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1 Introduction

Monetary authorities across the world have always devoted a large amount of resources

to forecast in�ation. The history of monetary policy, however, suggests that the entrepre-

neurship of predicting changes in the price level has had mixed success over time. In some

periods, in�ation appears predictable in that multivariate models produce forecasts that

are more accurate than the forecasts based on naïve models. In other periods, virtually no

model seems to improve upon either an autoregressive process or the unconditional mean

of in�ation (see for instance Stock and Watson, 2007 and 2008).

In this paper, we use a century of quarterly and annual observations for the United States

to ask whether the conduct of monetary policy a¤ects the ability of a simple multivariate

model to predict in�ation. The U.S. monetary history of the XXth century reveals that

the monetary regimes characterized by either a clear nominal anchor or a credible anti-

in�ationary policy stance has been associated with lower levels of in�ation (see Bordo and

Schwartz, 1999). Our goal is to investigate whether in these regimes in�ation has become

harder to forecast using either money growth, as suggested by the quantity theory, or output

growth, as suggested by a Phillips curve relationship.1

We perform a historical evaluation of in�ation forecasts across monetary regimes using

a �exible statistical model that features drifting coe¢ cients and stochastic volatility. The

time-variation is important because it will allow us to identify endogenously the dates of any

possible change in predictability, and therefore to assess whether these dates correspond to

major changes in the conduct of monetary policy. Our main result is that money growth

and output growth had marginal predictive power for in�ation only during times in which,

according to the narrative account of the U.S. monetary history, the monetary authorities

did not succeed to establish a clear nominal anchor or an in�ation �ghter reputation.

The paper is organized as follows. Section 2 describes our time-varying forecasting

models as well as the time-varying benchmark speci�cation. Section 3 de�nes the monetary

regimes and presents the main results. A sensitivity analysis is o¤ered in Section 4 before

conclusions. The Appendix reports estimation details.

1Using a small-scale sticky price DSGE model, Benati and Surico (2008) show that in�ation predictability
is inversely related to the degree of policy activism in the interest rate response to in�ation.
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2 The statistical model

In this section, we describe the forecasting model, which we will then use in section 3 to

investigate the accuracy of the in�ation forecasts across monetary regimes. The forecasting

model is a Vector Auto Regression (VAR) in which both the autoregressive coe¢ cients and

the elements of the innovation covariance matrix are allowed, but not required, to drift over

time. The reason for using a time-varying statistical model is twofold. First, the dynamics

and volatilities of money growth, in�ation and output growth have exhibited substantial

instabilities over the XXth century (see Sargent and Surico, 2010). Second, our long sample

cuts across two World Wars, the great depression, the great in�ation and several monetary

regimes which di¤ered markedly in their success to establish a credible framework to gain

control over in�ation.

2.1 A VAR with drifting coe¢ cients and stochastic volatility

The vector of endogenous variables is denoted by yt = [�t; zt]
0 where �t is the the variable

to be predicted, the in�ation rate, and zt is the predictor, either money growth, �mt, or

real GDP growth, �xt. We assume that yt admits the following VAR representation:

yt = A0;t +A1;tyt�1 + :::+Ap;tyt�p + "t (1)

where A0;t is a vector of time-varying intercepts, Ai;t are matrices of time-varying coef-

�cients, i = 1; :::; p and "t is a Gaussian white noise with zero mean and time-varying

covariance matrix �t. Let At � [A0;tjA1;t:::; Ap;t], and �t � vec(A0t); where vec(�) is the

column stacking operator. The VAR time-varying parameters, collected in the vector �t,

are postulated to evolve according to:

p(�t j �t�1, Q) = I(�t) f(�t j �t�1, Q) (2)

where I(�t) is an indicator function that takes a value of 0 when the roots of the associated

VAR polynomial are inside the unit circle and is equal to 1 otherwise. f(�t j �t�1, Q) is

given by:

�t = �t�1 + !t (3)

where !t is a Gaussian white noise with zero mean and covariance 
.
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The VAR reduced-form innovations in (1) are postulated to be zero-mean normally

distributed, with time-varying covariance matrix �t that is factored as:

�t = FtDtF
0
t

where Ft is lower triangular, with ones on the main diagonal, and Dt a diagonal matrix.

