete-market dynamic hedge, obtained
by no-arbitrage, is determined by the “Greeks” that quantify the sensitivities of the asset value
under the unique risk-neutral measure to the pertinent stochastic variables in the economy. Ours is
given by generalized Greeks, still representing the asset value sensitivities to the same variables, but
now in terms of an additional parameter accounting for the market incompleteness and where the
asset-value is under a specific risk-neutral measure accounting for the hedging costs. The hedges
are in terms of the Greeks since, as we demonstrate, a higher variability of asset value implies a
lower quality of hedging, and hence the need to account for asset-value sensitivities. We further
demonstrate the tractability and practical usefulness of our solution by explicitly computing the
hedges for plausible intertemporal economic environments with stochastic market prices of risk and
volatilities of non-tradable asset and stock returns. We also contrast our hedges to those considered
in the literature that minimize the hedging error variance sitting at an initial date. We demonstrate
that these hedges, which we refer to as the “pre-commitment” hedges, are generically different from
ours since they do not account for the time-inconsistency of the variance criteria and the hedger
may deviate from them at later dates unless she can pre-commit to follow them.

We next apply our results to study the long-standing problem of discrete hedging in finance,
namely the replication and valuation of derivatives when trading occurs infrequently at discrete
periods of time, rendering markets incomplete. Although this problem has received considerable
attention, primarily within the Black and Scholes (1973) model context (e.g., Boyle and Emanuel,
1980; Leland, 1985; Bossaerts and Hillion, 1997, 2003, among others), analytical optimal hedges are
generally not available.1 We here provide, in a general discrete-time setting, tractable analytical
characterizations of the optimal minimum-variance hedges and the corresponding values of repli-
cating portfolios, which have structure analogous to those in complete markets. This reinforces our
earlier results that dynamically optimal minimum-variance hedges extend naturally no-arbitrage-
based risk management in complete markets to incomplete markets. Specializing our economy to
the Black-Scholes setting, we derive closed-form expressions for the optimal discrete hedge and the
replication value of a European call option, which to our knowledge are the first in the literature.
These expressions involve a generalized Black-Scholes formula with risk adjustments that account
for the inability to trade frequently. We then explore the implications of stock-return predictabil-
ity. We demonstrate that optimal discrete hedges and replication values are well approximated
by their Black-Scholes counterparts absent predictability, consistently with the literature. With
predictability, however, infrequent trading considerably impairs the ability of Black-Scholes hedges
to approximate discrete hedges and the Black-Scholes prices to predict the market prices of options.

We generalize our results to richer settings to further study dynamic hedging in incomplete
markets. We first extend our baseline analysis to the case when the hedger additionally accounts for
the mean hedging error, trading it off against the hedging error variance, as commonly considered in
the literature under static settings. We also relate this mean-variance hedging to the benchmarking

1This problem has also been employed in various applications, including in evaluating the performance of competing
option pricing models, in developing tests for the existence and the sign of the volatility risk premium, in explaining
option bid-ask spreads (e.g., Jameson and Wilhelm, 1992; Bakshi, Cao and Chen, 1997; Bakshi and Kapadia, 2003).
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literature in which a money manager’s performance is evaluated relative to that of a benchmark. We
show that the dynamic hedge now has an additional speculative component and additional hedging
demands due to the anticipated speculative gains or losses. We further demonstrate that our main
baseline results can easily be extended to feature multiple non-tradable assets and stocks. We here
provide an application to study dynamic hedging in the presence of correlation risk by developing a
multi-asset model with a flexible correlation structure, which also nests popular stochastic volatility
models as special cases. We derive the optimal hedges in closed form, identify the economic channels
through which time-varying correlations matter, and disentangle the effects of correlation and
volatility risks. Finally, we generalize our basic framework and provide analytical optimal hedges
when the assets follow processes with Poisson jumps. We demonstrate that the optimal hedges can
easily be computed in specific stochastic settings with jumps.

1.1. Further Discussion and Related Literature

The subject of hedging is, of course, prevalent in the literature on derivatives and risk management.
In economic contexts for which there is primarily a pure hedging motive, the goal of minimiz-
ing tracking error variance is a natural criterion, as adopted in much work in finance (references
discussed below). Such motives arise for market-makers of derivatives who provide immediacy,
permitting buyers and sellers to trade whenever they wish. Market-markers select their inventory
based on anticipated customer order flow and do not act on personal preference, nor do they expect
to profit by speculating, in contrast to propriety traders (McDonald, 2006). More generally, many
intermediary companies in financial services take positions to satisfy client demand for derivatives.
Since such positions face possible losses, the companies then aim to eliminate or reduce the risks
from derivatives positions sold to clients as much as possible (Cvitanić and Zapatero, 2004). In
the context of corporate hedging, such aims to eliminate risk may also be reasonable for a firm in
avoiding costly financial distress or mitigating managerial incentives to decline profitable projects
if unhedged project risks adversely affect managerial compensation or job security (Duffie and
Richardson, 1991). Beyond finance, the minimum-variance criterion also arises as a reasonable ob-
jective in various contexts in economics. In particular, when the aim of a government or a central
bank is stability and to decrease uncertainty in the economy, such a goal is widely adopted for
inflation and output targeting in monetary economics (references discussed below).

Intuitively, the idea of a minimum-variance hedge is to choose a position much like a delta neutral
hedge in complete markets, except that not all risk can be eliminated in incomplete markets. So,
the best one can hope is to eliminate as much risk as possible so as to replicate target payoff as
closely as possible. One simple approximate approach to pure hedging and replication of derivative
payoffs in the absence of speculative motives adopted in the literature is to apply complete-market
deltas in incomplete-market settings (e.g., Boyle and Emanuel, 1980; Bakshi, Cao, and Chen, 1997;
Bertsimas, Kogan and Lo, 2000; Bakshi and Kapadia, 2003; Hull, 2008). However, in contrast to
minimum-variance hedges, complete-market hedges being applied in incomplete-market settings do
not optimally account for market incompleteness, and hence are sub-optimal. Consequently, the
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goal of reducing tracking error variance, which allows replication of target payoffs as closely as
possible, can be viewed as a natural generalization of no-arbitrage-based hedging and replication in
complete markets to incomplete markets. This observation is supported by the main findings in this
paper (as discussed above in results), which characterizes the dynamically optimal time-consistent
minimum-variance hedges, in contrast to the existing literature which employs either static, myopic
or dynamically time-inconsistent minimum-variance hedges.

All major derivatives and risk management textbooks, Duffie (1989), Siegel and Siegel (1990),
Stulz (2003), Cvitanić and Zapatero (2004), McDonald (2006), Hull (2008), present the classic static
hedging problem by employing the minimum-variance criterion, and demonstrate its usefulness for
real-life risk management applications. Here, the standard cross-hedging problem of basis risk, using
a futures contract on an asset to hedge another asset, is also presented. This is a special case of our
general hedging problem in incomplete markets, where our tradable asset is the futures contract
and our hedging error variance is the basis risk. Ederington (1979), Rolfo (1980), Figlewski (1984),
Kamara and Siegel (1987), Kerkvliet and Moffett (1991), In and Kim (2006) employ minimum-
variance static hedges and evaluate their quality in different empirical applications. In a further
application, Bakshi, Cao and Chen (1997) use the minimum-variance objective in evaluating the
empirical performance of various option pricing and hedging models. Kroner and Sultan (1993),
Lioui and Poncet (2000), Brooks, Henry and Persand (2002) study the performance and economic
implications of closely related myopic minimum-variance hedges.

Furthermore, in monetary economics, Sargent and Wallace (1975), Bernanke and Woodford
(1997), Svensson (2000), and Evans and McGough (2007) employ the minimum-variance criterion
to examine inflation and output targeting. In fiscal theory, Cochrane (2001) appeals to such a
criterion for the analysis of long-term government debt and its impact on inflation. Building on
the minimum-variance problem in finance, Anderson and Danthine (1980, 1981) study futures
hedging and Hirshleifer (1988) derives futures risk premia under transaction costs by considering
a static mean-variance hedger. Roll (1992), Chan, Karceski and Lakonishok (1999), Costa and
Paiva (2002), Jorion (2003), Gomez and Zapatero (2003), Cornell and Roll (2005) employ the
static mean-variance criteria to study portfolio management with tracking error. In this literature,
the hedger either cannot rebalance or is myopic. This limitation is underscored by Brandt (2003)
who demonstrates that when hedging S&P 500 index options under CARA utility, the multi-period
hedges can generate substantial welfare gains.

The rapidly growing so-called “mean-variance” hedging literature in dynamic incomplete mar-
ket settings studies optimal policies based on hedging error means and variances. A large body of
literature characterizes these hedges for a quadratic criterion over the hedging error. In the context
of futures hedging, Duffie and Richardson (1991) provide explicit optimal hedges that minimize
the expected squared error when both the tradable and non-tradable asset prices follow geometric
Brownian motions (GBMs). Schweizer (1994) and Pham, Rheinlander and Schweizer (1998) in
a more general stochastic environment obtain a recursive feedback representation for the optimal
policy. Gourieroux, Laurent and Pham (1998) derive hedges which are in terms of parameters from
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a specific non-tradable asset payoff decomposition, but are difficult to obtain explicitly. Bertsi-
mas, Kogan and Lo (2001) solve the quadratic hedging problem via dynamic programming and
numerically compute the optimal hedges. Schweizer (2001) provides a comprehensive survey of this
literature with further references and notes that finding tractable optimal quadratic hedges is still
an open problem. To our best knowledge, with the exception of Duffie and Richardson, there are
no works that derive explicit quadratic hedges.2

Duffie and Richardson (1991), Schweizer (1994), Musiela and Rutkowski (1998) solve the dy-
namic minimum-variance hedging problem by reducing it to a quadratic one, thus characterizing
the pre-commitment hedges at an initial date from which the hedger may deviate in the future.
Duffie and Richardson and Bielecki, Jeanblanc and Rutkowski (2004) also characterize the pre-
commitment minimum-variance hedge subject to a constraint on the mean hedging error. In this
literature, however, the variance-minimizing hedges have not generally been obtained explicitly,
with the notable exception of the Duffie and Richardson case of both risky assets following GBMs.
Duffie and Jackson (1990) derive explicit minimum-variance hedges in futures markets under the
special case of martingale futures prices, which makes the hedging problem time-consistent. In the
case of mean-variance hedging, by employing backward induction, Anderson and Danthine (1983)
obtain hedges in a simple three-period production economy, while Duffie and Jackson (1989) in a
two-period binomial model of optimal innovation of futures contracts.

Finally, another strand of work investigates optimal dynamic hedges consistent with a hedger’s
utility maximization in typically continuous-time incomplete market settings. However, this work
has had mixed success in terms of tractability. Breeden (1984) provides optimal hedges with futures
in terms of the value function for a general utility function over intertemporal consumption. Stultz
(1984) derives explicit optimal hedges with foreign currency forward contacts when the exchange
rate follows a GBM and the hedger has logarithmic utility over intertemporal consumption. Adler
and Detemple (1988) consider the hedging of a non-traded cash position for logarithmic utility over
terminal wealth and provide an explicit solution in complete markets only. Svensson and Werner
(1993), Tepla (2000) and Henderson (2005) study the optimal hedging of non-tradable income or
assets. They obtain explicit solutions in incomplete markets with constant relative risk aversion
(CARA) hedgers, GBM tradable asset prices and an income process following a GBM or arithmetic
Brownian motion (ABM).3 Duffie, Fleming, Soner and Zariphopoulou (1997) and Viceira (2001)
consider the hedging of stochastic income with constant relative risk aversion (CRRA) preferences
and the tradable asset and income following GBMs and discrete-time lognormal processes, respec-
tively. The former work derives the solution in a feedback form, while the latter work derives a
log-linear approximation for the optimal hedges. Detemple and Sundaresan (1999) study the op-
timal hedging of non-tradable assets numerically in a setting with CRRA utility, binomial asset

2While the mean-variance hedging literature primarily deals with criteria that treat gains and losses symmetrically,
it is also reasonable to consider criteria that put more weight on losses than gains. One such criterion considered in
the literature is the minimization of expected losses (e.g., Cvitanić, 2000). However, the loss minimization is highly
intractable and no closed-form solutions for the optimal hedges have yet been identified in the literature.

3For more general processes or utilities these works derive solutions only in terms of value functions or sensitivities
of tradable wealth with respect to asset and state prices.
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processes and portfolio constraints.

The paper is organized as follows. In Section 2, we determine the dynamically optimal minimum-
variance hedges via dynamic programming, explicitly compute these hedges in plausible environ-
ments, and present the time-consistency conditions. In Section 3, we apply our results to study
the discrete hedging problem, while in Section 4 we generalize our baseline analysis to incorporate
mean-variance hedging, multiple assets, and asset prices with jumps. Section 5 concludes. Proofs
are in the Appendix.

2. Dynamic Minimum-Variance Hedging

2.1. Economic Setup

We consider a continuous-time incomplete-market Markovian economy with a finite horizon [0, T ].
The uncertainty is represented by a filtered probability space (Ω,F , {Ft}, P ), on which are defined
two correlated Brownian motions, w and wX , with correlation ρ. All stochastic processes are
assumed to be well-defined and adapted to {Ft, t ∈ [0, T ]}, the augmented filtration generated by
w and wX .

An agent in this economy, henceforth the hedger, is committed to hold a non-tradable asset
with payoff XT at time T . The non-tradable asset can be interpreted in different ways depending
on the application. The process X may represent the price of oil, copper or other commodity that
the hedger is committed to sell at time T , or may denote the price of a company share that the
hedger cannot trade so as to preserve company control. Alternatively, the non-tradable asset may
be interpreted as a derivative security, real option, firm or a project cash flow, the realization of
which is defined by the non-tradable state variable X, such as economic conditions, temperature
or precipitation level. We postulate the price of the non-tradable asset to follow the dynamics

dXt

Xt
= m(Xt, t)dt+ ν(Xt, t)dwXt, (1)

where the stochastic mean, m, and volatility, ν, are deterministic functions ofX. The risk associated
with holding the non-tradable asset can be hedged by continuous trading in two securities, a
riskless bond that provides a constant interest rate r and a tradable risky security. Depending
on the application, the risky security can be interpreted as a stock, a futures contract or any
other derivative security related to the non-tradable asset. Accordingly, the mean and volatility of
instantaneous returns on tradable security, which for expositional simplicity we call the stock, in
general may depend on the non-tradable asset price, X. The dynamics for the stock price, S, is
then modeled as

dSt
St

= µ(Xt, St, t)dt+ σ(Xt, St, t)dwt, (2)

where the stochastic mean return, µ, and volatility, σ, are deterministic functions of S and X. We
will denote µt, σt, mt and νt as shorthand for the coefficients in equations (1)–(2).
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The hedger chooses a hedging policy, θ, where θt denotes the dollar amount invested in the
stock at time t, given initial wealth W0. The hedger’s tradable wealth W then follows the process

dWt = [rWt + θt(µt − r)] dt+ θtσtdwt. (3)

The market in this economy is incomplete in that it is impossible to hedge perfectly the fluctuations
of the non-tradable asset by tradable wealth. Dynamic market completeness obtains only in the
special case of perfect correlation between the non-tradable asset and stock returns, ρ = ±1,
in which case the non-tradable asset can be replicated by stock trading and the hedge portfolio
uniquely determined by standard no-arbitrage methods. Since perfect hedging is not possible
in incomplete markets, the common approach in the literature is to determine a hedging policy
according to some criterion, defined over the hedging error XT −WT , that determines the quality
of hedging.

