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1 Introduction

The econometrician often faces a dilemma when observations are sampled at different

frequencies. One solution consists in estimating the model at the lowest frequency, tempo-

rally aggregating the high-frequency data. However, this solution is not fully satisfactory

since important information can be discarded in the aggregation process. A second solution

is to temporally disaggregate (interpolate) the low frequency variables. However, there is no

agreement on the proper interpolation method, and the resulting high frequency variables

would be affected by measurement error.

The third option is represented by regression models that combine variables sampled at

different frequencies. They are particularly attractive since they can use the information

of high-frequency variables to explain variables sampled at a lower frequency without any

prior aggregation or interpolation. In this context, the MIDAS (Mixed Data Sampling)

model of Ghysels et al. (2004, 2007) has recently gained considerable attention. A crucial

feature of this class of models is the parsimonious way of including explanatory variables

through a weighting function, which can take various shapes depending on the value of its

parameters.

MIDAS models have been applied for predicting both macroeconomic and financial

variables. Ghysels, Santa-Clara and Valkanov (2006) use the MIDAS framework to predict

the volatility of equity returns, while Clements and Galvão (2008, 2009) successfully apply

MIDAS models to the prediction of quarterly US GDP growth using monthly indicators as

high frequency variables. Andreou, Ghysels and Kourtellos (2010) exploit the informational

content of daily financial variables to predict quarterly GDP and inflation in the US.

In particular, they extend the standard MIDAS model to include factors in a dynamic

framework, along the lines of Marcellino and Schumacher (2010).

MIDAS models are generally used as single-equation models where the dynamics of the

indicator is not modelled. By contrast, system-based models such as the mixed-frequency

VAR (MF-VAR) explicitly model the dynamics of the indicator. Kuzin, Marcellino and

Schumacher (2009) compare the forecasting performance of MIDAS and MF-VAR models
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for the prediction of the quarterly GDP growth in the Euro area. They find that MIDAS

models outperform MF-VAR for short horizons (up to five months), while MF-VAR tend

to perform better for longer horizons. A similar comparison is provided in Bai, Ghysels

and Wright (2010).

An issue that has attracted so far limited attention in the MIDAS literature is the

stability of the relationship between the high and low frequency variables. Time-variation

in MIDAS models has been only introduced by Galvão (2009) via a smooth transition

function governing the change in some parameters of the model. This Smooth Transition

MIDAS is applied to the prediction of quarterly US GDP using weekly and daily financial

variables.

In this paper, we propose an alternative way to allow for time-variation in the MIDAS

model, introducing the Markov-switching MIDAS (MS-MIDAS) model. Regime changes

may result from asymmetries in the process of the mean or variance. From an economic

point of view, the predicting ability of the higher frequency variables could change across

regimes following, e.g., changes in market conditions or business cycle phases. For example,

the slope of the yield curve is often considered as a strong predictor of US recessions, an

inverted yield curve signaling a forthcoming recession. However, Galbraith and Tkacz

(2000) argue that the predictive power of the slope of the yield curve is limited in normal

times. Therefore, it could be important to permit time-variation in the predictive ability

of the high-frequency data. Indeed, our empirical applications show that in general the

predictions from MS-MIDAS models are more accurate than those from simple MIDAS

models.

An additional attractive feature of Markov-switching models is the possibility of esti-

mating and predicting the probabilities of being in a given regime. The literature (e.g.,

Estrella and Mishkin (1998), Birchenhall et al. (1999)) often uses binary response models

to predict the state of the economy using the NBER dating of expansions and contractions

as a dependent variable. However, this method can be problematic since the announce-

ments of turning points may be published up to twenty months after the turning point

3



has actually occurred. Our MS-MIDAS model instead allows for real time evaluation and

forecasting of the probability of being in a given regime.

Finally, MS-MIDAS is also a convenient approach to allow for the use of mixed fre-

quency information in standard Markov-switching models. Hamilton (2010) pointed out

the importance of using models with mixed frequency data for predicting recessions in real

time. In our applications, the forecasting performance of standard MS models is indeed

improved by the use of higher frequency information.

The paper is organized as follows. Section 2 reviews the MIDAS approach, introduces

the MS-MIDAS, and discusses the estimation method. Section 3 presents Monte-Carlo

simulations to assess the accuracy of the proposed estimation method in finite samples

and its forecasting accuracy. Section 4 discusses an empirical application to the prediction

of quarterly GDP growth and business cycle turning points in the US and the UK. Both

empirical applications use financial variables as indicators. Section 5 concludes.

2 Markov-switching MIDAS

2.1 MIDAS approach

2.1.1 Basic MIDAS

The MIDAS approach of Ghysels et al. (2004, 2007) involves the regression of variables

sampled at different frequencies. Following the notation of Clements and Galvão (2008,

2009), and assuming that the model is specified for h-step ahead forecasting, the basic

univariate MIDAS model is given by:

yt = β0 + β1B(L1/m; θ)x
(m)
t−h + εt (1)

where B(L1/m; θ) =
∑K
j=1 b(j; θ)L

(j−1)/m and Ls/mx
(m)
t−1 = x

(m)
t−1−s/m. Note that t refers to

the time unit of the dependent variable yt and m to the time unit of the higher frequency

variables x
(m)
t−h.
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The forecasts of the MIDAS regression are computed directly so that no forecasts for

the explanatory variables are required. However, unlike iterated forecasts, direct forecasts

require to re-estimate the model when the forecasting horizon changes, see Chevillon and

Hendry (2005) and Marcellino, Stock and Watson (2006) for a comparison of the relative

merits of iterated and direct forecasts.

The crucial difference between MIDAS and Autoregressive Distributed Lag models is

that the content of the higher frequency variable is exploited in a parsimonious way through

the polynomial b(j; θ), which allows to have a rich variety of shapes with a limited number

of parameters. Ghysels et al. (2007) detail various specifications for the polynomial of

lagged coefficients b(j; θ). A popular choice for the weighting scheme is the exponential

Almon lag:

b(j; θ) =
exp(θ1j + ...+ θQj

Q)∑K
j=1 exp(θ1j + ...+ θQjQ)

(2)

Note that the weighting function of the exponential Almon lag implies that the weights

are always positive. In the empirical applications, we employ the exponential Almon lag

scheme with two parameters θ = {θ1, θ2}.

2.1.2 Autoregressive MIDAS

Introducing an autoregressive lag in the MIDAS specification is not straightforward

as pointed out by Clements and Galvão (2008), who show that a seasonal response of y

to x can appear. However, this can be done without generating any seasonal patterns

if autoregressive dynamics is introduced through a common factor, so that equation 1

becomes:

yt = β0 + λyt−d + β1B(L1/m; θ)(1− λLd)x(m)
t−h + εt (3)

2.2 Markov-switching MIDAS

2.2.1 The model

The basic idea behind Markov-switching models is that the parameters of the underlying

data generating process (DGP) depend on an unobservable discrete variable St, which rep-
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resents the probability of being in a different state of the world (see Hamilton (1989)). The

basic version of the Markov-switching MIDAS (MS-MIDAS) regression model we propose

is:

yt = β0(St) + β1(St)B(L1/m; θ)x
(m)
t−h + εt(St) (4)

where εt|St ∼ NID(0, σ2(St)).

The MS-MIDAS that includes autoregressive dynamics is instead defined as:

yt = β0(St) + λyt−d + β1(St)B(L1/m; θ)(1− λLd)x(m)
t−h + εt(St) (5)

The regime generating process is an ergodic Markov-chain with a finite number of states

St = {1, ...,M} defined by the following transition probabilities:

pij = Pr(St+1 = j|St = i) (6)

M∑
j=1

pij = 1∀i, jε{1, ...,M} (7)

Here the transition probabilities are constant. This assumption has been originally

relaxed by Filardo (1994), who used time-varying transition probabilities modelled as a

logistic function, while Kim et al. (2008) model them as a probit function. However, we

stick to the assumption of constant transition probabilities to keep the model tractable.

The parameters that can switch are the intercept of the equation, β0, the parameter

entering before the weighting scheme, β1, and the variance of the disturbances, σ2. Changes

in the intercept β0 are important since they are one of the most common sources of forecast

failure, see e.g. Clements and Hendry (1999). The switch in the parameter β1 allows the

predictive ability of the higher frequency variable to change across the different states of

the world 1. Besides, we also allow the variance of the disturbances σ2 to change across

1Galvão (2009) proposed a regression model (STMIDAS) that captures changes in β1 with a smooth
transition function. This so-called STMIDAS model performs well for the prediction of the US GDP using
financial variables as high frequency data.
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regimes. This proves to be useful not only for modelling financial variables but also for

applications with macroeconomic variables.