Let �t be the vector of the diagonal elements of D
1=2
t and �t the o¤-diagonal element of the

matrix F�1t . We postulate that the standard deviations, �t, evolve as geometric random

walks, belonging to the class of models known as stochastic volatility. The contemporaneous

relationship �t among the two variables of the VAR is assumed to evolve as an independent

random walk, leading to the following speci�cations:

log �t = log �t�1 + �t (4)

�t = �t�1 +  t (5)

where �t and  t are Gaussian white noises with zero mean and covariance matrix � and 	.

We postulate that that �t,  t, !t, "t are mutually uncorrelated at all leads and lags.

2.2 Estimation and priors speci�cation

The model (1)-(4) is estimated using Bayesian methods. A detailed description of the

algorithm, including the Markov-Chain Monte Carlo (MCMC) used to simulate the posterior

distribution of the hyperparameters and the states conditional on the data, is provided in

the Appendix and it can also be found in D�Agostino, Gambetti and Giannone (2009).

It is worth emphasizing that the algorithm used in this paper takes explicitly into account

the uncertainty surrounding the estimates of the drifting coe¢ cients. Although we are

unable to characterize analytically the posterior density of the statistics of interest, subject

to regularity conditions described in Gelman et al. (1995), the successive draws of the

Markov-chain converge to an invariant density that equals the desired posterior density.

This implies that the MCMC algorithm allow us to compute error bands around the median

estimates of our measure of predictability, thereby providing a very natural way to assess

the statistical signi�cance of any possible change in forecast accuracy.

As for the speci�cation of the priors, we follow Primiceri (2005) and assume that the

priors for the initial states �0 of the time varying coe¢ cients, the simultaneous relationship
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�0 and log standard errors log � are normally distributed. The priors for the hyperpara-

meters, 
, � and 	 are assumed to be distributed as independent inverse-Wishart. More

speci�cally, we have the following priors.

� Time varying coe¢ cients: P (�0) � N(�̂; V̂�) and P (
) � IW (
�10 ; �1).

� Stochastic volatilities: P (log �0) � N(log �̂; In) and P (	i) � IW (	�10i ; �2i).

� Simultaneous relationship: P (�0) � N(�̂; V̂�) and P (�) � IW (��10 ; �3); where the

scale matrices are parametrized as 
�10 = �1�1V̂�, 	0i = �2i�2iV̂�i and �0 = �3�3In.

The hyper-parameters are calibrated using a time invariant recursive VAR estimated

using a pre-sample of size T0, corresponding to the �rst 32 quarters. For the initial states

�0 and the contemporaneous relationship �0, we set the means, �̂ and �̂i, and the variances,

V̂� and V̂�i , to be the maximum likelihood point estimates and four times its variance. For

the initial states of the log volatilities, log �0, the mean of the distribution is chosen to be

the logarithm of the point estimates of the standard errors of the residuals of the estimated

time invariant VAR.

The degrees of freedom for the covariance matrix of the innovations to the drifting

coe¢ cients, �1, are set equal to T0, the size of the pre-sample. The degrees of freedom

for the priors on the variances of the innovations to the stochastic volatilities, �2i, and to

the simultaneous relationship, �3, are set to the minimum necessary to guarantee a proper

prior, namely the number of rows in ��10 and 	�10i plus one, respectively. Following the

empirical literature, we choose conservative priors for the parameters governing the amount

of time-variation in the unobserved states: �1 = �2 = 10e-04 and �3 = :001.2

2.3 Forecasts

The statistical model described in equation (1) has the following companion form:

yt = �t +Atyt�1 + �t

with yt � [y0t:::y0t�p+1]0, �t � ["0t0:::0]0 and �t � [A00;t0:::0]0 are np� 1 vectors and

At =

�
At

In(p�1) 0n(p�1);n

�
2The results below are robust to setting the �0s to values ten times larger. Stock and Watson (1996)

show that models with a lesser conservative degree of a priori time variation perform poorly in forecasting.
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where At � [A1;t:::Ap;t] is an n�np matrix, In(p�1) is an n(p�1)�n(p�1) identity matrix

and 0n(p�1);n is a n(p � 1) � n matrix of zeros. Let �̂t and Ât denote the median of the

joint posterior distribution for �̂t and Ât (see appendix for the details). The one step ahead

forecast of the endogenous variables is denoted by yt+1 and it is given by:

