DISCUSSION PAPER SERIES

No. 8291
CARRY TRADES AND GLOBAL
FOREIGN EXCHANGE VOLATILITY

Lukas Menkhoff, Lucio Sarno,
Maik Schmeling and Andreas Schrimpf

FINANCIAL ECONOMICS and
INTERNATIONAL MACROECONOMICS

Canre fer Econemic Pelicy Researdn

www.cepr.org

Available online at: www.cepr.org/pubs/dps/DP8291.asp



ISSN 0265-8003

CARRY TRADES AND GLOBAL FOREIGN
EXCHANGE VOLATILITY

Lukas Menkhoff, Leibniz Universitat Hannover

Lucio Sarno, Cass Business School and CEPR

Maik Schmeling, Leibniz Universitat Hannover
Andreas Schrimpf, Aarhus University

Discussion Paper No. 8291
March 2011

Centre for Economic Policy Research
77 Bastwick Street, London EC1V 3PZ, UK
Tel: (44 20) 7183 8801, Fax: (44 20) 7183 8820
Email: cepr@cepr.org, Website: www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research
programme in  FINANCIAL ECONOMICS and INTERNATIONAL
MACROECONOMICS. Any opinions expressed here are those of the
author(s) and not those of the Centre for Economic Policy Research.
Research disseminated by CEPR may include views on policy, but the
Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an
educational charity, to promote independent analysis and public discussion
of open economies and the relations among them. It is pluralist and non-
partisan, bringing economic research to bear on the analysis of medium- and
long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work,
circulated to encourage discussion and comment. Citation and use of such a
paper should take account of its provisional character.

Copyright: Lukas Menkhoff, Lucio Sarno, Maik Schmeling and Andreas
Schrimpf



CEPR Discussion Paper No. 8291
March 2011

ABSTRACT

Carry Trades and Global Foreign Exchange Volatility*

We investigate the relation between global foreign exchange (FX) volatility risk
and the cross-section of excess returns arising from popular strategies that
borrow in low interest rate currencies and invest in high-interest rate
currencies, so-called ‘carry trades'. We find that high interest rate currencies
are negatively related to innovations in global FX volatility and thus deliver low
returns in times of unexpected high volatility, when low interest rate currencies
provide a hedge by yielding positive returns. Our proxy for global FX volatility
risk captures more than 90% of the cross-sectional excess returns in five carry
trade portfolios. In turn, these results provide evidence that there is an
economically meaningful risk-return relation in the FX market. Further analysis
shows that liquidity risk also matters for expected FX returns, but to a lesser
degree than volatility risk. Finally, exposure to our volatility risk proxy also
performs well for pricing returns of other cross sections in foreign exchange,
U.S. equity, and corporate bond markets.
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This paper studies the risk-return profile of a popular trading strategy that borrows in
currencies with low interest rates and invests in currencies with high interest rates. This
trading strategy is called ‘carry trade’. According to uncovered interest parity (UIP),
if investors are risk neutral and form expectations rationally, exchange rate changes will
eliminate any gain arising from the differential in interest rates across countries. However,
a number of empirical studies show that exchange rate changes do not compensate for the
interest rate differential. Instead, the opposite holds true empirically: high interest rate
currencies tend to appreciate while low interest rate currencies tend to depreciate. As a
consequence, carry trades form a profitable investment strategy, violate UIP, and give rise

to the “forward premium puzzle” (Fama (1984)).

This puzzle and the resulting carry trade strategy are well documented for at least 25
years (Hansen and Hodrick (1980, 1983), Fama (1984)). Considering the very liquid foreign
exchange (FX) markets, the dismantling of barriers to capital flows between countries and
the existence of international currency speculation during this period, it is difficult to
understand why carry trades have been profitable for such a long time.! A straightforward
and theoretically convincing solution for this puzzle is the consideration of time-varying risk
premia (Engel (1984), Fama (1984)). If investments in currencies with high interest rates
deliver low returns during “bad times” for investors, then carry trade profits are merely a
compensation for higher risk-exposure by investors. However, the empirical literature has

serious problems to convincingly identify risk factors that drive these premia until today.

In our empirical analysis we follow much of the recent literature (Lustig and Verdelhan
(2007), Lustig, Roussanov, and Verdelhan (2010)) and sort currencies into portfolios ac-
cording to their forward discount (or, equivalently, their relative interest rate differential
versus U.S. money market interest rates) at the end of each month.? We form five such

portfolios and investing in the highest relative interest rate quintile, i.e. portfolio 5, and

!Since the beginning of the recent global financial crisis, carry trade strategies have made substan-
tial losses but recovered during 2009. Moreover, these losses are relatively small when compared to the
cumulative returns from carry trades of the last 15-20 years (e.g. Brunnermeier, Nagel, and Pedersen
(2009)).

2Originally, the innovation of sorting currencies into portfolios is due to Lustig and Verdelhan (2007)
and has been followed by other papers afterwards.



shorting the lowest relative interest rate quintile, i.e. portfolio 1, therefore results in a carry
trade portfolio. This carry trade leads to large and significant unconditional excess returns
of more than 5% p.a. even after accounting for transaction costs and the recent market
turmoil. These returns cannot be explained by standard measures of risk (e.g. Burnside,

Eichenbaum, Kleshchelski, and Rebelo (2006)) and seem to offer a free lunch to investors.

In this paper, we argue that these high returns to currency speculation can indeed be
understood as a compensation for risk. Finance theory predicts that investors are concerned
about state variables affecting the evolution of the investment opportunities set and wish
to hedge against unexpected changes (innovations) in market volatility, leading risk-averse
agents to demand currencies that can hedge against this risk.®* Guided by this insight
and earlier evidence for stock markets (e.g. Ang, Hodrick, Xing, and Zhang (2006)), we
test whether the sensitivity of excess returns to global FX volatility risk can rationalize
the returns to currency portfolios in a standard, linear asset pricing framework. We find
empirically that high interest rate currencies are negatively related to innovations in global
FX volatility and thus deliver low returns in times of unexpectedly high volatility, when
low interest rate currencies provide a hedge by yielding positive returns. In other words,
carry trades perform especially poorly during times of market turmoil and, thus, their high
returns can be rationalized from the perspective of standard asset pricing. This is the
major point of our paper and it shows that excess returns to carry trades are indeed a

compensation for time-varying risk.

Our paper is closely related to two contributions in the recent literature. First, as in
Lustig, Roussanov, and Verdelhan (2010), we show that returns to carry trades can be
understood by relating them cross-sectionally to two risk factors. Lustig, Roussanov, and
Verdelhan (2010) employ a data-driven approach in line with the Arbitrage Pricing Theory
of Ross (1976) and identify two risk factors that are (a) the average currency excess return

of a large set of currencies against the USD (which they coin “Dollar risk factor”) and (b)

3For example, this is a key prediction of the Intertemporal CAPM (Merton (1973), Campbell (1993),
Campbell (1996), Chen (2003)). Also, assets that deliver low returns in times of high volatility add negative
skewness to a portfolio. Hence, if investors have preferences over skewness, assets with a highly negative
return sensitivity to volatility shocks should demand a higher return in equilibrium. Harvey and Siddique
(2000) examine this sort of coskewness risk and find that it matters for stock returns.



the return to the carry trade portfolio itself (the “H M Lgx” factor). In the present paper,
we also employ two risk factors to price the cross-section of carry trade returns, one of
which is the Dollar risk factor. Instead of the HM Lpx factor of Lustig, Roussanov, and
Verdelhan (2010), however, we investigate the empirical performance of a different risk
factor: innovations in global FX volatility.* This factor is a proxy for unexpected changes
in FX market volatility, and is the analogue of the aggregate volatility risk factor used
by Ang, Hodrick, Xing, and Zhang (2006) for pricing the cross section of stock returns.
We show that global FX volatility is indeed a pervasive risk factor in the cross-section of
FX excess returns and that its pricing power extends to several other test assets. Second,
Brunnermeier, Nagel, and Pedersen (2009) find that liquidity is a key driver of currency
crashes: when liquidity dries up, currencies crash. Experience from the recent financial
market crisis suggests that liquidity is potentially important for understanding the cross-
section of carry trade excess returns as well. Following Brunnermeier, Nagel, and Pedersen
(2009) we show that liquidity is useful to understand the cross-section of carry trade returns
even more generally, i.e. also in times when currencies do not crash. We comprehensively
document, however, that our proxy for global FX volatility is the more powerful risk factor

and subsumes the information contained in various liquidity proxies.

Therefore, our main contribution relative to the existing literature is as follows. We show
that global FX volatility is a key driver of risk premia in the cross-section of carry trade
returns. The pricing power of volatility also applies to other cross sections, such as a com-
mon FX momentum strategy, individual currencies’ excess returns, domestic US corporate
bonds, US equity momentum as well as FX option portfolios and international bond portfo-
lios. This finding is in line with the result that aggregate volatility risk is helpful in pricing
some cross sections of stock returns (Ang, Hodrick, Xing, and Zhang (2006)). Reassuringly,
we find that FX volatility is correlated with several proxies for financial market liquidity
such as bid-ask spreads, the TED spread, or the Pastor and Stambaugh (2003) liquidity
measure. However, when analyzing carry trade returns, FX volatility always dominates

liquidity proxies in joint asset pricing tests where both factors are considered. This finding

4Global FX volatility has a correlation of about -30% with the HM Lpx factor. We therefore do not
exchange one factor for an essentially identical factor.



corroborates evidence for stock markets where, e.g. Bandi, Moise, and Russell (2008) show
that stock market volatility drives out liquidity in cross-sectional asset pricing exercises.
Therefore, the results in our paper provide new insights into the behavior of risk premia
in currency markets in general as well as similarities between the relation of volatility and

cross-sectional excess returns in FX and stock markets.

We examine our main result in various specifications without qualitative changes of
our findings: (i) We show that sorting currencies on their beta with volatility innovations
yields portfolios with a large difference in returns. These portfolios are related, but not
identical, to our base test assets of currency portfolios sorted on forward discount. (ii) We
investigate other factors such as liquidity, skewness, or coskewness. (iii) We investigate
potential Peso problems using different approaches, such as Empirical Likelihood methods
and winsorized volatility series. (iv) We investigate the performance of the proposed risk
factor for other test assets, including options, international bonds, US stock momentum
and corporate bonds, as well as individual currency returns. (v) We experiment with other
proxies for FX volatility (implied volatility from equity and currency options) or different
weighting schemes for individual realized volatility. (vi) We depart from our base scenario
of a U.S.-based investor and run calculations with alternative base currencies (taking the
viewpoint of a British, Japanese, or Swiss investor, respectively). We find that our results
are robust to these changes and corroborate our core result that volatility risk is a key

driver of risk premia in the FX market.

Our study is also closely related to a new strand of literature suggesting explanations
for the forward premium puzzle. Important contributions include Burnside, Eichenbaum,
Kleshchelski, and Rebelo (2006), who argue that carry trades may be difficult to imple-
ment due to high transaction costs. Brunnermeier, Nagel, and Pedersen (2009) show that
carry trades are related to low conditional skewness, indicating that they are subject to
crash risk, a result confirmed in further analysis by Farhi, Fraiberger, Gabaix, Ranciere,
and Verdelhan (2009). Related to this, Melvin and Taylor (2009) show that proxies for
market stress have some predictive power for carry trade returns. Burnside, Fichenbaum,

Kleshchelski, and Rebelo (2011) carefully document that carry trades are still profitable



after covering most of the downside risk through the use of derivatives so that the puz-
zle basically remains, whereas Burnside, Eichenbaum, and Rebelo (2009) suggest that the
forward premium may also be due to adverse selection risk. Lustig and Verdelhan (2007)
provide evidence that currency risk premia can be understood in the Durables Consumption
CAPM setting of Yogo (2006); Verdelhan (2010) shows how carry trade returns are related
to risk arising from consumption habits, and Lustig, Roussanov, and Verdelhan (2010) use
an empirically derived two-factor model which parsimoniously explains the cross-section of
currency portfolios and the carry trade. We also rely on Brunnermeier, Nagel, and Peder-
sen (2009) in that we confirm some relevance for illiquidity as a risk factor. However, we
cannot confirm that transaction costs are prohibitively important (Burnside, Eichenbaum,
Kleshchelski, and Rebelo (2006)) or that skewness would be a pervasive proxy for risk in

the currency market (Brunnermeier, Nagel, and Pedersen (2009)).°

The paper is structured as follows. In Section I we briefly review the conceptual role of
volatility as a risk measure. Section II presents data and descriptive statistics. The main
results regarding volatility risk are shown in Section III. Section IV provides results on the
relation between volatility and liquidity risk. Other possible explanations for our findings
are discussed in Section V, whereas results for other test assets are shown in Section VI.
We briefly discuss robustness checks in Section VII, and conclusions are drawn in Section
VIII. Details on some of our data and estimation procedures are delegated to an Appendix
at the end of the paper. A separate Internet Appendix contains details for robustness tests

as well as additional analyses.

SWith respect to the paper by Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006), it is important
to point out that in terms of the bid-ask spread analysis, our results are similar to theirs in the sense that
indicative bid-ask spreads generally available from traditional data sources are not large enough to wipe
out the profits of carry trade portfolios. However, Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006)
argue that transaction costs may be an important part of the explanation of carry trade returns if the
spreads charged to large trades limit the volume (or total value) of speculation.



I Volatility as a Risk Factor in Foreign Exchange

Finance theory suggests that there must be a negative volatility risk premium because
a positive volatility innovation (i.e. unexpectedly high volatility) worsens the investor’s
risk-return tradeoff, characterizing a bad state of the world. Moreover, high unexpected
volatility typically coincides with low returns so that assets that covary positively with
market volatility innovations provide a good hedge and are, therefore, expected to earn a
lower expected return. Motivated by these insights, several recent papers study how expo-
sure to market volatility risk is priced in the cross-section of returns on the stock market
(Ang, Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008), Da and Schaum-
burg (2009)). In fact, given that volatility is known to exhibit substantial persistence, it
is reasonable to consider aggregate volatility innovations as a pricing factor. In empirical
research inspired by these considerations, the recent asset pricing literature considers a
parsimonious two-factor pricing kernel m (or stochastic discount factor, SDF) with the

market excess return and volatility innovations as risk factors:

My =1 —=biry, 1 — baAViy, (1)

where 7, ;. is the log market excess return and AV;,; denotes volatility innovations. This

linear pricing kernel implies an expected return-beta representation for excess returns.

Regardless of its simplicity and the likely omission of other potential factors, this em-
pirical model has delivered important insights on the relationship between volatility risk
and expected stock returns. For example, Ang, Hodrick, Xing, and Zhang (2006) em-
ploy changes in the VIX index (from CBOE) to proxy for volatility risk, considered as a
non-traded risk factor. They find that aggregate volatility is priced in the cross-section of
U.S. stock returns and that stocks with a higher sensitivity to volatility risk do earn lower
returns. Further studies in this line of literature include Adrian and Rosenberg (2008),

who decompose market volatility into a long-run and a short-run component. They show



that each component is priced separately with a negative factor risk price. Moreover, Da
and Schaumburg (2009) price several asset classes with a pricing kernel that is linear in
the aggregate stock market return and volatility innovations. Christiansen, Ranaldo, and
Soderlind (2010) show that volatility matters for the correlation between excess returns
of stock markets and currencies. Finally, Bandi, Moise, and Russell (2008) do not only
consider volatility, but also liquidity as a further pricing factor. They find that both risk
factors are useful for understanding the pricing of U.S. stocks, but that volatility dominates

liquidity when they are considered jointly.%

Summing up these papers on stock pricing, volatility innovations emerge as a state
variable and there is a negative price of volatility risk because investors are concerned
about changes in future investment opportunities. This motivates our approach of pricing
forward-discount sorted portfolios with a SDF depending linearly on two risk factors: (i)
an aggregate FX market return, and (ii) aggregate FX market volatility innovations. We
show in this paper that this model has a lot to say about returns on carry trades as well

as other cross-sections of asset returns.

In addition to this line of literature, our approach of using the covariance of returns with
market volatility as a priced source of risk is also related to the literature on coskewness
(see e.g. Harvey and Siddique (1999), Harvey and Siddique (2000), Ang, Chen, and Xing

(2006) for asset pricing implementations of coskewness). Coskewness is given by

B [(re = pti) (rm — )]

kew —
COSKew a(rk)a2 (Tm)

: (2)

where 7y, 1, denote the return of a portfolio £ and the market benchmark, respectively;
and p and o denote mean and standard deviation, respectively. Applying a covariance
decomposition to the numerator above, the covariance of returns with market volatility
emerges from this framework as well. The general idea here is that portfolios with a high

coskewness (i.e. portfolios delivering high returns when market volatility is high) serve as a

6Also, see e.g. Acharya and Pedersen (2005), Brunnermeier and Pedersen (2009), Evans and Lyons
(2002), and Pastor and Stambaugh (2003) on the role of liquidity for asset prices.



hedge against volatility and should thus earn lower returns. Therefore, this idea is closely

related to our setup as well.”

Overall, empirical evidence suggests that volatility innovations matter for understand-
ing the cross-section of equity returns. We show that a similar approach is helpful to

understand the cross-section of FX risk premia as well.®

II Data and Currency Portfolios

This section describes the currency and interest rate data used in the empirical analysis,
the construction of portfolios and associated excess returns, our main proxy for global
FX volatility risk and data on currency options. We also provide some basic descriptive

statistics.

Data on spot and forward rates. The data for spot exchange rates and 1-month
forward exchange rates versus the US dollar (USD) cover the sample period from November
1983 to August 2009, and are obtained from BBI and Reuters (via Datastream). The
empirical analysis is carried out at the monthly frequency, although we start from daily
data in order to construct the proxy for volatility risk discussed below.” Following the
extant literature since Fama (1984), we will work in logarithms of spot and forward rates
for ease of exposition and notation. Later in the paper, however, we will use discrete

returns (rather than log-returns) for our cross-sectional asset pricing tests.