In this paper, we employ the traditional variance-minimizing criterion for the hedger whose
problem is

min
θ

vart[XT −WT ], (4)

subject to the dynamic budget constraint (3). The variance-minimizing criterion has widely been
employed in the literature in various economic contexts (e.g., risk management, evaluation of op-
tion pricing models, monetary economics), as discussed in Section 1.1. However, in a dynamic
setting, the variance-minimizing hedges have not been obtained explicitly in general stochastic en-
vironments. Moreover, the literature only characterizes the pre-commitment dynamic hedges that
minimize the variance criterion sitting at an initial date but become suboptimal at future dates due
to the time-inconsistency of the variance criterion, as discussed in Section 2.4. We solve problem
(4) by dynamic programming, and hence provide the time-consistent dynamic hedging policy.

2.2. Dynamically Optimal Hedging Policy

In this Section, we determine the dynamically optimal minimum variance hedges. The application
of dynamic programming, however, is complicated by the fact that the variance criterion is non-
linear in the expectation operator and in general not time-consistent. To address these problems, we
follow the approach in Basak and Chabakauri (2010) developed in the context of dynamic mean-
variance portfolio choice and derive a recursive formulation for the hedger’s objective function,
which yields the appropriate Hamilton-Jacobi-Bellman (HJB) equation of dynamic programming.
Proposition 1 reports the optimal policy derived from the solution to this equation and the resulting
optimal quality of the hedge.

Proposition 1. The optimal hedging policy and the corresponding variance of the hedging error
are given by

θ∗t =
ρνt
σt
Xt
∂E∗t [XT e

−r(T−t)]
∂Xt

+ St
∂E∗t [XT e

−r(T−t)]
∂St

, (5)

vart[XT −W ∗T ] = (1− ρ2)Et
[∫ T

t
ν2
sX

2
s

(∂E∗s [XT ]
∂Xs

)2
ds
]
, (6)
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where W ∗T is the terminal tradable wealth under the optimal hedging policy, and E∗t [·] denotes the
expectation under the unique probability measure P ∗ on which are defined two Brownian motions
w∗X and w∗ with correlation ρ such that the processes for the non-tradable asset, X, and stock price,
S, are given by

dXt

Xt
=
(
mt − ρνt

µt − r
σt

)
dt+ νtdw

∗
Xt,

dSt
St

= rdt+ σtdw
∗
t , (7)

and the P ∗-measure is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T
0 (µs−r

σs
)2ds−

∫ T
0

µs−r
σs

dws . (8)

Proposition 1 provides a simple, fully analytical characterization of the optimal hedging policy
in terms of the exogenous model parameters and a probability measure P ∗ (discussed below). We
first note that the optimal hedging policy (5) preserves the basic structure of that in complete
markets. Indeed, the perfect hedging policy in complete markets (with ρ = ±1), obtained by
standard no-arbitrage methods, is given by

θcompletet =
ρνt
σt
Xt
∂ERN

t [XT e
−r(T−t)]

∂Xt
+ St

∂ERN
t [XT e

−r(T−t)]
∂St

, (9)

where ERN
t [·] denotes the expectation under the unique risk-neutral measure and ERN

t [XT e
−r(T−t)]

represents the unique no-arbitrage value of the asset payoff XT . The complete-market dynamic
hedge is comprised of the Greeks, given by the sensitivities of the time-t asset value to the non-
tradable asset and stock prices (X and S dynamics under the risk-neutral measure are as in (7) with
ρ = ±1). No-arbitrage eliminates the uncertainty in hedging error in complete markets while the
minimum-variance criterion reduces it as much as possible when the market is incomplete. Thus,
our dynamic hedge (5) is a simple generalization of the complete-market perfect hedge, with the
additional parameter ρ accounting for the market incompleteness and the measure P ∗ replacing
the risk-neutral measure. This is in stark contrast to the optimal hedging policies obtained in the
mean-variance hedging literature which reduce to perfect hedges in complete markets but do not
maintain their intuitive structure in incomplete markets. Moreover, as demonstrated in Section 2.3,
our simple structure allows us to explicitly compute the optimal hedges under various stochastic
economic setups. When explicit solutions are not available the optimal hedges can be expressed in
terms of Malliavin derivatives, which can easily be computed via Monte Carlo simulation following
the approach in Detemple, Garcia and Rindisbacher (2003) and Detemple and Rindisbacher (2005).

The probability measure P ∗ naturally arises in our setting and facilitates much tractability. To
highlight the role of this measure, we note the following relation (as derived from Proposition 1 in
the Appendix) between the expected discounted non-tradable asset payoff, XT e

−r(T−t), under the
new and original measures:

E∗t [XT e
−r(T−t)] = Et[XT e

−r(T−t)]− Et[W ∗T e−r(T−t) −Wt]. (10)

The residual term, Et[W ∗T e
−r(T−t) − Wt], represents the expected discounted gains in tradable

wealth that the hedger forgoes in order to hedge the non-tradable asset over the period [t, T ],
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that is, the cost of hedging. So, the right-hand side of (10) represents the expected discounted
terminal payoff net of the hedging cost, while the left-hand side the expectation under P ∗. In other
words, the probability measure P ∗ incorporates the hedging cost when computing the expected
discounted asset payoff. Henceforth, we label P ∗ as the “hedge-neutral measure” (see Remark
1), and the quantity E∗t [XT e

−r(T−t)] as the “hedge-neutral value” of the payoff XT , analogously
to the risk-neutral value in the complete-market case. We further note that the hedge-neutral
value can also be interpreted as the minimal time-t value of a self-financing minimum-variance
hedging portfolio for which the expected hedging error, Et[XT −W ∗T ], is zero. To demonstrate this
interpretation, we observe from (10) that the expected hedging error is zero only if the initial value
of the self-financing portfolio equals the expected discounted non-tradable asset payoff under the
hedge-neutral measure, that is, Wt = E∗t [XT e

−r(T−t)]. Since the hedge-neutral value is related to
the expected hedging error, the hedger guided by the minimum-variance criterion can achieve a
better hedging quality by accounting for the sensitivities of the hedge-neutral value. Hence, the
hedges are in terms of the hedge-neutral value sensitivities, which we interpret as the delta-hedges,
as in the standard analysis of the Greeks.4

The quality of the optimal hedge, as measured by the variance of the hedging error (6), also has
a simple structure. The hedging error variance is driven by the level of market incompleteness, ρ2,
and becomes zero in complete markets. Therefore, it can conveniently be interpreted as a measure
of market incompleteness. Moreover, the quality of the hedge decreases with higher volatility of
the non-tradable asset, νt, or higher sensitivity of the hedge-neutral value with respect to the asset
price, ∂E∗t [XT ]/∂Xt, since it becomes more difficult to hedge the non-tradable asset.

The optimal hedging policy (5) admits intuitive comparative statics with respect to the model
parameters. Assuming for simplicity that the market price of risk, (µt − r)/σt, is driven by the
variable Xt only, we see that the total investment in absolute terms, |θ∗t |, is decreasing in the
stock price volatility, σt, because higher volatility makes hedging less efficient. The correlation
parameter ρ has both a direct and an indirect effect on the magnitude and sign of the hedge. The
direct effect implies that the magnitude of the optimal policy is decreasing in the absolute value
of the correlation, |ρ|. Intuitively, for higher absolute correlation more wealth is allocated to the
stock as the policy becomes more efficient. This effect is most pronounced in complete markets
when ρ = ±1, and the non-tradable asset can perfectly be hedged. With zero correlation, ρ = 0,
the direct effect disappears as it becomes impossible to hedge the non-tradable asset. The indirect
effect enters via the joint probability distribution of the prices of tradable and non-tradable assets.
This latter effect, along with the effects of the non-tradable asset volatility, time horizon and market
price of risk, can only be assessed in specific examples for which the optimal hedge can explicitly
be computed.

4We note that the hedge-neutral value is not an indifference price studied in the literature (e.g. Detemple and
Sundaresan, 1999; Henderson, 2005) and defined as the minimal increment to tradable wealth Wt sufficient to induce
the investor to give up the non-tradable asset. The utility function-based indifference pricing is vacuous in our
framework since the variance criterion is not interpreted as a utility function, and furthermore, the time-t value
function (6) does not depend on tradable wealth Wt.
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Remark 1 (The hedge-neutral measure). Our hedge-neutral measure P ∗ is a particular risk-
neutral measure, which is not unique in incomplete markets. A similar intuition for P ∗ with the
same label is developed in Basak and Chabakauri (2010) in the context of dynamic mean-variance
portfolio choice, where this measure is shown to absorb intertemporal hedging demands in such
a setting. The measure P ∗ also turns out to coincide with the so-called “minimal martingale
measure” solving min

Q
E[− ln(dQ/dP )], where dQ/dP denotes the Radon-Nikodym derivative of

measure Q with respect to the original measure P . The minimal martingale measure is argued to
arise naturally in the different context of “risk-minimizing hedging,” introduced by Follmer and
Sondermann (1986) and Follmer and Schweizer (1991). These works define the cost of hedging
as Ct = Wt −

∫ t
0 θτdSτ/Sτ and minimize the risk measure, Et[(CT − Ct)2], with respect to Wτ

and θτ , for t ≤ τ ≤ T . In contrast to our work, the resulting hedging policies do not satisfy the
budget constraint and require additional zero-mean inflows or outflows to it. As argued by Pham,
Rheinlander and Schweizer (1998) in the context of mean-variance hedging a more suitable measure
is the “variance-optimal measure” that solves min

Q
E[(dQ/dP )2]. The reason is that in general the

optimal policy can be characterized in terms of the variance optimal measure, and only in terms
of the minimal martingale measure in the special cases where the two measures coincide under the
restrictive conditions of either

∫ T
0 (µs− r)/σsds being deterministic or the stock price, S, not being

affected by the state variables.

Remark 2 (Comparison with static policy). We here compare our dynamically optimal hedge
(5) with the classic static hedge widely employed in all the prominent textbooks in derivatives and
risk-management (e.g., Duffie, 1989; Siegel and Siegel, 1990; Stultz, 2003; Cvitanić and Zapatero,
2004; McDonald, 2006; Hull, 2008), as well as in empirical works (e.g., Ederington, 1979; Rolfo,
1980; Figlewski, 1984; Kamara and Siegel, 1987; Kerkvliet and Moffett, 1991; In and Kim, 2006).
A static hedge θstatic0 minimizes the hedging error variance at the initial date, and holds the number
of units of stock θstatic0 /S0 constant throughout the hedging horizon. It can be demonstrated that
our dynamically optimal and static hedges can be written as follows:

θ∗t =
covt(dSt/St, dE∗t [XT e

−r(T−t)])
σ2
t

, θstatict =
cov0(ST /St, XT )

var0[ST /St]
.

Clearly, the dynamic hedge inherits the basic intuitive structure of the static hedge, but now tracks
the comovement between the instantaneous stock return and the change in the hedge-neutral asset
payoff value, and so additionally captures the arrival of new information. One important difference
between the two hedges is that the static hedge in general does not provide a perfect hedge, even
in dynamically complete markets when ρ2 = 1, in contrast to the dynamic one.5

5Similarly, our dynamically optimal hedge can be compared with the myopic minimum-variance hedge, which can
be viewed as the static hedge over an infinitesimally small hedging horizon, repeated over time. The myopic hedge
at each point in time minimizes the variance of the hedging error over next instant, dXt − dWt, and is given by
θmyopict = ρνtXt/σt. We note that the myopic hedge ignores the potential impact of mean-returns on the hedging
error variance, and in general does not provide a perfect hedge even in complete markets.
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2.3. Examples

In this Section, we demonstrate that in contrast to the extant mean-variance hedging literature,
our dynamically optimal minimum-variance hedges can easily be explicitly computed in settings
with stochastic means and volatilities. We here interpret the hedging instrument as the stock of
a firm that produces the commodity the hedger is committed to hold, and consider two examples,
one with stochastic stock mean return and another with stochastic stock return volatility alone.6

We consider the case when the terminal payoff cannot be perfectly hedged by futures contracts
either because there are no futures maturing at time T or available contracts are only for similar
commodities, and hence do not provide perfect hedges. In both examples, the non-tradable asset
price follows a mean-reverting process, which is consistent with the empirical evidence on oil and
other commodity prices. For example, Schwartz (1997) and Schwartz and Smith (2000) provide
supporting evidence for Gaussian mean-reverting logarithmic commodity prices, while Dixit and
Pindyck (1994) and Pindyck (2004) employ a geometric Ornstein-Uhlenbeck process to model and
estimate oil price dynamics.

In our first example, the non-tradable asset price follows a mean-reverting Ornstein-Uhlenbeck
(OU) process:7

dXt = κ(X̄ −Xt)dt+ ν̄dwXt, (11)

with κ > 0. The stock price has mean returns linear in price X and follows the dynamics considered
in Kim and Omberg (1996) in the context of dynamic portfolio choice:

dSt
St

= (r + σXt)dt+ σdwt. (12)

According to Proposition 1, finding the optimal hedging policy amounts to computing the expected
non-tradable payoff under the hedge-neutral measure. Since under the hedge-neutral measure the
non-tradable asset price, X, also follows an OU process, its first two moments are straightforward to
obtain (e.g., Vasicek, 1977). Corollary 1 reports the optimal hedging policy and its corresponding
quality.

Corollary 1. The optimal hedging policy and the corresponding variance of the hedging error for
the mean-reverting Gaussian model (11)–(12) are given by

θ∗t =
ρν̄

σ
e−(r+κ+ρν̄)(T−t), (13)

vart[XT −W ∗T ] = (1− ρ2)ν̄2 1− e−2(κ+ρν̄)(T−t)

2(κ+ ρν̄)
. (14)

6A more realistic model would combine the two effects and may include dependence on the state variables that
affect both tradable and non-tradable asset prices. In Section 4.2 we show that our model can easily be extended to
incorporate additional state variables.

