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ABSTRACT 

What Explains the Lagged Investment Effect?* 

The best predictor of current investment at the firm level is lagged investment. 
This lagged-investment effect is empirically more important than the cash-flow 
and Q effects combined. We show that the specification of investment 
adjustment costs proposed by Christiano, Eichenbaum and Evans (2005) 
predicts the presence of a lagged-investment effect and that a generalized 
version of their model is consistent with the behavior of firm-level data from 
Compustat. 
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1. Introduction

Lagged investment is a much better predictor of investment than Tobin�s Q and

cash �ow combined. While this fact has been recognized in empirical work on

investment, it has mostly been viewed as an inconvenience. Hayahi�s (1982) re-

sult that investment should depend only on Tobin�s Q placed Q at the center

of the empirical investment literature. The potential role of �nancial frictions

or other deviations from Hayashi�s framework motivated the subsequent work on

the cash-�ow e¤ect found in the data.1 While much progress has been made in

understanding the role of Q and cash �ow in investment regressions, an important

question remains: what explains the lagged-investment e¤ect?

In this paper we �rst document the importance and robustness of the lagged-

investment e¤ect in �rm-level Compustat data. We then use these data to esti-

mate the investment adjustment-cost model proposed by Christiano, Eichenbaum,

and Evans (2005) (henceforth CEE). This speci�cation was initially designed to

make the impulse response of investment to monetary policy shocks generated

by DSGE models consistent with the impulse response estimated using vector

auto-regressions. It has since become standard in the DSGE literature.2

We show analytically that the CEE model predicts the presence of a lagged-

investment e¤ect in addition to cash �ow and Q e¤ects.3 Moreover, regression

coe¢ cients obtained from our model-generated data are similar in magnitude to

empirical estimates. We also �nd that a generalized version of CEE does surpris-

ingly well at explaining the patterns of persistence, volatility, and comovement

1See Hubbard (1998) for a survey of the empirical literature on investment.
2Examples of papers that use this adjustment-cost speci�cation include Fernández-Villaverde

and Rubio-Ramírez (2004), Smets and Wouters (2007), Justiniano and Primiceri (2008), Del
Negro and Schorfheide (2009), and Gertler and Kiyotaki (2010).

3Gilchrist and Himmelberg (1998) raise the possibility that the highly signi�cant lagged-
investment e¤ect in their data could be generated by a di¤erent adjustment-cost formulation.
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observed in �rm-level data.

Our paper is organized as follows. In Section 2 we describe the data and

document the presence of a lagged-investment e¤ect. In Section 3 we show an-

alytically that a linearized version of the CEE model predicts the presence of a

lagged-investment e¤ect. We then discuss a generalized version of the model that

we use in our estimation. Section 4 presents our estimation results and discusses

the model�s implications for investment regressions. Section 5 concludes.

2. The lagged-investment e¤ect

In this section we describe the data set and use it to document the importance of

lagged investment as a predictor of current investment. We also summarize some

key features of the data.

We use a balanced panel of Compustat �rms with annual data for the period

1981-2003. We use a balanced panel because the time dimension of the data is im-

portant in identifying the dynamics of the model. The sample includes 776 �rms

and roughly 14; 000 �rm-year observations. We focus our analysis on the large

�rms in our dataset, de�ned as those in the top quartile of �rms sorted by size of

the capital stock in 1981. In the beginning of the sample, the top quartile of �rms

represents 30 percent of aggregate private non-residential investment and 40 per-

cent of corporate non-residential investment.4 This focus on large �rms coupled

with the fact that the balanced panel selects for more stable �rms means that we

can reasonably abstract from any �nancing frictions which might be present for

smaller �rms. We use data for the four variables present in our model: invest-

ment in property, plant, and equipment, the physical capital stock, Q, and cash

4Despite our focus on the largest �rms, there remains considerable size heterogeneity within
that group: the time-series average of the capital stock ranges from 116 to 239,225 million dollars
across the 194 �rms.
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�ow. We exclude from our sample �rms that have made a major acquisition in

order to de�nitively focus on investment as purchases of new property, plant, and

equipment. We estimate the physical capital stock using the perpetual inventory

method, using the book value of capital as the starting value for the capital stock

and four-digit industry-speci�c estimates of the depreciation rate. Q is calculated

as the market value of equity plus the book value of debt, divided by the capital

stock estimate. Cash �ow is measured using the Compustat item for Income be-

fore extraordinary items + depreciation and amortization + minor adjustments.

We describe the data and sample selection in more detail in Appendix 6.1.

2.1. Key empirical features

In Table 1 we report summary statistics for both the 1981-2003 period and for

two sub-periods, 1981-1992 and 1993-2003. These estimates are similar to those

reported in other studies that use Compustat data. Bootstrap standard errors are

indicated in parenthesis. We report the median across �rms of selected time-series

moments. An alternative would have been to compute moments for the average

across �rms of the variables of interest. However, this procedure would eliminate

the idiosyncratic variability associated with individual �rms. Henceforth, to sim-

plify the exposition we use I=K and CF=K to refer to the investment-capital ratio

and the cash��ow�to-capital ratio, respectively.

The most striking features of the data are the important di¤erences across

sub-samples. In particular, the mean and standard deviation of Q and CF=K

in the second sub-sample are signi�cantly higher than in the earlier period. All

variables exhibit positive skewness, and there is more skewness in the full sample

than in each of the two sub-samples. Finally, Q exhibits strong persistence, while

the persistence in I=K and CF=K is more moderate.5

5We do not report serial correlation results for subsamples as they are imprecisely estimated
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2.2. Investment regressions

The three panels of Figure 1 provide scatter plots of pooled time-series-cross-

section data that are useful to visualize the relation between I=K and the three

variables of interest: Q, CF=K and lagged I=K.