"Furthermore, Dittmar (2002) uses Taylor approximations of general, non-linear pricing kernels to show
that the covariance of returns with higher-order moments of returns (such as return variance) theoretically
and empirically matters for equilibrium returns.

8 A number of recent papers suggest theoretical approaches to make sense of the forward premium puzzle
and a selected list includes Bacchetta and van Wincoop (2006), Bansal and Shaliastovich (2008), Farhi and
Gabaix (2009), Gourinchas and Tornell (2004), and Ilut (2010). However, none of these papers precisely
makes the prediction that exposure to global volatility shocks should matter for currency risk premia which
is central to our setup and results below. Hence, further theoretical research is needed to pin down the
exact reason why currency exposure to volatility innovations is strongly related to cross-sectional return
differences.

9Lustig, Roussanov, and Verdelhan (2010) and Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011)
also use these data.



We denote spot and forward rates in logs as s and f, respectively. Our total sam-
ple consists of the following 48 countries: Australia, Austria, Belgium, Brazil, Bulgaria,
Canada, Croatia, Cyprus, Czech Republic, Denmark, Egypt, Euro area, Finland, France,
Germany, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy,
Japan, Kuwait, Malaysia, Mexico, Netherlands, New Zealand, Norway, Philippines, Poland,
Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa, South Korea,
Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine and the United Kingdom. Follow-
ing Lustig, Roussanov, and Verdelhan (2010) we also study a smaller sub-sample consisting
only of 15 developed countries with a longer data history. This sample includes: Australia,
Belgium, Canada, Denmark, Euro area, France, Germany, Italy, Japan, Netherlands, New
Zealand, Norway, Sweden, Switzerland, and the United Kingdom. Since the introduction

of the Euro in January 1999, the sample of developed countries covers 10 currencies only.

Portfolio construction. At the end of each period ¢, we allocate currencies to five
portfolios based on their forward discounts f — s at the end of period t. Sorting on forward
discounts is equivalent to sorting on interest rate differentials since covered interest parity
holds closely in the data at the frequency analyzed in this paper (see e.g. Akram, Rime,
and Sarno (2008)). We re-balance portfolios at the end of each month. This is repeated
month by month during the more than 25 years period. Currencies are ranked from low to
high interest rates. Portfolio 1 contains currencies with the lowest interest rate (or smallest
forward discounts) and portfolio 5 contains currencies with the highest interest rates (or
largest forward discounts). Monthly excess returns for holding foreign currency k, say, are

computed as

koo k- koo ok ok
T =0 — i — Asi o &7 — sp. (3)
As basis for further calculations we compute the log currency excess return rx; ;. for

portfolio ¢ by taking the (equally weighted) average of the log currency excess returns

in each portfolio 7 (gross returns). We then compute excess returns for bid-ask spread



adjusted currency positions (net returns). We employ a setup where bid-ask spreads are
deducted from returns whenever a currency enters and/or exits a portfolio. The net return
for a currency that enters a portfolio at time ¢ and exits the portfolio at the end of the
month is computed as ra},, = f} — s, for a long position and raj,; = —f# + sb,, for a
short position. A currency that enters a portfolio but stays in the portfolio at the end of the
month has a net excess return rat,, = f? — s,y for a long position and 7@}, ; = —f + s441
for a short position, whereas a currency that exits a portfolio at the end of month ¢ but
already was in the current portfolio the month before (¢ — 1) has an excess return of
ral,, = fi — st for a long position and raj,, = —f; + sb; for a short position. We
assume that the investor has to establish a new position in each single currency in the first
month (November 1983) and that he has to sell all positions in the last month (at the end
of August 2009). Returns for portfolio 1 (i.e. the funding currencies in the carry trade) are
adjusted for transaction costs in short positions whereas portfolios 2 through 5 (investment
currencies) are adjusted for transaction costs in long positions. In the paper, we report
results for these net returns since transaction costs are available and can be quite high
for some currencies (Burnside, Eichenbaum, and Rebelo (2007)). Also, our portfolios have

about 30% turnover per month so that transaction costs should play a role.'”

The return difference between portfolio 5 and portfolio 1 (the long-short portfolio H/L)
then is the carry trade portfolio obtained from borrowing money in low interest rate coun-
tries and investing in high interest rate countries’ money markets, H M Lpyx in the notation
of Lustig, Roussanov, and Verdelhan (2010). We also build and report results for a portfo-
lio denoted DOL, which is the average of all five currency portfolios, i.e. the average return
of a strategy that borrows money in the U.S. and invests in global money markets outside
the U.S. Lustig, Roussanov, and Verdelhan (2010) call this zero-cost portfolio the “Dollar

risk factor”, hence the abbreviation “DOL”.!

10Results for unadjusted returns are very similar, though, and are reported in the Internet Appendix
to this paper. Below, we also provide results for a transaction cost adjustment scheme as in Lustig,
Roussanov, and Verdelhan (2010) where we assume 100% portfolio turnover each month.

1 Equal weights in the DOL portfolio lead to a rebalancing effect and an effectively contrarian behavior
of the portfolio. We will argue below that the DOL portfolio is not crucial to our results so that we do not
expect this contrarian effect to be important.

10



Descriptive statistics for portfolios. Descriptive statistics for the five carry trade
portfolios, the DOL and H/L portfolios can be found in Table I. The first panel shows
results for the sample of all 48 currencies, and the lower panel shows results for the sample

of 15 developed countries. We report results for net returns (denoted “with b-a”).

Average returns monotonically increase when moving from portfolio 1 to portfolio 5 and
the H/L portfolio. We also see a monotonically decreasing skewness when moving from
portfolio 1 to portfolio 5 and H/L for the sample of all countries, as suggested by Brunner-
meier, Nagel, and Pedersen (2009), but a less monotonic pattern for developed countries. A
similar pattern emerges for kurtosis. There is no clear pattern, however, for the standard
deviation. Furthermore, there is some evidence for positive return autocorrelation, e.g.
among high interest rate currencies (portfolios 3 and 5), the long-short carry trade portfo-
lio H/L (or HM Lry), and the DOL portfolio. Finally, we also look at coskewness, which
is computed by Bskxp = Elei 1163411/ (El€} 1] El€3;,41]) as in Eq. (11) of Harvey and
Siddique (2000) where €; denotes a portfolio’s (excess) return innovation with respect to
a market factor and €); denotes the market (excess) return innovation.'? We find that
coskewness does not show a monotone pattern with respect to mean excess returns of the

portfolio. We will elaborate on this point below in Section V.C.

TABLE I ABOUT HERE

The unconditional average excess return from holding an equally-weighted portfolio of
foreign currencies (i.e. the DOL portfolio) is about 2% per annum, which suggests that

U.S. investors demand a low but positive risk premium for holding foreign currency.

Figure 1 shows cumulative log returns for the carry trade portfolio H/L for all countries
and for the smaller sample of developed countries. Shaded areas correspond to NBER

recessions. Interestingly, carry trades among developed countries were more profitable in

12To calculate Bsgp for our currency portfolios, we either use the DOL portfolio or the U.S. stock
market return (MKT) as the market factor. Since there is evidence of some low autocorrelation in the
DOL portfolio, we use unexpected returns from a simple AR(1) to compute the coskewness measure.

11



the 80s and 90s; only in the last part of the sample did the inclusion of emerging markets’
currencies improve returns to the carry trade. Also, the two recessions in the early 1990s
and 2000s did not have any significant influence on returns. It is only in the last recession
— that also saw a massive financial crisis — that carry trade returns show some sensitivity to
macroeconomic conditions. By and large, most of the major spikes in carry trade returns
(e.g. in 1986, 1992, 1997/1998, 2006) seem rather unrelated to the U.S. business cycle.
This is consistent with Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), who find
in a more detailed analysis that standard business cycle risk factors are unable to account

for returns to carry trades.

FIGURE 1 ABOUT HERE

Volatility proxy. We use a straightforward measure to proxy for global FX volatility.
More specifically, we calculate the absolute daily log return |r*| (= |As,|) for each currency
k on each day 7 in our sample. We then average over all currencies available on any given
day and average daily values up to the monthly frequency, i.e. our global FX volatility

proxy in month ¢ is given by

1 7|

FxX _ ~ Il

o —TtZ[Z(Kf)], o
T€Ty LkeK,

where K. denotes the number of available currencies on day 7 and 7; denotes the total

number of trading days in month ¢. We also calculate a proxy af XPEV hased on the

developed country sample’s returns.

This proxy has obvious similarities to measures of realized volatility (see e.g. Andersen,
Bollerslev, Diebold, and Labys (2001)), although we use absolute returns and not squared
returns to minimize the impact of outlier returns since our full sample includes several

emerging markets. We also do not weight currencies, e.g. according to shares in interna-
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tional reserves or trade, but provide robustness on this issue later in the paper.'® Figure 1,
Panel (b), shows a time-series plot of o/. Several spikes in this series line up with known
crisis periods, e.g. the LTCM crisis in 1998 or, most recently, the current financial markets
meltdown. Therefore, our proxy seems to capture obvious times of market distress quite

well.

For the empirical analysis, we focus on volatility innovations (denoted Acf™), as a
non-traded risk factor. We tried a number of alternative ways to measure innovations.
The simplest way to do this is to take first differences of the volatility series described
above (as in e.g. Ang, Hodrick, Xing, and Zhang (2006)). We do find, however, that
first differences are significantly autocorrelated with a first-order autocorrelation of about
-22%. We therefore estimate a simple AR(1) for the volatility level and take the residuals
as our main proxy for innovations since the AR(1) residuals are in fact uncorrelated with
their own lags. The downside of this procedure is that it may induce an errors-in-variables
problem and that it requires estimation on the full sample, preventing pure out-of-sample
tests. We deal with this potential problem in two ways. First, we adjust our standard
errors for estimation uncertainty and do not find that it matters much, and, second, we
also present results for simple changes in volatility and basically find the same results as
for our volatility innovations based on an AR(1).!* A plot of these AR(1) based volatility

innovations is shown in Figure 1, Panel (b).

Data on currency options. We furthermore employ monthly currency option data from
JP Morgan for a total of 29 currencies against the USD. Our sample covers the period from

1996 to 2009. The data include quoted implied volatilities for options with a maturity of

13See Section VII. The main message is that our results do not change when using sensible weighting
schemes.

141t is also worth noting that, while Acf¥ is a plausible proxy for innovations in global FX volatility
and in practice it would be possible to trade a basket of realized volatilities of the kind defined here
using customized over-the-counter volatility derivatives contracts, there are several caveats with respect to
considering AcfX as observed volatility (Della Corte, Sarno, and Tsiakas (2011)). First, volatility trading
in currency markets did not exist for most of our sample period. Second, it tends to happen on contracts
that define volatility using the Garman and Kohlhagen (1983) formula or use implied volatility, as in the
case of the JP Morgan VXY Index; see also the discussion of Ang, Hodrick, Xing, and Zhang (2006) on
these issues.
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one month. For each currency pair we have implied volatilities for at-the-money (ATM)

options, 25-Delta (out-of-the-money), and 10-Delta (far out-of-the-money) options.'®

Currencies with available data are the same as listed above, except for the member
countries of the Euro (the EUR is included, though), and, in addition, Bulgaria, Croatia,
Egypt, Kuwait, Saudi Arabia, and Ukraine. Thus, the data do not include potentially
interesting information about several large currencies such as the DEM/USD but still

include the major currencies and several important carry trade vehicle currencies, such as

the GBP, AUD, or JPY.

Returns to option strategies employed below are obtained by combining returns from
being long or short in calls or puts of a certain currency. We detail the calculation of

returns to options in the Appendix to this paper.

III Empirical Results

A. A First Look at the Relation between Volatility and Currency Returns

We first provide a simple graphical analysis to visualize the relationship between innova-
tions to global FX volatility and currency excess returns. To do so, we divide the sample
into four sub-samples depending on the value of global FX volatility innovations. The first
sub-sample contains the 25% months with the lowest realizations of the risk factor and
the fourth sub-sample contains the 25% months with the highest realizations. We then
calculate average excess returns for these sub-samples for the return difference between
portfolio 5 and 1. Results are shown in Figure 2. Panel (a) on the left shows results for
all countries whereas Panel (b) on the right gives the corresponding results for the smaller

sample of 15 developed countries.

15The convention in FX markets is to multiply the delta of a put by —100 and the delta of a call by 100.
Thus, a 25-Delta put has a delta of —0.25 for example, whereas a 25-Delta call has a delta of 0.25.
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FIGURE 2 ABOUT HERE

Bars show the annualized mean returns of the carry trade portfolio (the long-short port-
folio H/L as discussed above). As can be seen from the figure, high interest rate currencies
clearly yield higher excess returns when volatility innovations are low and vice versa. Aver-
age excess returns for the long-short portfolios decrease monotonically when moving from
the low to the high volatility states for the sample of developed countries, and almost
monotonically for the full sample of countries. While this analysis is intentionally simple,
it intuitively demonstrates a clear relationship between global FX volatility innovations
and returns to carry trade portfolios. Times of high volatility innovations are times when
the carry trade performs poorly. Consequently, low interest rate currencies perform well
compared to high interest rate currencies when the market is volatile, i.e. low interest
rate currencies (or funding currencies) provide a hedge in times of market turmoil. The

following sections test this finding more rigorously.

B. Methods

This section briefly summarizes our approach to cross-sectional asset pricing. The bench-
mark results rely on a standard SDF approach (Cochrane (2005)), which is also used in

Lustig, Roussanov, and Verdelhan (2010) for instance.

We denote excess returns of portfolio ¢ in period ¢+ 1 by rz} +1.16 The usual no-arbitrage
relation applies so that risk-adjusted currency excess returns have a zero price and satisfy

the basic Euler equation:

E[mirai,,] =0 (5)

6Note that we follow Lustig, Roussanov, and Verdelhan (2010) and employ discrete returns (and not

log returns as above) in all our pricing exercises below to satisfy the Euler equation which is for levels of

. FF_gk
returns and not logs. Discrete returns for currency k are defined as rzf, ; = = <5+ where F and S are
t

the level of the forward and spot exchange rate respectively.
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with a linear SDF m; = 1 —b'(h; — ) and h denoting a vector of risk factors. b is the vector
of SDF parameters and p denotes factor means. This specification implies a beta pricing
model where expected excess returns depend on factor risk prices A and risk quantities j;,

which are the regression betas of portfolio excess returns on the risk factors:
E [ra'] = N5, (6)

for each portfolio i (see e.g. Cochrane (2005)). The relationship between the factor risk
prices in Eq. (6) and the SDF parameters in Eq. (5) is given by A = ;b such that factor
risk prices, comparable to the traditional Fama-MacBeth (FMB) approach, can be easily
obtained via the SDF approach as well.

We estimate parameters of Eq. (5) via the generalized method of moments (GMM) of
Hansen (1982). Estimation is based on a pre-specified weighting matrix and we focus on
unconditional moments (i.e. we do not use instruments other than a constant vector of
ones) since our interest lies in the performance of the model to explain the cross-section of
expected currency excess returns per se. Factor means and the individual elements of the
covariance matrix of risk factors ¥;, are estimated simultaneously with the SDF parameters
by adding the corresponding moment conditions to the asset pricing moment conditions
implied by Eq. (5). This one-step approach ensures that potential estimation uncertainty
— associated with the fact that factor means and the covariance matrix of factors have to

be estimated — is incorporated adequately (see e.g. Burnside (2009)).'7

In the following tables we report estimates of b and implied As as well as cross-sectional
R?s and the Hansen-Jagannathan (HJ) distance measure (Hansen and Jagannathan (1997)).
Standard errors are based on Newey and West (1987) with optimal lag length selection ac-
cording to Andrews (1991). We also report simulated p-values for the test of whether the

1"Tn a similar way, we also estimate a version where we account for uncertainty induced by the estimation
of volatility innovations by stacking the corresponding moment conditions of the AR(1) model for our
volatility series with the remaining asset pricing moment conditions. We then use the estimated volatility
innovations in the pricing kernel such that estimation uncertainty is incorporated directly in the estimation
of factor prices and model parameters. We provide details of this approach in the Appendix.
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HJ distance is equal to zero.'®

Besides the GMM tests, we also report results using traditional FMB two-pass OLS
methodology (Fama and MacBeth (1973)) to estimate portfolio betas and factor risk prices.
Note that we do not include a constant in the second stage of the FMB regressions, i.e. we
do not allow a common over- or under-pricing in the cross-section of returns. We point out,
however, that our results are virtually identical when we replace the DOL factor with a
constant in the second stage regressions. Since DOL has basically no cross-sectional relation
to the carry trade portfolios’ returns, it seems to serve the same purpose as a constant
that allows for a common mispricing.'? We report standard errors with a Shanken (1992)
adjustment as well as GMM standard errors with Newey and West (1987) adjustment and
automatic lag length determination according to Andrews (1991). More details on the
FMB procedure, computation of GMM and FMB standard errors and the exact moment
conditions used in the GMM estimation are provided in the Appendix to this paper.

C. Asset Pricing Tests

This section presents our main result that excess returns to carry trade portfolios can be

understood by their covariance exposure with global FX volatility innovations.

Volatility innovations. Table II presents results of our asset pricing tests using the five
currency portfolios detailed above as test assets. As factors we use DOL and innovations
to global FX volatility (VOL, or Ao/} in the regressions below) based on the residuals of
an AR(1) for global volatility, i.e. the pricing kernel reads:

M1 =1 —bpor(DOLii1 — pipor) — bror oty

18Simulations are based on weighted x?(1)-distributed random variables. For more details on the com-
putation of the HJ distance and the respective tests, see Jagannathan and Wang (1996) and Parker and
Julliard (2005).