7The OU process allows considerable tractability at the cost of possibly negative prices. Alternatively, the hedging
strategies can explicitly be derived in a model with the stock mean return driven by a mean-reverting logarithmic
non-tradable asset price, as in Schwartz (1997) and Schwartz and Smith (2000). In this case all prices would remain
positive.
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The optimal hedge is a simple generalization of the complete-market perfect hedge, with ρν̄

replacing ν̄ in complete markets to account for the imperfect correlation between the stock and
non-tradable asset. This explicit solution also yields further insights that cannot be analyzed in
the general framework of Section 2.2. In particular, Corollary 1 reveals that the sign of the hedge
is given by that of the correlation parameter, ρ. When the non-tradable asset and stock prices
are positively correlated, only a long position in the stock can reduce the hedging error variance,
and vice versa for negative correlation. Moreover, the absolute value of the hedge and the variance
of the hedging error are decreasing in the speed of mean-reversion parameter, κ. This is intuitive
since a higher speed of convergence to the mean leads to a lower variance of the non-tradable asset
payoff, and hence a smaller hedge. The hedging quality also improves as the degree of market
completeness, captured by ρ2, increases. Moreover, the hedging quality is higher for a positive
correlation than for a negative one of the same magnitude since positively correlated stock better
tracks the non-tradable asset price.

The second example considers the case of the stock volatility being decreasing in the non-
tradable asset price, which follows a square-root mean-reverting process

dXt = κ(X̄ −Xt)dt+ ν̄
√
XtdwXt, (15)

with κ > 0. The stock price follows the stochastic-volatility model employed by Chacko and Viceira
(2005) in the context of portfolio choice:

dSt
St

= µdt+
√

1
Xt
dwt. (16)

In this setting, the non-tradable asset can also be interpreted as a derivative security tracking
the stock return volatility. As in the previous example, the explicit hedge follows easily from
Proposition 1. Corollary 2 presents the optimal hedge along with the associated variance of the
hedging error.

Corollary 2. The optimal hedging policy and the corresponding variance of the hedging error for
the mean-reverting stochastic-volatility model (15)–(16) are given by

θ∗t = ρν̄Xte
−(r+κ+ρν̄(µ−r))(T−t), (17)

vart[XT −W ∗T ] = (1− ρ2)ν̄2X̄
1− e−2(κ+ρν̄(µ−r))(T−t)

2(κ+ ρν̄(µ− r))

+ (1− ρ2)ν̄2(Xt − X̄)
e−κ(T−t) − e−2(κ+ρν̄(µ−r))(T−t)

κ+ 2ρν̄(µ− r)
. (18)

Corollary 2 reveals that the absolute value of the hedge is increasing in the non-tradable asset
price. This is because a high asset price implies a low stock volatility. Hence, a higher stock
holding is required to hedge the non-tradable asset. The sign of the optimal hedge equals that of
the correlation ρ and its absolute value is decreasing in the mean-reversion parameter κ. For the
same reason as in the previous example, the hedging quality improves with increased mean-reversion
or degree of market completeness.
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2.4. Time-Consistency Conditions

We here discuss the time-inconsistency of the variance minimization criterion and establish condi-
tions on the economy, albeit restrictive, under which time-consistency obtains. First, we observe
that by the law of total variance

vart[XT −WT ] = Et[vart+τ (XT −WT )] + vart[Et+τ (XT −WT )], τ > 0. (19)

Sitting at time t, the hedger minimizes the sum of the expected future (t+ τ)-variance of hedging
error and the variance of its future expectation, both of which may depend on future strategies.
When the hedger arrives at the future time t+ τ , however, she minimizes just the variance at that
time, and regrets having taken into account the second term in (19), the time-t variance of future
expectation, since it vanishes at time t+ τ , and hence the time-inconsistency.

We note that due to the time-inconsistency of the variance criterion our dynamically optimal
hedges can be interpreted as the outcome of the sub-game perfect Nash equilibria in an intra-
personal game in which current and future selves of a hedger are different players. The time-t
self cannot commit future selves to follow the time-t hedging error variance minimizing strate-
gies and hence chooses the time-t strategy as a best response to the strategies of future selves.
This game-theoretic interpretation is commonly emphasized in the growing literature that employs
time-inconsistent preferences in economic settings with non-exponential discounting and changing
preferences (e.g., Peleg and Yaari, 1973; Harris and Laibson, 2001; Grenadier and Wang, 2007).

The time-inconsistency issue disappears in complete markets (ρ = ±1), where the non-tradable
asset can perfectly be replicated by dynamic trading, leading to zero hedging error variance. How-
ever, it is still possible to have time-consistency of the variance criterion in an incomplete-market
economy under certain restrictions, as summarized in Proposition 2.

Proposition 2. Assume that the stock risk premium is zero, µt − r = 0. Then the variance
criterion (4) is time-consistent and the ensuing optimal dynamic minimum-variance hedging policy
is given by

θ∗t =
ρνt
σt
Xt
∂Et[XT e

−r(T−t)]
∂Xt

+ St
∂Et[XT e

−r(T−t)]
∂St

. (20)

In an economy with no compensation for risk taking and where the stock is traded only for
hedging purposes, the variance criterion becomes time-consistent. The reason is that with zero
stock risk premium, the (discounted) tradable wealth reduces to a martingale and so the hedging
costs (second term in (10)) disappear. Consequently, the non-tradable asset, and hence time-t
hedge, are not affected by future policies, eliminating the time-inconsistency.8 Moreover, we see
that the structure of the optimal hedge is as in complete and incomplete markets, but now the
original measure acts as the valuating expectation. This optimal hedge generates those obtained

8Formally, the first term in the law of total variance (19) depends only on future policies, while the second
term depends only on the time-t policy, θt. As a result, the minimization of time-t variance does not lead to any
inconsistency.
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by Duffie and Jackson (1990), who consider among other problems, minimum-variance hedging
with futures contracts which turns out to be time-consistent. As in Proposition 2, it can be
shown for their economic setting with martingale futures prices and interest accruing on a futures
margin account that the variance criterion is time-consistent and the optimal hedge is given by
(20), which generalizes their explicit hedges derived for martingale and geometric Brownian motion
non-tradable asset prices.

Proposition 2 also allows us to convert the minimum-variance hedging problem considered in
Section 2.2 to a time-consistent one, as discussed in Corollary 3.

Corollary 3. In our incomplete-market economy consider the class of risk-neutral probability mea-
sures, P η, parameterized by η, on which are defined two Brownian motions wηX and wη with corre-
lation ρ such that the processes for the non-tradable asset, X, and stock price, S, are given by

dXt

Xt
=
(
mt − ρνt

µt − r
σt

−
√

1− ρ2ηt

)
dt+ νtdw

η
Xt,

dSt
St

= rdt+ σtdw
η
t , (21)

and the P η-measure is defined by the Radon-Nikodym derivative

dP η

dP
= e−

1
2

∫ T
0

(
(µs−r
σs

)2+η2
s

)
ds−

∫ T
0

µs−r
σs

dws−
∫ T
0 ηsdw⊥s , (22)

where w⊥ is a Brownian motion uncorrelated with w and defined by w⊥t ≡ (wXt − ρwt)/
√

1− ρ2.

The following minimum-variance criteria

varηt [XT −WT ], (23)

where the variance is taken under a risk-neutral measure P η, are time-consistent with the optimal
hedge given by

θηt =
ρνt
σt
Xt
∂Eηt [XT e

−r(T−t)]
∂Xt

+ St
∂Eηt [XT e

−r(T−t)]
∂St

, (24)

where Eηt [·] denotes the expectation under P η. For η = 0, a risk-neutral measure is hedge-neutral
and the optimal hedge (24) equals the dynamically optimal hedge (5).

Corollary 3 reveals that a risk-neutral measure adjusts the variance criterion so that it becomes
time-consistent. The criterion (23) treats the non-tradable asset and stock price processes as if
they were under a risk-neutral measure. Under this measure the stock has mean return equal to
the riskless rate r, and hence zero risk premium, which implies time-consistency by Proposition
2. The dynamically optimal hedge (5) is then obtained from the time-consistent hedging problem
when ηt = 0.

Remark 3 (Comparison with Duffie and Richardson pre-commitment hedge). As dis-
cussed above, the hedge that minimizes the hedging error variance at an initial date 0, as considered
in the literature (e.g., Duffie and Richardson, 1991; Schweizer, 1994; Musiela and Rutkowski, 1998),
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becomes suboptimal at future dates, unless the hedger can pre-commit to follow it. Accordingly,
we refer to it as the pre-commitment hedge. We next compare the dynamically optimal hedge (5)
with the pre-commitment hedge θcommitt , as derived in Duffie and Richardson (1991) in a setting
with the risky asset dynamics (1)–(2) being GBMs with mt = m, νt = ν, µt = µ, and σt = σ.9 As
demonstrated in the Appendix, in this setting the two hedges are given by:

θ∗t =
ρν

σ
Xte

(m−r−ρν(µ−r)/σ)(T−t), (25)

θcommitt =
ρν

σ
Xte

(m−r−ρν(µ−r)/σ)(T−t) (26)

− µ− r
σ2

(
(X0e

(m−r−ρν(µ−r)/σ)T −W0)ert − (Xte
(m−r−ρν(µ−r)/σ)(T−t) −W commit

t )
)
.

In contrast to the dynamically optimal hedge being a simple generalization of the complete-market
hedge, the pre-commitment hedge inherits an additional stochastic term. As shown in the Ap-
pendix, this additional term allows the hedger to maintain low time-zero hedging error variance.
Therefore, sitting at time t, the pre-committed hedger behaves so as to maintain a low time-zero
rather than time-t hedging error variance. It can also be demonstrated that the dynamically opti-
mal hedge achieves a lower hedging error variance than the pre-commitment hedge, after a certain
period of time.

3. Discrete Hedging

In this Section, we apply the methodology and results of Section 2 to solve a long-standing problem
in finance: the replication and valuation of a derivative security when trading can only occur at
discrete points in time. With complete financial markets and stock prices following continuous-time
processes, the payoffs of derivative securities can be replicated via continuous trading. However, the
discreteness of stock price observations, market frictions, and market closures, render continuous
hedging and perfect replication infeasible (e.g., Figlewski, 1989). Consequently, in reality hedgers
can adjust their portfolios only infrequently. Besides being more accurate descriptions of reality,
as argued in Campbell, Lo, and MacKinlay (1997), discrete time models are easier to implement
empirically.

We here derive optimal discrete-time hedges that minimize the hedging error variance, and
hence replicate derivative payoffs as closely as possible. Moreover, for the case of a European call
and GBM stock price, we obtain a closed-form generalized Black-Scholes formula for the value of the
best replicating portfolio and an explicit hedge that is the discrete-time analogue of the standard
Black-Scholes perfect hedge. Both expressions involve risk adjustments, directly depending on the
stock risk premium, accounting for the inability to hedge perfectly. Finally, we study discrete
hedging under return predictability and demonstrate that while optimal discrete hedges and the
values of replicating portfolios are close to those in the classical Black-Scholes economy absent

9To our best knowledge, Duffie and Richardson are the only ones to provide an explicit expression for this policy
in the context of hedging with futures contracts and interest accruing on a futures margin account, which can easily
be adapted to our setup.
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predictability, they deviate considerably from their Black-Scholes counterparts with predictability.
Intuitively, our results demonstrate that return predictability improves the ability to predict the
moneyness of options, and hence may significantly affect their values.

3.1. Optimal Discrete Hedge and Replication Value

The problem of discrete-time hedging of options has received considerable attention in financial
economics, primarily in the context of the Black and Scholes (1973) call option pricing model for
which closed-form hedges and prices are available with continuous trading. In seminal works, Boyle
and Emanuel (1980) study the properties of hedging error distributions when Black-Scholes hedges
are implemented discretely in time, while Leland (1985) investigates such discrete hedging with
transaction costs and provides an approximate solution for the call price and hedging policy by
adjusting the volatility parameter in the Black-Scholes formula. Wilmott (2006) summarizes further
attempts in this direction. Bossaerts and Hillion (1997, 2003) obtain optimal discrete-time hedges
from local parametric estimation and demonstrate that Black-Sholes hedges being applied over
discrete intervals of time may generate larger hedging errors than theirs. Bertsimas, Kogan, and
Lo (2000, 2001) study the properties of discretely adjusted hedges, including Black-Scholes ones,
by employing the minimum quadratic criterion. Cochrane and Saa-Requejo (2000) investigate the
replication of derivative payoffs with infrequent trading and provide “good deal” bounds on their
prices. Discrete hedging has also been employed to address various important issues in finance. In
particular, Bakshi, Cao and Chen (1997) employ discrete hedges to empirically evaluate the relative
performance of competing option pricing models, while Bakshi and Kapadia (2003) employ discrete
hedges to develop a test for the existence and the sign of the volatility risk premium. Jameson and
Wilhelm (1992) demonstrate that the risks due to discreteness of portfolio rebalancing explain a
significant proportion of option bid-ask spreads.

To investigate the discrete hedging problem, we modify our economic setting of Section 2 as
follows. The hedger can now rebalance the tradable wealth only at fixed dates t = 0,∆t, 2∆t, ..., T ,
where ∆t = T/N is the time increment in the model, T the investment horizon and N the number
of trading periods. The hedger trades in a riskless bond with return r and a stock with price St that
follows a stochastic (continuous or discrete) process with one-period stock returns St+∆t/St drawn
from a known distribution with finite mean Et[Sτ+∆t/Sτ ] and variance vart[Sτ+∆t/Sτ ], where τ ≥ t.
In general, we allow the moment parameters to depend on multiple state variables. We consider
a hedger who is committed to hold a European-style derivative security with terminal payoff XT ,
which depends on the horizon stock price ST and in general on the past stock price realizations.
The hedger’s objective is to minimize the variance criterion (4) subject to the discrete-time budget
constraint:

Wt+∆t = er∆tWt + θt

(St+∆t

St
− er∆t

)
, (27)

where θt is the dollar amount invested in the stock. The financial market is in general incomplete
since the derivative payoff cannot be perfectly replicated by the available securities in this discrete-
time setting even if the stock price follows a simple continuous-time GBM process. The variance
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criterion provides a natural metric for evaluating how closely the derivative payoff can be replicated
with discrete trading. Consequently, the variance minimization (4) subject to the budget constraint
(27) extends the concept of derivative replication to discrete incomplete-market settings.

We proceed by applying the methodology of Section 2 to derive the optimal hedge via dynamic
programming in terms of the expected discounted derivative payoff net of replication costs, G,
defined analogously to equation (10) (after Proposition 1) as:

Gt = Et

[
XT e

−r(T−t)
]
− Et

[
W ∗T e

−r(T−t) −Wt

]
. (28)

Similarly to the discounted net asset payoff (10) in Section 2, the discounted net payoff G in (28)
can be interpreted as the value of the self-financing strategy that replicates the derivative payoff as
closely as possible, and for which the hedging error is unbiased in the sense that conditionally on
time-t information the hedging error is zero on average, so that Et[XT −W ∗T ] = 0. Consequently,
we label the discounted net payoff G as the hedger’s derivative replication value.10 Proposition 3
reports the optimal hedge, the replication value, and the ensuing hedging error variance.

