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Cooper and Nyborg (2008) derive a tax-adjusted discount rate formula under 
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their analysis assumes zero recovery in default. We extend their framework to 
allow for positive recovery rates. We also allow for differences in bankruptcy 
codes with respect to the order of priority of interest payments versus 
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We provide an explanation for why the effect of the anticipated recovery rate 
is not directly visible in the general continuous rebalancing formula, even 
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1 Introduction

In most tax systems, there is a tax advantage to debt arising from the tax deductibility

of interest payments. Estimating the value to the resulting debt tax shield is thus an

important part of company and project valuation. One approach to incorporating the

debt tax shield into valuation is to use tax-adjusted discount rates, whereby unlevered

after tax cash flows are discounted at a rate that takes account of the tax shield. The

appropriate tax adjusted discount rate depends on the debt policy being pursued (Taggart,

1991). In this paper, we derive a general formula under a constant debt to value policy.

Our analysis allows for personal taxes, risky debt, and partial default. Moreover, in default

we allow for different regimes with respect to whether interest or principal payments have

priority. Allowing for partial default is important since, in practice, complete default is

rare.

Our analysis extends the framework developed by Cooper and Nyborg (2008), which

itself is an extension of the seminal contribution of Miles and Ezzell (1980). While the

Miles-Ezzell (ME) formula for tax-adjusted discount rates does not take into account

the effects of personal taxes, as was pointed out by Miller (1977), personal taxes can

greatly affect the tax advantage to debt. Cooper and Nyborg’s analysis allows for both

personal taxes and risky debt.1 However, their formula is based on an assumption of zero

recovery in default. We extend their framework to allow for positive recovery rates. This

changes the tax-adjusted discount rate formula when the quantity of debt is rebalanced

only infrequently (once a year, for example). However, under continuous rebalancing, the

formula collapses to that of Cooper and Nyborg. We provide an explanation for why

the effect of the anticipated recovery rate is not directly visible in the general continuous

1Taggart (1991) extends the ME formula to allow for personal taxes, but allows only for riskfree debt.

Sick (1990) shows that the same formula is valid even if the debt is risky, under the assumption that

default gives rise to a tax liability. Cooper and Nyborg (2008) show that the tax adjusted discount rate

formula is substantially different from that derived by Sick under the Miles and Ezzell assumption that

default does not give rise to a tax liability. They also discuss the respective merits of this assumption

versus that of Sick. We use the ME assumption.
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rebalancing formula, even though this formula is derived under the assumption of partial

default.

A notable feature of the results in Cooper and Nyborg (2008) is that the “cost of debt”

in the tax adjusted discount rate formula is the debt’s yield rather than its expected rate

of return. Intuitively, this reflects that it is the interest payment and not the expected

rate of return that is tax deductible, and the interest payment per dollar of debt equals

the yield (in their setup). This result also holds in our more general setting. In addition,

our general formula when rebalancing is not continuous also contains an adjustment for

the anticipated loss in default.

The rest of this paper is organized as follows. Section 2 describes the setup, including

the modelling of partial default and its tax implications. Section 3 contains the analysis

and Section 4 concludes.

2 The model

The model follows Cooper and Nyborg (2008), except that we allow for partial default.

2.1 Basics

The debt to value ratio, L ∈ [0, 1), is constant over time. The firm’s expected pre-tax

cash flow at time t is Ct and the corporate tax rate is TC. The tax adjusted (or levered)

discount rate, RL, is fundamentally related to the unlevered discount rate RU by

VUt =

T
∑

i=t+1

Ci (1 − TC)

(1 + RU )i (1)

and

VLt =

T
∑

i=t+1

Ci (1 − TC)

(1 + RL)i , (2)

where VUt denotes the value of the unlevered firm at time t and VLt denotes the value of

the levered firm at time t, t = 1, ..., T .