ŷt+1jt = �̂t + Âtyt (6)

The forecasts h�step ahead are computed iteratively:

ŷt+hjt = �̂t + Âtŷt+h�1 =
hX
j=1

Âj�1t �̂t + Â
h
t yt (7)

Ideally, when computing multi-step forecasts, one should also account for the fact that

the parameters drift going forward from date t. But this is computationally challenging

because it requires integrating a high-dimensional predictive density across all possible paths

of future parameters. Consistent with a long-standing tradition in the learning literature

(referred to as �anticipated-utility�by Kreps, 1998), we instead update the elements of �̂t

and Ât period-by-period and then treat the updated values as if they would remain constant

going forward in time.

Our objective is to predict the h-period log change in prices �ht+h =
400
h log(

Pt+h
Pt
), where

Pt+h is the GDP de�ator at time t+h and 400
h is the normalization term. The forecasts based

on the bivariate autoregressive model with drifting coe¢ cients and stochastic volatility are

compared with the forecasts based on the univariate autoregressive model with drifting

coe¢ cient and stochastic volatility. For both speci�cations, we keep the same lag order,

p = 2, and the same prior beliefs.

Forecast accuracy is evaluated using the Smoothed Mean Square Forecast Error (SMSFE).

For each Gibbs sampling repetition, we compute the squared forecast errors over the whole

sample, and then we smooth it taking means over a rolling window of 31 quarters. The

SMSFE is a measure of the average forecast accuracy over the time window. To facilitate

comparisons between the time-varying VAR and the benchmark model, we report results

in terms of their relative SMSFE, which is the ratio of the SMSFE from the time-varying

VAR over the SMSFE from the benchmark model. Values of the relative SMSFE below one

indicate that the forecasts produced by the VAR are, on average, more accurate that the

forecasts produced by the univariate model.
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To assess the statistical signi�cance of any possible improvement (or deterioration) in

predictability, we report median values and the central 68% posterior error bands associated

with the distribution of the relative SMSFE across Gibbs sampling repetitions. If the

value of one falls outside the error bands, then the two models generate forecasts that are

statistically di¤erent one from the other.

3 In�ation predictability across monetary regimes

We �t two time-varying VARs in in�ation and money growth, and in�ation and output

growth on U.S. quarterly data constructed as the log di¤erences of GDP de�ator, real GDP

and M2 stock. As for the benchmark model, we �t a time-varying univariate process for

in�ation. The full sample is 1875Q1-2007Q4. We use data until 1883Q3 to calibrate the

priors. The �rst estimation sample is 1883Q4-1899Q4. The �rst one step ahead forecast

refers then to 1900Q1. The series for GDP de�ator and real GDP (M2) are available from

the FRED database since 1947Q1 (1959Q1). Prior to that, we apply backward the growth

rates on the GNP de�ator, real GNP and M2 series reported by Balke and Gordon (1986).

The estimates of the time-varying VAR and the time-varying AR models are then used to

construct the measure of relative predictability SMSFE described in section 2.3.

Before proceeding, a word of caution is warranted about the interpretation of our results

over the pre-WWII period where the historical annual data have been interpolated by Balke

and Gordon (1986) to produce quarterly observations. To assess the extent to which such

an interpolation may a¤ect our results, in section 4 we present forecasts based on annual

data. The �ndings on annual data con�rm the �ndings in this section.

3.1 Monetary regimes

Our analysis intends to assess the evidence on the evolution of in�ation predictability from

the statistical models against the evidence on the evolution of monetary policy from the

narrative account of the U.S. economic history. To this end, in this section we report the

dates for some major changes in monetary regimes. These dates will be used to locate

vertical axes on the charts for the evolution of the relative SMSFE. Following Meltzer

(1986), we divide the U.S. monetary history of the XXth century in six major regimes:
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1. From the beginning of the sample to 1931Q3: Gold standard. Ended when Britain

left the gold standard.3

2. From 1931Q4 to 1939Q3: Mixed system. Ended with the outbreak of WWII.4

3. From 1939Q4 to 1951Q1: pegged interest rate for most of the period. Ended with

the Treasury-Federal Reserve Accord which removed the obligation to support the

U.S. government bonds market and thus allowed the Fed to pursue an independent

monetary policy.