We use log(Q) and log(CF=K) in our investment regression because, as dis-

cussed in Abel and Eberly (2002), this speci�cation provides a better �t owing to

skewness in the �rm-level data. Similarly, the log speci�cation makes our para-

meter estimates less sensitive to a small number of very high Q values observed

in the data.6

We now describe results from regressing I=K on di¤erent combinations of three

variables: log(Q), log(CF=K), and lagged I=K.

In Panel A of Table 2 we report estimates from pooled, time-series-cross-section

regressions. Comparing columns 1 and 2 we see that Q and CF=K individually

have similar explanatory power. Regressing I=K on either of these variables

generates an R2 of 30 percent. When both Q and CF=K are included in the

regression (column 4), the goodness-of-�t rises slightly to 0:34. We obtain a

much higher R2 (0:57) when we use lagged I=K as the sole explanatory variable.

When all three regressors are present, the coe¢ cient on lagged I=K remains large

(0:6253) and very highly signi�cant, while the coe¢ cients on Q and CF=K are

signi�cant but small in magnitude (0:0126 and 0:017, respectively).

To investigate the robustness of the lagged-investment e¤ect we run panel ver-

sions of these regressions with �rm �xed e¤ects. The results, reported in Panel B

of Table 2, lead to similar conclusions. The explanatory power of lagged invest-

ment is much greater than that of Q and CF=K together (R2 of 0:57 versus 0:30).

due to the low number of complete observations within a subsample for a number of �rms.
6When we run linear regressions, the coe¢ cient on Q is small but signi�cant, and the co-

e¢ cient on CF=K is larger and also statistically signi�cant. These results accord with the
investment regression results reported in the literature.
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When all three variables are included as regressors the coe¢ cient on lagged I=K

is large (0:4462) and signi�cant. The coe¢ cient on Q is small and signi�cant,

while the coe¢ cient on CF=K is marginally signi�cant.

Since lagged investment is by de�nition correlated with the panel-level e¤ects,

we re-run the panel regressions using Arellano and Bond�s (1991) consistent GMM

estimator. The results are reported in Panel C of Table 2. The results obtained

with this estimator are very similar to those reported in Panel B. In addition, the

lagged-investment e¤ect continues to be highly signi�cant even when we include

year dummies (column 3). Columns 4 and 5 of Panel C show that the lagged-

investment e¤ect is present in both subsamples (1981-1992 and 1993-2003). We

also �nd that including lags of both Q and CF=K has a negligible impact on the

size and signi�cance of the lagged-investment coe¢ cient.

In sum, we �nd that lagged I=K is a better predictor of current I=K than

Q and CF=K , even when combined. The coe¢ cient on lagged I=K is roughly

0:40. This lagged-investment e¤ect is robust across speci�cations. Q has a small

but robust and signi�cant e¤ect on I=K. In contrast, the cash-�ow e¤ect is weak

and not robust in our sample, becoming insigni�cant or negative in some of the

regression speci�cations.

Next, we describe the CEE model and some of its properties.

3. The CEE model

The �rm�s problem is given by the following Bellman equation, where y0 denotes

next period�s value of variable y:

V (K; I�1; z) = max
I;K0

zK � I + �
Z
V (K 0; I; z0)F (dz0; z), (3.1)

subject to:

K 0 = I � I�(I=I�1) + (1� �)K. (3.2)
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The �rm�s output is given by zK, where K denotes the stock of capital and z

is a stochastic variable governed by the distribution F (�). This variable represents
a shock to productivity or to the price of the �rm�s output. We can interpret the

production function as requiring a single productive factor, capital. Alternatively,

we can think of output as being produced with capital, labor, and other variable

factors, with labor and variable factors being costlessly adjustable. In this case zK

represents output net of labor and other variable costs. Under this interpretation,

which we adopt throughout the paper, the variable z can also incorporate shocks

to the real wage or to the price of other variable factors.

Investment, denoted by I, is subject to adjustment costs according to the CEE

speci�cation which is given by equation (3.2), where �00(:) > 0.7

It is convenient to assume that in a deterministic steady state with constant

z there are no adjustment costs. This property requires that:

�(1) = �0(1) = 0. (3.3)

The function V (K; I�1; z) represents the value of a �rm with capital stock K,

lagged investment, I�1, and total factor productivity, z. Lagged investment is a

state variable for the �rm because it enters the adjustment cost speci�cation given

by equation (3.2). We denote the discount factor by �. Capital depreciates at

rate �.

The optimal solution to the �rms problem is characterized by the �rst-order

conditions for K 0 and I:

� = �

Z
V1(K

0; I; z0)F (dz0; z), (3.4)

1 = �� ��(I=I�1)� �(I=I�1)�0(I=I�1) + �
Z
V2(K

0; I; z0)F (dz0; z), (3.5)

7Matsuyama (1984) and Lucca (2007) provide microfoundations for this adjustment cost
formulation.
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and two envelope conditions:

V1(K; I�1; z) = z + �(1� �), (3.6)

V2(K; I�1; z) = ��(I=I�1) (I=I�1)
�2 . (3.7)

The variable � denotes the Lagrange multiplier associated with equation (3.2).