2



The representative investor has a tax rate TPE on equity income and capital gains and

TPD on interest income. The tax saving per dollar of interest, TS, is given by

TS = (1 − TPD) − (1 − TC) (1 − TPE) . (3)

Following Taggart (1991) and Cooper and Nyborg (2008), define

T ∗ = TS/ (1 − TPD) (4)

and

RFE (1 − TPE) = RF (1 − TPD) . (5)

RF is the rate of return on a riskfree bond. Thus, RFE can be interpreted as a riskfree

equity rate. We have

1 − T ∗ =
(1 − TC) (1 − TPE)

1 − TPD

(6)

and

RFE = RF
1 − TPD

1 − TPE
= RF

1 − TC

1 − T ∗
. (7)

The tax adjusted discount rate is found by first studying the relationship between the

value of the levered and unlevered firm at T − 1, where T is the terminal date of the

project. At T − 1 the unlevered value is given by (1), with T − 1 in place of t. The

after-tax cash-flow to investors is CT (1 − TC) (1 − TPE) + VUT−1TPE , where the second

term is the tax deduction associated with tax on capital gains (only the difference between

the final price and the purchase price is taxed).2

The value of the levered firm is the value of the unlevered firm plus additional tax

effects. One effect comes from the tax deductibility of interest payments. A second effect

is that the tax saving at the personal level associated with capital gains taxation is now

VLT−1TPE . Hence, we have

VLT−1 = VUT−1 + PV (tax saving) +
(VLT−1 − VUT−1)TPE

1 + RF (1 − TPD)
. (8)

2Following Cooper and Nyborg (2008), we assume for simplicity that capital gains tax arises every

period and that capital losses can be offset by gains elsewhere.
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As in Cooper and Nyborg (2008), the term (VLT−1 − VUT−1)TPE is discounted by RF (1 − TPD)

because it is riskless. The term PV (tax saving) is the present value of tax savings from

the tax deductibility of interest payments. To value this, and subsequently derive the

expression for the tax adjusted discount rate, we need to consider the recovery rate in

default.

2.2 Partial Default

Let YD denote the yield on risky debt. This is constant over time. Cooper and Ny-

borg (2008) use a binomial model whereby the debt is either paid back in full or defaults

completely. That is, the return to $1 of risky debt at any date is 1+YD in case of solvency

and 0 in case of default. In contrast, in our model of partial default we assume that in

default the payoff to $1 in the bond is (1 + α) < 1+YD. In other words, the recovery rate

is 1+α
1+YD

.3 Note that if α is negative, there are not sufficient funds to repay the principal

in full. Cooper and Nyborg’s model is the special case that α = −1.

Thus, taking date T as an example: if there is no default, the tax saving is YDLVLT−1TS.4

If there is default, the tax saving depends on the bankruptcy code, as outlined below.

To calculate taxes and tax savings, we must decompose the payoff to the bond into

principal and coupon payments. This is done in Table 1. We allow for different rules with

respect to whether the principal or coupons are paid first in bankruptcy

Let us denote by δYD the part of the bond payment in default considered by the tax

code as an interest payment. Thus, the tax saving is YDTS in solvency and δYDTS in case

of default. Using Table 1 we see that5

δ =







min
[

1, 1+α
YD

]

if interest is paid first

max
[

α
YD

, 0
]

if principal is paid first.
(9)

3Note that α can be both positive and negative. α ∈ [−1, 0) represents the situation that the payment

to the bondholders is smaller than the principal. α ∈ [0, RF ) represents the situation that the payment to

the bondholders is larger than or equal to the principal. α cannot be above RF , since this would imply

that the return on risky debt would dominate the risk-free rate in every possible state of the world.
4LVLT−1 is value of the debt at debt T − 1 and YDLVLT−1 is the interest payment at date T .
5We assume that if δYD > 0, then there are taxable earnings of at least this amount.
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Table 1: Bond payoff decomposition.

Solvent Default

Interest paid first Principal paid first

Total 1 + Yd 1 + α 1 + α

Principal 1 max [1 + α − Yd, 0] min [1, 1 + α]

Interest (coupon) Yd min [Yd, 1 + α] max [α, 0]

Based on the principle that repayment of capital should not be taxed, the case that the

principal is repaid first is arguably the most relevant one in practice.

3 Analysis

3.1 The value of the tax shield

To value the payoff YDLVLT−1TS in case of solvency and δYDLVLT−1TS in case of bankruptcy

we create a portfolio from the riskless asset and the risky bond that replicates these payoffs.

The payoffs to the riskless asset and the risky bond are summarized in Table 2.

Table 2: Payoff to the riskless asset and to the risky bond.

No Personal Taxes Personal taxes

Solvent Default Solvent Default

Riskless Asset 1 + RF 1 + RF 1 + RF (1 − TPD) 1 + RF (1 − TPD)

Risky Bond 1 + YD 1 + α 1 + YD(1 − TPD) 1 + α − αTX

Note: αTX is derived below. See equation 10.