19 Also see Burnside (2009) and Lustig and Verdelhan (2007) on the issue of whether to include a constant
or not.
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Panel A of Table II shows cross-sectional pricing results. We are primarily interested
in the factor risk price of global FX volatility innovations, where we do indeed find a sig-
nificantly negative estimate for Ay oy as theoretically expected. In fact, Ay is estimated
to be negative both for the full country sample (left part of the table) and the developed
country sample (right part of the table). The estimated factor price is —0.07 for the all

country sample and —0.06 for the developed country sample.

TABLE II ABOUT HERE

The negative factor price estimate directly translates into lower risk premia for portfolios
whose returns co-move positively with volatility innovations (i.e. volatility hedges) whereas
portfolios with a negative covariance with volatility innovations demand a risk premium.
We also find that the volatility factor yields a nice cross-sectional fit with R2s of more than
90%, and we cannot reject the null that the HJ distance is equal to zero. The values of the
distance measure (i.e. the maximum pricing errors per one unit of the payoff norm) are

also quite small in economic terms, both for the full and the developed country sample.

Now, which portfolios of currencies provide insurance against volatility risk and which
do not? Panel B of Table II shows time-series beta estimates for the five forward discount-
sorted portfolios based on the full and the developed country sample. Estimates of By or,
are large and positive for currencies with a low forward discount (i.e. with low interest
rates), whereas countries with a high forward discount co-move negatively with global FX
volatility innovations. There is a strikingly monotone decline in betas when moving from

the first to the fifth portfolio and it is precisely this monotone relationship that produces
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the large spread in mean excess returns shown in Table 1.2° These results also corroborate
our simple graphical exposition (Figure 2) in Section III.A.: Investors demand a high return
on the investment currencies in the carry trade (high interest rate currencies) since they
perform particularly poorly in periods of unexpected high volatility, whereas investors are
willing to accept low returns on carry trade funding currencies (low interest rate currencies)

since they provide them with a hedge in periods of market turmoil.

Finally, we document the fit of our model graphically in Figure 3 which shows realized
mean excess returns along the horizontal axis and fitted mean excess returns implied by our
model along the vertical axis. The main finding is that volatility risk is able to reproduce
the spread in mean returns quite well, both in the full sample (Panel (a)) and the sample

of developed countries (Panel (b)).

FIGURE 3 ABOUT HERE

Factor-mimicking portfolio. Following Breeden, Gibbons, and Litzenberger (1989)
and Ang, Hodrick, Xing, and Zhang (2006) we build a factor-mimicking portfolio of volatil-
ity innovations. Converting our factor into a return has the advantage of being able to
scrutinize the factor price of risk in a natural way. If the factor is a traded asset, then the
risk price of this factor should be equal to the mean return of the traded portfolio so that

the factor prices itself and no-arbitrage is satisfied.

20Tn the Internet Appendix, we also report results using simple volatility changes instead of AR(1)-
innovations. Results are very similar. We also estimated the AR(1) parameters jointly with the rest of the
model’s parameters by stacking AR(1) moment conditions and asset pricing moment conditions imposing
cross-equation restrictions. This avoids potential errors-in-variables problems as noted above in Section
II. Our results are basically unchanged, though. For example, the standard error of Ay or is 0.031 when
we estimate the AR(1)-based volatility innovations within the system of moments. This result is not too
surprising since volatility is rather persistent and the AR(1) coefficients are estimated with high precision
in our sample. Furthermore, we also show results when using transaction cost adjustments which assume
100% turnover per month as in Lustig, Roussanov, and Verdelhan (2010) in the Internet Appendix. Again,
our results are robust to this modification. Finally, we also estimate our baseline specification using log
returns instead of discrete returns. Using discrete or log excess returns does not impact our results.
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To obtain the factor-mimicking portfolio, we regress volatility innovations on the five

carry trade portfolio excess returns

AO'E'_)i =a-+ b,I'Xt+1 + U41 (7)

where rx;,1 is the vector of excess returns of the five carry trade portfolios. The factor-
mimicking portfolio’s excess return is then given by raf = b’ rX¢y 1. Lhe average excess
return to this mimicking portfolio is —1.28% per annum. It is also instructive to look at

the weights b of this portfolio given by

rafM = 0.202rz,;,, — 0.054rz}, — 0.063rz},, — 0.068rz; , — 0.071rz},,

which shows — as one would expect — that the factor-mimicking portfolio for volatility
innovations loads positively on the return to portfolio 1. This portfolio was shown above
to provide a hedge against volatility innovations, and has an increasingly negative loading
on the portfolios 2 — 5. It also shows that the factor-mimicking portfolio should capture
some pricing information in the Lustig, Roussanov, and Verdelhan (2010) HM Lgx factor
which is long in portfolio 5 and short in portfolio 1. Indeed, our factor-mimicking portfolio
has a correlation of roughly —85% with HM Lrx. This result is not surprising. Lustig,
Roussanov, and Verdelhan (2010) show that HM Lgx is closely related to the second
principal component (PC) of the cross-section of carry trade portfolios and that this second
PC captures basically all the necessary cross-sectional pricing information. Since volatility
innovations as a pricing factor also lead to a very high cross-sectional fit (as shown above),
it is natural to expect that the factor-mimicking portfolio of the five carry trade portfolios
is closely related to this second PC (correlation with the factor-mimicking portfolio: 80%)

and, thus, HM Lrx. We find that this is the case.

Finally, we test the pricing ability of the factor-mimicking portfolio and replace volatility
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innovations with rz{}Y in the pricing kernel. As above, we use the five carry trade portfolios

as our test assets. Results are shown in Table III and reveal a significantly negative factor

price of Ayor = —0.102% which can be compared to the average monthly excess return
of the factor-mimicking portfolio of ﬁﬂ‘f = —0.107%. This result is comforting since it

implies that our factor price of risk makes sense economically, that the factor prices itself,

and is thus arbitrage-free.?!

TABLE III ABOUT HERE

Zero-beta straddle. While the analysis in Breeden, Gibbons, and Litzenberger (1989)
calls for using the test assets as the base assets to construct the factor-mimicking portfolio,
as we have done above, we empirically find that the resulting factor-mimicking portfolio
is very close to the second PC of the carry trade cross-section. This shows that volatility
innovations contain all the necessary information to price this cross-section, but it may
raise concerns that our estimated price of volatility risk may be mechanically identical to
the mean return on the factor-mimicking portfolio.?? Hence, we complement the analysis
above by constructing a zero-beta straddle along the lines of Coval and Shumway (2002)

based on our FX option data (described in Section III above).

To this end, we form an equally-weighted portfolio of long calls and long puts of all
available currencies to obtain a time-series of average excess returns to holding call and
put positions. We then combine these two portfolio excess returns to obtain a straddle
portfolio that has zero correlation with the “market risk” factor (the DOL factor in our
case). This portfolio delivers high returns in times of high volatility by construction and,

hence, loads on volatility risk but has no market risk.

Empirically, the zero-beta straddle has a weight on long calls of roughly 52% and a

218ee Lewellen, Nagel, and Shanken (2010) on the importance to take the magnitude of the cross-sectional
slopes, i.e. the factor prices, seriously.
22We thank an anonymous referee for pointing this out.

21



weight on long puts of 48% in order for it to be uncorrelated with the DOL factor. More
importantly, the straddle portfolio yields a significantly negative mean return of —1.22%
p.a. (with a t-statistic of —2.77) which is very close to our price of volatility risk estimated
above. Also, the straddle return has a correlation of about 40% with our factor-mimicking
portfolio. Hence, our risk price estimate from above is validated by the zero-beta straddle
return and has a magnitude of about —1.2 to —1.3%, which is close to the estimated value

of about —1% for stock markets documented by Ang, Hodrick, Xing, and Zhang (2006).

D. Portfolios Based on Volatility Betas

We now show the explanatory power of volatility risk for carry trade portfolios in another
dimension. If volatility risk is a priced factor, then it is reasonable to assume that currencies
sorted according to their exposure to volatility innovations yield a cross-section of portfolios
with a significant spread in mean returns.?® Currencies that hedge against volatility risk
should trade at a premium, whereas currencies that yield low returns when volatility is

high should yield a higher return in equilibrium.

We therefore sort currencies into five portfolios depending on their past beta with inno-
vations to global FX volatility. We use rolling estimates of beta with a rolling window of
36 months (as in Lustig, Roussanov, and Verdelhan (2010)), and we re-balance portfolios

every six months.?* Descriptive statistics for portfolio excess returns are shown in Table I'V.

TABLE IV ABOUT HERE

The table shows that investing in currencies with high volatility beta (i.e. hedges against
volatility risk) leads to a significantly lower return than investing in low volatility beta

currencies. The spread between portfolio 1 (low volatility beta, i.e. high volatility risk)

Z3Beta sorts are a common means to investigate risk premia in financial markets (see e.g. Pastor and
Stambaugh (2003), Ang, Hodrick, Xing, and Zhang (2006), Lustig, Roussanov, and Verdelhan (2010)).

24We do not employ returns from the first 36 months of our sample for this analysis since we would have
to rely on in-sample estimated betas for this period.
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and portfolio 5 (high volatility beta, i.e. low volatility risk) exceeds 4% p.a. for both
the sample of all countries and the sample of developed markets. Moreover, mean excess
returns tend to decrease steadily when moving from portfolio 1 to portfolio 5 (there is a

twist in mean excess returns for the developed markets sample, though).

The table also shows pre- and post-formation forward discounts for the five portfolios.
The results suggest that these portfolios are similar to the carry trade portfolios in that
forward discounts monotonically decline when moving from high return portfolios (portfolio
1) to low return portfolios (portfolio 5). Thus, sorting on volatility risk is similar to sorting

on interest rate differentials and, hence, the carry trade portfolios themselves.

However, a noteworthy difference between the carry trade and these volatility beta-
sorted portfolios is that they have a very different skewness pattern compared to the
forward-discount sorts. Table I showed that excess returns of high interest rate curren-
cies have much lower skewness than low interest rate currencies (also see Brunnermeier,
Nagel, and Pedersen (2009)). We do not find this pattern here. On the contrary, the H/L
portfolios actually tend to have higher skewness than portfolio 1, which suggests that sort-
ing on volatility betas produces portfolios related to, but not identical to the carry trade
portfolios. Furthermore, we also do not find patterns in kurtosis or coskewness that line up
well with average excess returns. Related to this, we find a clear increase in post-sorting
time-series volatility betas when moving from portfolio 1 to portfolio 5, just as for the carry
trade portfolios documented in Table I. However, the increase is not completely monotonic

so that our beta sorts do not reproduce the carry trade cross-section completely.

Overall, this section shows that volatility risk — as measured by the covariance of a
portfolio’s return with innovations to global FX volatility — matters for understanding the
cross-section of currency excess returns. This empirical relation is in line with theoretical
arguments where assets which offer high payoffs in times of (unexpected) high aggregate
volatility — and hence serve as a volatility hedge — trade at a premium in equilibrium and

vice versa.
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IV Relating Volatility and Liquidity Risk

As noted at the beginning of this paper, it is hard to disentangle volatility and liquidity
effects, since these concepts are closely related and — especially in the case of liquidity —
not directly observable. However, it is interesting to examine the contribution of these two
proxies of risk for currency investments since Brunnermeier, Nagel, and Pedersen (2009)
suggest that liquidity plays an important role in understanding risk premia in foreign
exchange. This section therefore relates volatility and liquidity proxies and investigates

their relative pricing power.

A. Liquidity Proxies

Global bid-ask spread. As a first measure of global FX liquidity, we resort to a classical
measure from market microstructure, the bid-ask spread (BAS). For consistency, we use
the same aggregating scheme as for global FX volatility in Eq. (4) to obtain a global

bid-ask spread measure pfX:

1 PF

FX _ T

reay |2 ()] o
€T, LkeK, T

where " is the percentage bid-ask spread of currency k on day 7. Higher bid-ask spreads

indicate lower liquidity, so that the aggregate measure ¥/ can be seen as a global proxy

for FX market illiquidity.

TED spread. The TED spread is defined as the interest rate difference between 3-month
Eurodollar interbank deposits (LIBOR) and 3-month Treasury bills. Differences between
these rates reflect among other things the willingness of banks to provide funding in the
interbank market; a large spread should be related to lower liquidity. Hence, the TED

spread serves as an illiquidity measure, as used e.g. by Brunnermeier, Nagel, and Pedersen
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(2009). We include the TED spread to proxy for illiquidity in the funding market for carry

trades.

Pastor/Stambaugh liquidity measure. Pastor and Stambaugh (2003) construct a
liquidity measure for the U.S. stock market based on price reversals. The general idea
underlying their measure (denoted PS here) is that stocks with low liquidity should be
characterized by a larger price impact of order flow. Liquidity-induced movements of
asset prices have to be reversed eventually such that stronger price reversals indicate lower
liquidity. We refer to Pastor and Stambaugh (2003) for more details on the construction
of this measure and simply note here that they scale their measure to be a liquidity proxy,
i.e. higher values of the PS measure reflect higher liquidity. This contrasts with the other
two liquidity proxies which rather measure illiquidity. Since it seems reasonable to assume
that liquidity risk is correlated across assets to a certain extent, we include the PS measure

to proxy for liquidity risk in the home market of our baseline U.S. investor.

Relations among volatility and liquidity factors. How strongly are volatility and
liquidity factors related? We find that innovations of our FX volatility proxy are positively
correlated with innovations of the bid-ask spread measure (approx. 20%) and the TED
spread (19%), and negatively correlated with innovations of the PS measure (-21%). Not
surprisingly, the relation between the three liquidity measures and FX volatility is far from
perfect. Bid-ask spreads and the TED spread, for instance, are only very mildly correlated
(8%) and no correlation coefficient is larger than 30% in absolute value. Similarly, a
principal component analysis reveals that the first principal component explains less than
30% of the total variance. Overall, volatility and liquidity are statistically significantly

correlated, but the magnitudes of correlations are not impressive quantitatively.
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B. Empirical Results for Liquidity Factors

To shed more light on the role of liquidity risk for currency returns, we run the same asset-
pricing exercises as above in Section III, but replace volatility innovations with innovations
of one of the three liquidity factors. Table V shows factor loadings and prices for these
models.?” All three models shown in Panels A to C perform quite well with R2s ranging
from 70% to almost 100% and are not rejected by the HJ distance specification tests or the
x? test (except for the PS measure on the sample of all countries). Moreover, the factor
prices A have the expected sign — that is negative for illiquidity (BAS, TED) and positive
for liquidity (PS) — and are significantly different from zero for the bid-ask spread and
marginally significant for the PS measure. None of these three models outperforms the
volatility risk factor in terms of R?s and HJ-distances for both the full and the restricted

developed country sample, though.

TABLE V ABOUT HERE

To address the relative importance of volatility and liquidity as risk factors, we also
evaluate specifications where we include volatility innovations and innovations of one of
the liquidity factors (or, alternatively, that part of liquidity not explained by contempora-
neous volatility) jointly in the SDF. Since volatility and liquidity are somewhat correlated,
leading to potential multicollinearity and identification issues, we report results for the full
country sample for the case where volatility innovations and the orthogonalized component
(orthogonalized with respect to volatility innovations) of one of the three liquidity factors

are included. Results are shown in Table VI.26

The central message of these results is that volatility innovations emerge as the dominant

risk factor, corroborating the evidence in Bandi, Moise, and Russell (2008) for the U.S.

25We only report GMM results in Table V (and all future tables in the paper) to conserve space. Results
based on the two-pass FMB method are available in the Internet Appendix to this paper.

26Results for developed countries and results for not orthogonalizing liquidity innovations are very sim-
ilar.
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stock market. Panel A, for example, shows results when jointly including innovations to
global FX volatility and global bid-ask spreads: both byo; and Ay are significantly
different from zero, whereas the bid-ask spread factor is found to be insignificant in this
joint specification. The same result is found for the TED spread (Panel B) and the PS
liquidity factor (Panel C). Volatility remains significantly priced, whereas liquidity factors
always become insignificant when jointly included with volatility. We therefore conclude
that volatility is more important than each of the three single liquidity factors. However,
we cannot rule out an explanation based on volatility just being a summary measure of

various dimensions of liquidity which are not captured by our three (il)liquidity proxies.

TABLE VI ABOUT HERE

V Alternative Explanations for Our Findings

This section discusses alternative explanations for our findings beyond liquidity risk.

A. Peso Problems

The estimate of the price of global volatility risk is statistically significant but small in
magnitude (-0.07% per unit of volatility beta). Given these small estimates, one alternative
explanation of our findings may be a Peso problem. By construction, the factor mimicking
portfolio does well when global FX volatility displays a large positive innovation. The small
negative mean of the excess returns in the factor-mimicking portfolio of -0.107% per month
may be potentially due to having observed a smaller number of volatility spikes than the

market expected ex ante.

Therefore, one explanation for our findings could be that market participants expected
more spikes in volatility than have actually occurred over our sample period. Put another

way, since the factor price of volatility is negative (or, equivalently, the factor mimicking
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portfolio has a negative average excess return), a few more large volatility innovations may
suffice to wipe out the negative risk premium estimate in our benchmark specifications in
Tables IT and III. Similarly, had market participants expected less volatility spikes, our
estimate of the volatility risk premium may be biased upwards. It is clear, that extreme

observations in our volatility factor could thus drive our results.