Proposition 3. The optimal discrete-time hedge and the derivative replication value are given by:

θ∗t = St
Et
[
e−r∆tGt+∆t

]
−Gt

Et[e−r∆tSt+∆t]− St
, (29)

Gt =
1
ξt
Et

[
ξTXT e

−r(T−t)
]
, (30)

where the process ξt is a martingale, given by:

ξt =
t−∆t∏
τ=0

{
1 +

(Eτ [Sτ+∆t/Sτ ]− Sτ+∆t/Sτ√
varτ [Sτ+∆t/Sτ ]

)(Eτ [Sτ+∆t/Sτ ]− er∆t√
varτ [Sτ+∆t/Sτ ]

)}
if t > 0, and ξ0 = 1. (31)

The hedging error variance is given by:

vart
[
XT −W ∗T

]
= Et

[T−∆t∑
τ=t

er(T−τ−∆t) varτ
(
Gτ+∆t − θ∗τ

Sτ+∆t

Sτ

)]
. (32)

Proposition 3 provides an analytical characterization of the discrete hedge and replication value
in terms of the exogenous model parameters. We observe that the optimal hedge (29) per unit of
stock price St can be interpreted as the discrete hedging analogue of the standard option delta,
measuring the sensitivity of the expected change in the (discounted) replication value to the ex-
pected change in the underlying (discounted) stock price. Indeed, with continuous-time complete

10For comparison, in the quadratic hedging literature (e.g., Bertsimas, Kogan and Lo, 2000; Schweizer, 2001) the
replication value is found as the value of Wt that minimizes the mean squared error Et(XT −W ∗T )2. However, in
contrast to minimum variance hedging, quadratic hedging in general does not produce mean-zero hedging errors (this
can be demonstrated even in a simple one-period example). Likewise, Branger and Schlag (2008) demonstrate that
biased hedging errors arise when Black-Scholes hedges are applied to discrete hedging problems, which may bias the
tests for the existence and the sign of the volatility risk premium.
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markets the standard complete-market hedge (9), by employing Itô’s Lemma and the PDE for the
no-arbitrage value for G, can be rewritten as:

θRNt = St
Et
[
d(e−rtGt)

]
Et
[
d(e−rtSt)

] . (33)

Comparing the expressions for the hedges (29) and (33) we see that both have a similar structure
that naturally arises in the context of discrete hedging. This similarity also reinforces our earlier
observation that the minimization of the hedging error variance (4) provides a natural extension of
the no-arbitrage replication to the case of incomplete markets.

The hedger’s replication value (30) is given by the expected deflated terminal payoff of the
derivative. So, the structure of the replication value is also analogous to that of the no-arbitrage
value in complete markets. The martingale deflator ξt is determined analytically in (31) and depends
on the unexpected changes in the stock returns per unit of standard deviation weighted by the stock
Sharpe ratio. Hence, the stock mean-return µ generally directly affects the derivative replication
value through the discrete-time Sharpe ratio. Moreover, comparing the two representations for the
replication value in (28) and (30) we see that the deflator ξt absorbs the hedging costs (second term
in (28)), and so we label ξ as the hedge-neutral martingale deflator. Finally, analogously to the
complete-market case, the process e−rtξtSt is also a martingale, as demonstrated in the Appendix.
Using this property it can easily be demonstrated, for example, that the replication values for
European call and put options satisfy the put-call parity.

We further note that the optimal hedge (29) and the replication value (30) can easily be eval-
uated numerically by standard Monte Carlo simulation methods, and in some cases explicitly
computed in closed form, as demonstrated below. The results of Proposition 3 allow the evaluation
of the optimal hedges for stock prices generally being driven by multiple state variables and non-
Markovian path-dependent processes, such as GARCH processes for stock return volatilities. These
hedges can also be computed for derivative securities with path-dependent payoffs determined by
discretely sampled past stock prices (e.g., daily or weekly closing prices), for which closed-form
prices are not available even in complete markets. Finally, we note that our discrete-time hedges
are more tractable than the quadratic hedges provided in Bertsimas, Kogan and Lo (2001). In par-
ticular, the latter are derived in terms of coefficients satisfying recursive equations with expectation
operators at each step, which complicates the computations, and do not permit explicit hedges.

The quality of the optimal hedge is measured by the variance of the hedging error (32). We
obtain the quality of the hedge as the sum of one-period hedging error variances by applying the
law of total variance. Using the expression for Wt+∆t in (27) we further observe that one-period
hedging error variances on the right-hand side of (32) can be rewritten as varτ [Gτ+∆t −Wτ+∆t].
Consequently, by keeping the hedging error variance (32) small, our optimal hedges also keep the
whole path of the replication value Gt close to the path of the tradable wealth Wt.
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3.2. Application to Option Hedging with GBM Stock Price

We now study the important commonly-studied special case of the derivative being a call option
with payoff XT = (ST −K)+, K > 0, and the stock price following a continuous-time GBM process:

dSt
St

= µdt+ σdwt. (34)

When the hedges can be rebalanced continuously the financial market is dynamically complete
here, and the closed-form Black-Scholes option price obtains via no-arbitrage valuation. With our
incomplete market when the hedging takes place over discrete time intervals, we apply the results of
Proposition 3 to derive the optimal hedge and option replication value, as reported in Proposition
4.

Proposition 4. When the stock price follows GBM the optimal hedge and the replication value of
the call option are given by:

θ∗t = St
Et
[
e−r∆tGt+∆t

]
−Gt

Et[e−r∆tSt+∆t]− St
=
e(µ−r)∆t∑n−1

k=0 ωn−1,kC
BS
k (St, t)−

∑n
k=0 ωn,kC

BS
k (St, t)

e(µ−r)∆t − 1
, (35)

Gt =
n∑
k=0

ωn,kC
BS
k (St, t), (36)

where n = (T − t)/∆t, and CBSk (St, t) is the Black-Scholes price with the risk-adjusted discount
rate rk = r + (µ− r + kσ2/n),

CBSk (St, t) = StΦ
( ln(St/K) + (rk + 0.5σ2)(T − t)

σ
√
T − t

)
−Ke−rk(T−t)Φ

( ln(St/K) + (rk − 0.5σ2)(T − t)
σ
√
T − t

)
,

and the weight ωn,k is given by

ωn,k =
(
n

k

)(
e(µ−r+σ2)∆t − 1

)n−k(
eσ

2∆t − e(µ−r+σ2)∆t
)k(

eσ2∆t − 1
)n . (37)

Moreover, as ∆t shrinks to zero, the replication value (36) converges to the Black-Scholes price.

Proposition 4 provides a closed-form expression for the optimal hedge (35) and the option
replication value (36) in terms of weighted Black-Scholes prices CBSk with the risk-adjusted discount
rate rk (replacing the interest rate r in the standard Black-Scholes price). Despite numerous
applications of discrete-time hedging in finance, to our best knowledge, above is the first to provide
closed-form expressions for the replication value and hedging policy. Our closed-form hedges can be
applied as an alternative to widely used sub-optimal discretely evaluated Black-Scholes hedges (e.g.,
Boyle and Emanuel, 1980; Jameson and Wilhelm, 1992; Bakshi, Cao, and Chen, 1997; Bertsimas,
Kogan and Lo, 2000; Bakshi and Kapadia, 2003), approximate hedges for small hedging intervals
(e.g., Leland 1985; Wilmott, 2006, and literature therein), as well as hedges obtained from local
parametric estimation (e.g., Bossaerts and Hillion, 1997, 2003).
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As demonstrated in the Appendix, each Black-Scholes price CBSk in (36) corresponds to a k-
period optimal static hedge when the hedger keeps θ∗k dollars in stock between times t and t+ k∆t
without rebalancing, and invests only in bonds thereafter.11 Consequently, the risk adjustments in
rk arise due to the inability to hedge perfectly, and increase in the length of the static period k,
and generally depend on the risk premium µ − r. Therefore, in contrast to Black-Scholes hedges,
our hedges depend on the stock mean return µ. As pointed out in Bossaerts and Hillion (1997),
the fact that Black-Scholes hedges do not depend on the stock mean return significantly impairs
their performance in discrete hedging applications. Furthermore, the replication value formula
(36) demonstrates that the option payoff can be hedged by a portfolio of static hedging policies,
each accounting for the uncertainty in k periods. The increase in the number of trading periods n
improves the diversification of risks in this portfolio, and hence its value converges to Black-Scholes
price in the continuous-time limit.

Remark 4 (Alternative representation for the replication value). When the number of
hedging intervals n increases, the weights ωn,k given by (37) may become very large due to the
powers of n and the number of choices of k out of n possibilities. Therefore, small computational
errors in replication value formula (36) are multiplied by large coefficients, decreasing the precision
of calculations.12 We here present an alternative representation for the replication value Gt which
is computationally more efficient, though less intuitive economically than representation (36). As
demonstrated in the Appendix, the call option replication value is alternatively given by:

Gt =
1

2πσ
√

(T − t)

∞∫
−∞

[ ∞∫
−∞

R(x, ε)n cos
(
nϕ(x, ε)

)
e−

ε2

2 dε
]
(Stex −K)+e

− (x−(µ−0.5σ2)(T−t))2

2σ2(T−t) dx, (38)

where the closed-form expressions for R(x, ε) and ϕ(x, ε) are given in the Appendix, and the inte-
grals in (38) can easily be evaluated numerically. This alternative formula avoids large coefficients
and is computationally stable.

3.3. Option Hedging under Stock Return Predictability

We next apply our methodology to study optimal hedges and replication values of European call
options under stock return predictability. While return predictability is a well-documented and
important feature of financial markets (e.g., Lo and MacKinlay, 1988, 1990; Fama and French,

11In particular, the replication value under this static hedge is given by aCBS0 +bCBSk , where a and b are constants,
giving rise to Black-Scholes CBSk prices in (36). The weight ωn,k is also driven by k and depends on the number of
possible choices of k out of n periods remaining in which the static hedge is applied.

12The loss of precision can be demonstrated in the following example:

(q + 1− q)n =

n∑
k=0

(
n

k

)
qn−k(1− q)k, where q =

√
2.

Even though the equation above holds as identity, the numerical calculations of its left-hand and right-hand sides are
not equivalent. In computer-based calculations (e.g., MATLAB) q =

√
2 is replaced by an approximation with finite

number of digits. The approximation error is then multiplied by a large coefficient, leading to calculation errors when
n is large.
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1988; Lo and Wang, 1995), it is well known that in complete markets option hedges and prices
do not depend on stock mean-returns through which predictability most commonly affects stock
prices. However, in a more realistic incomplete-market setting, the ability to predict the moneyness
of an option in general affects its value since investors may consider the Black-Sholes price to be
too high or too low depending on whether an option is very likely to be out of the money or in
the money, respectively. Consequently, the stock mean-return becomes an important parameter
affecting the optimal hedge and the replication value in an incomplete-market setting.

The implications of return predictability for derivative pricing have been studied in some related
works. In particular, Lo and Wang (1995) consider a continuous-time complete-market setting
with mean-reverting detrended stock log-prices. They demonstrate that even though Black-Scholes
option prices are functionally independent of mean-returns, the stock return volatility estimated
from discretely sampled data depends on the speed of mean-reversion, and hence the Black-Scholes
formula should be adjusted to account for predictability in the data. Bertsimas, Kogan and Lo
(2000) in a similar setting derive the asymptotic properties of hedging errors under discretely
applied Black-Scholes hedges, while Schwartz (1997) studies the prices of commodity futures in a
setting with mean-reverting commodity log-prices. To our best knowledge our analysis below is
the first to evaluate the impact of predictability on optimal discrete-time hedges and replication
values.

We consider a setting where the derivative is again a European call option with payoff (ST−K)+,
K > 0, and detrended log-price S is mean-reverting (as in Lo and Wang (1995) and Bertsimas,
Kogan, and Lo (2000)):

d
(
ln(St)− µ̄t

)
= −κ

(
ln(St)− µ̄t

)
dt+ σdwt, (39)

where µ̄ > 0 is the trend parameter and κ > 0 is the speed of mean-reversion. We note that the
GBM process (34) is a special case of (39) for κ = 0 and µ̄ = µ−0.5σ2. When hedges are rebalanced
continuously the market is complete, and hence the replication value is given by the standard Black-
Scholes formula that does not depend on the stock mean-return. To solve the hedging problem with
infrequent trading we observe that the replication value in (30) can recursively be rewritten as:

Gt =
1
ξt
Et
[
ξt+∆tGt+∆te

−r∆t], (40)

where ξt is as given by (31). Since the stock returns Sτ+∆t/Sτ are log-normal, their conditional
means and variances are available in closed form (e.g., Lo and Wang, 1995). Substituting these
means and variances into the expression for the process ξt yields an analytic expression for ξt+∆t/ξt.
The replication value is then computed via backwards induction starting with GT = (ST −K)+.

Figure 1 presents the results of numerical computations for a call option with strike price
K = 0.5 and maturity T = 1 for calibrated model parameters.13 Panels (a) and (b) of Figure 1

13In our numerical computations, we set µ̄ = 0.064, σ = 0.166, r = 0.01 so that the (long-run) expected Sharpe
ratio for process (39), given by

(
µ̄+0.5σ2−r

)
/σ, matches the Sharpe ratio of 0.41 and stock return volatility of 0.166

for US stock market over the period of 1934-2003 years (e.g., Cogley and Sargent, 2008). Following the literature, we
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Figure 1: Option Deltas, Replication Values, and Hedging Quality.

Panels (a) and (b) plot the deltas and replication values as functions of the stock price S for varying levels
of speed of mean-reversion, κ, for the following calibrated parameter values: µ̄ = 0.066, σ = 0.166, r = 0.01,
K = 0.5, n = 24, and T = 1 (see footnote 13). Panel (c) plots the hedging error standard deviations for
different values of the number of trading periods n for κ = 0.4, where the remaining parameters are as in
panels (a) and (b).

depict the discrete-time deltas θ∗/S, and the replication values G under bimonthly rebalancing,
respectively, as functions of the stock price S for different plausible speeds of mean-reversion κ.
For comparison, the Black-Scholes option deltas and prices (solid lines) are also presented. The
plots on panels (a) and (b) demonstrate that in the absence of predictability (κ = 0) the deltas and
replication values are closely approximated by their Black-Scholes counterparts, consistently with
the literature (e.g., Leland, 1995; Bertsimas, Kogan and Lo, 2000).