To study the properties of this problem we linearize the �rst-order conditions

around a deterministic steady state. Equations (3.5) and (3.7), together with the

requirement of no adjustment costs in the steady state (equation (3.3)), imply

that the steady state value of � is equal to one. Equations (3.2) and (3.3) imply

that the steady state level of investment is: I = �K.

We assume that the steady state value of z satis�es the following equation:

1=� � 1 = z � �. (3.8)

The left-hand side of this equation is the real interest rate faced by the �rm. The

right-hand side is the marginal product of capital net of depreciation.

Equation (3.1) and condition (3.8) imply that the steady state value of the

�rm is given by:

V = K=�.

Tobin�s (average) q is de�ned as:8

Q = V=K = 1=�.

Linearizing equation (3.2) around the steady state we obtain:

K̂t+1 = �Ît + (1� �)K̂t, (3.9)

8The steady-state value of Q is di¤erent from one because this version of Tobin�s Q is based
on the value of the �rm in the beginning of the period. The value of Q computed using the end
of period value of the �rm (after cash �ow has been received and investment expenditures have
been incurred) is equal to one. This e¤ect of timing on the value of Q is common in discrete
time models.
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where

� = �00(1) > 0.

Combining equations (3.4)-(3.7) and linearizing the resulting conditions we obtain:

�̂t=� = Et

h
zẑt+1 + (1� �)�̂t+1

i
, (3.10)

0 = �̂t � �
�
Ît � Ît�1

�
+ ��

�
Ît+1 � Ît

�
. (3.11)

To study the properties of the investment regressions implied by the linearized

version of the model we assume that ẑt follows an AR(1) process with �rst-order

serial correlation �. The resulting solution to the �rm�s problem takes the form:

Ît = �iiÎt�1 + �iz ẑt + �ikK̂t. (3.12)

Solving for coe¢ cients �ii, �iA, and �ik using the method of undetermined coe¢ -

cients we obtain:

Ît = Ît�1 +
��

1� ��
z=�

1� (1� �)��ẑt. (3.13)

The properties of this solution are as follows. The higher the degree of adjustment

costs, �, the smaller the response of investment to a given shock. The higher the

degree of shock persistence, �, the stronger the response of investment to shocks.

When shocks are i.i.d. (� = 0) investment is constant over time.

It is useful to use this linearized solution to compute Tobin�s Q. Combining the

equation for the value of the �rm and the linearized laws of motion for investment

and capital yields:

V̂t =
z

1=� � �ẑt + K̂t. (3.14)

In general V̂t should be a function of the state variables K̂t, Ît�1 and the shock,

ẑt. The fact that V̂t does not depend on Ît results from adjustment costs being
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zero in steady state. Equation (3.14) implies that Q̂t is given by:

Q̂t = V̂t � K̂t =
�z

1� ��ẑt. (3.15)

We can now use equation (3.13) to study the model�s implications for the form

of the investment regression equation. We denote the investment-capital ratio by

it = It=Kt.

Using the policy function for investment and the linearized law of motion for

the capital stock we obtain the following expression for {̂t:

{̂t = (1� �)̂{t�1 +
��

1� ��
z=�

1� (1� �)��ẑt. (3.16)

The investment-capital ratio is a linear function of its own lag and the shock,

ẑt. Since cash-�ow/capital in deviation from its steady state value is equal to ẑt

(Ĉt� K̂t = ẑt), it enters signi�cantly in a regression of {̂t on {̂t�1. Equations (3.15)

and (3.16) imply that if Q̂ is included in the regression instead of cash-�ow, we

obtain a positive regression coe¢ cient given by z= f� [1� (1� �)��]g.
In sum, this model predicts the presence of a lagged-investment e¤ect as well as

a role for cash-�ow or Q. A simple modi�cation of the model allowing both a cash-

�ow and Q e¤ect in addition to the lagged investment e¤ect involves assuming

that the production function has decreasing returns to scale. We pursue this

modi�cation below.

Generalizing the model Before estimating the model we generalize this basic

speci�cation to make it more compatible with the data along four dimensions.

First, we allow for ��exible capital� which can be installed within the period

without adjustment costs. Second, we introduce the possibility of decreasing

returns to scale (DRS) in production. Third, we incorporate exogenous technical

progress, so that in the absence of shocks capital, investment and cash �ow grow

at a constant trend. Fourth, we introduce a �xed cost in production.
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All four features are useful in improving compatibility between model and

data. Flexible capital allows the model to better �t the persistence properties of

investment. As discussed above, DRS allows the model to generate both a Q and

a cash-�ow e¤ect, in addition to the lagged-investment e¤ect. Technical progress

introduces a time trend similar to the one present in the data. Finally, the �xed

cost scales pro�tability and allows the model to match the average level of Q in

the data.

The �rm�s problem in this generalized model is given by:

V (K;H; I�1; X; z) = max
I;Ih;K0

zK�(H 0)!X1���! � �X � I +

�

Z
V (K 0; H 0; I; z0)F (dz0; z);

subject to:

K 0 = I � I�(I=I�1) + (1� �)K,

H 0 = Ih + (1� �)H.

The variable X denotes the level of exogenous technological progress. This

variable grows at a constant rate  > 1, X 0 = X. The parameter � controls the

�xed operating cost paid in every period. This cost, �X, is �xed with respect to

the investment decision, but grows at rateX, so that it does not become irrelevant

as the �rm gains in size.

The variables H and Ih denote the stock of �exible capital and the investment

in �exible capital, respectively. The production function depends on H 0 so the

stock of �exible capital that is relevant for production is chosen after the shock is

realized. Both stocks of capital depreciate at rate �.