Another attractive feature of the Markov-switching models is that they allow the esti-

mation of the probabilities of being in a given regime. This is relevant, for example, when

one wants to predict business cycle regimes. Indeed, studies about the identification and

prediction of the state of the economy have gained attention over the last decade (see e.g.

Estrella and Mishkin (1998), Berge and Jordá (2009), Stock and Watson (2010), and the

literature review in Marcellino (2006)).

2.2.2 Estimation and model selection

In the literature, MIDAS models are usually estimated by nonlinear least squares (NLS).

However, for implementing the filtering procedure described in Hamilton (1989), we esti-

mate the MS-MIDAS via (pseudo) maximum likelihood. We thus need to make a normality

assumption about the distribution of the disturbances, which is not required with the NLS

estimation. We aim at maximizing the log-likelihood function given by:

L =
T∑
t=1

lnf(yt|Ωt−1) (8)

where f(yt|Ωt−1) is the conditional density of yt given the information available up to time

t− 1, Ωt−1. Note that f(yt|Ωt−1) can be rewritten as:

f(yt|Ωt−1) =
M∑
j=1

P (St = j|Ωt−1)f(yt|St = j,Ωt−1) (9)

The computations are carried out with the optimization package OPTMUM of GAUSS

7.0 using the BFGS algorithm. Appendix A provides more details about the estimation

method we use.

Choosing the number of regimes for Markov-switching models is a tricky problem. In-

deed, the econometrician has to deal with two problems: first, some parameters are not

identified under the null hypothesis and, second, the scores are identically equal to zero
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under the null. Hansen (1992) considers the likelihood function as a function of unknown

parameters and uses empirical processes to bound the asymptotic distribution of a stan-

dardized likelihood ratio test statistic. Garćıa (1998) pointed out that the test is com-

putationally expensive if the number of parameters and regimes is high. Carrasco et al.

(2009) recently proposed a new method for testing the constancy of parameters in Markov-

switching models. Their procedure is attractive since it only requires to estimate the model

under the null hypothesis of constant parameters. However, this testing procedure does

not allow one to discriminate between Markov-switching models with different number of

regimes since the parameters must be constant under the null hypothesis.

Psaradakis and Spagnolo (2006) study the performance of information criteria based

on the optimization of complexity-penalized likelihood for model selection. They find that

the AIC, SIC and HQ criteria perform well for selecting the correct number of regimes

and lags as long as the sample size and the parameter changes are large enough. Smith,

Naik and Tsai (2006) propose a new information criterion for selecting simultaneously the

number of variables and lags of the Markov-switching models. However, both studies run

their analysis with models where all parameters switch across regimes, which might not

always be desirable. For example, in equations 4 and 5, we do not consider switches in the

vector of parameters θ since we encountered serious convergence problems in the empirical

applications due to the relatively small size of our sample (T=200). However, with larger

sample sizes, the MS-MIDAS model could easily accommodate changes in the θ vector. In

addition, Driffill et al. (2009) show that a careful study of the parameters that can switch

is crucial for forecasting accurately bond prices with the CIR model for the term structure.

In the empirical part, we will follow Psaradakis and Spagnolo (2006) and use the Schwarz

information criterion for selecting the number of regimes and deciding whether the variance

of the disturbances should also change across regimes. We will also report results for

different parameterizations of the Markov-switching models.
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3 Monte Carlo experiments

3.1 In-sample estimates

The first purpose of the Monte Carlo experiments is to assess the accuracy of the

maximum likelihood estimation procedure we propose for the MS-MIDAS model. The

DGP used in the Monte Carlo experiments is the MSHAR(2)-MIDAS model defined by

equations (5) to (7), i.e. it is a model with two regimes and switches in the intercept β0,

in the parameter entering before the weighting function β1 and in the variance σ2, since

models with two regimes are often used in the literature. We consider two sample sizes for

the simulated series T = 200 and T = 500. The matrix of explanatory variables includes a

constant and the process for x
(m)
t is an AR(1) with a large autoregressive coefficient (0.95)

and a small drift (0.025). We are primarily interested in the predictive content of monthly

variables for forecasting quarterly variables, so we set K = 3 and K = 13. We use the

following true parameter values:

(β0,1, β0,2) = (−1, 1), (β1,1, β1,2) = (0.6, 0.2), (σ1, σ2) = (1, 0.67) (10)

(θ1, θ2) = (2 ∗ 10−1,−3 ∗ 10−2) (11)

These parameter values are similar to those used in Kim, Piger and Startz (2008)

and closely match the in-sample parameter estimates of our empirical application for the

UK (see Table B in the appendix). The transition probabilities are first set such that

both regimes are equally persistent (p11 = 0.95, p22 = 0.95). We also consider another

set of transition probabilities: p11 = 0.85 and p22 = 0.95. Indeed, with these transition

probabilities, if one thinks of yt as quarterly observations, the duration of the first regime

(6.67 quarters) is lower than the duration of the second regime (20 quarters), which roughly

corresponds to the average duration of recessions and expansions experienced by the US

and the UK.

We first simulate a Markov chain with two regimes using one of the two sets of transition

probabilities. The dependent variable yt is then constructed depending on the outcome of
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the simulated Markov chain using the above parameter values and the simulated series for

xt. The first 100 data points are discarded to eliminate start-up effects2. We repeat the

estimation 1000 times and report the means of the maximum likelihood point estimates

3. In addition, we report the standard deviations of the point estimates from the true

parameter values.

We do not show the point estimates for θ1 and θ2 but rather the approximation error

computed as the sum of the squared error between the estimated and the true weighting

function, normalized by the squared weights of the true weighting function. We proceed

this way since it is the shape of the weighting function which is important rather than the

point estimates for θ1 and θ2. The approximation error is defined by:

∑M=K
j=1 [b(j, θ̂)− b(j, θ)]2∑M=K

j=1 b(j, θ)2
(12)

Table 1 shows that the parameter estimates for the intercepts β0,1 and β0,2, the autore-

gressive parameter λ and the transition probabilities p11 and p22 are very close to their

true values. The estimates for β1,1 and β1,2 - the parameters entering before the weighting

function - are slightly downward biased. The standard deviations for the estimates are

lower when the sample size is large, as expected. Similarly, the shape of the weighting

function is better approximated for T = 500 and the average R2 is higher.

Overall, the Monte Carlo experiments suggest that maximum likelihood estimation

of this specification of the MSHAR(2)-MIDAS provides accurate estimates of the model

parameters, including the transition probabilities.

3.2 Forecasting exercise

We carry out another Monte Carlo experiment to assess the forecasting accuracy of the

MS-MIDAS model. To this end, we generate data from the D.G.P. used in the previous

2Discarding more than 100 initial observations leads to identical results.
3Note that we do not initialize the algorithm with the true parameter values. Instead, we use the same

rule of thumb than in the empirical applications for the initialization of the parameters (i.e. we run OLS
regressions on sub-samples after sorting the xt variable with respect to the dependent variable yt).

10



Table 1: Monte Carlo Results, In Sample Estimates

p11 = 0.95 p11 = 0.95 β0,1 = −1 β0,2 = 1 β1,1 = 0.6 β1,2 = 0.2 λ = 0.2 R2 Approx.
error

K=3
T=200 0.936 0.946 -1.043 1.042 0.504 0.170 0.165 0.769 0.262

(0.039) (0.032) (0.224) (0.140) (0.103) (0.056) (0.074)

T=500 0.944 0.949 -1.042 1.028 0.532 0.181 0.174 0.795 0.157
(0.018) (0.016) (0.116) (0.074) (0.045) (0.023) (0.042)

K=13
T=200 0.935 0.945 -1.047 1.041 0.501 0.174 0.163 0.768 0.256

(0.040) (0.028) (0.242) (0.137) (0.104) (0.046) (0.074)

T=500 0.944 0.949 -1.036 1.037 0.532 0.181 0.172 0.793 0.174
(0.019) (0.016) (0.117) (0.077) (0.044) (0.022) (0.044)

p11 = 0.85 p11 = 0.95 β0,1 = −1 β0,2 = 1 β1,1 = 0.6 β1,2 = 0.2 λ = 0.2 R2 Approx.
error

K=3
T=200 0.808 0.951 -1.015 1.030 0.455 0.176 0.178 0.734 0.237

(0.114) (0.025) (0.455) (0.116) (0.211) (0.033) (0.069)

T=500 0.832 0.952 -1.025 1.026 0.506 0.180 0.181 0.769 0.133
(0.053) (0.014) (0.185) (0.065) (0.081) (0.017) (0.040)

K=13
T=200 0.816 0.950 -0.993 1.035 0.451 0.175 0.176 0.730 0.234

(0.097) (0.028) (0.423) (0.121) (0.193) (0.032) (0.070)

T=500 0.833 0.951 -1.032 1.022 0.507 0.181 0.185 0.772 0.149
(0.051) (0.014) (0.191) (0.065) (0.076) (0.017) (0.041)

This table reports the average of the 1000 point estimates of the Monte Carlo experiments. The last

column reports the average approximation error for the weighting scheme as defined by equation 12.