The difference between discrete-time and Black-Scholes deltas and replication values, however,
becomes significantly larger as the speed of mean-reversion increases. In particular, panel (b)

let the mean-reversion parameter to be κ = 0.4 or κ = 0.7. In particular κ = 0.4 is calibrated in Lo and Wang (1995)
from historical daily returns on CRSP value-weighted market index from 1962 to 1990, while κ = 0.7 is an upper
bound for plausible mean-reversion parameters for commodity price processes, as estimated in Schwartz (1997).
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reveals that higher predictability decreases the replication values around the strike price, leading
to a larger deviation from the Black-Scholes benchmark. To see this, we first note that detrended
stock log-prices are negative around the strike price. Therefore, the stock log-prices will revert
back to the trend line, and towards the option expiration date the stock price will fluctuate around
eµT > 1. Consequently, higher predictability increases the likelihood that the option with strike
price K = 0.5 will be in the money. In turn, the increase in the probability of moneyness moves the
replication value closer to the lower no-arbitrage bound for option prices, St −Ke−r(T−t). This is
because with higher probability of moneyness the option payoff (ST −K)+ is better approximated
by the exercise value ST − K, and hence the option replication value should be closer to the
replication value of ST − K, which is given by St − Ke−r(T−t). Hence, the replicating value is
decreased with higher predictability and stock price close to the strike price, which also translates
into larger deviations of discrete deltas from Black-Scholes ones.14 Therefore, the inability to
trade continuously considerably affects the optimal hedging strategy in the presence of return
predictability, and hence impairs the ability of the Black-Scholes model to predict market prices
of options. Accordingly, one economic implication that emerges from our analysis is that the
deviations of market prices of options from the Black-Scholes prices should be larger with stronger
return predictability.

Panel (c) plots the quality of the discrete hedging, the standard deviation of the hedging error,
as a function of the stock price S for varying levels of rebalancing frequency, bimonthly, weekly and
daily. We see that the standard deviations decrease with higher number of rebalancing periods and
are hump-shaped functions of the stock price S. The quality of the hedging is better for stock prices
which are much lower or higher than the strike price since in these cases there is less uncertainty
about whether the option will be out of the money or in the money. Furthermore, since below the
strike the detrended log-prices are negative and hence revert back to zero, the probability of stock
prices going up exceeds the probability of going down. Consequently, the standard deviations are
maximized at a stock price below the strike, where the uncertainty about exceeding the strike is
higher.

4. Generalizations

We now generalize our main results on minimum-variance hedging in Section 2 to richer settings
along three dimensions. First, we consider a more general model in which the hedger is guided by
a linear mean-variance criterion over the hedging error. Then, we demonstrate that the minimum-
variance hedging model can easily be extended to a richer environment with multiple non-tradable
assets and stocks and study dynamic hedging with time-varying correlations. Finally, we extend
the analysis to the case of assets following processes with jumps.

14In the limiting case of perfect predictability with the speed of mean-reversion κ going to infinity, the discrete-
time replication value converges to St−Ke−r(T−t). Intuitively, since the option is predicted to be in the money with
certainty, its payoff can be replicated by a portfolio that buys one stock and borrows Ke−r(T−t) at time t. In contrast
to the discrete-time model, the Black-Scholes price while being functionally independent of κ fails to account for the
effect of predictability.
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4.1. Mean-Variance Hedging and Benchmark Tracking

We here consider a hedger who also accounts for the mean hedging error, and trades it off against
the hedging error variance. Such a mean-variance hedging criterion is commonly employed in a
variety of, primarily static, settings (e.g., Anderson and Danthine, 1980, 1981, 1983; Hirshleifer,
1988; Duffie, 1989; Duffie and Jackson, 1989). Our analysis in this Section is also related to the
literature on portfolio management with benchmarking. In this literature, money managers are
evaluated relative to a benchmark portfolio and are concerned about their tracking error, defined
as the deviation of a manager’s performance from that of the benchmark. The mean-variance
tracking error model amounts to mean-variance hedging if we relabel the non-tradable asset X
as the benchmark portfolio and observe that tracking error is the negative of hedging error. Roll
(1992), Jorion (2003), Gomez and Zapatero (2003), Cornell and Roll (2005) discuss the implications
of such benchmarking on portfolio efficiency and asset pricing. Chan, Karceski and Lakonishok
(1999) and Costa and Paiva (2002) discuss the implications of estimation risk and robust portfolio
selection with benchmarking. These works all employ a static mean-variance framework by either
minimizing the tracking error variance for a given mean, or maximizing the tracking error mean
for a given variance.

A dynamic mean-variance hedger chooses an optimal hedge, trading-off lower variance against
higher mean of hedging error, by solving the dynamic problem

max
θt

Et[WT −XT ]− γ

2
vart[WT −XT ], (41)

subject to the budget constraint (3), where the parameter γ captures the hedger’s attitudes towards
risk. The optimal quality of the hedge is measured by the value function Jt, given by the criterion
in (41) evaluated at the optimal policy. As in Section 2 we consider the time-consistent solution to
problem (41) obtained by dynamic programming. Proposition 5 reports the dynamically optimal
hedging policy along with the value function.

Proposition 5. The dynamically optimal mean-variance hedge, θ∗t , and the corresponding value
function, Jt, are given by

θ∗t =
ρνt
σt
Xt
∂E∗t [XT e

−r(T−t)]
∂Xt

+ St
∂E∗t [XT e

−r(T−t)]
∂St

+
µt − r
γσ2

t

e−r(T−t) (42)

− ρνt
σt
Xt

∂E∗t

[(∫ T
t

1
γ

(
µs−r
σs

)2
ds
)
e−r(T−t)

]
∂Xt

− St
∂E∗t

[(∫ T
t

1
γ

(
µs−r
σs

)2
ds
)
e−r(T−t)

]
∂St

,

Jt = −γ
2

(1− ρ2)Et
[∫ T

t
ν2
sX

2
s

(∂E∗s [XT −
∫ T
s

1
γ

(
µτ−r
στ

)2
dτ
]

∂Xs

)2
ds
]

(43)

+ Wte
r(T−t) − E∗t

[
XT

]
+

1
2
E∗t

[∫ T

t

1
γ

(
µs − r
σs

)2

ds
]
.

Proposition 5 reveals that the dynamically optimal mean-variance hedge is comprised of three
types of terms. The first two terms in (42) comprise the variance-minimizing hedge of Section 2,
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reflecting the hedger’s aversion towards hedging error variance. The third term is the speculative
demand, as referred to in the related works (e.g., Anderson and Danthine, 1980, 1981; Duffie, 1989),
and arises due to the hedger’s desire for high mean hedging error. Finally, the last two terms in (42)
are the intertemporal hedging demands, familiar in the portfolio choice literature. These demands
arise due to the fluctuations in the non-tradable asset and stock mean returns and volatilities, and
in our framework are simply given by the sensitivities of the hedge-neutral value of anticipated
speculative gains. The value function (43) that measures the quality of the optimal hedge implies
a better hedge with a higher value. However, it can be verified that unlike the minimum-variance
hedge, the optimal mean-variance hedge does not provide a perfect hedge (i.e., having zero hedging
error variance) even in complete markets because the hedger forgoes lower hedging error variance
for higher mean.

The optimal hedge (42) can explicitly be computed for specific stochastic environments, as in
the case of the minimum-variance hedge. However, in this case, the computations are more involved,
and the hedge depends on the hedger-specific parameter γ. We next explicitly provide the optimal
hedge in a stochastic environment as in one of our examples in Section 2.3, where the non-tradable
asset follows the mean-reverting process (15), and the stock price follows the stochastic volatility
process (16), which has been employed in portfolio choice context by Chacko and Viceira (2003),
and is a special case of the quadratic asset returns model in Liu (2007).15 Corollary 4 reports the
optimal hedge.

Corollary 4. The optimal hedging policy for the mean-reverting stochastic-volatility (15)–(16) is
given by

θ∗t = ρν̄Xte
−(r+κ+ρν̄(µ−r))(T−t)

(
1 +

(µ− r)2

γ
(
κ+ ρν̄(µ− r)

))
+
µ− r
γ

Xte
−r(T−t) −

ρν̄Xt(µ− r)2

γ
(
κ+ ρν̄(µ− r)

)e−r(T−t). (44)

The optimal hedge in (44) is comprised of three terms. The first term is given by the pure
minimum-variance hedge scaled by a factor, which arises due to the fact that the agent now hedges
not only the non-tradable asset but also the fluctuations in the squared market price of risk

(
(µt−

r)/σt
)2 = (µ − r)2Xt. Specifically, since the squared market price of risk is proportional to the

asset price X, hedging its fluctuations also involves a minimum-variance hedge multiplied by a
constant accounting for the compounding effect of integration in (42). This interacts with the pure
minimum-variance hedge for the non-tradable asset terminal payoff, giving rise to the scaling factor
in the first term of (44). The second term in (44) is given by the pure speculative demand, which is
adjusted by the third term in (44), accounting for the residual hedging demand due to fluctuations
in the market price of risk.

15Similarly, it is possible to obtain explicit hedges when the non-tradable asset follows the mean-reverting process
(11) and the stock follows a process with mean-reverting Gaussian mean-return, as in Kim and Omberg (1996).
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4.2. Dynamic Hedging with Multiple Assets and Time-Varying Correlations

We now demonstrate that the results of Section 2 can be generalized to the case with multiple non-
tradable assets and stocks, and provide an application investigating the effects of correlation risk.
We consider an economy in which uncertainty is generated by two multi-dimensional Brownian
motions wX = (wX1, ..., wXN)> and w = (w1, ..., wK)>. By ρ we denote the N × K correlation
matrix with elements ρ = {ρnk} representing correlations between the Brownian motions wXn and
wk.

There are N non-tradable assets whose prices, X = (X1, ..., XN)>, follow dynamics

dXit

Xit
= mi(Xt, t)dt+ νi(Xt, t)>dwXt, i = 1, ..., N, (45)

where mi and νi are deterministic functions of X. We let m = (m1, ...,mN)> and ν = (ν1, ..., νN)>

denote the vector of mean returns and the volatility matrix whose elements ν = {νni} represent
covariances between the non-tradable asset returns and Brownian motion wX . At future date
T , the hedger is committed to hold a portfolio of non-tradable assets with payoff φ>XT , where
φ = (φ1, ..., φN)> denotes the vector of units held in assets. An asset that is not held by the hedger
(φi = 0) may still affect the dynamics of the assets held and can be relabeled to be a state variable,
such as economic conditions, temperature or precipitation level.

The risk associated with the portfolio of non-tradable assets can be hedged by trading in a
riskless bond with constant interest rate r and K tradable securities with prices S = (S1, ..., SK)>

that follow the dynamics

dSjt
Sjt

= µj(Xt, St, t)dt+ σj(Xt, St, t)>dwt, j = 1, ...,K, (46)

where µi and σi are deterministic functions of S and we let µ = (µ1, ..., µK)> and σ = (σ1, ..., σK)>

denote the vector of mean returns and the volatility matrix of stock returns, assumed invertible,
respectively. The hedger chooses a hedging policy, θ = (θ1, ..., θK), where θt denotes the vector of
dollar amounts invested in stocks at time t. The tradable wealth W then follows the process

dWt = [rWt + θ>t (µt − r)]dt+ θ>t σtdwt. (47)

The hedger’s dynamic optimization problem is as in Section 2. At each time t, she minimizes the
variance of her hedging error, φ>XT−WT , subject to the budget constraint (47). The optimal policy
is then derived by dynamic programming as in Section 2. Proposition 6 reports the dynamically
optimal hedge and its associated quality.

Proposition 6. The optimal hedging policy and the corresponding variance of hedging error are
given by

θ∗t = (νtρ>σ−1
t )>IXt

∂E∗t [φ>XT e
−r(T−t)]

∂X>t
+ ISt

∂E∗t [φ>XT e
−r(T−t)]

∂S>t
, (48)

vart[φ>XT −W ∗T ] = Et

[∫ T

t

∂E∗s [φ>XT ]
∂Xs

νsIXs(I − ρ>ρ)IXsν
>
s

∂E∗s [φ>XT ]
∂X>s

ds
]
, (49)
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where IXt and ISt are square matrices with the main diagonals X1t, ..., XNt and S1t, ..., SKt, respec-
tively, I a K×K identity matrix, and E∗t [·] denotes the expectation under the unique hedge-neutral
measure P ∗ on which are defined N -dimensional Brownian motion w∗X and K-dimensional Brow-
nian motion w∗ with correlation ρ such that the process for the non-tradable assets, X, and stock
prices, S, are given by

dXit

Xit
=

(
mit − ν>it ρ>σ−1

t (µt − r)
)
dt+ ν>it dw

∗
Xt, i = 1, ..., N,

dSjt
Sjt

= rdt+ σ>jtdw
∗
t , j = 1, ...,K,

and the P ∗-measure is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T
0 (µs−r)>(σsσ>s )−1(µs−r)ds−

∫ T
0 (σ−1

s (µs−r))>dws .

The dynamically optimal hedge (48) has the same structure as in the case of the single non-
tradable asset and stock, but now additionally incorporates the effects of cross-correlations. This
hedge can explicitly be computed for various stochastic investment opportunities, leading to a
rich set of comparative static – we provide one such application below. The expression (49) for
the optimal hedging error variance reveals that the dynamically optimal hedge provides a perfect
hedge when ρ>ρ = I, which generalizes the market completeness condition of Section 2.

We next apply the general results of Proposition 6 to study dynamic hedging in the presence of
correlation risk, namely the risk associated with the changes in asset values when the correlations
between the underlying assets are time-varying and hard to predict. We here provide closed-form ex-
pressions for optimal hedges when correlations are time-varying and identify the economic channels
through which correlation risk affects dynamic hedging. The time-variation of correlations is well
documented for stock indices and other assets (e.g., Bekaert and Harvey, 1995; Moskowitz, 2003;
Driessen, Maenhout, and Vilkov, 2009) and has been attributed to market clearing effects, conta-
gion, as well as financial crises (e.g., Cochrane, Longstaff, Santa-Clara, 2008; Pavlova and Rigobon,
2008; Buraschi, Porchia and Trojani, 2010). This, in turn, has lead to a growing recent literature
studying the economic effects of correlation risk. In particular, Liu (2007) studies portfolio choice
with quadratic asset returns and provides closed-form solutions for settings when asset returns
correlations and volatilities are time-varying. Driessen, Maenhout, and Vilkov (2009) demonstrate
that stock correlation risk is priced and identify the correlation risk premium. Buraschi, Porchia
and Trojani (2010) demonstrate that correlation risk significantly affects portfolio choice of CRRA
investors and induces large hedging demands.