We assume that � + ! < 1. We can interpret this property as re�ecting the

presence of decreasing returns to scale (DRS) in production. Alternatively, we can

think of � + ! < 1 as resulting from a setting in which the production function
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exhibits constant-returns to scale but the �rm has monopoly power and faces a

constant-elasticity demand function.

We assume that the adjustment cost function, �, takes a quadratic form:

�(I=I�1) = 1� �(I=I�1 � )2.

This formulation has the property that adjustment costs are zero when the

�rm grows at its steady state growth rate, . The parameter � controls the size of

the adjustment cost.

We de�ne cash-�ow (CFt) as:

CFt = zK
�(H 0)!X1���! � �X,

which is revenue net of �xed operating costs.

Shock process We assume that the shock z follows a �rst-order Markov chain

with support:

z 2
�
�L � �L; �L; �L + �L; �H � �H ; �H ; �H + �H

	
,

where:

�L = 1� ��,

�H = 1 + ��.

The transition matrix is given by:

� =

26666664
p11 p12 p13 0 0 0
p21 p22 p23 p24 0 0
p31 p32 p33 p34 0 0
0 0 p43 p44 p45 p46

p53 p54 p55 p56
p64 p65 p66

37777775
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where �ij = Pr(zt+1 = zjjzt = zi).
This speci�cation allows the variable zt to alternate between two regimes, the

low regime (�L��L; �L; �L+�L) and the high regime (�H��H ; �H ; �H+�H). The
variable �� governs the distance between the means of the two regimes. To reduce

the number of parameters to be estimated we make some symmetry assumptions:

p11 = p66, p22 = p55, p33 = p44, p34 = p43, and p24 = p53.

A single regime process is a particular case of this speci�cation, so the estima-

tion algorithm can choose a single regime if it provides a better �t to the data.

We �nd that the �regime-switching�speci�cation allows the model to be consis-

tent with three important features of the data. First, data moments are di¤erent

in our two subsamples (1981-1992 and 1993-2003). Second, all variables exhibit

skewness which arises naturally with regime switching. Third, regime-switching

can generate the imperfect correlation between cash �ow and Q that we observe

in the data.9

4. Estimating the model

We solve the model numerically using the procedure described in Appendix 6.3.

Our solution method does not yield an analytical representation for the population

moments implied by the model. For this reason, we estimate the model using the

simulated method of moments proposed by Lee and Ingram (1991). We �rst use

our data to estimate the vector of moments 	D. We focus on the moments that

are most directly related to the parameters of the model. The moment vector that

we use includes the mean and standard deviation of CF=K in both time periods as

well as its serial correlation (to identify the shock process), the standard deviation

and skewness of I=K (to identify adjustment costs), the mean of Q in both time

periods (to identify the �xed cost), and the serial correlation of Q. These moments

9The median, across �rms, of the correlation between Q and CF=K is 0:58.
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are reported in bold in Table 1.

We �nd the parameter vector �̂ that minimizes the distance between the em-

pirical and simulated moments, 	(�̂),

L(�̂) = min [	(�)�	D]0W [	(�)�	D] . (4.1)

The weighting matrix W is computed using a block-bootstrap method on our

panel dataset (see Appendix 6.4 for a description). This estimation method gives

a larger weight to moments that are more precisely estimated in the data

We solve the minimization problem (4.1) using an annealing algorithm to re-

duce the risk of convergence to a local minimum.10 Finally, the standard errors

of the estimated parameters are computed as


̂ =
(�0W�)�1

n
,

where � is the matrix of derivatives,

� =
@	(�̂)

@�̂
,

which we compute numerically. The estimation method is discussed in more de-

tails in Appendix 6.4.

4.1. Parameter and moment estimates

We choose the exogenous rate of technical progress to be  = 1:03. This growth

rate is equal to the real annual growth rate of corporate net cash �ows from

January 1981 to January 2004. We �x the sum �+! because we cannot separately

identify � + ! and � using the moments of the data that we consider. Both

parameters control curvature, so when � + ! changes, the value of � can be

10We also tested the robustness of our results by experimenting with various starting values
of the model parameters.
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adjusted to restore the �t of the model. Hence, we set � + ! = 0:8, consistent

with the estimate of the average degree of returns to scale across industries by

Burnside (1996).

We report our parameter estimates and standard errors in Table 3. Our es-

timate of the adjustment cost parameter, �, is 0:929 (with a standard error of

0:0113). This value is close to that obtained by CEE using macro data.11

Our estimate of the �xed operating cost parameter, �, is 86:22 (with a standard

error of 1:2539) which corresponds to 18:8 percent of average cash �ow. The weight

on �exible capital, !, is relatively small (0:07 with a standard error of 0:0005). It

implies that �exible capital represents on average 8:7 percent of total capital, and

that investment in �exible capital is on average 5:1 percent of total investment.12

We normalize the average shock z to one. We estimate the spread between

shocks to be 0:0915. As we discuss below, these values allow the model to match

the mean and standard deviation of the cash-�ow-capital ratio in the data.

The high regime has a higher average productivity, but also a higher standard

deviation. It is interesting to note that the support of the two regimes overlap.

In fact, the low shock in the high regime is lower than the low shock in the

low regime. This con�guration of shocks makes the model consistent with the

imperfect correlation between investment, Q and cash-�ow. When the shock is

in the low regime cash-�ow is low and investment opportunities are poor, so

investment and Q are low. In contrast, when the shock is in the high regime

cash �ow is low but investment opportunities are good, so investment and Q are

high. These estimates emphasize the importance of a structure in which Q and

cash-�ow are not informationally redundant.