4. From 1951Q2 to 1971Q3: Bretton Woods. Ended when Nixon closed the gold window.

5. From 1971Q4 to 1983Q4: Great in�ation. Ended with Volcker�s disin�ation.

6. From 1984Q1 to the end of the sample: Great moderation.

A similar categorization has been used by Bordo and Haubrich (2008) to investigate the

evolution of the marginal predictive power of the yield spread for output growth.

3.2 The evolution of in�ation predictability

In the top (bottom) panel of �gure 1, we report the relative SMSFE between the forecasts

produced by a bivariate VAR in in�ation and money growth (in�ation and output growth)

and the forecasts produced by a univariate autoregressive process for in�ation. Whenever

one is inside the error bands of the relative SMSFE statistics, we conclude that money

growth or output growth have no marginal predictive power for in�ation over and above

its past values. For the sake of exposition, �gure 1 focuses on eight-quarter ahead forecasts

which represents the typical horizon at which central banks are expected to meet their

(implicit) target. Figure 2 reports results for the one, four and twelve quarters horizons.

Vertical lines represent the monetary regime shifts discussed in section 3.1.

3Meltzer (1986) further divides this period into �Gold standard without a central bank�up to 1914Q4
(marked as dotted line in the �gures below) and �Gold standard with a central bank�afterwards.

4The fourth quarter of 1941 is another plausible closing date for this period as it corresponds to the
declaration of war to Germany and Japan. We prefer to draw a vertical line earlier, however, because during
the period of U.S. neutrality large-scale orders for war materials, paid by large in�ow of gold stock, resulted
in a sharp rise in money growth. This, together with a greatly expanded defense program, led to a sustained
increase in wholesale prices as the Fed undertook no extensive operations to o¤set the rapid rise in gold
stock, money stock or prices (see Friedman and Schwartz, 1963, pp. 550-3).
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Four main results emerge from �gure 1. First, over the entire XXth century, in�ation

predictability appears the exception rather than the rule. Second, the forecasts produced by

the bivariate model in in�ation and money growth are signi�cantly more accurate than the

forecasts produced by the univariate model only during the years between the outbreak of

WWII in 1939 and the Treasury-Federal Reserve accord in 1951.5 Third, since the Federal

funds rate have traded consistently above the discount rate in 1966,6 output growth had

marginal predictive power for in�ation in only two periods: (i) the years that extend from

the great in�ation of the 1970s to the early 1980s when Volcker built the credibility for an

anti-in�ationary policy stance (see Goodfriend and King, 2005), and (ii) the years between

1997 and 2000 when the Fed leaned against the wind of the I.T. boom.7 Fourth, under the

Gold standard, the Bretton Woods system and most of the great moderation sample money

growth and output growth had no marginal predictive power for in�ation.

The left (right) column of �gure 2 shows the relative SMSFE based on the VAR in in-

�ation and money growth (in�ation and output growth) for di¤erent horizons. The results

as well as the dating of the changes in predictability are very similar to those in �gure 1.

During the Great Depression, however, money growth appears to have marginal predictive

power for in�ation at short horizons. In the period between the creation of the Federal

Reserve System in 1914 and the exit of Britain from the gold standard in 1931, the fore-

casts four-quarters ahead based on money growth are signi�cantly more accurate than the

forecasts based on the univariate model.

It is worth emphasizing that during the Gold Standard the variance of in�ation and the

absolute SMSFEs associated with both the bivariate models and the univariate benchmark

model were signi�cantly larger than the variance and the absolute SMSFEs during the 1930s,

the 1970s or the great moderation period. This is illustrated in �gure 3 which reports the

absolute SMSFE of the univariate model for in�ation at eight-quarters horizon. Similar

results are obtained at one, four and twelve quarter horizons. Altogether, this suggests that

changes in predictability are not a mere re�ection of changes in volatility.

5The de�ation episodes associated with the 1931Q3-33Q1 and the 1937Q1-38Q1 recessions are likely to
account for the poor performance of the forecasts based on money growth over the 1931Q4-1939Q3 period.