In general, correlation risk and volatility risk, arising due to time-varying asset return volatili-
ties, are both driven by the time-variation in the components of the volatility matrix σ and hence
may be difficult to disentangle. Motivated by the widely employed stock return models with stochas-
tic volatilities but constant correlations, we consider a model with time-varying correlations which
includes as special cases dynamics with constant correlations and time-varying square-root (as in
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Heston, 1993; Liu, 2007) and inverse square-root (as in Chacko and Viceira, 2003) volatilities –
this will subsequently enable us to disentangle the hedging effects of correlation and volatility risks.
Specifically, the non-tradable asset and stock prices are assumed to evolve as:

dXt = κ(X̄ −Xt) + ν̄
√
XtdwXt, (50)

dSjt
Sjt

= µjdt+ σ̄j1

√
Xt

a1 + b1Xt
dw1t + σ̄j2

√
Xt

a2 + b2Xt
dw2t, j = 1, 2, (51)

where κ > 0, σ̄jk 6= 0, the correlation between Brownian motions wX and wk is ρk, ak ≥ 0, bk ≥ 0,
and ak + bk = 1, k = 1, 2. The time-varying correlations between asset returns are driven by
the volatility shape parameters ak and bk (as elaborated on below), which determine the volatility
weights σjk(Xt) ≡ σ̄jk

√
X/(ak + bkX). The shape parameters allow for considerable flexibility in

modeling the volatility weights, which can be increasing, decreasing, or hump-shaped functions of
asset price X, depending on the parameters ak and bk.

The correlations between the instantaneous changes in asset and stock prices are, in general,
time-varying and given by:

corr
(
dXt,

dSjt
Sjt

)
=

ρ1σ̄j1/(a1 + b1Xt) + ρ2σ̄j2/(a2 + b2Xt)√
σ̄2
j1/(a1 + b1Xt)2 + σ̄2

j2/(a2 + b2Xt)2
, (52)

corr
(dS1t

S1t
,
dS2t

S2t

)
=

σ̄11σ̄21/(a1 + b1Xt) + σ̄12σ̄22/(a2 + b2Xt)√
σ̄2

11/(a1 + b1Xt)2 + σ̄2
12/(a2 + b2Xt)2

(53)

× 1√
σ̄2

21/(a1 + b1Xt)2 + σ̄2
22/(a2 + b2Xt)2

.

The asset return dynamics with time-varying volatilities but constant correlations are nested as
special cases of the dynamics (50)–(51) when the differences in shape parameters, a1 − a2 and
b1 − b2, are equal to zero. Indeed, for ak = 0 and bk = 1, k = 1, 2, we obtain the square-root
stochastic volatility model employed in Heston (1993) and Liu (2007), while for ak = 1 and bk = 0,
k = 1, 2, we obtain the inverse square-root stochastic volatility model employed in Chacko and
Viceira (2003). We note that the source of correlation risk is the time-variation in the ratios of
volatility weights σj1(Xt) and σj2(Xt), j = 1, 2, given by σ̄j1(a2 + b2Xt)/

(
σ̄j2(a1 + b1Xt)

)
. In

particular, when the ratios σj1(Xt)/σj2(Xt) are stochastic, the fraction of stock j instantaneous
return variance due to Brownian motion wk, given by σjk(Xt)2/

(
σj1(Xt)2 + σj2(Xt)2

)
, is stochastic.

Consequently, the correlations (52)–(53) become time-varying due to the changing contributions of
Brownian motions wk to the overall stock return uncertainty. We also observe that the ratios of
volatility weights being stochastic is equivalent to the differences in shape parameters, a1− a2 and
b1 − b2, being non-zero, and hence these differences quantify the departure of asset price dynamics
(50)–(51) from the case of constant correlations.16 Corollary 5 summarizes our results.

16The correlations (52) also become constant in the special case of σ̄12 and σ̄21 being zero. However, this case
implies zero correlation (53) between the stock returns and is assumed away by the condition that σ̄jk 6= 0 since stock
returns are likely to be correlated due to exposure to common market risk factors.
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Corollary 5. The optimal hedge for the time-varying correlation model (50)–(51) is given by

θ∗t =
{(

ρ1σ̄22 − ρ2σ̄21

ρ2σ̄11 − ρ1σ̄12

)(
a1 + b1Xt

)
+
(
ρ2σ̄21

−ρ1σ̄11

)(
(a1 − a2) + (b1 − b2)Xt

)} ν̄e−κ̃(T−t)

det σ̄
, (54)

where κ̃ = κ+ ν̄(ρ1b1µ̃1 + ρ2b2µ̃2), (µ̃1, µ̃2)> = σ̄−1(µ1 − r, µ2 − r)>, and σ̄ is a 2× 2 matrix with
elements {σ̄jk}j,k=1,2.

Corollary 5 provides the optimal hedge in closed-form and demonstrates that it can be decom-
posed into two components, a time-varying volatility hedge (first term in (54)) and a time-varying
correlation hedge (second term in (54)). The volatility hedge is driven by volatility risk alone and
is not affected by correlation risk, which is driven by the differences in volatility shape parameters
a1 − a2 and b1 − b2, and coincides with the optimal hedge with correlation risk absent and only
volatility risk present. The correlation hedge only arises in settings with time-varying correlations,
and its magnitude is driven by the differences in shape parameters a1 − a2 and b1 − b2, which
quantify the departure from the constant correlation model, as discussed above.

The expression for the optimal hedge (54) also reveals that correlation risk complicates the
dynamic hedging by inducing additional hedging demands. Specifically, the hedging implications
are now confounded by the fact that non-zero differences in shape parameters break the perfect
co-movement (perfect positive or negative correlation) between the volatility weights σj1(Xt) and
σj2(Xt). Hence, assuming for simplicity that ρ1 = ρ2, while the stock-return source of uncertainty
wk with the volatility weight better co-moving with the non-tradable asset volatility can be used
to cancel some of the non-tradable asset volatility, the other source of uncertainty tends to amplify
it, complicating the dynamic hedging. Finally, we observe that in general, both the volatility
and correlation hedges are time-varying and linearly depend on the asset price X. However, in
the special case of square-root volatility weights (when b1 = b2 = 0) both hedges are constant.
Intuitively, in this case the hedging is facilitated by the fact that the instantaneous volatilities of
the non-tradable and tradable assets are proportional to each other, and hence the non-tradable
asset fluctuations can optimally be reduced by a constant hedge.

4.3. Dynamic Hedging with Jumps

In this Section we extend the analysis of Section 2 and provide tractable closed-form expressions
for dynamically optimal minimum-variance hedges when non-tradable asset and stock prices follow
processes with jumps. Such processes are commonly employed in the portfolio choice and dynamic
hedging literature, though closed-form expressions are rarely obtained. In particular, Liu, Longstaff
and Pan (2003), Liu and Pan (2003), Ait-Sahalia, Cacho-Diaz and Hurd (2009) derive semi-explicit
solutions for portfolio choice problems with jumps, while Schweizer (1994), Pham, Rheinlander and
Schweizer (1998), Bertsimas, Kogan and Lo (2001) study dynamic hedging with quadratic criterion
in the presence of jumps but do not provide closed-form solutions.

We here consider an economic setting with uncertainty generated by two Brownian motions
wX and w with correlation parameter ρ as before, and now also by a Poisson jump process q with
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intensity λ (average rate of jump arrival), representing the number of jumps up to a point in time.
The non-tradable asset with price X is assumed to follow the dynamics

dXt = m(Xt, t)Xtdt+ ν(Xt, t)XtdwXt + α(Xt−, t)Xt−dqt, (55)

where m, ν, the jump size α and intensity λ are deterministic functions of X, and Xt− denotes the
left-side limit of Xt. The dynamics of the stock is similarly modeled as

dSt = µ(Xt, St, t)Stdt+ σ(Xt, St, t)Stdwt + β(Xt−, St−, t)St−dqt, (56)

where µ, σ and the jump size β are deterministic functions of X and S, and St− denotes the left-side
limit of process St.17 We will denote mt, νt, µt, σt, αt, βt and λt as shorthand for the coefficients in
equations (55)–(56) and the jump intensity evaluated at St and Xt, and αt− and βt− as shorthand
for the left-side limits of jumps sizes.

Given the hedging policy θ, the hedger’s tradable wealth follows the process

dWt = [rWt + θt(µt − r)]dt+ θtσtdwt + θt−βt−dqt. (57)

At each time t the hedger chooses the optimal hedging policy θt that minimizes the variance of
hedging error, XT−WT , subject to the budget constraint (57). In contrast to Section 2, the financial
market here has a higher degree of incompleteness due to the additional source of risk driven by the
jump process q, which cannot be hedged simultaneously with Brownian motion components when
only one tradable security is available. The optimal hedging policy is then obtained by adopting
the dynamic programming approach developed in Section 2. Proposition 7 reports the dynamically
optimal hedge along with the hedging error variance.

Proposition 7. The optimal hedging policy and the corresponding variance of hedging error are
given by

θ∗t =
(ρνt
σt
Xt
∂G(Xt, St, t)

∂Xt
+ St

∂G(Xt, St, t)
∂St

+
λtβt
σ2
t

[
G(Xt(1 + αt), St(1 + βt), t)−G(Xt, St, t)

]) σ2
t

σ2
t + λtβ2

t

, (58)

vart[XT −W ∗T ] = (1− ρ2)Et
[∫ T

t
ν2
sX

2
s

(∂G(Xs, Ss, s)
∂Xs

)2
e2r(T−s)ds

]
+Et

[ ∫ T

t
λs

(
G(Xs(1 + αs), Ss(1 + βs), s)−G(Xs, Ss, s)

)2
e2r(T−s)ds

]
+Et

[∫ T

t

(ρνs
σs

Xs
∂G(Xs, Ss, s)

∂Xs
+ Ss

∂G(Xs, Ss, s)
∂Ss

)2
σ2
se

2r(T−s)

−
(ρνs
σs

Xs
∂G(Xs, Ss, s)

∂Xs
+ Ss

∂G(Xs, Ss, s)
∂Ss

+
λsβs
σ2
s

(
G(Xs(1 + αs), Ss(1 + βs), s)−G(Xs, Ss, s)

)2σ4
se

2r(T−s)

σ2
s + λsβ2

s

ds
]
, (59)

17If there is a jump at time t, then Xt and St denote the values of X and S immediately after the jump while Xt−
and St− denote the values immediately before the jump, respectively. Following the literature, parameters m, ν, µ
and σ are evaluated at Xt and St rather than at Xt− and St−, which does not affect the results since the processes
under these two alternatives differ only on a countable number of points (e.g., Duffie, 2001).
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where G(Xt, St, t) ≡ E∗[XT e
−r(T−t)|Xt, St] is the conditional expectation under the unique hedge-

neutral measure P ∗ on which are defined two Brownian motions w∗ and w∗X with correlation ρ and
the jump process q∗ with intensity λ∗ such that the processes for the non-tradable asset, X, and
stock price, S, are given by

dXt =
(
mt − ρνtσt

µt − r + λtβt
σ2
t + λtβ2

t

)
Xtdt+ νtXtdw

∗
Xt + αt−Xt−dq

∗
t , (60)

dSt =
(
µt − σ2

t

µt − r + λtβt
σ2
t + λtβ2

t

)
Stdt+ σtStdw

∗
t + βt−St−dq

∗
t , (61)

and the intensity parameter λ∗t is given by

λ∗t = λt

(
1− βt

µt − r + λtβt
σ2
t + λtβ2

t

)
, (62)

assuming that the model parameters are such that λ∗t > 0. Moreover, the probability measure P ∗ is
defined by the Radon-Nykodym derivative

dP ∗

dP
= e

∫ T
0

[
λ∗s−λs− 1

2

(
σs

µs−r+λsβs
σ2
s+λsβ

2
s

)2]
ds−

∫ T
0 σs

µs−r+λsβs
σ2
s+λsβ

2
s
dws+

∫ T
0 ln

λ∗s
λs
dqs
.

The dynamically optimal hedge (58) generalizes the previous optimal hedge (5) by incorporating
the effect of jumps. Specifically, the new, third term in (58) captures the sensitivity of the hedge-
neutral asset value G to potential jumps in the non-tradable asset or stock prices. The hedge quality
(59) is now comprised of three terms. The new second and third terms quantify the additional source
of incompleteness due to Poisson jumps. Moreover, the third term in (59) can be rewritten as:

Et

[∫ T

0

(
(θ∗,no jumpss )2σ2

s − (θ∗t )
2(σ2

s + λsβ
2
s )
)
e2r(T−s)ds

]
,

where θ∗ and θ∗,no jumps denote the optimal hedges with and without jumps, respectively, and
hence directly captures the effect of the difference between optimal hedges with and without jumps
on the quality of the hedge.

We next demonstrate the tractability of our analysis by computing the optimal hedge in a
jump-diffusion setting employed by Liu and Pan (2003) in the context of portfolio choice. The
non-tradable asset, X, follows a square-root mean-reverting process

dXt = κ(X̄ −Xt)dt+ ν̄
√
XtdwXt, (63)

with κ > 0, and the stock price, S, follows a jump process

dSt = (r + µ̄Xt)Stdt+ σ̄
√
XtStdwt + βSt−dqt, (64)

with jump intensity λt = λ̄Xt, λ̄ > 0, β > −1, and σ̄2 > βµ̄ so that λ∗t in (62) is positive. Recovering
the optimal hedge amounts to finding the conditional expectation of the discounted terminal payoff
XT under the hedge-neutral measure, similar to the examples in Section 2.3. Corollary 6 reports
the optimal hedge and the hedging error variance.
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Corollary 6. The optimal hedging policy and the corresponding variance of the hedging error for
the mean-reverting stochastic-volatility model with jumps (63)–(64) are given by

θ∗t =
ρν̄σ̄

σ̄2 + λ̄β2
e−
(
κ+r+ρν̄σ̄(µ̄+λ̄β)/(σ̄2+λ̄β2)

)
(T−t), (65)

vart[XT −W ∗T ] = (1− ρ2)ν̄2

∫ T

t
e−2
(
κ+ρν̄σ̄(µ̄+λ̄β)/(σ̄2+λ̄β2)

)
(T−s)

(
X̄ + (Xt − X̄)e−κ(s−t)

)
ds

+
∫ T

0

(
(ρν̄)2e−2

(
κ+ρν̄µ̄/σ̄

)
(T−s) − (ρν̄σ̄)2

σ̄2 + λ̄β2
e−2
(
κ+ρν̄σ̄(µ̄+λ̄β)/(σ̄2+λ̄β2)

)
(T−s)

)
×
(
X̄ + (Xt − X̄)e−κ(s−t)

)
ds. (66)

Corollary 6 explicitly reveals the effect of the jump intensity parameter λ̄ and the jump size
β on the optimal hedge (65) and the hedging error variance (66). In particular, it can easily be
demonstrated that the optimal hedge is a decreasing function of the intensity parameter λ̄. This
is because the presence of jumps increases the extent of market incompleteness, and hence reduces
the attractiveness of stocks for hedging. The comparative statics with respect to other model
parameters can be analyzed along the lines of Section 2.3.