Standard deviations of the 1000 point estimates are reported in brackets.
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subsection with the parameter values defined in equations 10 and 11 with a sample size of

T=200 and T=500 using 13 lags for the high frequency indicator xmt . The sample size T

is split between an estimation sample and an evaluation sample. We choose three different

sizes H for the evaluation sample, H = {20, 50, 100}. We then run the following out-of-

sample forecasting experiment: we use the first T-H observations and compute one-step

ahead forecasts 4. We recursively expand the estimation sample until we reach the end of

the sample T so that we compute H forecasts. The design of this forecasting experiment is

very close to the empirical application we run later in the paper.

We use seven different models to compute the forecasts: the MSHAR(2)-MIDAS model

(i.e. the true model), the MSH(2)-MIDAS model (i.e. the true model without an au-

toregressive lag), a standard MIDAS and AR-MIDAS models as defined in equations 1

and 3 respectively. We also consider an AR(1) model and a standard Markov-switching

model with two regimes, a switch in the intercept and in the variance of the disturbances

and one autoregressive lag (i.e. MSIHAR(2) model). Finally, we also show the results

for an MSIHAR(2)-MIDAS model (i.e. a model with a constant β1). We always use the

true number of lags (K = 13) for the high frequency variable xmt when the models have

mixed-frequency data.

We repeat the forecasting experiment N times for each evaluation sample and report

in Table 2 the average of the mean square forecast error over the number of replications

for the seven models under consideration. We also report the Quadratic Probability Score

(QPS) and Log Probability Score (LPS) for the models with Markov-switching features in

order to check how well these models can predict the true regimes. Here, the MSFE is a

criterion that allows us to assess the quantitative forecasting abilities of the model under

scrutiny, whereas QPS and LPS criteria evaluate their qualitative forecasting abilities, i.e.

to what extent the true regimes are predicted.

4Note that we use a different estimation sample for each H in order to consider the common trade-off in
empirical analysis between a longer estimation sample or a longer evaluation sample. Our results suggest
that, as long as the estimation sample remains long enough, a longer evaluation sample is to be preferred
to a longer estimation sample.
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Note that the QPS is bounded between 0 and 2 and the range of LPS is 0 to ∞. LPS

penalizes large forecast errors more than QPS. LPS and QPS are computed as follows:

QPS =
2

H

H∑
t=1

(P (St+1 = 1)− St+1)
2 (13)

LPS = − 1

H

H∑
t=1

(1− St+1)log(1− P (St+1 = 1)) + St+1log(P (St+1 = 1)) (14)

where St+1 is a dummy variable that takes on a value of 1 if the true regime is the first

regime and P (St+1 = 1) is the predicted probability of being in the first regime in period

t+1.

For T = 200, Table 2 shows that the true model (i.e. the MSHAR(2)-MIDAS) gets

the best results for the MSFE, QPS and LPS when the size of the evaluation sample is

H = 100. The MSH(2)-MIDAS model obtains the best results for H = 50 in terms of QPS

and LPS, while the AR(1) model gets the lowest MSFE. For H = 20, the true model yields

the best performance in terms of LPS and MSFE but it is slightly outperformed by the

MSIHAR model according to the QPS criterion.

For T = 500 and H = 100, the true model obtains the best performance for both discrete

and continuous forecasts. For H = 50, the true model obtains the best results in terms

of MSFE, whereas it is outperformed by the MSH(2)-MIDAS model in terms of QPS and

LPS criteria. Finally, for H = 20, the MSIHAR(2) model obtains the best regime forecasts

but it is outperformed by the MSIHAR(2)-MIDAS according to the MSFE criterion.

Overall, the true MS-MIDAS model is either ranked first or exhibits a performance

very close to the best model for both discrete and continuous forecasts. Besides, given the

DGP we use, the simple MIDAS model has a poor forecasting performance as compared

to the AR-MIDAS model. Finally, the MS and the AR(1) models yield rather inaccurate

continuous forecasts.
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Table 2: Monte Carlo Results: Forecasting exercise

Number of out-sample
forecasts H: 20 50 100

First estimation
sample size

QPS LPS MSFE QPS LPS MSFE QPS LPS MSFE

MSHAR(2)-MIDAS 0.398 0.609 1.432 0.300 0.447 1.782 0.295 0.464 1.207
MSIHAR(2) 0.392 0.642 1.709 0.370 0.584 1.617 0.872 1.690 1.301
MSH(2)-MIDAS 0.412 0.635 1.468 0.258 0.398 1.860 0.304 0.469 1.226
MSIHAR(2)-MIDAS 0.444 0.683 1.646 0.356 0.561 1.671 0.821 1.629 1.237
AR-MIDAS - - 1.563 - - 1.722 - - 1.423
MIDAS - - 2.510 - - 2.432 - - 1.738
AR(1) - - 1.596 - - 1.563 - - 1.456

Second estimation
sample size
MSHAR(2)-MIDAS 0.456 0.653 1.385 0.238 0.404 1.487 0.387 0.581 1.121
MSIHAR(2) 0.358 0.543 1.787 0.365 0.547 2.034 0.628 0.861 1.622
MSH(2)-MIDAS 0.524 0.736 1.442 0.216 0.374 1.519 0.403 0.605 1.183
MSIHAR(2)-MIDAS 0.361 0.546 1.326 0.326 0.498 1.625 0.536 0.758 1.342
AR-MIDAS - - 1.410 - - 1.711 - - 1.469
MIDAS - - 1.893 - - 2.202 - - 1.549
AR(1) - - 1.832 - - 1.931 - - 1.668

This table reports the average QPS, LPS and MSFE over 200 Monte Carlo replications. In the first

estimation sample, the initial estimation sample size is T −H where T = 200. In the second estimation

sample, the initial estimation sample size is T −H where T = 500. Both estimation samples are

recursively expanded until the end of the sample is reached. Entries in bold outline the model with the

lowest QPS, LPS or MSFE for each combination of the evaluation sample H and sample size T. The true

model is the MSHAR(2)-MIDAS model. A classification of the models is provided in Table E.
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4 An application to the prediction of quarterly GDP

4.1 Prediction of the US GDP

4.1.1 In-sample results

We analyze quarterly data for the US GDP, taken from the real-time dataset of the

Philadelphia Federal Reserve5, which originates from the work of Croushore and Stark

(2001). Quarterly vintages reflect the information available in the middle month of each

quarter. The dependent variable is taken as 100 times the quarterly change in the log of the

US real GDP from t=1959:Q1 to 2009:Q4. For the in-sample analysis, we use the 2010:Q1

vintage.

We first consider the slope of the yield curve as high frequency indicator since its

predictive power for GDP growth has been widely documented (Estrella and Hardouvelis

(1991), Galvão (2006), Rudebusch and Williams (2009)). We use the difference between

the 10-year Treasury bond and the 3-month Treasury-bill as a proxy for the slope of the

yield curve. We also consider stock returns as a monthly indicator for forecasting quarterly

aggregate economic activity. Stock returns are taken as 100 times the monthly change in

the log of the S&P500 index. We finally consider the Federal Funds as a monthly indicator

to take into account the stance of the monetary policy, which is often considered as an

important determinant of economic activity. We take the first difference for both the slope

of the yield curve and the Federal Funds since we achieve better forecasting results with

this transformation. The data for the 10-year Treasury bond yields, the 3-month Treasury

bill and the Federal Funds are taken from the Federal Reserve website, while the data for

the S&P500 index are downloaded from Yahoo Finance.

For selecting the number of regimes and whether there is also switching in the variance

of the disturbances, we use the SIC with a maximum number of regimes of M = 3. For

M = {2, 3}, we then estimate a model with or without a switch in the variance and in

5The real-time vintage quarterly data for the US GDP are available at
http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/ROUTPUT/
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the parameter β1. Whatever indicator we use, the model that gets the best fit has three

regimes and switches in the intercept β0, in the parameter entering before the weighting

function β1 and in the variance σ2.

Table A in the appendix reports the in-sample results for each indicator for the models

with three regimes, a switch in the variance of the disturbances, in the intercept and with

or without a switch in β1. Note that the intercept in the first regime β0,1 is negative,

whereas the intercept in the second regime β0,2 is positive, but smaller than the intercept

in the third regime β0,3. Therefore, the first regime can be interpreted as the recessionary

regime, the second regime is instead the low but positive growth regime, while the third

regime is the strong growth regime. As expected, the variance in the second regime is

always the lowest among the three regimes. Moreover, there are noticeable differences

across regimes in the coefficient β1, which measures the impact of the monthly indicators

on quarterly GDP growth, while β1 remains statistically significant in most cases. These

results highlight the importance of allowing for parameter changes in MIDAS models, but

also the relevance of including high frequency information in MS models.