6This suggests that prior to 1966 the federal funds rate was not used as the primary policy instrument.
7Using a di¤erent statistical model over a post-WWII sample, Stock and Watson (2008) �nd similar

results for the ability of output growth to forecast in�ation.
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4 Sensitivity analysis

In this section, we investigate further the performance of our forecasting models by pre-

senting results for three additional exercises. First, we employ a time-varying trivariate

VAR in money growth, in�ation and output growth as alternative, augmented forecasting

model. Second, we run the predictive analysis of the previous section using annual (rather

than quarterly interpolated) observations. Third, we compare the forecasts based on our

benchmark speci�cation to the forecasts based on the unobserved components model with

stochastic volatility proposed by Stock and Watson (2007).

4.1 Augmenting the VAR

Given the focus on marginal predictability, in Section 3 we have studied the out of sample

performance of (i) a bivariate model in in�ation and money growth and (ii) a bivariate

model in in�ation and output growth relative to a univariate speci�cation for in�ation.

In this section, we wish to assess the extent to which the forecasts from a time-varying

augmented VAR in in�ation, money growth and output growth can improve upon the

forecasts from a univariate time-varying autoregressive model. The results of this exercise

are reported in �gure 4 and they corroborate the �ndings in �gures 1 and 2 at all horizons.

In particular, the link between the conduct of monetary policy and the ability to forecast

in�ation is robust to using a trivariate speci�cation.

Similar results, not reported but available upon request, are obtained increasing the lag

order of the bivariate VARs to four over the post-WWII sample.

4.2 Annual data

As the pre-WWII quarterly data available in Balke and Gordon (1986) are interpolated,

it is useful to check whether our results over this period are overturned by using annual

observations. In �gure 5, we report the relative SMSFEs based on estimated models which

are the same as the estimated models behind �gure 2 except for the frequency of the

observations which is now annual. Accordingly, the forecast horizons are now one, two and

three years. Figure 5 con�rms by and large the �ndings based on quarterly observations

reported in �gure 2. Over the pre-WWII period, money growth and output growth had
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rarely predictive power for in�ation. Furthermore, over the later sample, money growth

helped predict in�ation only in the pre-Bretton Woods regime while output growth was

useful only during the 1970s great in�ation. While the use of annual observations makes the

uncertainty around the relative SMSFEs larger and the location of the vertical lines more

imprecise, the evidence in �gure 5 is still suggestive of a signi�cant association between

monetary policy regimes and in�ation predictability.

4.3 An alternative time-varying univariate model

In an important contribution, Stock andWatson (2007) propose an Unobserved Components

model with Stochastic Volatility (UCSV) for in�ation. In this section, we are interested to

compare the predictive accuracy of our univariate model with drifting coe¢ cients and sto-

chastic volatility to the predictive accuracy of the UCSV local-level model. Figure 6 shows

the ratio of the SMSFEs at one, two and three years horizon between the Time-Varying

AutoRegressive (TV-AR) and the UCSV speci�cations �tted on annual observations. Ra-

tios below one imply that the forecasts of the UCSV are less accurate than the forecasts

of the TV-AR. The evidence suggests that no speci�cation performs systematically better

than the other as the SMSFE ratio �uctuates around one in all three panels. At one-year

(three-years) horizon, for instance, the forecasts of the UCSV model are more accurate than

the forecasts of the TV-AR model 67% (55%) of the times. These numbers become 54%

and 47% using quarterly observations.

5 Conclusions

This paper estimates Bayesian VARs with drifting coe¢ cients and stochastic volatility to

investigate the marginal predictive power of money growth and output growth for in�ation

across the U.S. monetary policy regimes of the XXth century. Our main �nding is that

neither money growth nor output growth help forecast in�ation during the regimes char-

acterized by a clear nominal anchor such as the Gold Standard, Bretton Woods and the

Great Moderation. During the 1970s great in�ation (the pre-Bretton Woods period), in

contrast, the forecasts based on a bivariate VAR with output growth (money growth) are

more accurate than the forecasts based on a univariate autoregressive process. Our results
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are consistent with the notion that a policy regime which successfully stabilizes in�ation

makes it harder to improve upon the forecasts based on näive models.
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Appendix

Estimation is performed using Bayesian methods. To draw from the joint posterior distrib-

ution of model parameters we use a Gibbs sampling algorithm similar to the one described

by Primiceri (2005). The idea behind the algorithm is to draw sets of coe¢ cients from

known conditional posterior distributions. The algorithm is initialized at some values and,

under some regularity conditions, the draws converge to a draw from the joint posterior

after a burn in period. Let z be a (q � 1) vector, and zT denote the sequence [z01; :::; z0T ]0.