We provide some indicative evidence on the robustness of our findings with respect
to the above issue. First of all, we winsorize our volatility series at the 99%, 95% and
90% level, i.e. we set the 1%, 5%, or 10% most extreme volatility observations equal to
their cutoff levels.?” When we repeat our benchmark pricing test with these winsorized
volatility factors, we obtain very robust results. For instance, we find an estimate for the
SDF slope b = —7.446 (GMM s.e.: 3.623), volatility risk premium A = —0.072 (GMM s.e.:
0.035) and a cross-sectional R? of 97% when we exclude the 1% most extreme volatility
observations. Similarly, we find b = —8.334 (4.043), A = —0.067 (0.032) and an R? of 97%
when excluding the 5% most extreme observations, and estimates of b = —9.510 (4.465),
A = —0.062 (0.029) and an R? of 95% when excluding the 10% most extreme observations.
It seems fair to conclude that our main result, as reported in Tables IT and III, is not driven

by outliers in our volatility proxy.

Second, we adopt an Empirical Likelihood (EL) approach to estimate the moment con-
ditions implied by our baseline specification. EL shares many similarities with traditional
GMM and is particularly attractive here since it endogenously allows the probabilities at-
tached to the states of the economy to differ from their sample frequencies (which is the
nature of Peso problems). It is thus more robust under Peso problems or rare events as
argued for example by Ghosh and Julliard (2010). The results from this exercise are very
similar to the results based on GMM so that Peso problems do not seem to drive our
results. We refer to the Internet Appendix of this paper for the exact implementation of

the procedure and detailed estimation results.

2TWe thank an anonymous referee for suggesting this exercise.
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B. Horse Races between Volatility and HM Lryx: A First Look

We run horse races between our volatility risk factor and the HM Lpx factor of Lustig,
Roussanov, and Verdelhan (2010) in four different specifications. First, we simply include
DOL, volatility innovations and HM Lryx jointly in the SDF; second, we include DOL,
the factor-mimicking portfolio for volatility innovations and H M Lgy; third, we include all
three factors but orthogonalize the factor-mimicking portfolio for volatility innovations with
respect to HM Lrx; and fourth, we include all three factors but orthogonalize HM Lrx
with respect to to the factor-mimicking volatility portfolio. Results are shown in this

ordering of specifications in Panels A to D of Table VII.

TABLE VII ABOUT HERE

As a first result from Panel A, it is clear that H M Lrx dominates volatility innovations
when HM Lgpx and volatility innovations are included jointly in the SDF. This result
is not too surprising since HM Lgyx is close to the factor-mimicking portfolio of global
FX volatility and the second principal component of the carry trade return cross-section,
which accounts for almost all cross-sectional variation in returns. Also, it is clear that a
non-return factor (volatility innovations) cannot beat its own factor-mimicking portfolio
in a horse race (see e.g. chapter 7 in Cochrane (2005)). We find exactly this result in our

first test in Panel A.

Panel B shows results when including both the factor-mimicking portfolio for volatility
innovations and HM Lryx. These two factors are highly correlated and we thus find that
the SDF slopes (b) of both factors turn insignificant and that both As are significant so

that results here cannot be seen as decisive due to multicollinearity issues.

Perhaps more interestingly, Panels C and D show results when we orthogonalize either
the factor-mimicking portfolio with respect to HM Ly (Panel C) or when orthogonalizing
HM Lpx with respect to the factor-mimicking portfolio of volatility innovations (Panel D).

These are more reliable results since by testing whether the orthogonal component of either
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factor is priced we avoid the statistical inference problems that plague the earlier results.
It can be seen from Panel C that the orthogonalized component of the factor-mimicking
portfolio still has a significantly negative factor price in the joint specification (the GMM
t-statistic is —2.03), presumably due to the fact that the factor-mimicking portfolio picks
up some part of the second principal component of the cross-section of returns that is not
captured by HM Lgx. On the contrary, Panel D shows that the orthogonalized component
of HM Lrx is not priced when jointly including it with the factor-mimicking portfolio of

volatility innovations, whereas the latter is highly significantly priced.

Finally, we also compare models with either DOL and volatility innovations or DOL
and HM Lrx in terms of their economic significance. From Table II above, we see that
DOL and volatility innovations result in a cross-sectional R? of 97% (for the sample of
all countries) and a HJ-distance of 8% (maximum pricing errors in terms of the payoff
norm) with a p-value of 0.79. When we estimate the same model using HM Ly instead of
volatility innovations, we find a cross-sectional R? of 88% and a HJ-distance of 13% with
a p-value of 0.33. Thus, volatility innovations seem to outperform HM Lpx in terms of

(smaller) pricing errors.

Summing up, it seems fair to conclude that, when HM Lgx and volatility innovations
are considered jointly in the SDF, HM Lgx outperforms volatility innovations in the cross-
section of carry trade portfolios in terms of statistical significance. However, volatility
innovations dominate H M Lrx in economic terms, i.e. by delivering lower pricing errors.
This finding is quite remarkable, since volatility innovations are not a traded (return-
based) risk factor. Importantly, when we convert our risk factor into a return, i.e. the
factor-mimicking portfolio, and thus level the playground for both factors, we find that the
factor-mimicking portfolio prices the cross-section at least as well as HM Lgrx and contains

some additional information not captured by the latter.
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C. Skewness and Coskewness

We also test the pricing ability of skewness and coskewness. With respect to skewness, we
do not find that the skewness of a portfolio is robustly related to average excess returns.
We showed this for the beta-sorted portfolios in Table IV and the developed countries in
Table I. Furthermore, we have experimented with aggregate skewness measures (computed
similarly to our volatility proxy in Eq. (4) or just as the skewness from the DOL portfolio
estimated from daily returns within a given month) and tested whether the sensitivity of
portfolio returns to aggregate skewness (i.e. co-kurtosis) is priced in the cross-section of
returns. While we find a negative factor price estimate for (sensitivity to) skewness, we
do not find it to be significant and the cross-sectional explanatory power is typically low
(less than 50% in the cross-section of carry trade portfolios). Results for these tests are

available upon request.

Regarding coskewness (Harvey and Siddique (1999), Harvey and Siddique (2000)) we
showed in Table I that the relationship with returns to carry trade portfolios is not par-
ticularly strong since the coskewness pattern is not monotone across portfolios. When we
test this more formally, we find rather low cross-sectional R?s of about 50 —60%. We note,
however, that this result depends on the specific coskewness measure employed (we have
used the direct coskewness measure ESKD as described above in Section II of our paper).
In fact, as noted in Section I of the paper, coskewness can alternatively be measured in
terms of the sensitivity of returns to market volatility in a time-series regression of ex-
cess returns on a market factor and market volatility (see Harvey and Siddique (2000)).
Measured in this way, the time-series volatility betas obtained in the first step of our Fama-
MacBeth procedure can be directly interpreted as measures of coskewness, and we have
shown that the covariance with volatility is significantly priced in the cross-section of carry

trade returns.?®

28We can replace our volatility proxy in Eq. (4) by squared market returns and still obtain very similar
results. Thus, the analysis of Harvey and Siddique (2000) more or less directly applies to our findings as
well.
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VI Other Test Assets

We have also tested the pricing power of global FX volatility as a risk factor for a number
of other test assets which include a cross-section of 5 FX momentum returns, ten U.S.
stock momentum portfolios, five U.S. corporate bond portfolios (based on ratings), and all
48 individual currencies in our sample. Our results indicate that global FX volatility is
priced in these cross-sections and that we obtain a similar factor price of risk for volatility
innovations compared to our benchmark specification in Table II above. These results
are interesting since the other test asset noted above are not highly correlated with the
carry trade portfolios and thus serve as an out-of-sample test of the pricing power of
volatility innovations.?? Furthermore, we find that volatility innovations do a much better
job of pricing these cross-sections than H M Lrx lending support to the view that volatility

innovations contain additional information and that the two factors are not identical.

In short, results based on these out-of-sample tests indicate that our factor is priced in
other cross-sections and not just in currency carry trades. To conserve space, however, we
refer to the Internet Appendix of this paper for a detailed description of the test assets’
returns, portfolio construction, and empirical estimates of factor models for pricing these

cross-sections.

VII Robustness

We have performed a number of additional robustness checks relating to different proxies
for volatility, non-linearities in the relation between volatility and carry trade returns, or
the use of alternative base currencies (i.e. taking the viewpoint of a British, Japanese, or
Swiss investor). Overall, our results are very robust towards all these modifications so we

document these tests in the Internet Appendix to this paper in order to conserve space.

29In addition, we present additional evidence supporting these results for international bond returns
and FX option portfolios. These results also support the estimated level of our factor risk price but the
portfolio returns are correlated with the baseline carry trade portfolios.
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VIII Conclusion

This study empirically examines the risk-return profile of carry trades. Carry trades are the
consequent trading strategy derived from the forward premium puzzle, that is the tendency
of currencies trading at a positive forward premium (high interest rate) to appreciate rather
than depreciate. The major avenue of research to understand this puzzle is the search for
appropriate time-varying risk premia. Hence, dealing with a risk-based explanation for
carry trades simultaneously provides an explanation of currency risk premia and helps to

understand why trading on the forward premium puzzle is no free lunch.

This issue is a long-standing and largely unresolved problem in international finance.
Clearly, the consideration of volatility is not new, as the 1990s brought about many stud-
ies examining the role of volatility in explaining time-varying risk premia; unfortunately
without a satisfactory result. However, this earlier use of volatility in modeling currency
risk premia has applied a time-series perspective on single exchange rates (e.g. Bekaert
and Hodrick (1992), Bekaert (1994)). In contrast, we rely on asset pricing methods well-
established in the stock market literature where aggregate volatility innovations serve as a
systematic risk factor for the cross-section of portfolio returns. This idea has proven to be
fruitful in empirical research on equity markets and we show that it also works very well

in FX markets.

We argue in this paper that global FX volatility innovations are an empirically powerful
risk factor in explaining the cross-section of carry trade returns. We employ a standard
asset pricing approach and introduce a measure of global FX volatility innovations as
a systematic risk factor. Interestingly, there is a significantly negative co-movement of
high interest rate currencies (carry trade investment currencies) with global FX volatility
innovations, whereas low interest rate currencies (carry trade funding currencies) provide
a hedge against unexpected volatility changes. The covariance of excess returns with
volatility is such that our global FX volatility proxy accounts for more than 90% of the

spread in five carry trade portfolios. Further analysis shows that liquidity risk also matters
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for the cross-section of currency returns, albeit to a lesser degree. These results are robust
to different proxies for volatility and liquidity risk and extend to other cross-sections of

asset returns such as individual currency returns, equity momentum, or corporate bonds.

The strong link between exposure to volatility shocks and average currency excess re-
turns should also stimulate further theoretical and empirical research aimed at better un-
derstanding the drivers of volatility innovations and their link with currency risk premia.
It seems plausible that innovations in volatility capture a broad set of shocks to state
variables that are relevant to investors and the evolution of their risk-return tradeoff, and
a better understanding of these linkages is warranted. In addition, it would be useful to
build a structural asset pricing model which allows for a direct role of currency volatility
risk so that the magnitude of the price of volatility risk can be evaluated more thoroughly.
Having established the main results motivating such extensions, we leave these for future

research.
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Appendix

In this Appendix we provide details on the construction of option returns and method-

ological details on the asset pricing tests conducted in this paper.

Option returns. To construct returns to option positions, we rely on the currency ver-
sion of Black and Scholes (1973), introduced by Garman and Kohlhagen (1983).3° We
calculate net payoffs to option positions in USD. We term this “net payoff” (or “excess
return”) since we adjust option payoffs for the price (and interest rate loss) of acquiring
the option position (see, for instance, Burnside, Eichenbaum, Kleshchelski, and Rebelo

(2011)). For example, the net payoff to a long call position in a foreign currency against

the USD is given by

Txff; = F ' (max[Sp1 — K,0] — Cy(1 + 1)) (9)

and, similarly, by ro) = F,'(max[0, K — Sj1] — P.(1+7)) for a long put position. Short
call positions yield net payoffs of

ray = F Y (min[K — Sypq,0] + Co(1+ 1)) (10)

and short puts yield rxfﬁ = F, Y (min[Syy, — K, 0] + Ci(1 4 1)).

Here, C' (P) denotes the call (put) price, K denotes the strike, and S (F') denote the
spot and forward rate in USD per foreign currency units (we use American quotation here
for ease of exposition). We scale by the current forward rate F; so that payoffs correspond
to a position with a size of one USD (we follow Burnside, Eichenbaum, Kleshchelski, and

Rebelo (2011) in this respect). For our analysis in the main text, we combine different

30The JP Morgan data provides implied volatilities and deltas, but not prices directly. Hence, we infer
strike prices from information about deltas and implied volatilities. These can in turn be used to compute
option prices and holding period returns (since options expire after exactly one month).
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long and short positions for different moneyness groups (i.e. ATM, Delta-25, or Delta-10)
of currency options to obtain net payoffs to option strategies such as risk reversals, bull

spreads, and bear spreads.

Generalized Method of Moments. The empirical tests in this paper are based on a
stochastic discount factor myy; = 1 — (hyyq — i) linear in the k risk factors hy; 1. Thus,
the basic asset pricing equation in Eq. (5) implies the following moment conditions for the

N-dimensional vector of test asset excess returns rx;

E{[1 = b/(her1 — )] rzpn} = 0. (11)

In addition to these N moment restrictions, our set of GMM moment conditions also
includes k£ moment conditions E[h;— ] = 0 accounting for the fact that factor means u have
to be estimated.?’ Factor risk prices A can be easily obtained from our GMM estimates
via the relation A = ¥,b, where 3, = E[(hy — p)(hy — p)'] is the factor covariance matrix.*?
Following Burnside (2009), the individual elements of ¥,,;, ¢ = 1,...,k, j = 1,...,k

are estimated along with the other model arameters by including an additional set of

corresponding moment conditions. Hence, the estimating function takes the following form

1 =0 (hy — p)]ray
9(2,0) = he — pu (12)
vec((hy — p)(he — p)’) — vee(Ep)

where 6 contains the parameters (V' p’ vec(Xy)") and z; represents the data (rzy, hy). By
exploiting the N + k(1 4+ k) moment conditions E[g(z;,0)] = 0 defined by (12), estimation

uncertainty — due to the fact that factor means and the covariance matrix of factors are

31This applies mainly to the DOL portfolio and the liquidity risk factors, which are not mean zero by
construction as our series of global FX volatility innovations are.
32Gtandard errors for A are obtained by the Delta Method.
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estimated — is incorporated in our standard errors of factor risk prices.** Our (first-stage)
GMM estimation uses a pre-specified weighting matrix W based on the identity matrix
Iy for the first N asset pricing moment conditions and a large weight assigned to the
additional moment conditions (for precise estimation of factor means and the factor co-
variance matrix). Standard errors are computed based on a HAC estimate of the long-run
covariance matrix S =37 | E[g(z;, 0)g(2:—,0)'] by the Newey-West procedure, with the

number of lags in the Bartlett kernel determined optimally by the data-driven approach of
Andrews (1991).

Fama-MacBeth two-pass procedure. We additionally employ the traditional Fama-
MacBeth (FMB) two-step OLS methodology (Fama and MacBeth (1973)) to estimate
factor prices and portfolio betas. Our two-pass procedure is standard (e.g. Ch. 12 in
Cochrane (2005)) and we employ a first-step time-series regression to obtain in-sample
betas for each portfolio 7. These betas are then used in the (second step) cross-sectional
regression of average excess returns onto the time-series betas to estimate factor risk prices
A. There is no constant in the second pass of the regression. To account for the fact that
betas are estimated, we report standard errors with the Shanken (1992) adjustment and
HAC standard errors based on Newey and West (1987) with automatic lag length selection
(Andrews (1991)).34

Estimation uncertainty when using volatility innovations. Our main tests are
based on volatility innovations obtained from fitting a simple AR(1) model to the aggregate

global FX volatility series

of X =+ poY e (13)

33Moreover, point estimates of factor risk premia A obtained in this way are identical to those obtained
by a traditional two-pass OLS approach (as described in Burnside (2009)).

34See Cochrane (2005, Ch. 12.2) and Burnside (2009) for further details on the derivation of HAC
standard errors in the two-pass cross-sectional regression approach.
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and taking the residuals Acf* = e'X = o/ — 4 — pof'X as our series of unexpected

volatility.

In our robustness analyses, we also checked the role of potential estimation uncertainty
(due to the pre-estimation of volatility innovations) on inference with regard to the esti-
mates of factor risk prices. To do so, we stack in our GMM system the moment conditions
implied by OLS estimation of the AR(1) model Elef¥z] =0, 2, = (1 ¢FX ) with the
asset pricing moment conditions (for time-series regressions E[(rz} —a; — fih)h)] = 0, i =
1,....,N, hy=(1 h; ), and cross-sectional regression E[rz} — §;A] = 0). Hence, both
volatility innovations and model parameters are estimated simultaneously in one step. De-
fine the k 4 1-dimensional vector §; = ( q B, ) for asset i and (8 as the N x k matrix

collecting the betas of the individual test assets. The estimating function then reads

Et(rxtl - 71251)

b e
gz 0) = | M0 TN (14)
rry — BA
GFX

ot

FX FX
6z)';t 0:

where el ¥ = of X —y—pofX, h=( DOL, AcIX ). Based on the system defined by

the N(k + 2) + 2 moment conditions in (14) both volatility innovations Agf* and model
parameters 0 = ( Uec(B)’ N ~ p ) are estimated simultaneously by GMM imposing
cross-equation restrictions. This ensures that estimation uncertainty regarding volatility
innovations is accounted for when conducting inference on the model parameters. It turns
out, as mentioned in the main text, that estimation uncertainty due to pre-estimating
volatility innovations is negligible. This is due to the fact that the AR(1) parameter p is

quite precisely estimated in samples of our size.
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Table I. Descriptive Statistics

The table reports mean and median returns, standard deviations (both annualized), skew-
ness, and kurtosis of currency portfolios sorted monthly on time ¢ — 1 forward discounts.
We also report annualized Sharpe Ratios, AC(1) is the first order autocorrelation coeffi-
cient, and Coskew(-) denotes the Harvey and Siddique (2000) measure of coskewness with
respect to either the excess return of a broad currency index (DOL) or the U.S. stock mar-
ket (MKT, based on CRSP). Portfolio 1 contains the 20% of all currencies with the lowest
forward discounts whereas Portfolio 5 contains currencies with highest forward discounts.
All returns are excess returns in USD. DOL denotes the average return of the five currency
portfolios and H/L denotes a long-short portfolio that is long in Portfolio 5 and short in
Portfolio 1. We report excess returns with transaction cost adjustments (with b-a). Re-
turns for portfolio 1 are adjusted for transaction costs that occur in a short position and
portfolios 2 — 5 are adjusted for transaction costs that occur in long positions. Numbers in
brackets show Newey and West (1987) HAC based t-statistics and numbers in parentheses
show p-values. Returns are monthly and the sample period is 12/1983 — 08/20009.