11CEE estimate �00(1) = 2:48, where �00(1) is the second derivative of the adjusment cost
function evaluated at the steady state. In our case the adjustment cost function is quadractic,
so � = �00(1)=2 which yields �00(1) = 1:86.
12For reference, software investment alone accounted for 7% of total investment expenditure

in the National Income and Product Accounts (NIPA) in 1993, the middle point of our sample.
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The estimated Markov chain described in Table 4 exhibits strong persistence:

the parameter � is 0:5595 (recall that our data has annual frequency). We also

estimate the probabilities of switching regime from either the middle state or from

the state closest to the alternative regime (e.g., transiting from the highest low

state to the high regime, or from the lowest high state to the low regime). These

probabilities are 3:23 percent and 7:44 percent, respectively. These estimates

imply that the (unconditional) probability of a regime switch is 3:7 percent per

year, so there is on average a regime switch every 27 years.

Table 1 reports summary statistics for variables simulated from the model. The

moments in bold are included in the 	D vector, so our estimation algorithm seeks

to make these moments as close as possible to those estimated from Compustat

data. The remaining moments are not �targeted�by the algorithm. The algorithm

matches all of the targeted moments closely.

One moment which the model cannot match is the standard deviation of Q.13

It is much lower in the model (0:309) than in the data (0:625). Erikson and

Whited (2000) make a compelling case for the hypothesis that there is substan-

tial measurement error in Q. Their estimates imply that we should increase the

standard deviation of Q generated by the model by 47 percent to incorporate

the e¤ect of measurement error that is present in the data. Using this adjust-

ment we obtain a standard deviation of Q equal to: 0:309 � 1:47 = 0:454. This
value is still lower than the volatility of Q in our sample but very close to the

lower bound of the 95 percent con�dence interval for the standard deviation of Q:

0:625� (2� 0:083) = 0:459.
The �nding that the model generates a volatility of Q that is lower than that

of the data is common in adjustment-cost models. A potential additional source

of volatility are di¤erences between the intrinsic value and the market value of

13Results are little changed if we include this moment in 	D:
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equity (Shiller (1989, 2000)). There is some evidence consistent with this view:

measures of Q that do not rely on the market value of equity tend to be better

predictors of investment than conventional measures of Q. Examples of these

alternative Q measures are estimates based on cash-�ow forecasts (Gilchrist and

Himmelberg (1995)), analyst forecasts of earnings growth (Cumins, Hassett, and

Oliner (2006)), and bond prices (Philippon (2009)).

Finally, in order to evaluate the role played by �exible capital we re-estimate

the model setting ! to zero. We obtain very similar parameter estimates. The

adjustment cost parameter is 0:98 instead of 0:93 in the model with �exible cap-

ital. The �t to the data of the two versions of the model is similar with one

exception: the serial correlation of investment is too high in the model without

�exible capital (0:94). Flexible capital, while a small share of investment in the

model, is important to match the persistence of total investment even if it plays

little role for other moments.

4.2. Simulated regression results

We now regress investment on its determinants using simulated data. We report

our results in Table 2, Panel D. Regressing I=K on ln(Q) yields an R2 of only 0:27

and a coe¢ cient of 0:105 on ln(Q). Regressing I=K on ln(CF/K) yields an R2 of

0:17 and a cash-�ow coe¢ cient of 0:047. Including both ln(Q) and ln(CF/K) in

the regression raises the R2 to 0:3. Regressing I=K only on lagged I=K yields an

R2 of 0:32 and a lagged-investment coe¢ cient of 0:565. Finally, regressing I=K

on lagged I=K; ln(Q) and ln(CF/K) we obtain and R2 of 0:45.

Comparing the model�s result to the regression results from the data in Panel

C, column 2 (in bold), the lagged-investment e¤ect is very similar (0:42 in both

cases). The Q e¤ect is also similar in the model and in the data (0:053 versus

0:04). The cash-�ow e¤ect is negligible in the data, while it is weak but signi�cant
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in the model (0:024).

5. Conclusions

We �nd that the investment adjustment cost speci�cation proposed by Christiano,

Eichenbaum and Evans (2005) provides a good �t to �rm-level data. It can also

explain the strong and robust lagged investment e¤ect found empirically.

Since the CEE speci�cation penalizes changes in the level of investment, the

reader might �nd this result surprising. After all, aren�t periods of zero investment

followed by investment spikes and irreversibilities key features of micro data? It

depends on the level of aggregation that we consider. Irreversibilities and jumps

are important in plant data. But they are not important for the large Compustat

�rms included in our sample. Doms and Dunne (1998) show that aggregating data

for smaller �rms or for individual plants tends to smooth out non-convexities in

investment. An interesting question for future research is to investigate how the

right model of investment varies with the level of aggregation and whether the

CEE speci�cation can emerge from aggregating adjustment cost models that are

consistent with plant data.
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6. Appendix

6.1. Data Sources and Calculations

Annual data items from the dataset cstsann in the CRSP/Compustat Merged

database, 1981-2003, are �rst listed, followed by the calculations underlying the

constructed variables. Sources for non-Compustat items are given in parentheses.