The payoffs after investor taxes in solvency are modified by multiplying the interest

payment by (1 − TPD). To get the post-tax payoff to the risky bond in case of default, we

sum the direct payoff (1 + α) and the tax effect αTX. αTX depends on the tax rates TPE ,

TPD and on δ. Table 3 calculates this tax effect.6

6When αTX > 0, investors are paying taxes, when αTX < 0, investors gets a tax-deductible loss. We

assume that investors can utilize this tax loss.
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Table 3: Bond in default.

Total payoff 1 + α

Interest δYD

Principal 1 + α − δYD

Capital loss −α + δYD

Personal tax effect (−α + δYD)TPE − δYDTPD

Therefore

−αTX = (−α + δYD) TPE − δYDTPD. (10)

We can replicate the tax shield, which has payoff TSYD in case of solvency and δTSYD in

default, by investing in the riskless asset and the risky bond. Denote the amount invested

in the riskless asset by a and the amount invested in the risky bond by b. Thus, (a, b) is

the solution to the following system of equations:

a [1 + RF (1 − TPD)] + b [1 + YD (1 − TPD)] = TSYD (11)

and

a [1 + RF (1 − TPD)] + b [1 + α (1 − TX)] = δTSYD. (12)

Since the price of both the riskless asset and the risky bond are normalized to 1, the value

of the tax shield is

a + b =
−α (1 − TX) + [δYD + (1 − δ)RF ] (1 − TPD)

[1 + RF (1 − TPD)] [YD (1 − TPD) − α (1 − TX)]
TSYD. (13)

Therefore

PV (tax saving) =
−α (1 − TX) + [δYD + (1 − δ)RF ] (1 − TPD)

[1 + RF (1 − TPD)] [YD (1 − TPD) − α (1 − TX)]
TSYDLV LT−1. (14)

3.2 The tax adjusted discount rate

Combining (8) and (14), we have

VLT−1= V UT−1+Y DLV LT−1TS

−α (1 − TX) + [δYD + (1 − δ)RF ] (1 − TPD)

[1 + RF (1 − TPD)] [YD (1 − TPD) − α (1 − TX)]
+

(VLT−1 − VUT−1)TPE

1 + RF (1 − TPD)
.

(15)
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This can be rewritten using (3)-(7) as

VLT−1= V UT−1+
LVLT−1T

∗YD (1 − TC)

(1 − T ∗) (1 + RFE)

[δYD + (1 − δ)RF ] (1 − TPD) − α (1 − TX)

YD (1 − TPD) − α (1 − TX)
. (16)

By (1) and (2),

VUT−1 = VLT−1

1 + RL

1 + RU

. (17)

Thus, we obtain the relationship between RL and RU :

RL= RU− (1 + RU )
LYDT ∗ (1 − TC)

(1 − T ∗) (1 + RFE)

[δYD + (1 − δ)RF ] (1 − TPD) − α (1 − TX)

YD (1 − TPD) − α (1 − TX)
. (18)

Substituting (10) into (18) yields

RL= RU−
LYDT ∗ (1 − TC)

1 − T ∗

1 + RU

1 + RFE

(1 − δ)RF (1 − TPD) + δYD (1 − TPE) − α (1 − TPE)

YD (1 − TPD + δ (TPD − TPE)) − α (1 − TPE)
,

(19)

where δ is given by (9).

While we have derived RL by analyzing the model at time T − 1, the same inductive

argument as in Cooper and Nyborg (2008) can be used to establish that RL as given by

(19) holds at any date t. Thus, this is our general tax adjusted discount rate, that takes

account of risky debt, personal taxes, and partial default.