All countries (with b-a)

Portfolio 1 2 3 4 5 Avg. H/L
Mean -1.46  -0.10 265 3.18 576 201 7.23

[0.80] [-0.06] [1.43] [1.72] [2.16] [1.18] [3.13]
Median -2.25 0.77 1.96 4.09 10.17 2.87 11.55
Std. Dev. 8.50 7.20 8.11 8.39 10.77 7.39 9.81
Skewness 0.18 -0.23 -0.28 -0.55 -0.66 -0.40 -1.03
Kurtosis 3.77 4.11 4.34  4.78 5.08 398  4.79
Sharpe Ratio -0.17  -0.01 033 038 054 027 0.74
AC(1) 0.04 0.09 0.14 0.11 0.23 0.14 0.18

(0.74) (0.27) (0.04) (0.14) (0.00) (0.04) (0.01)
Coskew (DOL)  0.38 -0.07 -0.14 -0.15 -0.06 038 -0.21
Coskew (MKT)  0.18 0.03 011 010 004 0.10 -0.12

Developed countries (with b-a)

Portfolio 1 2 3 4 5 Avg. H/L
Mean -0.82 1.55 1.98 2.82 4.90 2.09 5.72

[-0.40] [0.68] [0.97] [1.38] [1.95] [1.07] [2.50]
Median -1.13 2.64 2.93 3.11 6.17 3.25 8.18
Std. Dev. 9.75 10.02 9.34 9.40 10.82 871 10.24
Skewness 0.14 -0.17 -0.14 -0.70 -0.27 -0.23 -0.92
Kurtosis 3.45 3.69 3.91 5.84 4.73 3.60 5.76
Sharpe Ratio -0.08 0.16 0.21 0.30 0.45 0.24 0.56
AC(1) 0.02 0.11 0.12 0.12 0.17 0.12 0.13

(0.97) (0.14) (0.11) (0.12) (0.01) (0.12) (0.07)
Coskew (DOL) 030 -0.14 0.03 -0.33 003 014 -0.15
Coskew (MKT) 024 010 008 005 -0.11  0.08 -0.36
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Table II. Cross-Sectional Asset Pricing Results: Volatility Risk

The table reports cross-sectional pricing results for the linear factor model based on the
dollar risk (DOL) factor and global FX volatility innovations (VOL). The test assets are
excess returns to five carry trade portfolios based on currencies from all countries (left
panel) or developed countries (right panel). Panel A shows coefficient estimates of SDF
parameters b and factor risk prices A obtained by GMM and FMB cross-sectional regression.
We use first-stage GMM and we do not use a constant in the second-stage FMB regressions.
Standard errors (s.e.) of coefficient estimates are reported in parentheses and are obtained
by the Newey-West procedure with optimal lag selection according to Andrews (1991). We
also report the cross-sectional R? and the Hansen-Jagannathan distance (HJ-dist) along
with the (simulation-based) p-value for the test whether the HJ-distance is equal to zero.
The reported FMB standard errors and 2 test statistics (with p-values in parentheses)
are based on both the Shanken (1992) adjustment (Sh) or the Newey-West approach with
optimal lag selection (NW). Panel B reports results for time-series regressions of excess
returns on a constant («), the dollar risk (DOL) factor, and global FX volatility innovations
(VOL). HAC standard errors (Newey-West with optimal lag selection) are reported in
parentheses. The sample period is 12/1983 — 08/2009 and we use monthly transaction-cost
adjusted returns.

Panel A: Factor Prices

All countries (with b-a) Developed countries (with b-a)
GMM DOL VOL R? HJ-dist GMM DOL VOL R? HJ-dist
b 0.00 -7.15 0.97 0.08 b 0.02 -4.38 0.94 0.06
se.  (0.05) (2.96) 0.79)  se.  (0.03) (2.73) (0.89)
A 0.21 -0.07 A 0.22 -0.06
se. (025 (0.03) se.  (0.22) (0.04)
FMB  DOL VOL %, 3w  FMB DOL VOL %, X
A 0.21 -0.07 1.35 0.94 A 0.22 -0.06 0.95 0.83
(Sh)  (0.15) (0.02) (0.72) (0.82)  (Sh)  (0.16) (0.02) (0.81) (0.84)
(NW) (0.13) (0.03) (NW) (0.15) (0.03)

Panel B: Factor Betas

All countries (with b-a) Developed countries (with b-a)

PF o« DOL VOL R’ PF o  DOL VOL R
1 -0.29 1.01 4.34 0.76 1 -0.23 0.94 4.52 0.71
(0.08) (0.04) (0.70) (0.09) (0.05) (1.42)

2 -0.15 0.84 1.00 0.74 2 -0.05 1.05 0.43 0.82
(0.06) (0.04) (0.59) (0.07) (0.04) (0.89)

3 0.05 097 -0.30 0.79 3 -0.02 1.01 0.01 0.88
(0.06) (0.04) (0.63) (0.05) (0.03) (0.64)

4 0.09 1.02 -1.06 0.83 4 0.07 0.96 -1.94 0.82
(0.06) (0.04) (0.71) (0.07) (0.03) (0.97)

5 0.30 1.15 -3.98 0.67 5 0.24 1.04 -3.02 0.73
(0.11) (0.06) (1.20) (0.10) (0.05) (1.09)
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Table III. Cross-Sectional Asset Pricing Results: Factor-mimicking Portfolio

The setup of this table is identical to Table II but we replace volatility innovations by
the factor mimicking portfolio of volatility innovations (VOLpg)s). Test assets are the five
carry trade portfolios (excess returns) based on all countries or the 15 developed countries.
Panel A reports SDF parameter estimates b and factor prices A obtained by GMM and
FMB cross-sectional regression. Standard errors (s.e.) of coefficient estimates (Newey-West
with optimal lag selection) are reported in parentheses, as well as p-values for the Hansen-
Jagannathan distance (HJ-dist) and the x? test statistics for the null that all pricing errors
are jointly equal to zero. FMB standard errors and pricing error statistics are based on the
Shanken (1992) adjustment (Sh) or the Newey-West approach with optimal lag selection
(NW). Panel B reports results for time-series regressions of excess returns on a constant («),
the dollar risk (DOL) factor, and the factor mimicking portfolio of volatility innovations.
Robust (HAC) standard errors are reported in parentheses. The sample period is 12/1983
— 08/2009 and we use monthly net returns.

Panel A: Factor Prices

All countries (with b-a) Developed countries (with b-a)
GMM DOL VOL R? HJ-dist GMM DOL VOL R? HJ-dist
b 0.00 -0.71 0.97 0.08 b 0.01 -0.58 0.97 0.06
s.e. (0.03) (0.23) (0.64) s.e. (0.03) (0.26) (0.86)
A 0.21 -0.10 A 0.22 -0.08
se.  (0.15) (0.03) se.  (0.16) (0.04)
FMB DOL VOL %y  X%w FMB DOL VOL iy  Gw
A 0.21 -0.10 1.89 4.59 A 0.22 -0.09 0.90 0.81
(Sh) (0.13) (0.02) (0.60)  (0.20) (Sh) (0.15) (0.03) (0.83)  (0.85)
(NW)  (0.13) (0.03) (NW)  (0.14) (0.03)
Panel B: Factor Betas
All countries (with b-a) Developed countries (with b-a)
PF o DOL VOL R? PF a DOL VOL R?
1 -0.01 1.21 3.63 1.00 1 0.02 1.05 3.08 0.84
(0.01) (0.00) (0.02) (0.08) (0.04) (0.26)
2 -0.08 0.89 0.85 0.76 2 0.04 1.09 1.09 0.84
(0.06) (0.04) (0.21) (0.07) (0.04) (0.18)
3 0.03 096 -0.24 0.79 3 -0.04 1.00 -0.29 0.88
(0.06) (0.05) (0.19) (0.06) (0.03) (0.16)
4 0.02 0.98 -0.88 0.84 4 -0.03 092 -1.16 0.84
(0.06) (0.04) (0.24) (0.08) (0.04) (0.28)
5 0.04 0.96 -3.36 0.79 5 0.01 094 -2.71 0.81
(0.09) (0.05) (0.30) (0.09) (0.04) (0.30)
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Table IV. Portfolios Sorted on Betas with Global Volatility

The table reports statistics for portfolios sorted on volatility betas, i.e. currencies are sorted
according to their beta in a rolling time-series regression of individual currencies’ excess
returns on volatility innovations. Portfolio 1 contains currencies with the lowest betas
whereas portfolio 5 contains currencies with the highest betas. The remaining notation
follows Table I. We report average pre-formation (pre-f. f — s) and post-formation (post-
f. f —s) forward discounts for each portfolio (in % p.a.). Pre-formation discounts are
calculated at the end of the month just prior to portfolio formation whereas post-formation
forward discounts are calculated over the six months following portfolio formation. We also
report pre-sorting (pre-f) and post-sorting (pre-53) volatility betas in the last two rows of
each panel.

All countries

Portfolio 1 2 3 4 5 Avg. H/L
Mean 428 276 219 0.69 0.17 2.02 4.11

[2.05] [1.36] [1.37] [0.39] [0.09] [0.98] [1.91]
Std. Dev. 9.58 843 722 7.35 8.19 6.93 888
Skewness -0.63 -0.67 -0.61 -0.41 -0.01 -0.48 -0.23
Kurtosis 5.17 523 6.75 4.06 3.30  4.22  3.29
AC(1) 17.47 11.69 3.26 5.34 3.84 12.15 0.33

(0.00) 0.00 020 007 015 000 0.85
Coskew (DOL)  -0.14 0.11 -0.10 0.06 027 -047 -0.23
Coskew (MKT) 0.2 011 022 016 013 017 0.01

pre-f. f—s 023 0.22 0.11 0.06 0.01
post-f. f—s 0.25 0.27 0.11 0.02 0.00
pre-f3 -949 -358 -0.75 211 5.77
post-f -4.30  0.65 -0.51  0.99 3.18
Developed countries

Portfolio 1 2 3 4 5 Avg. H/L
Mean 3.77 199 146 1.76 -043 1.71 4.20

[1.25] [0.88] [0.64] [1.20] [-0.17] [0.87] [1.69]
Std. Dev. 893 9.59 9.83 1043 9.08 839 8.68
Skewness -1.02  -0.32 -0.40 -0.18 0.06 -0.35 -0.38
Kurtosis 778 433  4.07  3.57 348  3.77 458
AC(1) 12.10 541 453 210 204 792 0.68

0.00 0.07 0.10 0.35 0.36 0.02 0.71
Coskew (DOL)  -0.38 -0.07 0.09 0.02 0.25 -0.25 -0.37
Coskew (MKT) 0.03 0.13 0.12 0.29 0.06 0.15 -0.03

pref. f—s 0.09 0.08 0.05 0.07 0.04
post-f. f — s 0.10 0.07 0.05 0.05 0.03
pre-3 1274 4.05 1530 2647 44.26
post-f3 220 -1.15 117 067  2.06
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Table V. Cross-Sectional Asset Pricing Results: Liquidity Risk

The setup is the same as in Table II but this table shows factor prices for three different
models. We only report results based on GMM. As test assets we use excess returns to
the five carry trade portfolios based on all countries or the 15 developed countries. Factors
are the dollar risk (DOL) factor, and innovations of (i) global average percentage bid-ask
spreads denoted as BAS (Panel A), (ii) the TED spread (Panel B), or (iii) the Pastor and

Stambaugh (2003) liquidity measure denoted as PS (Panel C).

Panel A: Factor Prices — Global bid-ask spreads

All countries (with b-a) Developed countries (with b-a)
GMM DOL BAS R* HJ-dist GMM DOL BAS R? HIJ-dist
b 0.00 -54.06 0.74 0.19 b 0.02 -36.68 0.58  0.13
se.  (0.05) (26.48) (0.16)  se.  (0.03) (22.63) (0.36)
A 0.21 -0.03 A 0.22 -0.02
se.  (0.24)  (0.01) se.  (0.21)  (0.01)
Panel B: Factor Prices and Loadings — TED spread
All countries (with b-a) Developed countries (with b-a)
GMM DOL TED R* HJ-dist GMM DOL TED R? HJ-dist
b 0.04 -438 0.73 0.13 b 0.03 -244 0.81 0.66
se.  (0.07) (3.35) (0.53) s (0.04) (2.06) (0.16)
A 0.21 -0.36 A 0.22 -0.20
se.  (0.30)  (0.28) se.  (0.24) (0.17)
Panel C: Factor Prices and Loadings — Pastor/Stambaugh liquidity measure
All countries (with b-a) Developed countries (with b-a)
GMM DOL PS R?  HI-dist GMM DOL PS R?  HJ-dist
b 0.06 1289  0.70  0.19 b 0.05 1224 0.97  0.05
s.c. (0.05) (8.29) (0.09) s.e. (0.04)  (9.05) (0.94)
A 0.18 0.05 A 0.18 0.05
se.  (0.22)  (0.03) se.  (0.23)  (0.03)
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Table VI. Cross-Sectional Asset Pricing Results: Volatility and Liquidity Risk

The setup is the same as in Table V. As test assets we use excess returns to the five
carry trade portfolios based on all countries. Factors are the dollar risk (DOL) factor,
FX volatility innovations (VOL), and innovations to (i) global average percentage bid-ask
spreads denoted as BAS (Panel A), (ii) the TED spread (Panel B), or (iii) the Pastor and
Stambaugh (2003) liquidity measure denoted as PS (Panel C). The latter three measures
of liquidity risk are orthogonalized with respect to volatility innovations.

Panel A: Volatility and global bid-ask spreads
GMM DOL BAS VOL R? HJ-dist

b 0.0l 1823 -8.11 098  0.06
se.  (0.07) (36.08) (4.24) (0.82)
A 021 001 -0.08

se.  (0.31)  (0.02) (0.04)
Panel B: Volatility and TED spread
GMM DOL TED VOL R? HJ-dist

b 0.0l  -1.03 -6.17 098  0.07
se.  (0.05) (2.94) (3.28) (0.66)
A 021  -0.08 -0.06

s.e. (0.25)  (0.24) (0.03)
Panel C: Volatility and P/S liquidity measure

GMM  DOL PS VOL R? HJ-dist
b 001 -1.65 -746 097  0.08
se.  (0.07) (10.36) (3.82) (0.65)
A 0.18  -0.01 -0.08

s.e. (0.29)  (0.04) (0.04)
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Figure 1. Returns to Carry Trade Portfolios
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The upper panel of this figure shows cumulative log excess returns of the carry trade. The
black line corresponds to all countries, while the blue line corresponds to a subset of 15
developed countries. The lower panel shows a time-series plot of global FX volatility (blue
line) and volatility innovations (red line). Shaded areas in the figure correspond to NBER
recessions. The sample period is 11/1983 — 08/2009.
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Figure 2. Excess Returns and Volatility

(a) All Countries (b) Developed Countries
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The figure shows mean excess returns for carry trade portfolios conditional on global FX
volatility innovations being within the lowest to highest quartile of its sample distribution
(four categories from “lowest” to “highest” shown on the x-axis of each panel). The bars
show average excess returns for being long in portfolio 5 (largest forward discounts) and
short in portfolio 1 (lowest forward discounts). Panel (a) shows results for all countries,

while Panel (b) shows results for developed countries. The sample period is 11/1983 —
08/2009.

Figure 3. Pricing Error Plots

(a) All Countries (b) Developed Countries
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The figure shows pricing errors for asset pricing models with global volatility as risk factor.
The sample period is 11/1983 — 08/20009.
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Internet Appendix for
Carry Trades and Global Foreign Exchange Volatility



This Internet Appendix provides a detailed description of additional tests and robust-

ness checks.

I Empirical Likelihood estimates

In order to further account for the possibility of Peso problems, we adopt an Empirical
Likelihood (EL) approach to estimate the moment conditions implied by our baseline spec-
ification. EL shares many similarities with traditional GMM and is particularly attractive
here since it endogenously allows the probabilities attached to the states of the economy to
differ from their sample frequencies (which is the nature of Peso problems). It is thus more
robust under Peso problems or rare events, as argued for example by Ghosh and Julliard
(2010). As in their paper, we employ both a conventional EL estimator (see e.g. Owen
(2001) or Kitamura (2006) for overviews of EL methodology) as well as the blockwise EL
procedure of Kitamura (1997), where we use blocks of observations to preserve information

about dependence in the data in a nonparametric way.

First, we briefly outline how we estimate our asset pricing models by Empirical Likeli-
hood (EL).! From a methodological perspective, EL and the traditional GMM framework
share many common features. Both methods rely on moment restrictions for estimation
and they both require only relatively mild assumptions, e.g. no specification of a parametric
likelihood function is necessary. However, GMM essentially weights different observations
equally when computing sample moments (by taking means of the estimating functions),
whereas EL allows probabilities attached to different observations to differ across states of
the economy (and from their observed frequencies in the data) in an endogenous fashion.?
This is an attractive feature of EL and renders the method more robust to problems caused

by rare events or potential Peso problems (see e.g. Ghosh and Julliard (2010)).