� I : expenditures on property, plant, and equipment, data 30

� CashF low: income before extraordinary items + depreciation and amor-

tization + minor adjustments, calculated as follows (from the Compustat

manual):

Income Before Extraordinary Items, 123

+ Depreciation and Amortization, 125

+ Extraordinary Items and Discontinued Operations, 124

+ Deferred Taxes, 126

+ Equity in Net Loss (Earnings), 106

+ Sale of Property, Plant, and Equipment and Sale of Investments �Loss(Gain),

213

+ Funds from Operations �Other, 217

+ Accounts Receivable �Decrease (Increase), 302

+ Inventory �Decrease (Increase), 303

+ Accounts Payable and Accrued Liabilities �Increase (Decrease), 304

+ Income Taxes �Accrued �Increase (Decrease), 305

+ Assets and Liabilities �Other (Net Change), 307

= Operating Activities �Net Cash Flow, 308

� inventories: total inventories (end of period), data 3
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� debt: long-term debt (end of period), data 9

� PPE, book value of capital: property, plant, and equipment,

� data 182: PPE - Beginning Balance �check if it is still reported after

1997;

� data 187: PPE - Ending Balance (Schedule V);

� data 184: PPE - Retirements (Schedule V) - not reported after 1997;

� data 185: PPE - Other Changes (Schedule V) - not reported after 1997.

� Pk, price of capital: implicit price de�ator for nonresidential investment,
Economic Report of the President, Table B-3, various years.

� u, investment tax credit: obtained by year for 51 asset classes from Dale

Jorgenson. These data are aggregated to the two-digit industry level using

the BEA historical cost capital �ow matrix (asset by industry by year).

Speci�cally, the weight of asset type n in industry j in year t is calculated

as wn;j;t � In;j;t=
P
n

In;j;t. The investment tax credit applied to industry j in

year t, uj;t, is then constructed as the weighted sum uj;t =
P
n

wj;n;tuj;n;t.

� z, value of depreciation allowances: obtained by year for 51 asset classes from
Dale Jorgenson. These data are aggregated to the two-digit industry level

using the BEA historical cost capital �ow matrix (asset by industry by year).

Speci�cally, the weight of asset type n in industry j in year t is calculated

as wn;j;t � In;j;t=
P
n

In;j;t. The value of depreciation allowances in industry j

in year t, zj;t, is then constructed as the weighted sum zj;t =
P
n

wj;n;tzj;n;t.

� � , corporate tax rate: obtained from King and Fullerton (1984), table 6.4,

and Fullerton and Karayannis (in Jorgenson and Landau (1993)), p. 343,

updated to 2003 by Dale Jorgenson.
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� market value of equity: closing stock price times number of common shares
outstanding (end of period) plus redemption value of preferred stock (end

of period) = prc * shrout/1000 + data56, where,

� prc: closing stock price from msf �le (monthly stock - securities);

� shrout: Common shares outstanding from msf �le (monthly stock -

securities);

� data 56: Preferred Stock - Redemption Value.

� L, useful life of capital goods: by two-digit industry, the useful life of cap-
ital goods is calculated as Lj � 1

Nj

P
i2j

PPEi;t�1+DEPRi;t�1+Ii;t
DEPRi;t

, where Nj is

the number of �rms, i, in industry j. Using the double-declining balance

method, the implied depreciation rate for industry j, �j, is 2=Lj.

� K, replacement value of capital stock: Using the method of Salinger and
Summers (1983) the replacement value of the capital stock is constructed by

�rm from its book value using the recursion: Ki;t =
�
Ki;t�1

PK;t
PK;t�1

+ Ii;t

�
(1� �j),

where the recursion is initialized using the book value of capital.

� Tobin�s Q: [(market value of equity)t�1 + (debt)t�1 - (inventories)t�1]/Kt.

23



6.2. Sample Selection

Starting from the dataset cstsann in the CRSP/Compustat Merged database, the

following �lters were applied:

� If the �rm was involved in a merger or acquisition, then delete (using aftnt35:
=�01�as indication of a Merger & Acquisition)

� end-of-period capital (data 187) is not missing

� investment (data 30) is not missing

� operating pro�t (data 178) is not missing

� incorrect capital accumulation (only for data before 1994, due to data184
and data185 not being reported after 1997)

� if disinvestment > end-of-period capital then delete

� if operating loss is greater than end-of-period capital then delete

� if operating pro�t is greater than 2.5 times end-of-period capital then delete

� if q is missing or q<0 then delete

� if investment (data 30) < 0 then delete

� if dis-investment (data107) < 0 then delete
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6.3. Solution Method

To solve the �rm�s problem we �rst write it in terms of detrended variables: k =

K=X, h = H=X, i = I=X, and ih = Ih=X. The value function is homogeneous

of degree one in K, H, I�1, and X. This property follows from the fact that we

can write the value function as a sum of functions that are homogeneous of degree

one in these four variables. The homogeneity property allows us to rewrite the

problem of the �rm as:

v�(k; h; i�1; z) = max
i;k0;h0

�
zk�h! � � � i� ih + �

Z
v�(k0; h0; i; z0)F (dz0; z)

�
,

subject to:

k0 = i
�
1� �(i=i�1 � )2

�
+ (1� �)k. (6.1)

h0 = ih + (1� �)h:

To reduce the dimension of the state space we optimize out h0 and use the fact

that h matters for the value of the �rm but not for choosing the optimal level of

h0. The resulting �rm problem is:

v (k; i�1; z) = max
i;k0

�
Az1=(1��)k!=(1��) � � � i+ �

Z
v(k0; i; z0)F (dz0; z)

�
,

subject to the constraint (6.1). The constant A is given by:

A =

�
�

1� �(1� �)

��=(1��) �
1� �

1� �(1� �)

�
.