Figure 1 depicts the estimated smoothed probabilities resulting from the MSIHAR(3)-

MIDAS model with the slope of the yield curve as a monthly indicator. The shadow areas

represent the recessions identified by the National Bureau of Economic Research (NBER).

First, one can see that the estimated probabilities of recession match quite well the actual

recessions, including the recession that started in December 2007 (panel A). Interestingly,

the probability of recession falls in the third quarter of 2009, which confirms the NBER

dating of the end of the last recession. The first (moderate) expansion regime - depicted

in panel B - is predominant in the post-1984 era and is characterized by a much lower

variance than the second (stronger) expansion regime reported in Panel C. This finding

is in line with the great moderation phenomenon and supports the McConnell and Perez-

Quiroz (2001) dating of the break in volatility experienced by the US. Panel C reports the

estimated probabilities of being in a high growth regime, this regime is predominant in

the 1960s and 1970s and is shortly resurgent in the late 1990s, reflecting the high growth

experienced by the US thanks to the technology boom.
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Consequently, the MS-MIDAS model with three regimes seems to be a proper specifi-

cation for describing quarterly US GDP, and its forecasting performance will be assessed

in the next subsection.

Sample 1959:Q1 - 2009:Q4

Figure 1: MS-MIDAS Quarterly GDP and monthly slope of the yield curve

Panel A: Smoothed Probabilities of being in a recession

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007

Panel B: Smoothed Probabilities of being in the low expansion regime
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Panel C: Smoothed Probabilities of being in the high expansion regime
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To conclude, Figure 2 plots the estimated weights corresponding to the three monthly

indicators for the AR-MIDAS and MSHAR(3)-MIDAS models 6. The figure illustrates the

6The MSHAR(3)-MIDAS model is a model with three regimes, an autoregressive parameter and switches
in β0 , β1 and in the variance σ2. Table E, which is the last one in the Appendix, reports the labels we
used for each model.
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variety of weights that can be attached to the indicators thanks to the MIDAS specification.

Figure 2: Weights of the AR-MIDAS (LHS) and MSHAR(3)-MIDAS (RHS) exponential lag polynomial 
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4.1.2 Design of the real-time forecasting exercise

The sample is split into an estimation sample and an evaluation sample. The evaluation

sample consists of quarterly GDP growth in the quarters 1998:Q1 to 2009:Q4. For each
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of these quarters, we generate forecasts with horizons h = {0, 1/3, 2/3, 1, 4/3, 5/3, 2}. The

initial estimation sample goes from 1959:Q1 to 1997:Q4 and is recursively expanded over

time until 2009:Q27. The design of the exercise is similar to the one described in section

3.1.1 of Clements and Galvão (2008). We denote yτ,ν as output growth in period τ released

in the vintage ν data set. We aim at forecasting final estimates of the output growth yt,T as

defined in the latest vintage available to us T= 2010:Q1. Note that for GDP, the vintage

data set released in quarter t + 1 contains data up to quarter t, and quarterly vintages

reflect information available in the middle month of each quarter. We use financial variables

as higher frequency variables, which are available without any delays and are not subject

to data revisions.

A few additional comments are required. First, forecasts for the regime probabilities k

quarters ahead are computed recursively as:

P (St+k = j) =
M∑
i=1

pijP (St+k−1 = i) (15)

Note that the predicted probabilities only depend on the transition probabilities and on

the filtered probabilities.

Second, forecasts with an horizon h = 0 (i.e. nowcasts) imply that we want to forecast

output growth for the current quarter knowing the values of the monthly indicators for

all months of the current quarter. The nowcasts are computed as follows: we first regress

yt|t+1 on B(L(1/3); θ)xt|t+1 and yt−1|t+1, where yt|t+1 = [y1|t+1, y2|t+1, ..., yt−1|t+1, yt|t+1] and

xt|t+1 = [x1|t+1, ..., xt−1|t+1, xt|t+1]. We then use these estimates, the forecasts for the regime

probabilities P (St+1 = j|xt), yt|t+1 and xt+1|t+1 to compute the forecasts ŷt+1|t+1.

Forecasts with an horizon h = 1/3 imply that we only know the values for the first

two months of the monthly indicator. To obtain these forecasts, we first regress yt|t+1 on

B(L(1/3); θ)xt−1/3|t+1 and yt−1|t+1, where xt−1/3|t+1 = [x1−1/3|t+1, ..., xt−4/3|t+1, xt−1/3|t+1]. We

then use these estimates, the forecasts for the regime probabilities P (St+1 = j|xt), yt|t+1 and

7The last observation used in the estimation sample is 2009:Q2 since we need the actual values of GDP
for the next two quarters to compute the MSFE. Therefore, there are 47 forecasts computed for each
forecast horizon h.
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xt+2/3|t+1 to obtain forecasts for yt+1, which is conditioned on xt+2/3|t+1 and yt|t+1. Forecasts

with an horizon h = 4/3 are generated from a regression of yt|t+1 on B(L(1/3); θ)xt−4/3|t+1

and yt−2|t+1.

Similarly, forecasts with an horizon h = 2/3 imply that we only know the values for

the first month of the monthly indicator. To obtain these forecasts, we first regress yt|t+1

on B(L(1/3); θ)xt−2/3|t+1 and yt−1|t+1 where xt−2/3|t+1 = [x1−2/3|t+1, ..., xt−5/3|t+1, xt−2/3|t+1].

We then use these estimates, the forecasts for the regime probabilities P (St+1 = j|xt) and

xt+1/3|t+1 to obtain forecasts for yt+1, which is conditioned on xt+1/3|t+1. Forecasts with

an horizon h = 5/3 are generated from a regression of yt|t+1 on B(L(1/3); θ)xt−5/3|t+1 and

yt−2|t+1.

Finally, forecasts with an horizon h = 1 are computed from the regression of yt|t+1

on B(L(1/3); θ)xt−1|t+1 and yt−1|t+1, while forecasts with an horizon h = 2 come from the

regression of yt|t+1 on B(L(1/3); θ)xt−2|t+1 and yt−2|t+1. Hence, for example, forecasts for the

first quarter Q1 of a given year are generated as described in Table 3.

Table 3: Forecasting scheme for Q1

Forecast 0 1/3 2/3 1 4/3 5/3 2
horizon h

Data up Marcht Febt Jant Dect−1 Novt−1 Octt−1 Septt−1
to month

4.1.3 Out-of-sample results

Table 4 reports the relative mean square forecast errors (MSFE) for seven different

models for different forecast horizons using an AR(1) model as a benchmark8. The MIDAS

8We do not report tests of equal forecast accuracy since it is not straightforward to implement them
in the context of nested MIDAS models with real-time data. Indeed it is uncertain whether the test
proposed by Clark and McCracken (2009) for nested models with real-time data can be applied in the
context of MIDAS models. Furthermore, the test for nested models by Clark and McCracken (2005)
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model is the standard MIDAS as defined in equation 1. The AR-MIDAS is the model

defined in equation 3. The MSIH(3)-MIDAS is a model with three regimes, a switch in

the intercept and in the variance of the shocks. The MSIHAR(3)-MIDAS is an MSIH(3)-

MIDAS model with an autoregressive lag introduced through a common factor as described

in Section 2. The MSH(3)-MIDAS and MSHAR(3)-MIDAS are similar to the MSIH(3)-

MIDAS and MSIHAR(3)-MIDAS apart from the fact that they also include a switch in the

parameter β1. We also report results for a standard Markov-switching model with three

regimes, one autoregressive lag, a switch in the intercept and in the variance (MSIHAR(3)

model). The number of lags included in the weighting function is selected using the SIC.

Table 4 reports the out-of-sample forecasting results for the period 1998:Q1 to 2009:Q4.

Note first that the AR-MIDAS always outperforms the MIDAS with the Federal Funds

and slope of the yield curve as a monthly indicator. When using stock prices, AR-MIDAS

and MIDAS yield comparable forecasting performance. In the Markov-switching case,

including an autoregressive lag seems to be of less importance. Second, the S&P500 index

is the best indicator among the three variables considered and it also largely outperforms

the AR(1) model. For forecast horizons h = {0, 1/3, 2/3, 1}, the MSIHAR-MIDAS model

with stock prices turns out to be the best model for predicting quarterly GDP growth

across all models under consideration. Third, the slope of the yield curve exhibits a poor

forecasting performance as compared to the AR(1) model: this is a disappointing result

but it is in line with the findings of Galvão (2009). Fourth, within the class of models that

use the Federal Funds as a monthly indicator, the AR-MIDAS yields a better forecasting

performance than models with Markov-switching features for h = {0, 2/3, 1}, while the

MSHAR(3)-MIDAS model is the best forecasting model for h = {1/3, 4/3, 2}. Finally, the

standard Markov-switching model is slightly better than the AR(1) for two-quarter ahead

predictions but slightly worse for one-quarter ahead predictions. It is beaten by several

MS-MIDAS specifications, which confirms the usefulness of introducing higher frequency

is computationally very expensive since Monte Carlo simulations should be undertaken for each model
and forecast horizon. In addition, the usual approach of adopting the Giacomini and White (2006) test
combined with rolling estimation is not suited in our context, since we want to use all the available sample
in each point in time to improve inference on the regimes. Hence we leave the issue of testing equal forecast
accuracy for future research.
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information into MS models.