IThe discussion here is intentionally simple and only presents the major ideas and basic setup of EL
estimation. For more details, see Owen (2001) or Kitamura (2006).

2Besides this appealing property, several recent papers have shown that the statistical properties of EL
are often superior as those of GMM (see e.g. Newey and Smith (2004), Kitamura (2006)).



As with GMM, estimation via EL starts from moment conditions of the form

Elg(zt,00)] = /9(2790)601 =0 (IA.1)

where g¢(-) is a J-dimensional moment function, z; represents a vector of data, and 6
denotes the true parameter value. Consistent estimates @\E 1, can be obtained provided that
the data are either i.7.d. or weakly dependent. Central to EL estimation is the concept of

an empirical (nonparametric) log likelihood which is defined as

T
Lep(my,...,mp) =) Inm. (IA.2)
t=1

The probabilities attached to observations at different points in time are denoted as
and are constrained by the usual restrictions 0 < m;, < 1 and X7, = 1. EL estimation of

the parameters of the model solves the following constrained maximization problem:

T

argmax E In m,
9771—17---77TT t=1

T T
subject to ng(zt, 0) =0, Zm = 1.
t=1 t=1
In words, the model’s parameters ( ¢ r,,...,mp ) are estimated by maximizing the

empirical likelihood subject to the constraints imposed by (i) the (probability weighted)
moment conditions (which are given by the economic model), and (ii) the normalizing
condition on the probabilities. EL estimators behave equivalently to GMM estimators in

terms of first-order?® asymptotics and the limiting distribution of the EL estimator is given

3Newey and Smith (2004) find, however, that EL estimators outperform GMM in terms of second order
bias, which should also be reflected in good finite-sample properties of the estimator.



VT (051 — 00) % N(0,(D'S™' D)™, (IA.3)

where D = E[0g(z,0)/00'] and S = E[g(z,60)9(z,00)].

Blockwise Empirical Likelihood. Standard EL requires that the data are i.i.d. or
weakly dependent to obtain consistent estimates. In the presence of serial correlation,
however, inference based on the asymptotic result in (IA.3) may not be valid (see Kitamura
(2006, p. 35)). Returns scaled by the SDF should typically be close to a martingale-
difference series, as also noted by Ghosh and Julliard (2010). However, as mentioned in
the main paper, there is evidence of some (albeit low) autocorrelation in our test asset
returns (but not in the risk factor). For robustness, we therefore also estimate the model
using the blockwise EL approach of Kitamura (1997) and Kitamura and Stutzer (1997).

Instead of g(z,6p), blockwise EL uses the “smoothed” estimating function

K

(2, 60) = ! Z 9(z4s,60) (IA.4)

in the constrained maximization problem above and by doing so preserves information on
dependence in the data in a non-parametric way. The limiting distribution of the blockwise

EL estimator is then

VT (OpgL — 00) % N(0,(D'S™'D)™1), (IA.5)

where D = E[0g(2,0y)/00'] and S =372 E[g(2,00)9(2—j,00)']. We estimate the long-
run covariance matrix of moment conditions S in the blockwise EL approach using the
Newey-West procedure. We choose K to be two (implying a window size for the smoothed

estimating function of five), whereas the lag length in the Newey-West approach is set to



five. Our results are robust to sensible modifications of this choice.

We estimate the model via EL and blockwise EL exploiting the same asset pricing
moment conditions as for the GMM approach discussed in Section III of the paper. Results
from this exercise are shown in Table [A.1 and confirm the robustness of our main result.
For the sample of all countries, we find a factor price of volatility risk of Ay o, = —0.07,
and A\yorp = —0.06 for the sample of developed countries. We find it comforting that the
estimated factor prices are basically unchanged when using this setup which endogenously
reduces the impact of extreme values in the volatility series. We thus conclude that our

core results are unlikely to be driven entirely by a Peso story.

IT Other Test Assets

A. FX Momentum Portfolios

We first look at a cross-section of currency momentum portfolios and sort individual cur-
rencies into five portfolios depending on their excess returns over the past 12 months.* We
rely on a 12 months formation period and one month investment horizon since Moskowitz
and Grinblatt (1999) show that this 12-1 momentum strategy yields much larger returns
than e.g. the 6-6 strategy of Jegadeesh and Titman (1993, 2001) and has become the
benchmark strategy in equity markets. For this reason, we also employ this momentum
variant here. It should be mentioned, though, that other combinations of formation and
holding period naturally give rise to different return cross-sections which are not necessar-
ily (highly) correlated with the cross-section investigated here. Hence, our results are best
viewed as being specific to the particular momentum strategy under study here but not
as general evidence that volatility innovations are useful for pricing any possible currency

momentum cross-section.

This yields a cross-section of portfolios with increasing mean excess returns that range

4Jegadeesh and Titman (1993, 2001) document momentum strategies in equity markets.



from 0.35% p.a. for low return currencies to 6.9% p.a. for high return currencies (see Table

[A.2 for descriptive statistics).

Cross-sectional pricing results using DOL and volatility innovations are shown in the
left part of Table IA.3. We find a negative factor price of -0.07, which is in line with
the estimate for our carry trade portfolios in Table II of the main paper. Also, we find
that the factor price is more imprecisely estimated and borderline significant with a cross-
sectional R? of roughly 60% and an insignificant HJ-distance. This is an interesting result
since momentum and carry trade portfolios are far from being perfectly correlated. For
example, the correlation between the long-short portfolio (portfolio 5 minus portfolio 1) for
the carry trade cross-section (i.e. HM Lpx) and the momentum cross-section is basically
zero. Therefore, it seems that FX volatility has some pricing power for other currency
cross-sections as well.® Also, it seems important to point out that HM Lrx does not price

this cross-section (see the left part of Table IA.5).

B. US portfolios: Equity Momentum and Corporate Bonds

As a further pricing exercise, we rely on domestic U.S. assets whose returns clearly do
not directly contain a currency component. We employ the ten U.S. equity momentum
portfolios (from Kenneth French’s web site) and six portfolios of U.S. corporate bonds. We
still employ the DOL factor and volatility innovations in our tests but note that using the
U.S. stock market excess return — which would seem natural in this case — instead of DOL

gives very similar results and is inconsequential for our conclusions below.

Results for excess returns to the U.S. stock momentum cross-section are shown in the
middle part of Table TA.3. We find a larger (in absolute terms) risk price estimate of
A = —0.13 (compared to —0.07 on the carry trade cross-section) with a GMM t-statistic of
—1.97 and a cross-sectional R? of about 41%. While the risk price estimate here is clearly
lower than our benchmark estimate, the standard errors are fairly large so that there is still

considerable overlap between the confidence intervals from our estimates based on stock

5We do not claim, however, that volatility innovations price any cross-section of currencies, of course.



returns and the carry trade cross-section. In any case, our FX volatility innovation factor
provides a fairly good cross-sectional fit, which is especially noteworthy when compared to
other pricing factors. For example, we find that traditional models of equity asset pricing,
such as a standard CAPM or the Fama-French three-factor model, do not provide better
results than our two-factor model with FX volatility innovations employed here.® Moreover,
HM Lpx is not significantly priced and has a negative R? on this cross-section (see the
middle part of Table IA.5 in the Internet Appendix). In short, our factor captures part
of the spread in U.S. stock momentum returns, and the estimated factor price of risk is

consistent with our baseline estimate on the carry trade cross-section.

Next, we follow Da and Schaumburg (2009) and also investigate a cross-section of six
corporate bond portfolios (one portfolio for each available rating category from AAA to
BA) based on the corporate bond indices from Lehman Brothers.” The available sample
runs from April 1990 to August 2009. Pricing results for corporate bond excess returns are
shown in the right part of Table IA.3. We find a reasonable factor risk price estimate of
—0.10, a high cross-sectional R? of 93%, and a HJ distance measure of 0.14 which is not
significantly different from zero. Despite this good cross-sectional fit, the risk price estimate
is significant only with FMB Shanken standard errors but becomes insignificant once we
correct for autocorrelation in the cross-sectional regressions or use GMM standard errors.
This finding is identical to Da and Schaumburg (2009) and can be understood through a
combination of the relatively small sample size and the higher return volatility of lower-
rated bonds during the recent financial market turmoil. Despite this lack of statistical
significance, we find it reassuring that the factor risk price estimate is close to our estimate
of —0.07 on the carry trade cross-section and that the factor provides a good cross-sectional
fit in this out-of-sample test since this is a purely domestic US cross-section. Finally, when

we replace volatility innovations by HM Lrx we find a much lower cross-sectional R* of

6Table TA.6 documents these results. A CAPM with a single market factor produces a negative R2
and clear rejections in all specification tests (x? and HJ distance). The three-factor model produces a
cross-sectional R? of 50% which is only slightly higher than in our setup (although we are using only two
factors) and yields insignificant but negative risk price estimates for HML and SMB which are clearly not
sensible. However, the fact that these models fail on U.S. momentum returns is well known from papers
such as Fama and French (1996) or Jegadeesh and Titman (2001).

"As in Da and Schaumburg (2009), we duration-adjust corporate bond returns.



only 27% and a significant HJ distance (see the right part of Table TA.5).

C. Individual Currencies

Next, we test our volatility risk factor on individual currencies. When dealing with individ-
ual currencies, we face an unbalanced panel of data and highly idiosyncratic return series
for less traded currencies. To accommodate these features in our pricing tests, we rely on
robust regressions, where outlier observations are weighed down by an iterative procedure.®
More specifically, we run FMB regressions using robust regressions in the first (estimate
of in-sample betas) and second stage (cross-sectional estimation of risk prices). Since we
have an unbalanced panel and we deal with a generated factor (volatility residuals from an
AR(1)) we rely on a bootstrap approach to generate critical values for our test statistics

which we detail next.

Individual currencies — bootstrap approach. We first generate our volatility inno-
vations by estimating an AR(1) for global FX volatility. We run the FMB regressions on
the cross-section of individual currencies using robust regressions in both steps as noted

above.

For the simulations, we then bootstrap the changes of the volatility series (i.e. not the
residuals from the AR(1)-model) and the DOL factor using blocks of five observations. We
apply a block bootstrap to the volatility changes to account for the mild autocorrelation
we find in volatility changes (as discussed in Section II above). We then form a new
volatility series in levels by summing over the bootstrapped volatility changes. Next, we
estimate an AR(1) on the simulated volatility series and use the residuals as our pricing
factor. We impose the null of no relation between our factors and currency returns by
separately block-bootstrapping the matrix of individual currency returns (to account for

potential autocorrelation in excess returns of individual currencies) again using blocks of

8The regression is first estimated via OLS. Outlier observations (based on OLS residuals) are weighed
down and the regression is again estimated by OLS. This procedure continues until outliers do not impact
the results any more.



five observations. We then run FMB on the simulated cross-section of returns, using the
simulated DOL and volatility innovation series in order to conduct inference on the model’s

parameters.

Results. Results are shown in Table IA.4. The first rows show coefficient estimates and
t-statistics from the cross-sectional regression. Numbers in parentheses show bootstrap p-
values based on the distribution of simulated t-statistics. We find a significantly negative
estimate for A\ o, = —0.05, which is close to the estimate of —0.07 that we found for the
carry trade portfolios. Furthermore, we find a R? of about 31%, which is lower than the
R? found for the carry trade portfolios, as one would expect since individual excess returns
are far more noisy than the portfolio returns in our benchmark analysis. Still, we find that
volatility risk is significantly negatively priced even after taking into account outliers in

returns and estimation uncertainty regarding the volatility innovations.

The second specification in Table TA.4 adds an interaction term of the volatility beta
with a dummy variable indicating an emerging market. We use this specification to test
whether factor prices are equal across developed and emerging markets. The results are
mixed. We find a highly negative estimate for the interaction term (i.e. the factor price is
—0.11 for emerging markets instead of —0.05) but the estimate is very imprecise and not

significantly different from zero.

As a final examination we are interested to learn about the merits of our global FX
volatility factor and the HM Lrx factor. Thus, in the third specification volatility inno-
vations are replaced by the HM Ly factor, resulting in a rather low cross-sectional R? of

10% and an insignificant factor risk price for HM Lpx.°

9 In a final specification, we include both volatility innovations and HM Lrx and find that volatility
innovations are still priced whereas HM Lpx is not. It thus seems that volatility innovations contain
information about the cross-section of individual currencies not included in HM Lpx.



D. International Bond Portfolios

As an additional set of test assets, we look at international bond portfolios. To this end,
we sort bonds of different maturities (1-3y, 3-5y, 5-7y, 7-10y, >10y) and for 19 countries
into five portfolios depending on their redemption yield. We rely on all available data
and total return indices (in USD) from Datastream and consider a sample ranging from
1983 to 2009.'° This yields a cross-section of monotonically increasing excess returns (in
excess of the U.S. risk-free rate) with an annualized excess return of about 2% for low
yield bonds to 9% p.a. for high yield bonds. Testing our main result on this cross-
section seems natural since this “bond carry trade” also operates on international yield
differentials but extends the dimension to longer-term maturities instead of relying solely
on short-term money markets. Descriptive statistics are shown in Panel A, Table IA.7; we
stress here, however, that the bond portfolios and carry trade portfolios are not perfectly
correlated. For example, the correlation between H M Lx and the return to the long-short

international bond portfolio (long in portfolio 5, short in portfolio 1) is about 50%.

We show pricing results using the DOL factor and innovations to global FX volatility
in the left part of Table IA.9. We find a negative estimate of Ayor, = —0.09 which is
significantly different from zero at the 5% (FMB) or 10% (GMM) level, respectively. That
is, the factor price is somewhat more imprecisely estimated than for the FX carry trade
portfolios in Table II of the main paper, but the estimated factor price of volatility risk
is reasonably close to the estimate of —0.07 on the carry trade cross-section. Also, we
find a reasonable cross-sectional R? of almost 70% but that the HJ-distance is significantly

different from zero at the 10% (but not the 5%) level.

1Countries with available data are Australia, Austria, Belgium, Canada, Denmark, France, Germany,
Greece, Ireland, Italy, Japan, Netherlands, Portugal, Singapore, Spain, Sweden, Switzerland, U.K., and
the U.S.



E. Currency Options

We show implied volatility patterns (volatility smiles or skews) for portfolios sorted on
lagged forward discounts and for portfolios sorted on lagged volatility betas. The implied
volatility patterns suggest that risk associated with these portfolios is priced in option
markets. Furthermore, we price a cross-section of option portfolios with our benchmark

factor model.

We first report differences between implied volatilities of puts and calls for different
moneyness groups. Table TA.10, Panel A, shows the difference between log implied volatil-
ities for 25-Delta puts and 25-Delta calls (OTM options) and for the log difference between
10-Delta puts and calls for our five carry trade portfolios sorted on lagged forward dis-
counts.'! Panel B shows the same statistics but for the five portfolios sorted on lagged
volatility betas. It can be seen from this table that portfolios with high returns (high
forward discounts, low volatility betas) also have higher implied volatilities for puts than
for calls, i.e. buying portfolio insurance for these high risk and return currencies is more
expensive. However, we find a symmetric result for low return portfolios (low forward
discounts, high volatility betas). Here, premia for buying calls, i.e. portfolio insurance for
funding currencies, are higher than for buying puts. For example, buying 10-Delta calls for
funding currencies in portfolio 1 of the carry trade cross-section is 7.96% more expensive
than buying 10-Delta puts, whereas buying puts for the high interest rate currencies in
portfolio 5 is about 26% more expensive than buying calls. Therefore, it seems that risk
in the carry trade and volatility-beta sorted portfolios is priced in the option market as
well. Furthermore, we do not find that only downside risk is priced but that option prices
reflect downside and upside risk depending on whether currencies tend to appreciate or

depreciate in times of high volatility.

Next, we test our model on a set of option portfolios constructed from the implied
volatility data used above. To this end, we consider returns to three strategies, i.e. risk

reversals (long 25-Delta Put, short 25-Delta calls), bull spreads (long ATM calls, short

UFarhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2009) document similar results.
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25-Delta calls), and bear spreads (long ATM puts, short 25-Delta puts). For each option
strategy, we form four portfolios by sorting underlyings of the option strategy on their
lagged forward discounts (we only form four portfolios since we have a smaller cross-section
and shorter time-series for option data). Excess returns to the option strategies are such

that we scale the option bets to have the size of one USD for each currency.

Descriptive statistics for these 12 option portfolios can be found in Table TA.8. To
summarize, Figure [A.2 shows average excess returns and Sharpe Ratios for these portfolios.
It can be seen that the three cross sections differ in terms of Sharpe Ratios and mean return
patterns. For example, the Bull spreads have a rather flat pattern for portfolios 2 and 3,
whereas the bear spreads have a non-monotonic pattern in Sharpe Ratios. In sum, the three
cross-sections are related but far from being identical. We thus use these 12 portfolios in

a joint pricing exercise.

Pricing results for the 12 option portfolios as test assets and the DOL factor and
volatility innovations as risk factors are shown in the right part of Table TA.9. We find a
highly significant factor risk price of —0.08, which is reasonably close to the estimate we
found for the five carry trade portfolios. We also find a somewhat lower, but comparable,

cross-sectional R? of about 90% and an insignificant HJ-distance.

III Additional Results for Fama-MacBeth Regressions

Tables TA.11 to IA.13 report additional results for Fama-MacBeth regressions that were
left out of the main paper where we only showed GMM results. We report these results

for completeness only.

IV Additional Robustness Tests

Descriptive statistics for unadjusted returns. Table IA.14 reports results for cur-

rency excess returns not adjusted for transaction costs. Clearly, average excess returns are

11



more extreme and the carry trade appears quite a bit more profitable without adjusting

for bid-ask spreads.