Each repetition is then composed of the following steps, with sT to be de�ned below:

1. p(�T jxT ; �T ; �T ;
;�;	; sT )

2. p(sT jxT ; �T ; �T ; �T ;
;�;	)

3. p(�T jxT ; �T ; �T ;
;�;	; sT )

4. p(�T jxT ; �T ; �T ;
;�;	; sT )

5. p(
jxT ; �T ; �T ; �T ;�;	; sT )

6. p(�jxT ; �T ; �T ; �T ;
;	; sT )

7. p(	jxT ; �T ; �T ; �T ;
;�; sT )

Gibbs sampling algorithm

� Step 1: sample from p(�T jyT ; �T ; �T ;
;�;	; sT )

To draw �T we use the algorithm of Kim, Shephard and Chibb (KSC) (1998). Consider

the system of equations y�t � F�1t (yt�X 0
t�t) = D

1=2
t ut, where ut � N(0; I), Xt = (In
x0t),

and xt = [1n; yt�1:::yt�p]. Conditional on yT ; �T , and �T , y�t is observable. Squaring and

taking the logarithm, we obtain

y��t = 2rt + �t (8)

rt = rt�1 + �t (9)

where y��i;t = log((y�i;t)
2 + 0:001) �the constant (0.001) is added to make estimation more

robust� �i;t = log(u2i;t) and rt = log �i;t. Since, the innovation in (8) is distributed as
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log�2(1), we use, following KSC, a mixture of 7 normal densities with component proba-

bilities qj , means mj � 1:2704, and variances v2j (j=1,...,7) to transform the system in a

Gaussian one, where fqj ;mj ; v
2
j g are chosen to match the moments of the log�2(1) distri-

bution. The values of the parameters are reported in table 1.

Table 1: Parameters Speci�cation

j qj mj v2j
1.0000 0.0073 -10.1300 5.7960
2.0000 0.1056 -3.9728 2.6137
3.0000 0.0000 -8.5669 5.1795
4.0000 0.0440 2.7779 0.1674
5.0000 0.3400 0.6194 0.6401
6.0000 0.2457 1.7952 0.3402
7.0000 0.2575 -1.0882 1.2626

Let sT = [s1; :::; sT ]
0 be a matrix of indicators selecting the member of the mixture to

be used for each element of �t at each point in time. Conditional on sT , (�i;tjsi;t = j) �

N(mj � 1:2704; v2j ), we can use the algorithm of Primiceri (2005) to draw rt (t=1,...,T)

from N(rtjt+1; Rtjt+1), where the mean rtjt+1 = E(rtjrt+1; yt; �T ; �T ;
;�;	; sT ; ) and the

variance Rtjt+1 = V ar(rtjrt+1; yt; �T ; �T ;
;�;	; sT ).

� Step 2: sample from p(sT jyT ; �T ; �T ; �T ;
;�;	)

Conditional on y��i;t and r
T , we independently sample each si;t from the discrete density

de�ned by Pr(si;t = jjy��i;t ; ri;t) / fN (y
��
i;t j2ri;t+mj � 1:2704; v2j ), where fN (yj�; �2) denotes

a normal density with mean � and variance �2.

� Step 3: sample from p(�T jyT ; �T ; �T ;
;�;	; sT )

Consider again the system of equations F�1t (yt �X 0
t�t) = F�1t ŷt = D

1=2
t ut. Conditional

on �T , ŷt is observable. Since F�1t is lower triangular with ones in the main diagonal, each

equation in the above system can be written as

ŷ1;t = �1;tu1;t (10)

ŷi;t = �ŷ[1;i�1];t�i;t + �i;tui;t i = 2; :::; n (11)

where �i;t and ui;t are the ith elements of �t and ut respectively, ŷ[1;i�1];t = [ŷ1;t; :::; ŷi�1;t].
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Under the block diagonality of 	, the algorithm of Primiceri (2005) can be applied equa-

tion by equation, obtaining draws for �i;t from a N(�i;tjt+1;�i;tjt+1), where �i;tjt+1 =

E(�i;tj�i;t+1; yt; �T ; �T ;
;�;	) and �i;tjt+1 = V ar(�i;tj�i;t+1; yt; �T ; �T ;
;�;	).