In addition to predicting quarterly GDP growth, Markov-switching MIDAS models can

endogenously generate probabilities of being in a given regime. Tables 5 and 6 below provide

the quadratic probability score (QPS) and the log probability score (LPS) as defined in

equations 13 and 14. We use the classification of the economic activity from the NBER

so that St is a dummy variable that takes on a value of 1 if the economy is in recession

in quarter t according to the NBER, while P (St = 1) is the probability of being in the

recession regime in period t. Forecasts with an horizon h = {0, 1/3, 2/3, 1} predict the

regime of the economy one quarter ahead, while forecasts with an horizon h = {4/3, 5/3, 2}

predict the state of the economy two quarters ahead.

In contrast to forecasting the level of GDP growth, the slope of the yield curve and the

Federal Funds tend to better predict the state of the economy than stock prices. This is

in line with the results from binary recession models that emphasize the predictive power

of the slope of the yield curve (see e.g. Estrella and Mishkin (1998)). Moreover, using

information from the monthly indicators produces better regime forecasts than a pure MS

model for quarterly GDP.

Additional evidence on the predictive ability of the Markov-switching MIDAS speci-

fication is presented in Figure 3, where we report the nowcasted probability of being in

a recession with the slope of the yield curve as a monthly indicator using the MSH(3)-

MIDAS model with h = 0. These probabilities are generated from the recursive exercise

and correspond to the filtered probabilities for the last observation T, where T is recursively

expanded over time from t=1997:Q4 to 2009:Q4.

Figure 3 shows that there is a first signal of recession in the second quarter of 2001

using information up to August 2001. The probability of recession then rises above .90

in the third and fourth quarter of 2001. Interestingly, the probability of recession stays

above .35 until the second quarter of 2003 and only fall below .10 in the third quarter of

2003. This illustrates the slow economic recovery that followed the 2001 recession. Figure

3 also shows that there is a first peak in the probability of recession in the fourth quarter
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Table 4: Relative Mean Squared Forecast error for forecasting US GDP growth 1998:Q1-
2009:Q4

Forecast horizon (h)

Model 0 1/3 2/3 1 4/3 5/3 2

Slope of the MSIH(3)-MIDAS 1.080 1.061 1.066 1.066 1.022 1.002 1.009
yield curve MSIHAR(3)-MIDAS 0.960 1.019 1.038 0.964 1.032 1.049 1.041

MSH(3)-MIDAS 1.080 1.043 1.059 1.025 1.067 1.073 1.049
MSHAR(3)-MIDAS 1.073 1.073 1.044 0.992 0.996 1.019 1.015
AR-MIDAS 1.037 1.022 1.022 1.010 0.995 0.997 0.997
MIDAS 1.242 1.231 1.231 1.252 1.065 1.069 1.276

S&P 500 MSIH(3)-MIDAS 0.691 0.739 0.712 0.765 0.740 0.784 0.785
MSIHAR(3)-MIDAS 0.680 0.690 0.639 0.726 0.775 0.776 0.792
MSH(3)-MIDAS 0.913 0.876 0.881 1.078 0.872 0.902 0.861
MSHAR(3)-MIDAS 0.871 1.160 0.932 1.128 0.873 0.885 0.845
AR-MIDAS 0.769 0.726 0.715 0.746 0.715 0.754 0.779
MIDAS 0.762 0.728 0.713 0.729 0.684 0.727 0.767

Fed Funds MSIH(3)-MIDAS 0.909 0.996 0.983 1.005 1.074 1.086 1.284
MSIHAR(3)-MIDAS 0.944 0.952 0.995 1.044 1.009 1.046 1.185
MSH(3)-MIDAS 1.041 0.916 0.963 0.997 1.126 1.110 1.119
MSHAR(3)-MIDAS 0.974 0.886 0.983 0.971 0.966 1.172 1.009
AR-MIDAS 0.874 0.942 0.945 0.945 1.081 1.124 1.278
MIDAS 1.041 1.078 1.171 1.174 1.237 1.237 1.442

MSIHAR(3) - - - 1.071 - - 0.984

Real-time data set. Relative Mean Squared Forecast Error for US output growth in the quarters

1998:Q1-2009:Q4. Benchmark: AR(1) model. Recursive forecasting scheme. Entries in bold outline the

model with the lowest MSFE for each indicator and forecast horizon. A classification of the models is

reported in Table E.
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Table 5: Quadratic Probability Score for forecasting US business cycle regimes 1998:Q1-
2009:Q4

Forecast horizon (h)

Model 0 1/3 2/3 1 4/3 5/3 2

Slope of the MSIH(3)-MIDAS 0.391 0.395 0.395 0.395 0.436 0.448 0.469
yield curve MSIHAR(3)-MIDAS 0.384 0.374 0.374 0.383 0.433 0.481 0.468

MSH(3)-MIDAS 0.270 0.296 0.297 0.407 0.485 0.461 0.402
MSHAR(3)-MIDAS 0.270 0.287 0.306 0.370 0.448 0.494 0.491

S&P 500 MSIH(3)-MIDAS 0.399 0.449 0.464 0.439 0.465 0.437 0.457
MSIHAR(3)-MIDAS 0.434 0.436 0.443 0.408 0.520 0.519 0.509
MSH(3)-MIDAS 0.442 0.414 0.382 0.412 0.473 0.495 0.517
MSHAR(3)-MIDAS 0.391 0.287 0.410 0.353 0.456 0.466 0.635

Fed Funds MSIH(3)-MIDAS 0.391 0.375 0.388 0.391 0.385 0.390 0.463
MSIHAR(3)-MIDAS 0.394 0.401 0.400 0.385 0.459 0.462 0.435
MSH(3)-MIDAS 0.415 0.369 0.374 0.337 0.483 0.389 0.495
MSHAR(3)-MIDAS 0.423 0.403 0.436 0.411 0.489 0.502 0.445

MSIHAR(3) - - - 0.357 - - 0.452

Entries in bold outline the model with the lowest QPS for each indicator and forecast horizon. QPS is
computed as follows:

QPS =
2

F

T∑
t=1

(P (St+h = 1)−NBERt+h)2

where F is the number of forecasts, P (St+h) are the predicted regime probabilities of being in the first

regime and NBERt+h is a dummy variable that takes on a value of 1 if the US economy is in recession in

quarter t+ h according to the NBER. For h={0,1/3,2/3,1}, we predict business cycle regimes one quarter

ahead, whereas for h={4/3,5/3,2} we predict business cycle regimes two quarters ahead. A classification

of the models is reported in Table E.
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of 2007 using information up to February 2008. The probability of recession then jumps

above .85 from the end of the first quarter of 2008 until the second quarter of 2009 and it

starts declining in the third quarter of 2009. This confirms the NBER dating of the end of

the last recession in June 2009. Note that our model gives the first signal of recession well

before the announcement of the recession by the NBER that occurred in December 2008.

A crucial point of the MS-MIDAS specification is that the quarterly probabilities of

recession can be updated on a monthly basis (i.e. at the frequency of the xmt variable).

This makes this class of models very attractive for real-time estimation of business cycle

conditions. Indeed, Table C in the appendix reports the nowcasted probability of recession

for the MSH(3)-MIDAS model with the slope of the yield curve as an indicator for three

different forecast horizons h={0,1/3,2/3}. The table confirms that using the slope of the

yield curve as a monthly indicator provides strong calls of recession in the first quarter

of 2008 since the probability of recession gradually increased in the first quarter of 2008

to reach .87 in March 2008 (using information available up to May 2008). Table C also

shows that the probability of recession is decreasing in the third quarter of 2009 in line with

the NBER datation of the end of the last recession. However, the probability of recession

remains fairly high in the third and fourth quarters of 2009, reflecting the moderate growth

path experienced by the US.