Pricing tests with full transaction cost adjustments. Table IA.15 reports pricing
results for our baseline specification. As can be seen, results are very similar so that our

exact transaction cost adjustment procedure does not seem to drive our results.

Other proxies for volatility. We first re-estimate our benchmark model but use simple
changes in volatility instead of AR(1)-residuals as a proxy for volatility innovations. Results
are shown in Table IA.16 and it can be seen that our results are not affected by using simple

changes.

Next, we repeat our main asset pricing setup but use the JP Morgan Implied Volatility
Index for the G-7 currencies (the “JPM G-7 VIX”) and the VIX volatility index from the
CBOE, based on stock options, instead of the global FX volatility proxy proposed in this
paper (e.g. Ang, Hodrick, Xing, and Zhang (2006) also use the VIX). We expect to see
somewhat similar results, since periods of market turmoil or distress are often visible across
asset classes rather than specific to one certain group of assets, e.g. only equities or only

FX markets.

For example, Table IA.17 shows results when using innovations to the JPM G-7 VIX
(left panel) or innovations to the CBOE VIX (right panel) as volatility proxies.'” As with
our FX volatility proxy, we find the same monotonically declining pattern in the time-series

betas of returns with volatility and that factor prices are negative.

We also experimented with different weighting schemes for our global FX volatility
proxy. For example, we weighted the volatility contribution of different currencies by
their share in international currency reserves in a given year (data are available from the

International Monetary Fund) but did not find any interesting differences in our results.

12We employ simple changes to the implied volatility index to obtain innovations (as in Ang, Hodrick,
Xing, and Zhang (2006)). Using more elaborate ways to extract innovations does not change our findings
reported below.
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Alternative base currencies. Up to now we have taken the perspective of a U.S.
investor by calculating excess returns, the DOL and global volatility factor against the
USD. As a robustness check, we test the pricing power of innovations to global FX volatility
for alternative investors.!® Specifically, we convert returns into three alternative currencies,
namely the GBP, the JPY, and the CHF. The DOL factor and volatility factors are also

based on quoted rates against these base currencies, respectively.

We provide descriptive statistics for these alternative portfolios in Table IA.18. The
H/L portfolio has the same mean return by construction for all three alternative base
currencies. However, the level of average returns for the five currency portfolios (and the

DOL factor) obviously differs across countries.

We also present time-series plots of global FX volatility factors for the three alternative
base currencies in Figure [A.1 in the Appendix. It can be seen from this graph that there is
much common movement in these volatility series but that these series are far from being
perfectly correlated.'® These differences in cross-sectional excess returns and volatility

seem to make tests based on these alternative currencies an interesting robustness check.

Time-series results and cross-sectional test results are shown in Table TA.19. We find
the same declining pattern in time-series volatility betas for all three base currencies and
this pattern is identical to our U.S. benchmark results. Furthermore, volatility innovations
have significant cross-sectional pricing power for returns to carry trade portfolios, no matter
which base currency is used. Estimates of factor prices for the GBP (Ayor = —0.08) and
CHF (Avor = —0.10) are close to the U.S. results where the factor price of A\yor =
—0.07. We find a much lower factor price of A\yor, = —0.36 for the JPY. This lower
factor price seems surprising at first glance, but may indeed be the result of a potential
Peso problem as discussed above. Figure TA.1 shows that the volatility series (and, thus,
volatility innovations) for the JPY is quite smooth and has fewer spikes. In case the market

has expected more volatility spikes than have actually occurred so far, we would expect to

13 This is a common robustness check and has been applied by other authors as well, see e.g. the
robustness appendix to Lustig, Roussanov, and Verdelhan (2010).

14 Some largely idiosyncratic volatility spikes can be found e.g. for the GBP during the Exchange Rate
Mechanism crisis in 1992 or for the JPY during the Asian crisis in 1997-1998.
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see exactly the result documented above, namely a much lower factor price than for the

other currencies.

Overall, we find the same patterns in volatility betas as for the U.S. and we find a
significantly negative factor price for volatility risk in the cross section. Thus, we conclude

that our results are not specific to a U.S. investor.

Non-Linearities. We have also experimented with non-linearities in our risk factor such
that time-series betas and/or the price of risk depend on the sign of volatility innovations
or whether volatility innovations are large or small in absolute magnitude. We did not
find any noteworthy effects, though. Volatility risk seems to be priced in all regions of the

volatility distribution.

In Table TA.20 we document some representative estimates. The left part shows results
when we only use positive values of volatility innovations (which have a mean of zero) and
the right part shows results when we only use the negative values of volatility innovations.
The results suggest that the estimated factor risk prices do not differ much; we have the
same monotone pattern in volatility time-series betas, the HJ-distance is small and not

significantly different from zero, and the cross-sectional fit is good.

Sub-samples. We also examined sub-samples of our total sample, namely the periods
1983 — 1995 and 1996 — 2009. Results are shown in Table IA.21. Regarding the economics
of our results, the estimated factor prices are negative for both periods (—0.05 for the first
and —0.08 for the second sub-sample) and thus well within the confidence interval around
the point estimate of the full sample. We also find the same monotonically declining
pattern in volatility time-series betas such that low interest rate currencies are a hedge
against volatility shocks, whereas high interest rate currencies perform poorly in times of
high (unexpected) volatility. In terms of statistical significance, results are stronger for

the second sub-sample, where we have more data (since many countries only enter the

14



sample in the 90s).!® Given that our economic finding is qualitatively identical across the
two periods, we are not too concerned about statistical significance, which varies naturally

when changing the sample size.

15 We find basically the same pattern in statistical significance when using HM L x instead of volatility
innovations in our pricing exercise.
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Table TA.1. Cross-Sectional Asset Pricing Results: Empirical Likelihood

The setup of this Table is similar to Table II in the main paper but we estimate the
linear factor model via Empirical Likelihood (EL) instead of GMM. As test assets we use
(excess returns to) the five carry trade portfolios based on all countries or the 15 developed
countries. The left part of the table shows results for a standard EL approach, whereas
the right part shows results for the blockwise EL approach of Kitamura (1997). The block
length in block-wise EL is set to five and standard errors of block-wise EL estimates are
based on Newey-West estimation of the spectral density matrix with five lags. The OIR
test (OIR x?) is equivalent to a J-test in the GMM framework and tests for the validity of
the overidentifying restrictions.

Panel A: All countries

EL estimates Blockwise — EL estimates
bpor, bvor Apor Avor bpor bvor Apor Avor
coefl. 0.01 -6.79  0.25 -0.07 coefl 0.01 -6.53 0.24 -0.07
s.e. (0.05) (2.52) (0.24) (0.03) s.e. (0.05) (2.54) (0.27) (0.03)
OIR x* 1.33 OIR x* 3.37
p-value (0.72) p-value (0.34)
Panel B: Developed countries
EL estimates Blockwise — EL estimates
bpor bvor Apor Avor bpor bvor Apor Avor
coeff. 0.03 -5.32 0.28 -0.06 coefl 0.02 -527 027 -0.06
s.e. (0.04) (3.09) (0.21) (0.03) s.e. (0.04) (3.08) (0.24) (0.04)
OIR x* 0.76 OIR x* 5.55
p-value (0.86) p-value (0.14)
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Table TA.2. Descriptive Statistics for Other Test Assets

The table reports mean excess returns, standard deviations (both annualized), and Sharpe
Ratios (all annualized) for five FX momentum portfolios, ten US momentum equity port-
folios, and six corporate bond portfolios.

FX momentum Stock momentum Corp. bonds
Portfolio MEAN STD SR MEAN STD SR MEAN STD SR
1 0.35 9.64 0.04 1.95 31.43 0.06 3.58 6.71 0.53
[0.17] [0.29] [3.11]
2 2.17 839 0.26 9.39 23.19 0.40 2.50 4.58 0.55
[1.16] [1.92] [2.66]
3 3.12 850 0.37 10.68 19.57 0.55 2.35 452 0.52
[1.67] [2.59] [2.44]
4 4.71 883 0.53 1147 17.07 0.67 2.58 9.85 0.26
[2.38] [3.22] [1.49]
5 6.89 848 0.81 10.35 15.83 0.65 5.46 7.10 0.77
[3.48] [3.12] [3.01]
6 10.36 1549 0.67 5.15  8.53 0.60
[3.25] [3.24]
7 11.37 14.94 0.76
[4.11]
8 13.24 14.61 0.91
[4.42]
9 11.54 16.08 0.72
[3.47]
10 15.91 21.51 0.74
[3.44]
Av. 3.45 7.22 0.48 10.62 16.70 0.64 3.60 6.42 0.56
[2.07] [3.02] [2.94]
H/L 6.54 10.39 0.63 13.96 28.02 0.50 1.57 3.70 0.42
[3.19] [2.43] [1.89]
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Table IA.4. Individual Currencies

The table reports pricing results for individual currencies’ excess returns. We run a Fama-
MacBeth two-step procedure with robust regressions in the first and second step to account
for outliers in individual currency excess returns. We report t-statistics and bootstrapped
p-values for our estimates of factor risk prices. The “p-value” for the cross-sectional R?
is based on the number of simulated R?s exceeding the R? in the original regression.
Simulated p-values are based on a block-bootstrap with 10,000 repetitions. Risk factors
employed in various specifications are the average currency excess return against the USD
(the DOL factor), innovations to global FX volatility (VOL), and the HM Lpx factor
of Lustig, Roussanov, and Verdelhan (2010). We also include a dummy VOLgys in one
specification that equals one for currencies of emerging markets (i.e. we use an interaction
term of the VOL-beta with this dummy in the second stage regression).

DOL VOL VOLgy HMLpx R?

A 0.25 -0.05 0.31
t-stat [2.08] [-3.19]

BS p-val (0.25) (0.05) (0.01)
A 0.26 -0.05 -0.06 0.26
t-stat [2.07] [-2.56] [-0.74]

BS p-val (0.25) (0.09) (0.64) (0.01)
A 0.29 0.67 0.10
t-stat [2.40] [2.67]

BS p-val (0.16) (0.12) (0.79)
A 0.25 -0.05 0.33 0.27
t-stat [2.01] [-2.84] [1.09]

BS p-val (0.23) (0.08) (0.51) (0.01)
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Table TA.5. Cross-Sectional Pricing Results: Other Test Assets and HM Ly

The setup is the same as in Table TA.3 but here we show cross-sectional pricing results
when using DOL and HM Lrx (Lustig, Roussanov, and Verdelhan (2010)) as pricing
factors instead of DOL and volatility innovations.

Factor Prices

5 Currency Momentum Portfolios

GMM DOL HMLpxy R?* HI-dist

b 007 003 00l 018
se.  (0.04)  (0.05) (0.06)
A 032  0.26

s.e. (0.16)  (0.42)
FMB DOL HMLpxy iy  iw

A 032 026 1003 1391
(Sh)  (0.12)  (0.40)  (0.02)  (0.00)
(NW) (0.14)  (0.41)

US stock momentum

GMM DOL HMLpx R* HJ-dist

b -1.22 0.71 -1.26 0.37
s.e. (1.72)  (0.85) (0.00)
A -4.91 4.60

s.e. (7.13)  (5.46)
FMB DOL HMLrx X3y  ow

A 491 460 478 558
(Sh)  (5.60) (3.51)  (0.78) (0.69)
(NW)  (6.90)  (5.08)

US corporate bonds
GMM DOL HMLrpx R?* HI-dist

b 041 048 027  0.28
se.  (0.29)  (0.49) (0.01)
A 079 2.93

s.e. (1.21)  (3.58)
FMB DOL HMLpy iy  iw

A 079 293 722 7.99
(Sh)  (1.15)  (3.10)  (0.13) (0.09)
(NW) (1.16)  (3.46)
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Table TA.7. Descriptive Statistics for International Bond Portfolios

The table reports descriptive statistics for excess returns to five international bond port-
folios (where we sort bonds of different maturities from different countries into portfolios
depending on their lagged redemption yield. Excess returns are in USD and with respect to
the U.S. risk-free rate. Returns are monthly and the sample period is 12/1983 — 08,/2009.

Panel A: International Bond Portfolios

Portfolio 1 2 3 4 5 Avg. H/L
Mean 2.18 3.59 4.24 5.76 9.09 497 691

(0.99] [1.67] [2.09] [2.69] [4.22] [2.52] [3.64]
Median 1.52 2.99 4.66 5.10 9.38 4.99 8.66
Std. Dev. 10.20 9.93 9.94 9.98 10.20 9.26 9.01
Skewness 0.17  0.06 0.12  -0.09 -0.22 0.08 -0.54
Kurtosis 3.12 3.21 3.35 3.42 4.32 3.22 5.03
SR 0.21 0.36 0.43 0.58 0.89 0.54 0.77
AC(1) 0.08 010 0.06 010 0.09 0.10  0.00

(0.38) (0.19) (0.54) (0.18) (0.29) (0.21) (1.00)
Coskew (DOL) 045 026 025 011  0.19 -0.14

Coskew (MKT) 0.31 0.16 0.20  0.21 0.01 0.19 -0.35
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Table TA.9. Cross-Sectional Pricing Results: International Bonds and FX Options

The setup is the same as in Table II in the main paper but here we show cross-sectional
pricing results for five portfolios based on international bond returns and twelve FX option
portfolios. The five bond portfolios are based on international bonds of different maturities
and are sorted into portfolios based on their redemption yield. The option portfolios consist
of four 25-Delta risk reversals, four 25-Delta Bull Spreads, and four 25-Delta Bear spreads.
The sample period is 11/1983 — 08/2009 for the bond and 02/1996 — 08/2009 for the option
portfolios.

5 International Bond Portfolios 12 Option portfolios

GMM DOL VOL R?  HJ-dist GMM DOL VOL R?>  HJ-dist
b 0.06 -857 0.68 0.20 b -0.08  -9.18 0.91 0.36
s.e. (0.04) (5.57) (0.07) s.e. (0.08) (5.20) (0.38)
A 0.46  -0.09 A 0.15  -0.08

s.e. (0.31) (0.05) s.e. (0.44) (0.04)

FMB DOL VOL %y X FMB DOL VOL iy X
A 046  -0.09 7.32 5.91 A 0.15 -0.08 14.28 7.44
(Sh) (0.21) (0.03) (0.06) (0.12) (Sh) (0.20) (0.02) (0.16) (0.68)
(NW) (0.16) (0.05) (NW) (0.19) (0.03)
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Table TA.10. Implied Volatility Differences across Portfolios

The table reports volatility smiles (or skews) for the five carry trade portfolios (Panel
A) and portfolios sorted on their lagged volatility beta (Panel B). For each of the five
portfolios, we report the difference between the (log of ) implied volatility of 25-Delta puts
and 25-Delta calls (OTM options) as well as the difference between the (log of) implied
volatility of 10-Delta puts and 10-Delta calls (for OTM options). Numbers shown are for
average implied volatilities across currencies in a specific portfolios and log differences are
multiplied by 100 so that differences are in percent. The last column (“5 — 1”) shows the
average difference between portfolio 5 and portfolio 1. Numbers in squared brackets are
t-statistics based on HAC standard errors.

Panel A: Carry Trade Portfolios
Portfolio 1 2 3 4 ) 5-1

25-Delta Put — 25-Delta Call 4.07 257 254 347 6.17 2.10
[2.53] [2.59] [3.96] [3.14] [4.16]  [1.11]
10-Delta Put — 10-Delta Call -7.96 2.20 5.07 15.85 26.17 34.12
[-3.91] [1.47] [1.77] [5.50] [9.47] [10.11]

Panel B: Portfolios based on Volatility Betas
Portfolio 1 2 3 4 ) 5-1

25-Delta Put - 25-Delta Call ~ 5.90 520 3.06 045 -0.99  -6.90
[4.45] [3.50] [1.32] [0.25] [-0.80] [-3.65]
10-Delta Put — 10-Delta Call  10.53  9.61 742 167 -1.19 -11.72
[4.99] [4.00] [1.67] [0.52] [-0.56] [-3.75]
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Table IA.11. FMB Estimates: Liquidity Risk

The setup is identical to Table V in the main paper but here we report results based on
FMB two-pass estimation.

Panel A: Factor Prices — Global bid-ask spreads

All countries (with b-a) Developed countries (with b-a)
FMB  DOL BAS X2, 4w FMB DOL BAS %y o
A 0.21 -0.03 4.42 2.85 A 0.22 -0.02 296 2.96
(Sh)  (0.20) (0.01) (0.22) (0.42)  (Sh)  (0.19) (0.01) (0.40) (0.40)
(NW) (0.15) (0.02) (NW) (0.17) (0.01)

Panel B: Factor Prices — TED spread

All countries (with b-a) Developed countries (with b-a)
FMB DOL TED x2; 4w FMB DOL TED iy o
A 0.21 -0.36  2.03 2.31 A 0.22 -0.20 1.72 1.16
(Sh)  (0.12) (0.16) (0.57) (0.51)  (Sh)  (0.14) (0.09) (0.63) (0.76)
(NW) (0.15) (0.20) (NW) (0.17) (0.13)

Panel C: Factor Prices — Pastor/Stambaugh liquidity measure

All countries (with b-a)

FMB DOL PS X%, Xaw FMB DOL PS 35, Cw
) 0.18 005 6.65 1148 A 018 005 051 0.0
(Sh)  (0.12) (0.02) (0.08) (0.01)  (Sh) (0.14) (0.02) (0.92) (0.85)

(NW)  (0.15) (0.03) (NW)  (0.17) (0.03)
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Table TA.12. FMB Estimates: Volatility and Liquidity Risk

The setup is identical to Table VI in the main paper but here we report results based on
FMB two-pass estimation.