5. Conclusion

This work tackles the problem of dynamic hedging in incomplete markets and provides tractable
optimal hedges according to the traditional minimum-variance criterion over the hedging error. The
optimal hedges are shown to retain both the simple structure of complete-market hedges and the
intuitive features of static hedges, and are in terms of the familiar Greeks, widely employed in risk
management applications. Moreover, in contrast to the existing literature, the hedges are derived
via dynamic programming and hence are time-consistent. The baseline analysis is then applied to
study the replication and hedging of derivatives when trading occurs at discrete periods of time,
rendering the market incomplete. In this discrete-time setting, a generalized Black-Scholes formula
for the value of the replicating portfolio is obtained in closed form. Moreover, it is demonstrated
that the optimal discrete time hedges significantly deviate from the classic Black-Scholes hedges
in the presence of return predictability. Due to its tractability, the baseline analysis can easily be
extended in various directions, as shown in the paper.
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Appendix: Proofs

Proof of Proposition 1. We obtain the optimal hedge (5) by following the methodology in Basak
and Chabakauri (2010) and applying dynamic programming to the value function Jt, defined as

J(Xt, St,Wt, t) ≡ vart[XT −W ∗T ]. (A.1)

Suppose, the hedger rebalances the portfolio over time intervals τ . The law of total variance (19)
substituted into (A.1) yields a recursive representation for the value function:

Jt = min
θt

Et[Jt+τ ] + vart[Et+τ (XT −WT )]. (A.2)

We next substitute WT in (A.2) by its integral form

WT = Wte
r(T−t) +

∫ T

t
θs(µs − r)er(T−s)ds+

∫ T

t
θsσse

r(T−s)dws, (A.3)

obtained from the budget constraint (3), and take into account that optimal hedges θ∗s , s ∈ [t+τ, T ],
are already known at time-t from backward induction. Letting the time interval τ shrink to zero
and manipulating (A.2), we obtain the continuous-time HJB equation

0 = min
θt

Et[dJt] + vart[d(Gter(T−t))− d(Wte
r(T−t))], (A.4)

with the terminal condition JT = 0, where Gt is defined by

G(Xt, St,Wt, t) ≡ Et[XT e
−r(T−t) −

∫ T

t
θ∗s(µs − r)er(t−s)ds]. (A.5)

We note that θ∗t , Jt and Gt do not depend on wealth Wt. To verify this, we substitute WT in (A.3)
into the variance criterion and observe that the variance criterion is not affected by Wt, and hence
θ∗t , Jt and Gt depend only on Xt, St and t. Applying Itô’s lemma to Jt, Gter(T−t) and Wte

r(T−t),
substituting them into (A.4) and computing the variance term, we obtain the equation

0 = DJt +
(
ν2
tX

2
t

(∂Gt
∂Xt

)2
+ 2ρνtσtXtSt

∂Gt
∂Xt

∂Gt
∂St

+ σ2
t S

2
t

(∂Gt
∂St

)2)
e2r(T−t)

+ min
θt

[
θ2
t σ

2
t − 2θtσt

(
ρνtXt

∂Gt
∂Xt

+ σtSt
∂Gt
∂St

)]
e2r(T−t), (A.6)

subject to JT = 0. The minimization in (A.6) has a unique solution

θ∗t =
ρνt
σt
Xt
∂Gt
∂Xt

+ St
∂Gt
∂St

. (A.7)

Substituting (A.7) back into (A.6), we obtain the following PDE for the value function

DJt + (1− ρ2)
(
νtXt

∂Gt
∂Xt

)2
e2r(T−t) = 0, (A.8)
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with the terminal condition JT = 0. The Feynman-Kac solution (Karatzas and Shreve, 1991) to
equation (A.48) is then given by

Jt = (1− ρ2)Et
[∫ T

t

(
νsXs

∂Gs
∂Xs

)2
e2r(T−s)ds

]
. (A.9)

To complete the proof it remains to determine the process Gt in terms of the exogenous model
parameters. By applying the Feynman-Kac theorem to (A.5), we obtain a PDE for Gt. Substituting
θ∗t from (A.7) into this PDE, we obtain the equation

∂Gt
∂t

+
(
mt−ρνt

µt − r
σt

)
Xt
∂Gt
∂Xt

+rSt
∂Gt
∂St

+
1
2

(
ν2
tX

2
t

∂2Gt
∂X2

t

+2ρνtσtXtSt
∂2Gt
∂Xt∂St

+σ2
t S

2
t

∂2Gt
∂S2

t

)
−rGt = 0,

(A.10)
with the terminal condition GT = XT . Its Feynman-Kac solution is then given by

Gt = E∗t [XT e
−r(T−t)], (A.11)

where the expectation is under the unique probability measure P ∗ on which are defined two Brow-
nian motions w∗X and w∗ such that under P ∗ the asset X and stock S follow the processes given
in (7). Substituting (A.11) into (A.7) and (A.9) yields the optimal hedge (5) and the hedging
error variance (6), respectively. To find the Radon-Nikodym derivative dP ∗/dP , we decompose the
Brownian motion wX as dwXt = ρdwt +

√
(1− ρ2)dw⊥t , where w⊥t ≡ (wXt − ρwt)/

√
(1− ρ2) is a

Brownian motion uncorrelated with wt. Applying the Girsanov’s theorem (Karatzas and Shreve,
1991) to the two-dimensional Brownian motion (wt, w⊥t )> yields the Radon-Nikodym derivative
(8).

Finally, we derive the representation (10) for E∗t [XT e
−r(T−t)] by first taking the expectation of

(A.3)

Et

[
W ∗T −Wte

r(T−t)
]

= Et

[∫ T

t
θ∗s(µs − r)er(T−s)ds

]
, (A.12)

and then substituting (A.11) and (A.12) into (A.5). Q.E.D.

Proof of Corollary 1. Under the probability measure P ∗, the process (11) becomes

dXt = (κ+ ρν̄)
( κX̄

κ+ ρν̄
−Xt

)
dt+ ν̄dw∗Xt, (A.13)

for which the conditional moments are well-known (e.g., Vasicek, 1977), yielding

E∗t [XT ] =
κX̄

κ+ ρν̄
+
(
Xt −

κX̄

κ+ ρν̄

)
e−(κ+ρν̄)(T−t).

Substituting this into the expressions in Proposition 1 yields the desired expressions (13)–(14).

Q.E.D.
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Proof of Corollary 2. Under the probability measure P ∗, the process (15) follows dynamics

dXt =
(
κ+ ρν̄(µ− r)

)( κX̄

κ+ ρν̄(µ− r)
−Xt

)
dt+ ν̄

√
Xtdw

∗
Xt. (A.14)

The conditional expectation of XT is well-known (e.g., Cox, Ingersoll, and Ross, 1985) to be

E∗t [XT ] =
κX̄

κ+ ρν̄(µ− r)
+
(
Xt −

κX̄

κ+ ρν̄(µ− r)

)
e−(κ+ρν̄(µ−r))(T−t).

Substituting this into the expressions in Proposition 1 yields (17)–(18). Q.E.D.

Proof of Proposition 2. First, we derive a variation of the law of total variance. From the law
of total variance (19) with an infinitesimally small interval τ , we obtain the following equality in
differential form:

0 = Et

[
d vars(XT −WT ) + vars(dEs[XT −WT ])

]
. (A.15)

Integrating (A.15) from t to T yields

vart[XT −WT ] = Et

[∫ T

t

vars(dEs[XT −WT ])
ds

ds
]
. (A.16)

From the assumption µt − r = 0 and the integrated budget constraint (A.3), it follows that
Et[WT ] = Wte

r(T−t). Hence, by Itô’s lemma

dEt[XT −WT ] = (...)dt+ νtXt
∂Et[XT ]
∂Xt

dwXt + σtSt
∂Et[XT ]
∂St

dwt − θtσter(T−t)dwt. (A.17)

Substituting (A.17) into (A.16) and computing vars(dEt[XT −WT ]), we obtain:

vart[XT−WT ] = Et

[∫ T

t

(
θsσse

r(T−s)−ρνsXs
∂Es[XT ]
∂Xs

−σsSs
∂Es[XT ]
∂Ss

)2
+(1−ρ2)

(∂Es[XT ]
∂Xs

)2
ds
]
.

(A.18)
Minimizing the expression under the integral in (A.18) gives the global minimum to the variance
criterion, yielding the hedge (20). Finally, we observe that for µt − r = 0, the dynamically optimal
hedge (5) coincides with the hedge (20) since the Radon-Nikodym derivative (8) equals unity, and
hence the the variance criterion is time-consistent. Q.E.D.

Proof of Corollary 3. The hedging criterion (23) can be represented in integral form (A.16) in
which all the expectations and variances are under the measure P η (8). By definition of a risk-
neutral measure P η, the stock mean return equals r, and hence Eηt [WT ] = Wte

r(T−t). Then, along
the same lines as in the proof of Proposition 2, replacing at each step Et[·] and vart[·] by Eηt [·] and
varηt [·], respectively, it can be shown that the criterion (23) is time-consistent and the solution is
given by (5). Q.E.D.

35



Proof of Remark 3. The optimal pre-commitment hedge (26) for the case of r = 0 and W0 = 0
has been obtained by Duffie and Richardson (1991) in the context of futures hedging.18 To obtain
it for our case of r > 0 and W0 > 0, we observe that the budget constraint (3) can equivalently be
rewritten as

dW̃t = θtµ̃tdt+ θtσ̃tdwt, (A.19)

where W̃t = Wte
r(T−t) −W0e

rT , µ̃t = (µ− r)er(T−t), σ̃t = σer(T−t). The hedging problem with the
budget constraint (A.19) reduces to the case with r = 0 and W̃0 = 0, and hence the pre-commitment
hedge (26) is easily obtained from the solution in Duffie and Richardson.

Next, from Proposition 1, under the measure P ∗ the process X is a GBM with mean return
(m− ρν(µ− r)/σ) and volatility ν, which then yields

E∗t [XT ] = Xte
(m−ρν(µ−r)/σ)(T−t). (A.20)

Consequently, by rearranging terms in (10) and substituting (A.20) we obtain:

Et[(XT −W ∗T )e−r(T−t)] = Xte
(m−r−ρν(µ−r)/σ)(T−t) −Wt. (A.21)

Hence, the second term in (26) hedges the deviations Et[(XT −W ∗T )e−r(T−t)] from its time-zero
value (compounded by accrued interest in [0, t]). The hedger tries to keep this deviation close to
zero because a high variability in the expected hedging error implies a high time-zero hedging error
variance (from the law of total variance (19)). Q.E.D.

Proof of Proposition 3. Analogously to the proof of Proposition 1, we derive the HJB equation
for our discrete-time problem as:

Jt = min
θt

Et[Jt+∆t] + e(T−t−∆t)r vart
[
Gt+∆t −

St+∆t

St
θt

]
. (A.22)

Similarly to Proposition 2, the value function Jt does not depend on Wt. Therefore, solving the
minimization problem in (A.22) we obtain the optimal hedge as:

θ∗t =
covt

(
Gt+∆t, St+∆t/St

)
vart[St+∆t/St]

. (A.23)

Furthermore, solving the HJB equation (A.22) recursively we obtain the hedging error variance
Jt = vart[XT −W ∗T ] as reported in (32).

Next, from the definition of Gt in (28) we obtain the following recursive representation:

Gt = e−r∆tEt[Gt+∆t]− Et
[
Wt+∆te

−r∆t −Wt

]
. (A.24)

18For the case of r > 0, Duffie and Richardson provide the optimal pre-commitment hedge assuming interest accrues
to a futures margin account, and so such a hedge will be different from that in our economic setting.
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Substituting Wt+∆t from (27) into (A.24) we determine the optimal hedge (29) as reported in
Proposition 3. Moreover, substituting Wt+∆t and then θ∗t from (A.23) into (A.24), after some
simple algebra we obtain the following discrete-time analogue of the PDE in (A.10):

Gt = Et

[{
1 +

(
Et

[St+∆t

St

]
−
St+∆t

St

)Et[St+∆t/St]− er∆t

vart[St+∆t/St]

}
Gt+∆te

−r∆t
]
. (A.25)

Iterating the recursive equation (A.25) and noting that GT = XT we obtain an analytical expression
for Gt as reported in (30)–(31), which is a discrete-time analogue of the Feynman-Kac formula.

Finally, we demonstrate that the process e−rtξtSt is a martingale – the proof of ξt being a
martingale follows analogously. Using (31) for e−rtξtSt we obtain:

Et[e−r(t+∆t)ξt+∆tSt+∆t] = e−r(t+∆t)ξtSt

× Et

{St+∆t

St
+
St+∆t

St

(Et[St+∆t/St]− St+∆t/St√
vart[St+∆t/St]

)(Et[St+∆t/St]− er∆t√
vart[St+∆t/St]

)}
= e−r(t+∆t)ξtSt

{
Et

(St+∆t

St

)
−
( vart[St+∆t/St]√

vart[St+∆t/St]

)(Et[St+∆t/St]− er∆t√
vart[St+∆t/St]

)}
= e−rtξtSt.

Q.E.D.

Proof of Proposition 4. Since the stock price S follows a GBM process, the stock log-returns
εk = ln(St+k∆t/St+(k−1)∆t), k ≥ 1, are i.i.d. and εk ∼ N

(
µ̂, σ̂2

)
, where σ̂ = σ

√
∆t and µ̂ =

(µ− 0.5σ2)∆t. Therefore, the horizon stock price is given by:

ST = Ste
ε1+...+εn , (A.26)

where εi ∼ N
(
µ̂, σ̂2

)
and n = (T −t)/∆t. Using the law of iterated expectations we rewrite formula

(30) for Gt in terms of the conditional expectation Fn(x) = E[ξT /ξt|ε1 + ...+ εn = x]:

Gt = Et

[
Fn(x)(Stex −K)+

]
, (A.27)

where x ∼ N
(
nµ̂, nσ̂2

)
. Substituting ξt from (31) into the definition of Fn(x), noting that

St+k∆t/St+(k−1)∆t = eεk , and opening the brackets we obtain:

Fn(x) =
n∑
k=0

(
n

k

)
an−kbkFnk(x), where Fnk(x) = E

[
eε1+...+εk |ε1 + ...+ εn = x

]
, (A.28)

where the coefficients a and b are given by:

a =
(

1 +
eµ∆t(eµ∆t − er∆t)
e2µ∆t(eσ2∆t − 1)

)
e−r∆t, b = − eµ∆t − er∆t

e2µ∆t(eσ2∆t − 1)
e−r∆t. (A.29)

To compute Fnk(x) explicitly, we first rewrite it as Fnk(x) = E[ey|y+z = x], where y ∼ N
(
kµ̂, kσ̂2

)
,

z ∼ N
(
(n−k)µ̂, (n−k)σ̂2

)
, x ∼ N

(
nµ̂, nσ̂2

)
, and y and z are independent. Since both y and x are
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normally distributed, the conditional distribution of y conditional on x is given by (e.g., Shiryaev,
1995):

y|x ∼ N
(
µy + (x− µx) cov(x, y)/σ2

x, σ
2
y − cov(x, y)2/σ2

x

)
, (A.30)

where µy and µx denote the means, σy and σx the variances of x and y, respectively. Since x = y+z
and y and z are independent, cov(x, y) = σ2

y . Substituting the expressions for µx, µy, σy, σx and

cov(x, y) into (A.30) we find that y|x ∼ N
(
xk/n, k(n− k)σ̂2/n

)
, and hence:

Fnk(x) = E
[
ey|y + z = x

]
= ekx/n+0.5k(n−k)σ̂2/n. (A.31)

Next, we determine E[Fnk(x)(Stex −K)+] in closed form as follows:

E[Fnk(x)(Stex −K)+] = e0.5k(n−k)σ̂
2/n

√
2πnσ̂

∫ ∞
−∞

exk/n(Stex −K)+e−
(x−nµ̂)2

2nσ̂2 dx

= ekµ̂+0.5kσ̂2

√
2πnσ̂

∫ ∞
−∞

(Stex −K)+e−
(x−nµ̂−kσ̂2)2

2nσ̂2 dx

= ekµ̂+0.5kσ̂2+nµ̂+0.5σ̂2+kσ̂2
CBSk (St, t),

(A.32)

where CBSk is as given in Proposition 4, and the last equality in (A.32) is obtained in the same
way as in the derivation of the Black-Scholes formula. Substituting (A.32) into (A.28) after some
algebra we obtain the formula for Gt as reported in (36).