In summary, Markov-switching MIDAS models not only generate good forecasting re-

sults for the level of GDP growth, but they also provide relevant information about the state

of the economy. The combination of high frequency information and parameter switching

performs better than using each of these two features separately, as in standard MIDAS

and MS models, respectively.
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Estimated Probability of recession, Real-time data, 1997:Q4-2010:Q2, MSH(3)-MIDAS model with the 
monthly slope of the yield curve, forecast horizon h=0
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4.2 Prediction of the UK GDP

4.2.1 In-sample results

The data for the UK GDP are taken from the Bank of England Real-Time Database.9

We retain only the vintages corresponding to the first estimates of GDP. This database is

9The Bank of England Real-Time Database is available at: http://www.bankofengland.co.uk/statistics/gdpdatabase/
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Table 6: Log Probability Score for forecasting US business cycle regimes 1998:Q1-2009:Q4

Forecast horizon (h)

Model 0 1/3 2/3 1 4/3 5/3 2

Slope of the MSIH(3)-MIDAS 0.739 0.749 0.747 0.748 0.738 0.745 0.775
yield curve MSIHAR(3)-MIDAS 0.708 0.680 0.681 0.693 0.899 0.991 0.963

MSH(3)-MIDAS 0.437 0.473 0.465 0.690 0.901 0.746 0.604
MSHAR(3)-MIDAS 0.438 0.454 0.474 0.807 0.841 0.941 0.905

S&P 500 MSIH(3)-MIDAS 0.781 0.924 1.050 0.914 0.838 0.697 0.736
MSIHAR(3)-MIDAS 0.853 0.856 0.891 0.815 0.981 0.985 0.920
MSH(3)-MIDAS 0.707 0.756 0.633 0.823 0.723 0.889 1.052
MSHAR(3)-MIDAS 0.741 0.442 0.714 0.558 0.919 0.923 1.127

Fed Funds MSIH(3)-MIDAS 0.734 0.621 0.722 0.722 0.581 0.601 0.671
MSIHAR(3)-MIDAS 0.805 0.736 0.734 0.693 0.959 0.961 0.661
MSH(3)-MIDAS 0.924 0.616 0.677 0.518 0.768 0.585 0.822
MSHAR(3)-MIDAS 0.785 0.760 0.870 0.748 0.850 0.850 0.904

MSIHAR(3) - - - 0.594 - - 0.875

Entries in bold outline the model with the lowest LPS for each indicator and forecast horizon. LPS is
computed as follows:

LPS = − 1

F

T∑
t=1

(1−NBERt+h)log(1− P (St+h = 1)) +NBERt+hlog(P (St+h = 1))

where F is the number of forecasts, P (St+h) are the predicted regime probabilities of being in the first

regime and NBERt+h is a dummy variable that takes on a value of 1 if the US economy is in recession in

quarter t+ h according to the NBER. For h={0,1/3,2/3,1}, we predict business cycle regimes one quarter

ahead, whereas for h={4/3,5/3,2} we predict business cycle regimes two quarters ahead. A classification

of the models is reported in Table E.
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updated every year following the publication of the ONS Blue Book. For the in-sample

analysis, the dependent variable is taken as 100 times the quarterly change in the log of the

UK real GDP from t=1975:Q1 to 2010:Q1. We consider comparable predictors as in the

application for the US GDP: the slope of the yield curve, the Financial Times All Shares

Index and the Bank of England base rate. The slope of the yield curve is taken as the

difference between a bond with a 10-year maturity and a bond with a 1.5-year maturity.

We applied the same data transformation as in the US case. The data for the FT All Shares

Index and the Bank of England base rate are taken from Datastream, while the data for

the UK yield curve are taken from the Bank of England database.

We select a model with two regimes and no switch in the variance of the error term since

this model matches well the business cycle regimes experienced by the UK (see Figure 4).

Information criteria (SIC and HQ) selected a model with three regimes. However, very few

observations were associated with the third regime so that we decided to keep the model

with two regimes for the sake of parsimony and for ease of information.

Table B in the appendix presents the in-sample results for each indicator for the MSI(2)-

MIDAS and MS(2)-MIDAS models. The intercept β0,1 in the first regime is always negative,

while the intercept in the second regime β0,2 is always positive. Both coefficients are highly

significant in all cases. The coefficient β1 is significant in most of the cases, which empha-

sizes the importance of including variables sampled at a monthly frequency for predicting

quarterly GDP.

Figure 4 reports the estimated smoothed probabilities. The shadow areas are the reces-

sions identified by the ECRI 10. As mentioned, the four recessions experienced by the UK

are all very well matched by the model with two regimes and no switch in the variance of

the error term. We therefore use this class of models in the out-of-sample forecasting exer-

cise. The different MS-MIDAS specifications are recursively estimated in each forecasting

period and are used to predict not only the regime but also the level of GDP growth, so

that the influence of the full sample regime fitting based specification is very small.

10The ECRI business cycle chronology is available at: http://www.businesscycle.com/resources/cycles/
The ECRI provides a business cycle chronology at the monthly frequency. We transformed it into quarterly
frequency by considering that the UK economy is in recession in quarter t if the ECRI indicates so for at
least one of the months of quarter t.
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Figure 4: MSIAR(2)-MIDAS Quarterly GDP and monthly slope of the yield curve
Sample 1975:Q1 - 2010:Q1

Panel A: Smoothed probabilities of being in a recession
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Panel B: Smoothed Probabilities of being in an expansion
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4.2.2 Out-of-sample results

The design of the real-time forecasting exercise is identical to the one described in

section 4.1.2. The actual values for GDP are taken from the last vintage of data available

to us T=2010:Q2. Table 7 reports the Mean Square Forecast Error relative to an AR(1)

model. The main results are the following.
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First, note that the Markov-switching MIDAS models always outperform the MIDAS

and AR-MIDAS models across all indicators for one-step ahead predictions of GDP, con-

firming the importance of allowing for time variation in the MIDAS regression for now-

casting and short-term forecasting. Second, each of the three indicators in the MS-MIDAS

specification yield relevant information since they produce better forecasting results than

the AR(1) model. Third, the AR-MIDAS and MIDAS models always obtain the best per-

formance for two-step ahead predictions. Fourth, unlike for the US, share prices do not

clearly outperform the slope of the yield curve and the short-term interest rate. Fifth, the

AR-MIDAS model always outperforms the standard MIDAS with the slope of the yield

curve and the short-term interest rate, while the standard MIDAS model performs better

than the AR-MIDAS with share prices as an indicator for two-step ahead predictions. Fi-

nally, the standard Markov-switching model gets better forecasts than the AR(1) model for

one-step ahead predictions but worse for two-step ahead predictions. At each horizon the

MS model is beaten by at least one MS-MIDAS specification, confirming the importance

of introducing higher frequency information in the MS model.

Tables 8 and 9 show the QPS and LPS criteria that allow us to assess the regime

prediction ability of the models under scrutiny. First, the slope of the yield curve and

the BoE base rate perform better than share prices for regime prediction: this confirms

what we have found in the empirical application for the US. Besides, the standard Markov-

switching model exhibits a good performance by itself, suggesting that the use of mixed

frequency data does not improve regime prediction as much as in the case for the US.

However, while the standard MS model can be only implemented at quarterly level, the

MS-MIDAS specifications allow for a timely monthly update of the forecasts.

Figure 5 shows the estimated nowcasted probability of being in a recession for the model

with the slope of the yield curve. These probabilities come from the forecasting exercise

and correspond to the estimated filtered probabilities of being in a recession for the last

observation T, where T is recursively expanded over time from t=2003:Q4 to 2010:Q1. The

ECRI business cycle chronology indicates that the last recession started in May 2008. The

chart shows that there is a peak in the probability of recession for the third quarter of 2008

30



and it indicates that the probability of recession sharply declined in the first quarter of

2010 11.

Table D in the appendix provides further insight on the ability of the MS-MIDAS

models to detect recessions in real time, and illustrates how the probability of recession

can be updated on a monthly basis. This table shows that there is signal of recession in

July 2008 using data for GDP from the October 2008 vintage as the probability of recession

amounts to .68 before rising to 1 in the last quarter of 2008. The probabilities of recession

are equal or close to 1 in 2009, but decline significantly in the first quarter of 2010. Indeed,

the probability of recession in March 2010 is .39 suggesting that the UK recession that

started in May 2008 according to the ECRI and two months later according to us, came to

an end in the first quarter of 2010.