Panel A: Volatility and global bid-ask spreads
FMB DOL BAS VOL i, Xiw

A 021 001 -0.08 065 081
(Sh)  (0.17) (0.02) (0.03) (0.72) (0.81)
(NW) (0.15) (0.02) (0.04)

Panel B: Volatility and TED spread
FMB DOL TED VOL xip Xiw

A 021 -0.08 -0.06 1.00 0.64
(Sh)  (0.12) (0.18) (0.03) (0.61) (0.73)
(NW) (0.15) (0.26) (0.03)

Panel C: Volatility and P/S liquidity measure
FMB  DOL PS VOL iy XAw

A 018 -0.01 -008 1.18  1.00
(Sh)  (0.12) (0.03) (0.03) (0.55) (0.61)
(NW) (0.15) (0.04) (0.03)
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Table TA.14. Descriptive Statistics: Unadjusted Returns

The setup of this table is identical to Table I in the main paper but we show results for
returns without transaction cost adjustments.

All countries (without b-a)

Portfolio 1 2 3 4 5 Avg.  H/L
Mean -1.73 034 325 383 629 241 8.02

[0.95] [0.22] [1.75] [2.11] [2.37] [1.41] [3.50]
Median -2.15 1.22 2.67 4.74 10.80 3.11  12.04
Std. Dev. 845 725 813 836 10.75 7.39  9.78
Skewness 0.18 -0.20 -0.28 -0.51 -0.64 -0.38 -1.04
Kurtosis 3.80 4.08 433 4.72 5.09 397  4.83
SR -0.21 0.0 040 046 059 033 0.82
AC(1) 0.04 0.09 0.14 0.11 0.23 0.14 0.17

(0.75) (0.27) (0.04) (0.15) (0.00) (0.05) (0.01)
Coskew (DOL) 0.36 -0.06 -0.15 -0.13 -0.05 -0.20

Coskew (MKT) 0.18 0.03 0.12 0.11 0.04 0.11 -0.12

Developed countries (without b-a)

Portfolio 1 2 3 4 5 Avg. H/L
Mean -0.97 1.97 2.41 3.31 5.18 2.38 6.15

048] [0.87] [1.19] [1.62] [2.07] [1.22] [2.70]
Median -1.43 2.92 3.75 3.62 6.17 3.50 8.75
Std. Dev. 9.75 10.02 9.34 9.39 10.80 8.71 10.21
Skewness 0.14 -0.17 -0.14 -0.67 -0.26 -0.22 -0.92
Kurtosis 3.44 3.68 3.92 5.79 4.75 3.60 5.78
SR -0.10 0.20 0.26 0.35 0.48 0.27 0.60
AC(1) 0.02 0.11 0.12 0.12 0.17 0.12 0.13

(0.96) (0.14) (0.11) (0.12) (0.01) (0.12) (0.08)
Coskew (DOL) 0.30 -0.14 0.03 -0.32 0.03 -0.14

Coskew (MKT) 0.24  0.10 0.08 0.06 -0.11 0.08 -0.36
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Table TA.15. Cross-Sectional Asset Pricing Results: Full Transaction Costs

The setup of this table is identical to Table II in the main paper but here we adjust excess
returns for transaction costs that would occur under 100% portfolio turnover each month

as in Lustig, Roussanov, and Verdelhan (2010).

Panel A: Factor Prices

All countries (with b-a)

Developed countries (with b-a)

GMM DOL VOL R?* HJ-dist GMM DOL VOL R? HJdist
b 0.00 -7.15  0.97 0.08 b 0.02 -438 094 0.06
se.  (0.06) (3.51) (082)  se.  (0.03) (3.15) (0.89)
A 021  -0.07 A 0.22  -0.06

se.  (0.28) (0.03) se.  (0.23) (0.04)

FMB  DOL VOL X%,  Xaw  FMB DOL VOL %y,
A 0.22 -0.06 0.95 2.18 A 0.22 -0.06 0.95 1.63
(Sh)  (0.16) (0.02) (0.81) (0.54) (Sh)  (0.16) (0.02) (0.81) (0.65)
(NW) (0.12) (0.03) (NW) (0.14) (0.03)

Panel B: Factor Betas
All countries (with b-a) Developed countries (with b-a)

PF a DOL VOL R? PF a DOL  VOL R?
1 -0.29  1.01 4.34 0.76 1 -0.23  0.94 4.85 0.71
(0.08) (0.05) (0.71) (0.09) (0.05) (1.59)

2 -0.15  0.84 1.00 0.74 2 -0.05  1.05 0.84 0.82
(0.07) (0.05) (0.59) (0.07) (0.04) (0.86)

3 0.05 0.97 -0.30 0.79 3 -0.02 1.01 -0.11 0.88
(0.06) (0.05) (0.58) (0.05) (0.03) (0.67)

4 0.09 1.02  -1.06 0.83 4 0.07 096 -241 0.82
(0.07) (0.05) (0.71) (0.07) (0.03) (1.07)
> 0.30 1.15  -3.98 0.67 ) 0.24 1.04 -3.18 0.72
(0.12) (0.07) (1.17) (0.10) (0.05) (1.06)
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Table TA.16. Cross-Sectional Asset Pricing Results: Simple Volatility Changes

The setup of this table is identical to Table II in the main paper but here we use simple
volatility innovations (i.e. first differences of our proxy for global foreign exchange volatility,

ol — of %) instead of residuals from an AR(1). The sample period is 12/1983 — 08/2009.

FX

Panel A: Factor Prices

All countries (with b-a)

Developed countries (with b-a)

GMM DOL VOL R? HJ-dist GMM DOL VOL R*  HJ-dist
b 0.01 -7.57 091 0.12 b 0.02 -438 094 0.06
se.  (0.05) (3.42) (056)  se.  (0.03) (2.73) (0.89)
A 0.21  -0.09 A 0.22  -0.06

s.e. (0.24) (0.04) s.e. (0.22) (0.04)

FMB  DOL VOL %, 3w  FMB DOL VOL %,
A 0.21  -0.09 247 3.86 A 022 -0.06 0.95 0.83
(Sh)  (0.16) (0.03) (0.48) (0.28)  (Sh)  (0.16) (0.02) (0.81) (0.84)
(NW) (0.12) (0.04) (NW) (0.14) (0.03)

Panel B: Factor Betas
All countries (with b-a) Developed countries (with b-a)

PF o DOL VOL R? PF o} DOL VOL R?
1 -0.29  1.00 2.93 0.75 1 -0.23 094 4.52 0.71
(0.08) (0.05) (0.72) (0.09) (0.05) (1.42)

2 -0.15 0.84 0.56 0.74 2 -0.05  1.05 0.43 0.82
(0.06) (0.04) (0.57) (0.07) (0.04) (0.89)

3 0.05 0.98 0.33 0.79 3 -0.02  1.01 0.01 0.88
(0.06) (0.04) (0.58) (0.05) (0.03) (0.64)

4 0.09 1.03  -0.26 0.82 4 0.07 096 -1.94 0.82
(0.06) (0.04) (0.64) (0.07) (0.03) (0.97)

5 031 115 -356  0.66 5 024 104 -3.02 073
(0.11) (0.06) (1.08) (0.10) (0.05) (1.09)
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Table TA.17. Cross-Sectional Asset Pricing Results: Implied Volatility

The setup of this table is similar to Table II in the main paper but we only consider net
returns for the All countries sample. The left part shows results for using innovations to the
JP Morgan currency VIX for the G-7 countries and the right part shows results for using
innovations to the S&P500 VIX index. The samples start in 1992:06 for the JP Morgan
currency VIX and in 1986:02 for the S&P 500 VIX, respectively.

Panel A: Factor Prices

All countries (with b-a), JPM G-7 VIX

All countries (with b-a), S&P500 VIX

GMM DOL AVIX R? HJ-dist GMM DOL AVIX R? HJ-dist
b -0.03  -0.59 0.92 0.15 b 0.00 -0.18 0.90 0.15
s.e. (0.09) (0.33) (0.49) s.e. (0.08) (0.11) (0.37)
A 0.11 -0.71 A 0.21 -4.01

se.  (0.36) (0.40) se.  (0.33)  (242)

FMB DOL AVIX Xy G  FMB  DOL AVIX X2y Cow
A 0.11 -0.70 3.48 0.25 A 0.21 -4.01 3.79 0.32
(Sh)  (0.16) (0.24) (0.32) (0.97)  (Sh)  (0.16) (1.37) (0.29)  (0.96)
(NW) (0.16) (0.32) (NW)  (0.14) (1.63)

Panel B: Factor Betas

All countries (with b-a), JPM G-7 VIX

All countries (with b-a), S&P500 VIX

PF a  DOL AVIX R’ PF a  DOL AVIX R
1 031 090 048  0.69 1 031 097 007 071
(0.09)  (0.06)  (0.11) (0.09)  (0.05)  (0.01)

2 015 085 012  0.73 2 017 084 001  0.73
(0.07)  (0.05)  (0.06) (0.06)  (0.04)  (0.01)

3 007 100 003 077 3 007 102 001 081
(0.07)  (0.05)  (0.06) (0.06)  (0.04)  (0.02)

4 003 1.02 -0.16 0.0 4 007 105  -0.02 083
(0.07)  (0.05)  (0.08) (0.06)  (0.04)  (0.02)

5 037 124  -046  0.67 5 034 113  -009 065
(0.13)  (0.10)  (0.14) (0.12)  (0.07)  (0.03)
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Table TA.18. Descriptive Statistics: Other Base Currencies

This table reports descriptive statistics for currency portfolios as in Table I in the main
paper but portfolio returns are measured in GBP, JPY, or CHF, respectively. Also, in this
table, coskewness is measured with respect to the average global currency excess return
against the respective base currency and not the USD so that we denote it by Coskew

(Avg.).

Base currency: GBP

Portfolio 1 2 3 4 5 Avg. H/L
Mean -1.80 -0.44 2.31 2.84 542 1.67  7.23

[-0.97] [-0.26] [1.59] [1.90] [2.77] [1.23] [3.13]
Median -3.92  -0.25 4.52 3.10 6.83 2.09 11.55
Std. Dev. 8.42 8.10 7.23 7.38  9.73 6.85  9.81
Skewness 0.91 0.30  -0.06 0.40 -0.40 0.40 -1.03
Kurtosis 6.40 5.86 6.29 6.64  4.98 5.84  4.79
SR -0.21  -0.05 0.32 0.39  0.56 0.24  0.74
AC(1) 0.15 0.09 0.04 0.06 -0.01 0.03  0.18

(0.03) (0.26) (0.80) (0.58) (0.99) (0.86) (0.01)
Coskew (Avg.) 045 0.07 -024  0.11 -0.27 -0.38

Base currency: JPY

Portfolio 1 2 3 4 5 Avg. H/L
Mean -5.01  -365 -0.89 -0.36 222 -154 @ 7.23

[-3.03] [-1.62] [-0.37] [-0.14] [0.73] [-0.71] [3.13]
Median -1.38  -1.56 4.94 4.84 10.23 240 11.55
Std. Dev. 7.97 9.96 11.01 11.10 13.34 9.82 9.1
Skewness -1.13 -0.v8 -1.59 -1.01 -094 -1.08 -1.03
Kurtosis 8.11 5.71  10.23 6.67  4.86 6.90  4.79
SR -0.63 -0.37  -0.08 -0.03 017 -0.16 0.74
AC(1) 0.03 0.10 0.09 0.12  0.12 0.09  0.18

(0.90) (0.21) (0.32) (0.09) (0.10) (0.26) (0.01)
Coskew (Avg.) -0.14 0.19  -0.56 0.00  0.30 0.28

Base currency: CHF

Portfolio 1 2 3 4 5 Avg. H/L
Mean -4.19  -2.83  -0.08 045  3.03 -0.72  7.23

[-3.21] [-1.83] [-0.05] [0.29] [1.24] [-0.53] [3.13]
Median -5.57 0.00 2.44 1.61  3.52 0.46 11.55
Std. Dev. 6.37 7.70 7.11 7.51 1141 6.84  9.81
Skewness 046 -0.39 -0.61 -0.30 -0.75 -0.38 -1.03
Kurtosis 5.47 4.54 4.13 3.70  4.23 3.71  4.79
SR -0.66  -0.37  -0.01 0.06 027 -0.11  0.74
AC(1) 0.04 0.01 0.01 0.06  0.06 0.00  0.18

0.77)  (0.99) (0.99) (0.59) (0.61) (1.00) (0.01)
Coskew (Avg.) 039 008 -0.18 -0.01 -0.21 -0.32
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Table TA.20. Cross-Sectional Asset Pricing Results: Non-Linearities

The setup of this table is similar to Table II in the main paper but we only look at the
five carry trade portfolios for the all countries sample and we investigate non-linearities in
the relationship of volatility innovations and carry trade returns. The left part of the table
shows results where we only use positive volatility innovations and the right part of the
table shows results where we only use negative volatility innovations.

Panel A: Factor Prices

All countries (with b-a), A VOL >0 All countries (with b-a), A VOL <0
GMM DOL VOL R?* HJ-dist GMM DOL  VOL R?*  HJ-dist
b -0.01  -9.78  0.98 0.06 b 0.03 -25.58 091 0.13
se.  (0.06) (5.07) (091)  se.  (0.05) (11.30) (0.52)
A 0.21  -0.05 A 0.21 -0.06
se.  (0.31) (0.03) se.  (0.22)  (0.03)
FMB DOL VOL %y,  X%w  FMB DOL VOL iy  Gow
A 021 -0.05 0.84 1.17 A 0.21 -0.06 2.19 3.50
(Sh)  (0.15) (0.02) (0.84) (0.76)  (Sh)  (0.19) (0.02) (0.53) (0.32)
(NW) (0.15) (0.02) (NW) (0.15) (0.03)
Panel B: Factor Betas
All countries (with b-a), A VOL >0 All countries (with b-a), A VOL <0
PF a DOL VOL R? PF « DOL  VOL R?
1 -0.52  1.02 6.08 0.76 1 -0.08 0.99 5.69 0.74
(0.08) (0.04) (1.09) (0.10)  (0.05) (1.19)

2 -0.22 0.85 1.76 0.74 2 -0.13 0.84 0.46 0.74
(0.07) (0.04) (0.81) (0.08) (0.04) (1.21)

3 0.08 097 -0.74 0.79 3 0.07 0.98 0.39 0.79
(0.06) (0.04) (0.87) (0.09)  (0.04) (1.29)

4 0.14 1.02  -1.33 0.83 4 0.02 1.03 -1.79 0.83
(0.06) (0.04) (1.11) (0.08) (0.04) (0.98)

5 0.52 1.14  -5.77 0.67 ) 0.12 1.17 -4.75 0.65
(0.11)  (0.06) (1.85) (0.15)  (0.06) (1.87)
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Table TA.21. Cross-Sectional Asset Pricing Results: Sub-Samples

The setup of this table is similar to Table II in the main paper but we only look at the five
carry trade portfolios for the all countries sample and we split the whole sample into two
subsamples. The left part of the table shows results for the sample period 1983 — 1995,
whereas the right part shows results for the period 1996 — 2009.

Panel A: Factor Prices

All countries (with b-a), 1983 — 1995 All countries (with b-a), 1996 — 2009

GMM DOL VOL R*  HJ-dist GMM DOL VOL R?>  HJ-dist
b 0.06 -3.72 0.75 0.10 b -0.10 -10.16  0.97 0.14
se.  (0.05) (3.92) 078)  se.  (0.10) (5.19) (0.76)
A 0.32  -0.05 A 0.11  -0.08

s.e. (0.28) (0.05) s.e. (0.46) (0.05)

FMB DOL VOL %5y Gw  FMB DOL VOL %,  Gw
A 0.32  -0.06 1.26 6.12 A 0.11  -0.08 1.72 2.27
(Sh)  (0.21) (0.04) (0.74) (0.11)  (Sh)  (0.20) (0.03) (0.63) (0.52)
(NW) (0.22) (0.05) (NW) (0.19) (0.03)

Panel B: Factor Betas

All countries (with b-a), 1983 — 1995

All countries (with b-a), 1996 — 2009

PF a DOL VOL R PF « DOL VOL R’
1 0.17 1.06 362 0.8 1 041 095 491  0.73
(0.12) (0.06) (1.01) (0.09) (0.04) (0.81)

2 009 082 004 071 2 2020 089 245  0.78
(0.10)  (0.06) (0.92) (0.07) (0.04) (0.63)

3 005 099 -0.78 081 3 005 096 022 075
(0.09) (0.06) (0.84) (0.08) (0.06) (1.05)

4 013 1.05 -0.60  0.82 4 0.05 098 -1.75  0.83
(0.10)  (0.06) (1.06) (0.07) (0.05) (0.91)

5 007 109 -219  0.69 5 052 122 -584  0.66
(0.15)  (0.07) (1.49) (0.15)  (0.11) (2.04)
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Figure TA.1. Global FX Volatility for Alternative Base Currencies

(a) Base Currency: GBP
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This figure shows our proxy for global FX volatility for other base currencies. Base cur-
rencies are the Great Britain Pound (Panel (a)), the Japanese Yen (Panel (b)), and the
Swiss Franc (Panel (c)). The upper (blue) line shows volatility levels whereas the lower
(red) line shows volatility innovations.
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Figure IA.2. Option Portfolios
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The figure shows annualized average excess returns (left panel) and annualized Sharpe
Ratios (right panel) for option portfolios. Option strategies considered are risk reversals
(long 25-Delta put, short 25-Delta call), bull spreads (long ATM call, short 25-Delta calls),
and bear spreads (long ATM put, short 25-Delta puts). For each of the three strategies, we
form four portfolios where the underlying currencies are sorted into portfolios according to
their lagged forward discount. Returns are monthly and the sample is 02/1996 — 08/2009.
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