The original value function is given by:

v�(k; h; i�1; z) = v (k; i�1; z) + (1� �)h.

We obtain numerical solutions to the model with CEE adjustment costs using

the following algorithm developed in Lkhagvasuren (2006):
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1. De�ne a coarse grid for (k; i�1; z);

2. Choose a guess for v(k; i�1; z) and evaluate it on the coarse grid;

3. Choose a �ne grid for i�1;

4. Generate a �ne grid for k compatible with �ne grid for i�1 using the resource

constraint, (6.1);

5. Use bilinear interpolation to evaluate v(k; i�1; z) for every value of z on the

�ne grid for i�1 and z;14

6. Find the optimal value of i for every (k; i�1; z) combination;

7. Save the new value of v(k; i�1; z) evaluated on the coarse grid;

8. Save the policy function for i, i(k; i�1; z), evaluated on the �ne grid;

9. Check whether the value function has converged;

10. If the value function has converged then stop; else go to step 5;

To simulate the model we can use a bilinear interpolation of i(k; i�1; z) evalu-

ated for every z, for every pair (k; i�1) evaluated on the �ne grid. This interpola-

tion procedure avoids k and i�1 having to take values on the real line.

14Bilinear interpolation is an extension of linear interpolation for bivariate functions. Suppose
we know the values of the function f(x; y) evaluated at four points: (x1; y1), (x2; y1), (x1; y2),
and (x2; y2). Then f(x; y) ' f(x1;y1)

(x2�x1)(y2�y1) (x2 � x)(y2 � y) +
f(x2;y1)

(x2�x1)(y2�y1) (x � x1)(y2 � y) +
f(x1;y2)

(x2�x1)(y2�y1) (x2 � x)(y � y1) +
f(x2;y2)

(x2�x1)(y2�y1) (x� x1)(y � y1).
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6.4. Estimation Method

The objective of the simulated method of moments is to �nd the parameter vector

�̂ that minimizes the distance between empirical (	D) and simulated moments

(	(�)):

L(�̂) = min [	(�)�	D]0W [	(�)�	D] . (6.2)

The weighting matrix, W , is obtained using the variance-covariance matrix of the

empirical moments, 
D:

W =
1


D(1 + 1=k)
, (6.3)

where k = length of simulation=length of sample. We estimate the matrix 
D

using a block-bootstrap method as follows. We form m samples. Each sample

consists of data for n �rms drawn with replacement from our data set. For each

of the m samples we compute the vector of empirical moments. We use the m

observations on the vector of moments to estimate the variance-covariance matrix

of the empirical moments, 
D.

We solve the minimization problem (6.2) using an annealing algorithm. The

�rst step consists in choosing initial values for the parameter vector, �, admissible

ranges for the parameters, as well as the �temperature�and the step size. As

we discuss below, the temperature controls the probability that, given the best

parameter vector so far, ��, we accept a parameter vector �0 that yields a worse �t

(L(�0) > L(��)). This procedure is used to avoid convergence to a local minimum.

We start with a high temperature value, so that the algorithm explores di¤erent

regions of the parameter space.

The second step is to generate a new parameter vector, �0, by adding random

shocks to the elements of �� within their admissible range. Next we solve the

model using value-function iteration for the parameter vector �0 and simulate

1940 representative �rms (each with 23 years of data). Since the number of �rms
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in our Compustat sample is equal to 194, this implies that k in (6.3) equals

10. The fourth step consists in computing the simulated moments and L(�0).

If L(�0) < L(��) we set �� = �0. If L(�0) > L(��) we set �� = �0 with

probability exp [� (L(�0)� L(��)) =temperature]. Finally, we reduce the values of
temperature and step size before going back to step two. The vector of parameter

estimates is the one that generates the lowest value of L. We denote this vector

by �̂.

To verify the convergence properties of our estimation procedure, we used a

simple robustness check. Starting with a parameter vector ~�, we simulate a panel

of �rms and compute the simulated moments, 	(~�). We then use the SMM pro-

cedure described above to �t these moments. Ideally, we would like the parameter

estimates �̂ to be as close as possible to the true parameter values ~� (the ones

that generated the data). Failure to do so may indicate that the estimation pro-

cedure is not adequate or that the model parameters are not identi�ed. We �nd

that our procedure can recover reasonably well the true parameter values. This

result is also con�rmed by the fact that we obtain similar parameter estimates

across SMM runs with di¤erent starting values.
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Table 1: Summary statistics, data and model implications

Full Sample

1981-2003 1981-1992 1993-2003 All Low High

Time-series 

average

Q 1.298 0.950 1.892 1.181 0.926 1.440

(0.106) (0.035) (0.164)

I/K 0.150 0.146 0.161 0.152 0.131 0.174

(0.011) (0.012) (0.008)

Cash Flow/K 0.169 0.155 0.199 0.170 0.157 0.184

(0.014) (0.014) (0.017)

Time-series 

standard 

deviations

Q 0.625 0.256 0.589 0.309 0.134 0.201

(0.083) (0.023) (0.081)

I/K 0.055 0.050 0.046 0.054 0.042 0.056

(0.003) (0.003) (0.003)

Cash Flow/K 0.078 0.046 0.089 0.072 0.047 0.089

(0.007) (0.005) (0.009)

Skewness

Q 0.577 0.160 0.350 0.362

(0.071) (0.067) (0.069)

I/K 0.418 0.320 0.330 0.328

(0.060) (0.058) (0.050)

Cash Flow/K 0.245 -0.040 0.050 0.339

(0.054) (0.062) (0.066)

Serial 

correlation

Q 0.838 0.834

(0.012)

I/K 0.600 0.566

(0.021)

Cash Flow/K 0.540 0.497

(0.034)

Bootstrap standard errors are in parentheses.