11At the time we have completed this draft, the ECRI has not announced yet the end of the last recession
for the UK.
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Table 7: Relative Mean Squared Forecast error for forecasting UK GDP growth 2004:Q1-
2010:Q1

Forecast horizon (h)

Model 0 1/3 2/3 1 4/3 5/3 2

Slope of the MSI(2)-MIDAS 0.621 0.714 0.617 0.693 1.088 1.151 1.130
yield curve MSIAR(2)-MIDAS 0.684 0.684 0.681 0.869 1.069 1.063 1.167

MS(2)-MIDAS 0.801 0.896 0.819 0.844 1.070 1.168 1.164
MSAR(2)-MIDAS 0.698 0.686 0.684 0.802 1.097 1.139 1.133
AR-MIDAS 0.857 0.917 0.880 0.939 0.954 0.953 0.975
MIDAS 0.906 0.969 0.897 1.017 1.115 1.174 1.165

Share prices MSI(2)-MIDAS 0.697 0.699 0.861 0.704 1.019 1.009 1.006
MSIAR(2)-MIDAS 0.814 0.810 0.810 0.806 1.070 0.998 0.994
MS(2)-MIDAS 0.861 0.791 1.118 1.201 1.113 1.129 1.129
MSAR(2)-MIDAS 0.750 0.801 0.916 0.766 1.190 1.041 1.040
AR-MIDAS 0.868 0.868 0.850 0.933 0.958 0.939 0.938
MIDAS 0.957 0.897 0.899 0.887 0.956 0.925 0.921

BoE base rate MSI(2)-MIDAS 0.633 0.685 0.828 0.752 1.099 1.095 1.137
MSIAR(2)-MIDAS 0.746 0.788 0.833 0.859 1.088 1.070 1.105
MS(2)-MIDAS 0.637 0.767 0.698 0.698 0.925 0.925 1.149
MSAR(2)-MIDAS 0.792 0.757 0.833 0.843 0.917 0.920 1.113
AR-MIDAS 0.953 0.957 0.954 1.078 0.862 0.903 1.079
MIDAS 1.034 1.028 1.032 1.089 1.131 1.132 1.280

MSIAR(2) - - - 0.866 - - 1.082

Real-time data set. Relative Mean Squared Forecast Error for output growth in the quarters

2004:Q1-2010:Q1. Benchmark: AR(1) model. Recursive forecasting scheme. Entries in bold outline the

model with the lowest MSFE for each indicator and forecast horizon. A classification of the models is

reported in Table E.
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Table 8: Quadratic Probability Score for forecasting UK business cycle regimes 2004:Q1-
2010:Q1

Forecast horizon (h)

Model 0 1/3 2/3 1 4/3 5/3 2

Slope of the MSI(2)-MIDAS 0.204 0.215 0.203 0.201 0.434 0.379 0.345
yield curve MSIAR(2)-MIDAS 0.174 0.174 0.174 0.184 0.403 0.329 0.447

MS(2)-MIDAS 0.227 0.232 0.237 0.234 0.354 0.383 0.323
MSAR(2)-MIDAS 0.182 0.173 0.173 0.178 0.356 0.341 0.391

Share prices MSI(2)-MIDAS 0.263 0.259 0.244 0.237 0.320 0.333 0.345
MSIAR(2)-MIDAS 0.206 0.206 0.189 0.192 0.398 0.411 0.410
MS(2)-MIDAS 0.260 0.196 0.321 0.180 0.383 0.388 0.389
MSAR(2)-MIDAS 0.367 0.469 0.326 0.432 0.488 0.474 0.474

BoE base rate MSI(2)-MIDAS 0.214 0.215 0.213 0.187 0.332 0.339 0.328
MSIAR(2)-MIDAS 0.176 0.177 0.176 0.170 0.371 0.337 0.287
MS(2)-MIDAS 0.154 0.209 0.175 0.175 0.239 0.239 0.335
MSAR(2)-MIDAS 0.267 0.174 0.167 0.175 0.316 0.250 0.346

MSIAR(2) - - - 0.175 - - 0.315

Entries in bold outline the model with the lowest QPS for each indicator and forecast horizon. QPS is
computed as follows:

QPS =
2

F

T∑
t=1

(P (St+h = 1)− ECRIt+h)2

where F is the number of forecasts, P (St+h) are the predicted regime probabilities of being in the first

regime and ECRIt+h is a dummy variable that takes on a value of 1 if the UK economy is in recession in

quarter t+ h according to the ECRI. For h = {0, 1/3, 2/3, 1}, we predict business cycle regimes one

quarter ahead, whereas for h = {4/3, 5/3, 2} we predict business cycle regimes two quarters ahead. A

classification of the models is reported in Table E.
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Table 9: Log Probability Score for forecasting UK business cycle regimes 2004:Q1-2010:Q1

Forecast horizon (h)

Model 0 1/3 2/3 1 4/3 5/3 2

Slope of the MSI(2)-MIDAS 0.370 0.383 0.368 0.367 0.656 0.578 0.544
yield curve MSIAR(2)-MIDAS 0.345 0.345 0.344 0.353 0.621 0.532 0.653

MS(2)-MIDAS 0.397 0.404 0.388 0.387 0.555 0.558 0.511
MSAR(2)-MIDAS 0.348 0.342 0.342 0.346 0.553 0.521 0.593

Share prices MSI(2)-MIDAS 0.442 0.437 0.414 0.409 0.554 0.568 0.579
MSIAR(2)-MIDAS 0.369 0.367 0.353 0.357 0.683 0.700 0.697
MS(2)-MIDAS 0.586 0.351 0.650 0.335 0.677 0.663 0.664
MSAR(2)-MIDAS 0.659 0.855 0.589 0.768 0.885 0.812 0.812

BoE base rate MSI(2)-MIDAS 0.381 0.379 0.365 0.343 0.532 0.545 0.533
MSIAR(2)-MIDAS 0.341 0.338 0.338 0.334 0.607 0.542 0.485
MS(2)-MIDAS 0.275 0.372 0.346 0.346 0.406 0.406 0.536
MSAR(2)-MIDAS 0.524 0.333 0.335 0.330 0.520 0.419 0.549

MSIAR(2) - - - 0.340 - - 0.517

Entries in bold outline the model with the lowest LPS for each indicator and forecast horizon. LPS is
computed as follows:

LPS = − 1

F

T∑
t=1

(1− ECRIt+h)log(1− P (St+h = 1)) + ECRIt+hlog(P (St+h = 1))

where F is the number of forecasts, P (St+h) are the predicted regime probabilities of being in the first

regime and ECRIt+h is a dummy variable that takes on a value of 1 if the UK economy is in recession in

quarter t+ h according to the ECRI. For h = {0, 1/3, 2/3, 1}, we predict business cycle regimes one

quarter ahead, whereas for h = {4/3, 5/3, 2} we predict business cycle regimes two quarters ahead. A

classification of the models is reported in Table E.
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Figure 5: Nowcasted Probability of recession, Real-time data, 2003:Q4-2010:Q1, MSIHAR(2)-MIDAS 

model with the monthly slope of the yield curve, forecast horizon h=0
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5 Conclusions

Mixed data sampling (MIDAS) models are attracting considerable attention in the liter-

ature for their ability to combine in a rather simple regression framework variables sampled
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at different frequencies. Time-varying parameter models, with changes both in the condi-

tional mean and in the variance, are also more and more used in applied macroeconomics. In

this paper we combine these two strands of literature, and introduce the Markov-switching

(MS-)MIDAS model, which allows for time-variation in the parameters of MIDAS models,

and for the use of high frequency information in standard MS models.

The MS-MIDAS model can be estimated by maximum likelihood, and Monte Carlo

experiments indicate that the resulting estimates are rather accurate. Information criteria

can then be used for the selection of the number of lags and regimes. Two empirical

applications to nowcasting and forecasting quarterly GDP growth for the US and the UK

using monthly financial indicators confirm the good performance of the MS-MIDAS model.

It can also rather accurately predict changes in regimes.

Due to its generality and ease of implementation, we believe that the MS-MIDAS model

can provide a convenient specification for a large class of empirical applications in applied

macroeconomics and finance.
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Appendix A

All the models are estimated by maximum likelihood. The computations are carried

out with the optimization library OPTMUM of Gauss 7.0. selecting the BFGS algorithm.

The algorithm we use is described by the following steps:

Denote ω the parameters of the models to be estimated.

• STEP 1: Give initial values to all parameters of the model ω0.

• STEP 2: If there is regime switching, implement the Hamilton (1989) filtering proce-

dure using in the first iteration ω0 and in the following iterations ωj. We thus obtain

an estimate of the filtered probabilities - if there is regime switching - and the value

of the log-likelihood function.

• STEP 3: Maximize the log-likelihood function to obtain an updated version of the

parameters ωj

• STEP 4: Iterate over STEP 2 and STEP 3 until the algorithm has converged.

Hamilton (1994, chapter 22) pointed out that this algorithm is a special case of the

EM algorithm: the expectation (E) step is step 2 and the maximization (M) step is step 3.