The formula for the tax adjusted discount rate derived by Cooper and Nyborg (2008)

is:

RL = RU −
LYDT ∗ (1 − TC)

1 − T ∗

1 + RU

1 + RFE

1 + RF

1 + YD
. (C&N 12)

As pointed out above, Cooper and Nyborg’s model corresponds to the special case that

α = −1 and therefore also δ = 0. However, substituting these values into (19) yields:

RL= RU−
LYDT ∗ (1 − TC)

1 − T ∗

1 + RU

1 + RFE

(1 − TPE) + RF (1 − TPD)

(1 − TPE) + YD (1 − TPD)
, (20)

which is slightly different from (C&N 12). The reason for this difference comes from the

tax treatment of capital losses. In the case of complete default, the investor suffers a

capital loss of 1 per dollar invested in the bond. This loss is tax deductible and therefore

the total payoff to the investor is 1 × TPE, assuming a capital gains of TPE. In contrast,
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Cooper and Nyborg’s formula is derived under the assumption that the total payoff to the

investor here is 1 × TPD.7

3.3 Continuous rebalancing

The rates of return in the analysis above may be interpreted as annual returns, with

rebalancing of the debt to the target leverage ratio carried out once a year. In this

subsection, we derive the general expression for the tax adjusted discount rate under

continuous rebalancing of the debt.

We start by dividing the year into n equal periods, with rebalancing happening at the

end of each period. The annually compounded rates RU and RF are not affected by the

frequency of rebalancing. Let

rU,n = (1 + Ru)
1

n − 1 (21)

be the unlevered discount rate over a period of length 1/n. Define rF,n and rFE,n analo-

gously.

We assume that the binomial process for the risky debt holds over each period of length

1/n, with the per period yield being denoted by yD,n = (1 + YD)1/n
− 1.

For simplicity, we assume that the pre-tax payoff to the risky bond in default, 1+α, is

unaffected by the length of a period. However, as a period becomes arbitrarily small, the

per period yield on the bond also becomes small. Thus, to ensure a recovery rate below 1

for arbitrarily short periods, we assume that 1 + α < 1, i.e., α < 0. This also means that

when the principal is viewed as being paid first in bankruptcy, δ = 0. We consider this the

most relevant case as it is consistent with the principle that repayment of capital is not

taxed. In the case that interest is paid first in bankruptcy, δ may depend on n. Clearly,

it is 0 if 1 + α = 0. If 1 + α > 0, there is n′ such that for all n > n′, 1 + α > yD,n, since

yD,n is decreasing in n and converges to zero. Thus, for sufficiently large n, δ will be equal

7While we differ in this detail, both we and Cooper and Nyborg assume elsewhere that capital gains are

taxed at TPE . In particular, Cooper and Nyborg (2008) use a capital gains tax of TPE in their equation

(A2), as do we in the corresponding expression in this paper. Thus, (20) is arguably the more correct tax

adjusted discount rate formula under complete default in the Cooper and Nyborg model.
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to 1 if the tax code treats interest as being paid first in bankruptcy. In short, our model

collapses to either having δ = 0 or δ = 1.

Thus, using (19), the tax adjusted discount rate over a period of length 1/n is

rL,n = rU,n −
LyD,nT ∗ (1 − TC)

1 − T ∗

1 + rU,n

1 + rFE,n

(1 − δ) rF,n (1 − TPD) + δyD,n (1 − TPE) − α (1 − TPE)

yD,n (1 − TPD + δ (TPD − TPE)) − α (1 − TPE)
. (22)

Denote the third fraction on the right hand side by A. Multiplying both sides by n, we

have

nrL,n = nrU,n − nyD,n
LT ∗ (1 − TC)

1 − T ∗

(

1 + rU,n

1 + rFE,n

)

× A. (23)

Now define RU,n = nrU,n, RL,n = nrL,nYD,n = nyD,n. These are the annualized rates

corresponding to rU,n, rL,n, and yD,n, respectively. By definition, R̂U = limn→∞ RU,n

is the continuously compounded rate that corresponds to RU . ŶD = limn→∞ YD,n is the

continuously compounded rate corresponding to YD. R̂L = limn→∞ RL,n is the tax adjusted

discount rate under continuous rebalancing. R̂U , ŶD, and R̂L are continuously compounded

rates stated on a standard per annum basis.

Using these definitions in (23), we have

lim
n→∞

RL,n = lim
n→∞

{

RU,n − YD,n
LT ∗ (1 − TC)

1 − T ∗

(

1 + rU,n

1 + rFE,n

)

× A

}

(24)

which reduces to8

R̂L = R̂U − ŶDLT ∗
1 − TC

1 − T ∗
. (25)

Equation (25) thus provides us with the (continuously compounded) tax adjusted discount

rate under continuous rebalancing.

This is exactly the same formula as derived by Cooper and Nyborg (2008), starting

from (C&N 12). That partial default does not alter the formula for the tax adjusted

discount rate under continuous rebalancing is surprising.