� Step 4: sample from p(�T jyT ; �T ; �T ;
;�;	; sT )

Conditional on all other parameters and the observables we have

yt = X 0
t�t + "t (12)

�t = �t�1 + !t (13)

Draws for �t can be obtained from aN(�tjt+1; Ptjt+1), where �tjt+1 = E(�tj�t+1; yT ; �T ; �T ;
;�;	)

and Ptjt+1 = V ar(�tj�t+1; yT ; �T ; �T ;
;�;	) are obtained with the algorithm of Primiceri

(2005).

� Step 5: sample from p(
jyT ; �T ; �T ; �T ;�;	; sT )

Conditional on the other coe¢ cients and the data, 
 has an Inverse-Wishart posterior

density with scale matrix 
�11 = (
0 +
PT
t=1��t(��t)

0)�1 and degrees of freedom df
1 =

df
0 + T , where 
�10 is the prior scale matrix, df
0 are the prior degrees of freedom and

T is length of the sample use for estimation. To draw a realization for 
, we make df
1

independent draws zi (i=1,...,df
1) from N(0;
�11 ) and compute 
 = (
Pdf
1
i=1 ziz

0
i)
�1 (see

Gelman et. al., 1995).

� Step 6: sample from p(�i;ijyT ; �T ; �T ; �T ;
;	; sT )

Conditional to the other coe¢ cients and the data, � has an Inverse-Wishart posterior

density with scale matrix ��11 = (�0 +
PT
t=1� log �t(� log �t)

0)�1 and degrees of freedom

df�1 = df�0 + T where �
�1
0 is the prior scale matrix and df�0 the prior degrees of freedom.

Draws are obtained as in step 5.

� Step 7: sample from p(	jyT ; �T ; �T ; �T ;
;�; sT ).

Conditional on the other coe¢ cients and the data, 	i has an Inverse-Wishart posterior

density with scale matrix 	�1i;1 = (	i;0 +
PT
t=1��i;t(��i;t)

0)�1 and degrees of freedom

df	i;1 = df	i;0 + T where 	�1i;0 is the prior scale matrix and df	i;0 the prior degrees of

freedom. Draws are obtained as in step 5 for all i.
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Figure 2: in the left (right) column, relative SMSFEs at one-, four- and twelve-quarters horizon
(h=1, 4 and 12) between a bivariate VAR in in�ation and money growth (in�ation and output
growth), and a univariate model for in�ation. Black lines are median estimates; red lines are 68%
error bands. Vertical lines represent changes in the monetary regime. Predicted variable: in�ation.
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Figure 3: absolute SMSFEs at eight-quarters horizon (h=8) of the univariate benchmark model for
in�ation. Black lines are median estimates; red lines are 68% error bands. Vertical lines represent
changes in the monetary regime.
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Figure 4: relative SMSFEs at one-, four-, eight- and twelve-quarters horizon (h=1, 4, 8 and 12)
between a trivariate VAR in in�ation, money growth and output growth, and a univariate model for
in�ation. Black lines are median estimates; red lines are 68% error bands. Vertical lines represent
changes in the monetary regime. Predicted variable: in�ation.
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Figure 5: in the left (right) column, relative SMSFEs at one-, two- and three-years horizon between
a bivariate VAR in in�ation and money growth (in�ation and output growth), and a univariate model
for in�ation �tted on annual observations. Black lines are median estimates; red lines are 68% error
bands. Vertical lines represent changes in the monetary regime. Predicted variable: in�ation.
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Figure 6: ratio of the SMSFEs at one-, two- and three-years horizon between a univariate model
with drifting coe¢ cients and stochastic volatility and a univariate model of unobserved components
with stochastic volatility �tted on annual observations. Predicted variable: in�ation.
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