*For each variable, we compute the time series average for each firm in the sample, and report the median across firms. 

 “Q” is Tobin’s Q, I is investment in property, plant, and equipment, and K is the capital stock.  

Construction of the variables is described in the text and in the data appendix.

RegimesSubsamples

Median across large firms          (4th 

quartile of Compustat firms)*
CEE model



Panel A : Pooled OLS

Regressors 1 2 3 4 5

0.1406 0.2796 0.0413 0.2190 0.0849

(0.0016) (0.0032) (0.0023) (0.0052) (0.005)

0.7515 0.6253

(0.0116) (0.0132)

0.0600 0.0331 0.0126

(0.0016) (0.0023) (0.0019)

0.0651 0.0387 0.017

(0.0020) (0.0024) (0.0020)

R
2 0.29 0.30 0.57 0.34 0.61

Panel B : Panel regressions with firm fixed effects

Regressors 1 2 3 4 5

0.1532 0.1990 0.0875 0.1589 0.0931

(0.0019) (0.0064) (0.0060) 0.0073 (0.0071)

0.4820 0.4462

(0.0352) (0.0355)

0.0336 0.0316 0.0208

(0.0040) (0.0041) (0.0034)

0.0173 0.0026 0.0061

(0.0038) (0.0038) (0.0029)

R
2 0.29 0.30 0.57 0.30 0.60

Panel C : Dynamic Arellano-Bond panel regressions with firm fixed effects and robustness checks

Regressors 1 2 3 4 5

0.0894 0.0749 0.0961 0.0889 0.0633

(0.0053) (0.0080) (0.0096) (0.0150) (0.0091)

0.4707 0.4187 0.3785 0.3086 0.4192

(0.0301) (0.0311) (0.0284) (0.0621) (0.0351)

0.0405 0.0624 0.0556 0.0430

(0.0049) (0.0063) (0.0091) (0.0059)

-0.0014 -0.0017 -0.0093 0.0011

(0.0033) (0.0032) (0.0063) (0.0035)

Year dummies No No Yes No No

Sample 1981-2003 1981-2003 1981-2003 1981-1992 1993-2003

Panel D: Model regressions, regime switching

Regressors 1 2 3 4 5

0.1384 0.2390 0.0662 0.1869 0.1219

(0.0003) (0.0010) (0.0007) (0.0011) (0.0011)

0.5650 0.4206

(0.0041) (0.0040)

0.1050 0.0836 0.0530

(0.0009) (0.0010) (0.0009)

0.0470 0.0244 0.0217

(0.0005) (0.0005) (0.0005)

R
2 0.27 0.17 0.32 0.30 0.45

ln(Qt)

Table 2: Data and model regressions

Constant

(I/K)t-1

ln(Cash Flow/K)t

Dependent variable I/K, standard errors in parenthesis

CEE model

Data

ln(Cash Flow/K)t

ln(Qt)

Constant

(I/K)t-1

Data

Constant

(I/K)t-1

ln(Qt)

ln(Cash Flow/K)t

Data

Constant

(I/K)t-1

ln(Qt)

ln(Cash Flow/K)t



Table 3: Parameter estimates

Regime switching

Estimated parameters

Adjustment cost : ξ 0.929

(0.0113)

Adjustment cost : v

Fixed cost: φ 86.22

(1.2539)

Discount factor: β 0.9484

(0.0004)

Shock range: σ 0.0915

0.0008

Low regime center shock: µL

High regime center shock: µH

Low regime shock range:  σL 0.274

(0.0017)

High regime shock range:  σH 0.5875

(0.0038)

Switching parameter 1 0.0323

(0.0013)

Switching parameter 2 0.0744

(0.0019)

Shock persistence: ρ 0.5595

(0.0029)

Weight on flexible capital: ω 0.0701

(0.0005)

Calibrated parameters

Mean shock: µ 1.00

Returns to scale: α + ω 0.80

Depreciation rate: δ 0.12

Growth: γ 1.03

Standard errors in parenthesis



Table 4: Estimated Markov chain

Support of the distribution

µ
L
 - σ

L
µ

L
µ

L
 + σ

L
µ

H
 - σ

H
µ

H
µ

H
 + σ

H

0.7296 1.0447 1.3598 0.5795 1.2550 1.9305

Transition matrix

µ
L
 - σ

L
µ

L
µ

L
 + σ

L
µ

H
 - σ

H
µ

H
µ

H
 + σ

H

µ
L
 - σ

L
0.608 0.3435 0.0485 0 0 0

µ
L

0.1662 0.6353 0.1662 0.0323 0 0

µ
L
 + σ

L
0.0449 0.3179 0.5627 0.0744 0 0

µ
H
 - σ

H
0 0 0.0744 0.5627 0.3179 0.0449

µ
H

0 0 0.0323 0.1662 0.6353 0.1662

µ
H
 + σ

H
0 0 0 0.0485 0.3435 0.608

Low Regime High Regime



Figure 1 : Investment rate (I/K)t against (I/K)t-1, Qt and (CF/K)t

I(t)/K(t) and I(t-1)/K(t-1)

I(t)/K(t) = 0.7515(I(t-1)/K(t-1)) + 0.0413

R2 = 0.566
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