To see the intuition for this, recall that in the continuous rebalancing model, we either

have δ = 0 or δ = 1. If δ = 1, equation (22) reduces to

rL,n = rU,n −
LyD,nT

∗ (1 − TC)

1 − T ∗

1 + rU,n

1 + rFE,n
. (26)

8Since each of the last two terms converge to 1.
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As seen, α has dropped out. This is intuitive, since δ = 1 means that the interest tax

shield is unaffected by the recovery in default.

If δ = 0, the term A in (23) becomes

rF,n(1 − TPD) − α(1 − TPE)

yD,n(1 − TPD) − α(1 − TPE)
. (27)

This clearly converges to 1, implying that α drops out of the analysis. More intuitively,

when δ = 0, the recovery rate only affects the capital loss in default and this gets squeezed

towards zero over an arbitrarily short time horizon since the implied probability of default

must converge to zero.

To see this, note that in the basic discrete rebalancing model, it must be true that

(1 − p) (1 + YD) + p (1 + α) = 1 + RF , (28)

where p is the risk-neutral probability of default. When we rebalance more frequently, to

keep our model arbitrage-free, the risk-neutral probability of default must adjust according

to

pn =
yD,n − rF,n

yD,n − α
. (29)

Thus, the probability of default in a small interval approaches zero in the limit.

The continuous rebalancing tax adjusted discount rate formula itself is intuitive, espe-

cially when rewritten in the following form [using (3) and (6)]:

R̂L = R̂U −
ŶDLTS

1 − TPE
. (30)

This shows clearly that the tax adjusted discount rate is the unlevered discount rate less

the tax saving per dollar of firm value. The “raw” tax saving, ŶDLTS, is grossed up by

1 − TPE , reflecting that R̂L is a discount rate that is applied to after corporate tax, but

before personal tax, unlevered cash flows, as seen in (2).

3.4 How accurate is the continuous approximation? Example

Table 4 provides a numerical example of the error arising from using the continuous ap-

proximation formula (25) rather than (19). The table shows values of RL calculated from
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(19) for different values of α. The corresponding value of RL estimated from (25) with the

same parameter values as in the table is 6.56%. We see that the continuous approximation

formula (25) works well given the chosen parameter values, except for when α is close to

zero and the bankruptcy code treats the principal as being paid first.9

Table 4: Values of RL using (19) for different values of α.

Parameter values are: RU = 8%, RF = 4%, TC = 40%, TPD = 40%, TPE = 40%, L = 60%,

YD = 6%. RL,princ and RL,int refer to tax systems where the principal and interest, respectively,

are viewed as being paid in default. (25) yields RL = 6.56% if one were to use it with the same

annually compounded rates and the same values for the other parameters.

α 0 -0.1 -0.3 -0.5 -0.7 -0.9 -1

RL,princ 7.00 % 6.69 % 6.59 % 6.56 % 6.54 % 6.54 % 6.53 %

RL,int 6.50 % 6.50 % 6.50 % 6.50 % 6.50 % 6.50 % 6.53 %

4 Summary

We have provided a general formula for tax adjusted discount rates under a constant

leverage ratio debt policy. The formula allows for personal taxes, risky debt, and partial

default. It also handles different rules with respect to the order of priority of interest

payments versus repayment of principal in default. In doing this, we have expanded on

the analysis of Cooper and Nyborg (2008), who assumed complete default (zero recovery

in default). This is important because recovery rates in practice typically are significantly

larger than zero. Our general formula differs from that of Cooper and Nyborg because

recovery rates affect the tax adjusted discount rate.

We have also shown that the effect of nonzero recovery rates can be quite small, and

if debt rebalancing is continuous, the effect disappears altogether. Our analysis thus

9Note that if we were to use continuously compounded rates in (25) – i.e. R̂U = 7.70% and ŶD = 5.83%,

we would get R̂L = 6.30%. Annually compounded, this is equivalent to 6.50%, which is exactly the same

as RL,int in the table in all cases except for when α = −1.
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shows that Cooper and Nyborg’s tax adjusted discount rate formula under continuous

rebalancing holds under more general conditions than those under which it was originally

derived. We have provided an intuition for why this is so. The usefulness of the continuous

approximation formula is that it is easy to use and does not require estimates of recovery

rates in default. In the context of a numerical example, we have illustrated that the errors

from using it are quite small, even for large recovery rates.
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