To prove the convergence to the Black-Scholes price, we first note that Fn(x) in (A.28) can be
rewritten as:

Fn(x) = E
[(
a+ bex/n+0.5σ̂2+iσ̂ε/

√
n
)n∣∣x], (A.33)

where i =
√
−1, ε ∼ N(0, 1), ε and x are independent. Indeed, opening the brackets in (A.33)

and using the property of characteristic functions for normally distributed random variables that
E[exp(ikσ̂ε/

√
n)] = exp(−0.5k2σ̂2/n) we obtain (A.28) with Fnk(x) given by (A.31). Substituting

σ̂ = σ
√

∆t, µ̂ = (µ−0.5σ2)∆t, ∆t = (T − t)/n, a and b from (A.29) into (A.33), and using Taylor’s
expansions we obtain:(

a+ bex/n+0.5σ̂2+iσ̂ε/
√
n
)n

=
(

1− µ−r
σ

ε̃
√
T−t
n − µ−r

σ
iε
√
T−t
n +O

(
1
n2

))n
, (A.34)

where ε̃ =
(
x− (µ− 0.5σ2)(T − t)

)
/(σ
√
T − t), and hence ε̃ ∼ N(0, 1). From (A.34) we obtain the

following upper bound:∣∣∣(a+ bex/n+0.5σ̂2+iσ̂ε/
√
n
)n∣∣∣ <

(
1 + µ−r

σ
|ε̃|
√
T−t
n + µ−r

σ
|ε|
√
T−t
n +O

(
1
n2

))n
< eC(|ε̃|+|ε|),

(A.35)

for a sufficiently large constant C. Moreover, the equality (A.34) implies point-wise convergence:

lim
n→∞

(
a+ bex/n+0.5σ̂2+iσ̂ε/

√
n
)n

= e−
µ−r
σ
ε̃
√
T−t−µ−r

σ
iε
√
T−t. (A.36)
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Since the expression on the left-hand side of (A.35) is bounded by an integrable function, by
Lebesgue’s Convergence Theorem (see Shiryaev, 1995) the point-wise convergence in (A.36) implies
the convergence of expectations:

lim
n→∞

Fn(x) = E
[
e−

µ−r
σ
ε̃
√
T−t−µ−r

σ
iε
√
T−t∣∣ε̃]

= e−
µ−r
σ
ε̃
√
T−t−0.5

(
µ−r
σ

)2
(T−t).

(A.37)

The right-hand side of the second equality in (A.37) is the state price density in the continuous-
time Black-Scholes economy. Therefore, applying Lebesgue’s Theorem one more time we obtain
the convergence to the Black-Scholes price:

lim
n→∞

E
[
Fn(x)(Stex −K)+

]
= E

[
e−

µ−r
σ
ε̃
√
T−t−0.5

(
µ−r
σ

)2
(T−t)(Steµ(T−t)+ε̃σ

√
T−t −K)+

]
= CBS(St, t).

Finally, we demonstrate that the modified Black-Scholes price CBSk corresponds to a k-period
static hedge that keeps θ∗k dollars in the stock between times t and t + k∆t without rebalancing,
and invests only in bonds thereafter. Consider the investor minimizing the variance of the hedging
error with terminal wealth WT = er(n−k)∆tWt+k∆t, where the wealth at time t+ k∆t is given by

Wt+k∆t = erk∆tWt + θk

(St+k∆t

St
− erk∆t

)
. (A.38)

Solving this static optimization problem and following all the steps as in the multiperiod case we
find that the replication value of the static hedge is given by Gkt = akC

BS
0 +bkCBSk , where ak and bk

are some constants. Therefore, the formula for the replication value Gt in (36) can equivalently be
rewritten in terms of Gkt, and hence the call option replication value equals the value of a portfolio
of static hedges. Q.E.D.

Proof of Remark 4 (Alternative representation for the replication value). Applying
Euler’s formula for the exponents of complex numbers to (A.33) we obtain:

Fn(x) = E
[(
a+ bex/n+0.5σ̂2

cos
(
σ̂ε√
n

)
+ ibex/n+0.5σ̂2

sin
(
σ̂ε√
n

))n]
= E

[
R(x, ε)n

(
cosϕ(x, ε) + i sinϕ(x, ε)

)n]
,

(A.39)

where

R(x, ε) =

√(
a+ bex/n+0.5σ̂2 cos

(
σ̂ε√
n

))2
+
(
bex/n+0.5σ̂2

sin
(
σ̂ε√
n

))2)
, (A.40)

cosϕ(x, ε) =
a+ bex/n+0.5σ̂2

cos
(
σ̂ε√
n

)
R(x, ε)

, sinϕ(x, ε) =
bex/n+0.5σ̂2

sin
(
σ̂ε√
n

)
R(x, ε)

, (A.41)
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and σ̂ = σ
√

∆t. Now applying Moivre’s formula for the powers of complex numbers to (A.39) and
noting that Fn(x) is a real-value function, we get:

Fn(x) = E
[
R(x, ε)n cos

(
nϕ(x, ε)

)]
,

=
1√
2π

∫ ∞
−∞

R(x, ε)n cos
(
nϕ(x, ε)

)
e−

ε2

2 dε.
(A.42)

Substituting (A.42) into (A.27) we obtain the alternative representation (38). Angle ϕ(x, ε) is
found as the argument of the complex number z = cosϕ(x, ε) + i sinϕ(x, ε), i.e. arg(z).19

Q.E.D.

Proof of Proposition 5. The proof is similar to the proof of Proposition 1. The hedging problem
is solved via dynamic programming and the value function is defined as:

J(Xt, St,Wt, t) = Et[W ∗T −XT ]− γ

2
vart[W ∗T −XT ]. (A.43)

Applying the law of total variance along the same steps as in the proof of Proposition 1, we obtain
an HJB equation. To solve this equation, substituting the budget constraint in integral form (A.3)
into the hedger’s objective (41), we show that the objective is linear in Wt and hence θ∗t and Gt do
not depend on Wt. In contrast to the minimum-variance case, the value function linearly depends
on Wte

r(T−t) and can be represented as:

J(Xt, St,Wt, t) = Wte
r(T−t) + Ĵ(Xt, St, t).

Applying Itô’s lemma to the processes Ĵt, Gt and Wte
r(T−t) we obtain a PDE for the value function

and the optimal hedge in a recursive form. The optimal hedge in terms of exogenous parameters
is then obtained by applying the Feynman-Kac theorem, as in Proposition 1. Solving the PDE for
Jt, we obtain the value function (43). Q.E.D.

Proof of Corollary 4. We first observe that for the stock return dynamics (16), the squared
market price of risk is given by

(
(µs − r)/σs

)2 = (µ − r)2Xs. Consequently, given the structure
of the optimal hedge (42), finding it explicitly reduces to computing the expectations E∗t [Xs] and
E∗t [XT ] under the probability measure P ∗ and their derivatives with respect to Xt. Under P ∗ the
process (15) for X follows the dynamics (A.14). The conditional expectation of Xs is then given
by (e.g., Cox, Ingersoll, and Ross, 1985):

E∗t [Xs] =
κX̄

κ+ ρν̄(µ− r)
+
(
Xt −

κX̄

κ+ ρν̄(µ− r)

)
e−(κ+ρν̄(µ−r))(s−t). (A.44)

The expression (A.44) allows us to obtain E∗t [
(
(µs − r)/σs

)2] and E∗t [XT ] explicitly. Substituting
the last two expressions in (42) yields the optimal hedge (44). Q.E.D.

19In MATLAB the argument of z is computed by function angle(z), and can further be explicitly derived in terms
of inverse trigonometric functions.
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Proof of Proposition 6. Proposition 6 is a multidimensional version of Proposition 1 and can
be proven along the same lines. Fist, using the law of total variance, we derive an HJB equation
and then the optimal hedge in a recursive form. Then, applying the Feynman-Kac theorem we find
the optimal hedge in terms of exogenous parameters. Finally, solving the HJB PDE for the value
function, we obtain the hedging error variance in closed form. Q.E.D.

Proof of Corollary 5. We first note that the volatility matrix σt for the stock return dynamics
(53) is given by σt = σ̄ diag

{√
Xt/(a1 +b1Xt),

√
Xt/(a2 +b2Xt)

}
, where diag{c1, c2} denotes a 2×2

diagonal matrix with ck, k = 1, 2, on main diagonal. Therefore, we find that σ−1
t = diag

{
(a1 +

b1Xt)/
√
Xt, (a2 + b2Xt)/

√
Xt

}
σ̄−1. Using this expression for σ−1

t , from Proposition 6 we obtain
that under the hedge-neutral measure the asset price X evolves as:

dXt =
(
κ(X̄−Xt)−ν̄

√
Xt

(
ρ1, ρ2

)
diag

{a1 + b1Xt√
Xt

,
a2 + b2Xt√

Xt

}
σ̄−1

(
µ1−r, µ2−r

)>)
dt+ν̄

√
Xtdw

∗
Xt.

After some algebra involving the calculation of products of vectors and matrices in the dynamics
for X we obtain:

dXt = κ̃
(
X̃ −Xt

)
dt+ ν̄

√
Xtdw

∗
Xt,

where κ̃ is as in Corollary 5 and X̃ =
(
κX̄ − ν̄(ρ1µ̃1a1 + ρ2µ̃2a2)

)
/κ̃. The conditional expectation

of XT is then given by: E∗t [XT ] = X̃ + (Xt − X̃) exp{−κ̃(T − t)} (e.g., Vasicek, 1977). Substitut-
ing E∗t [XT ] into the expression for the optimal hedge in (48) and after some algebra, we obtain
expression (54). Q.E.D.

Proof of Proposition 7. The proof follows the proof of Proposition 1. The integral representa-
tion of the terminal tradable wealth is given by:

WT = Wte
r(T−t) +

∫ T

t
θs(µs − r)er(T−s)ds+

∫ T

t
θsσse

r(T−s)dws +
∫ T

t
θs−βs−e

r(T−s)dqs. (A.45)

It can then be shown that the value function Jt satisfies the recursive equation (A.4) with the
terminal condition JT = 0, where Gt is defined by

G(Xt, St,Wt, t) ≡ Et[XT e
−r(T−t) − (W ∗T e

−r(T−t) −Wt)]. (A.46)

Substituting (A.45) for W ∗T under the optimal hedge θ∗t into (A.46), and noting that Et[dqt] = λtdt,
we obtain:

G(Xt, St,Wt, t) = Et[XT e
−r(T−t) −

∫ T

t
θ∗s(µs − r + λsβs)er(t−s)ds]. (A.47)

As in the proof of Proposition 1, θ∗t , Jt and Gt do not depend on wealth Wt. Applying Itô’s Lemma
(e.g., Duffie, 2001) to Jt, Gter(T−t) and Wte

r(T−t), substituting into the recursive representation
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(A.4), noting that vart[dqt] = λtdt, and computing the variance term in (A.4) we obtain the equation

0 = DJt +
(
ν2
tX

2
t

(∂Gt
∂Xt

)2
+ 2ρνtσtXtSt

∂Gt
∂Xt

∂Gt
∂St

+ σ2
t S

2
t

(∂Gt
∂St

)2)
e2r(T−t)

+ λt

(
G(Xt(1 + αt), St(1 + βt), t)−G(Xt, St, t)

)2
e2r(T−t)

+ min
θt

[
θ2
t (σ

2
t + λtβ

2
t )− 2θtσt

(
ρνtXt

∂Gt
∂Xt

+ σtSt
∂Gt
∂St

)
−2θtλtβt

(
G(Xt(1 + αt), St(1 + βt), t)−G(Xt, St, t)

)]
e2r(T−t), (A.48)

subject to JT = 0. The minimization in (A.48) yields the optimal hedge θ∗ given by (58). Sub-
stituting θ∗ back into the HJB equation (A.48) and invoking the Feynman-Kac theorem we obtain
the optimal hedging error variance (59).

Applying the Feynman-Kac theorem to (A.47), we obtain a PDE for Gt. Substituting θ∗t from
(59) into this PDE we obtain the equation for Gt in terms of the exogenous model parameters. It
can then be demonstrated that this new PDE has the Feynman-Kac solution

G(Xt, St, t) = E∗[XT e
−r(T−t)|Xt, St],

where the expectation is under the unique probability measure P ∗ on which are defined the Brow-
nian motions w∗X and w and the Poisson jump process q such that under measure P ∗ the asset X
and stock S follow the processes (60)–(61) and the jump intensity is given by (62). The expression
for the Radon-Nikodym derivative follows from the analogue of Girsanov’s theorem for processes
with jumps (e.g., Proposition 3.1 in Jarrow and Madan, 1995). Q.E.D.

Proof of Corollary 6. Under the probability measure P ∗, the process (63) becomes

dXt =
(
κ+ ρν̄σ̄

µ̄+ λ̄β

σ̄2 + λ̄β2

)( κX̄

κ+ ρν̄σ̄(µ̄+ λ̄β)/(σ̄2 + λ̄β2)
−Xt

)
dt+ ν̄

√
XtdwXt,

for which the conditional expectation is well-known (e.g., Cox, Ingersoll and Ross, 1985):

E∗t [XT ] = κX̄
κ+ρν̄σ̄(µ̄+λ̄β)/(σ̄2+λ̄β2)

+
(
Xt − κX̄

κ+ρν̄σ̄(µ̄+λ̄β)/(σ̄2+λ̄β2)

)
e−
(
κ+ρν̄σ̄(µ̄+λ̄β)/(σ̄2+λ̄β2)

)
(T−t).

Substituting this into the expressions in Proposition 7 yields (65)–(66). Q.E.D.
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