Note that the expectation step aims at the formulation of guesses about the latent variables

given the data and the initial or updated values of the parameters, while the maximization

step yields the values of the parameters that maximize the log-likelihood function over the

iterations.
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Table A: In-sample results, Quarterly US GDP growth rate 1959:Q1-2009:Q4

Slope of the S&P 500 Fed Funds Slope of the S&P 500 Fed Funds
yield curve yield curve

β0,1 −0.273 −0.024 −0.193 0.009 −0.030 −0.063
[0.207] [0.206] [0.205] [0.143] [0.206] [0.206]

β0,2 0.778∗∗∗ 0.718∗∗∗ 0.801∗∗∗ 0.799∗∗∗ 0.781∗∗∗ 0.797∗∗∗

[0.053] [0.058] [0.052] [0.052] [0.052] [0.052]

β0,3 1.366∗∗∗ 1.271∗∗∗ 1.360∗∗∗ 1.352∗∗∗ 1.363∗∗∗ 1.410∗∗∗

[0.140] [0.136] [0.149] [0.154] [0.194] [0.130]

β1,1 −0.303∗∗ 0.098∗∗∗ 0.363∗∗ −1.323∗∗∗ 0.121∗∗∗ 0.638∗∗∗

[0.145] [0.026] [0.159] [0.329] [0.039] [0.208]

β1,2 - - - 0.030 0.032∗∗ 0.513∗∗∗

- - - [0.225] [0.017] [0.147]

β1,3 - - - 0.215 0.068 −0.919∗∗∗

- - - [0.464] [0.047] [0.243]

σ1 0.651∗∗∗ 0.647∗∗∗ 0.618∗∗∗ 0.592∗∗∗ 0.578∗∗∗ 0.560∗∗∗

[0.187] [0.215] [0.230] [0.154] [0.212] [0.155]

σ2 0.214∗∗∗ 0.197∗∗∗ 0.213∗∗∗ 0.205∗∗∗ 0.198∗∗∗ 0.207∗∗∗

[0.036] [0.038] [0.036] [0.036] [0.036] [0.033]

σ3 0.633∗∗∗ 0.626∗∗∗ 0.653∗∗∗ 0.668∗∗∗ 0.626∗∗∗ 0.680∗∗∗

[0.126] [0.131] [0.134] [0.148] [0.165] [0.128]

P (St = 1) 0.191 0.237 0.209 0.239 0.247 0.189

SIC 491.473 479.164 490.113 487.364 484.587 485.800

The first three columns report in-sample results for the MSIH(3)-MIDAS model (i.e. the model with no

switch in β1), while the last three columns report in-sample results for the the MSH(3)-MIDAS model(i.e.

the model with a switch in β1). ***, ** and * indicate significance at 1%, 5% and 10%. Standard

deviations are reported in brackets. SIC is the Schwarz Information Criterion.
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Table B: In-sample results, Quarterly UK GDP growth rate 1975:Q1-2010:Q1

Slope of the Share prices BoE base Slope of the Share prices BoE base
yield curve rate yield curve rate

β0,1 -0.724*** -0.825* -0.675*** -0.847*** -0.782*** -0.971***
[0.214] [0.378] [0.173] [0.177] [0.262] [0.185]

β0,2 0.746*** 0.704*** 0.747*** 0.763*** 0.664*** 0.755***
[0.065] [0.071] [0.062] [0.061] [0.068] [0.059]

β1,1 -0.925* 0.055** -0.538 1.236*** 0.301** -1.462***
[0.485] [0.023] [0.188] [0.421] [0.118] [0.405]

β1,2 - - - 0.388 0.097** -0.069
- - - [0.238] [0.030] [0.131]

σ 0.393*** 0.352*** 0.394*** 0.391*** 0.364*** 0.376***
[0.054] [0.081] [0.052] [0.050] [0.056] [0.048]

P (St = 1) 0.166 0.141 0.197 0.195 0.142 0.160

SIC 325.058 320.831 326.327 327.942 321.760 324.844

The first three columns report in-sample results for the MSI(2)-MIDAS model (i.e. the model with no

switch in β1), while the last three columns report in-sample results for the the MS(2)-MIDAS model(i.e.

the model with a switch in β1). ***, ** and * indicate significance at 1%, 5% and 10%. Standard

deviations are reported in brackets. SIC is the Schwarz Information Criterion. QPS is the quadratic

probability score using the ECRI business cycle datation and the estimated probabilities of being in the

first regime.
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Table C: US Estimated Quarterly Probabilities of Recession updated on a monthly basis

Quarter Month P (St = 1) NBERT Quarter Month P (St = 1) NBERT

January 0.146 0 January 0.995 1
Q1 2007 February 0.137 0 Q1 2009 February 1.000 1

March 0.148 0 March 0.999 1
April 0.128 0 April 0.994 1

Q2 2007 May 0.123 0 Q2 2009 May 0.987 1
June 0.127 0 June 0.995 1
July 0.053 0 July 0.829 0

Q3 2007 August 0.036 0 Q3 2009 August 0.822 0
September 0.033 0 September 0.824 0
October 0.283 0 October 0.663 0

Q4 2007 November 0.241 0 Q4 2009 November 0.639 0
December 0.268 1 December 0.642 0
January 0.636 1 January 0.486 0

Q1 2008 February 0.742 1 Q1 2010 February 0.468 0
March 0.878 1 March 0.479 0
April 0.931 1 April 0.339 0

Q2 2008 May 0.940 1 Q2 2010 May 0.343 0
June 0.961 1 June 0.345 0
July 0.985 1

Q3 2008 August 0.983 1
September 0.987 1
October 1.000 1

Q4 2008 November 1.000 1
December 1.000 1

P (St = 1) are the estimated probabilities of being in the first regime from the MSH(3)-MIDAS model

with the monthly slope of the yield curve. NBERt is a dummy variable that takes on a value of 1 if the

economy is in recession and 0 otherwise. For the months of March, June, September and December, the

probabilities are obtained from the model with a forecast horizon h = 0. For the months of February,

May, August and November, the probabilities are obtained from the model with a forecast horizon

h = 1/3. For the months of January, April, July and October, the probabilities are obtained from the

model with a forecast horizon h = 2/3.
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Table D: UK Estimated Quarterly Probabilities of Recession updated on a monthly basis

Quarter Month P (St = 1) ECRIT Quarter Month P (St = 1) ECRIT

January 0.001 0 January 1.000 1
Q1 2007 February 0.001 0 Q1 2009 February 1.000 1

March 0.001 0 March 1.000 1
April 0.001 0 April 1.000 1

Q2 2007 May 0.001 0 Q2 2009 May 0.999 1
June 0.001 0 June 1.000 1
July 0.000 0 July 0.993 1

Q3 2007 August 0.000 0 Q3 2009 August 0.991 1
September 0.000 0 September 0.991 1
October 0.001 0 October 0.913 1

Q4 2007 November 0.001 0 Q4 2009 November 0.892 1
December 0.001 0 December 0.889 1
January 0.004 0 January 0.523 1

Q1 2008 February 0.004 0 Q1 2010 February 0.437 1
March 0.004 0 March 0.390 1
April 0.019 0

Q2 2008 May 0.019 1
June 0.019 1
July 0.683 1

Q3 2008 August 0.691 1
September 0.683 1
October 1.000 1

Q4 2008 November 1.000 1
December 1.000 1

P (St = 1) are the estimated probabilities of being in the first regime from the MSIHAR(2)-MIDAS model

with the monthly slope of the yield curve. ECRIt is a dummy variable that takes on a value of 1 if the

economy is in recession and 0 otherwise. Note that at the time we have written this paper, the ECRI has

not announced yet the end of the last recession. For the months of March, June, September and

December, the probabilities are obtained from the model with a forecast horizon h = 0. For the months

of February, May, August and November, the probabilities are obtained from the model with a forecast

horizon h = 1/3. For the months of January, April, July and October, the probabilities are obtained from

the model with a forecast horizon h = 2/3.
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Table E: Classification of the models. The general Markov-switching MIDAS model with
M regimes we consider is:

yt = β0(St) + β1(St)B(L1/m; θ)x
(m)
t−h + εt(St)

where εt|St ∼ NID(0, σ2(St)).

Model regime changes in AR component

MSI(M)-MIDAS β0 NO

MS(M)-MIDAS β0 and β1 NO

MSIH(M)-MIDAS β0 and σ2 NO

MSH(M)-MIDAS β0, β1 and σ2 NO

MSIAR(M)-MIDAS β0 YES

MSAR(M)-MIDAS β0 and β1 YES

MSIHAR(M)-MIDAS β0 and σ2 YES

MSHAR(M)-MIDAS β0, β1 and σ2 YES

MSIAR(M) β0 YES

MSIHAR(M) β0 and σ2 YES

The suffix ”H” refers to models with a switch in the variance of the shocks. The suffix ”I” refers to models

with a switch in the intercept β0. The suffix ”AR” means that we include an AR component in the model

through a common factor to avoid a seasonal response of y to x as it is described in equation (5). The last

two rows of the table show the labels we use for the standard Markov-switching models.
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