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ABSTRACT 

Sequential All-Pay Auctions with Head Starts  

We study a sequential all-pay auction where heterogeneous contestants are 
privately informed about a parameter (ability) that affects their cost of effort. In 
the case of two contestants, contestant 1 (the first mover) makes an effort in 
the first period, while contestant 2 (the second mover) observes the effort of 
contestant 1 and then makes an effort in the second period. Contestant 2 wins 
the contest if his effort is larger than or equal to the effort of contestant 1; 
otherwise, contestant 1 wins. This model is then generalized to any number of 
contestants where in each period of the contest, 1 ≤ j ≤ n, a new contestant 
joins and chooses an effort. Contestant j observes the efforts of all contestants 
in the previous periods and then makes an effort in period j. He wins if his 
effort is larger than or equal to the efforts of all the contestants in the previous 
periods and strictly larger than the efforts of all the contestants in the following 
periods. This generalized model is studied also with a "stopping rule" 
according to which the contest ends as soon as a contestant exerts an effort 
strictly smaller than the effort of the previous contestant. We characterize the 
unique sub-game perfect equilibrium of these sequential all-pay auctions and 
analyze the use of head starts to improve the contestants' performances. 
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1 Introduction

Most of the literature in contest theory has focused on contests where players simultaneously submit their

e¤orts, although in many contest settings, e¤ort choices are made sequentially rather than simultaneously.

These settings include, for example, sports in which contestants participate one after the other and observe

the achievements of the contestants before them, court trials where evidence is presented sequentially, em-

ployee searches where applicants arrive sequentially, and many aspects of the political arena - such as the

parties presidential nominating conventions. The di¤erences between simultaneous and sequential contests

have been addressed in the literature by several researchers.1 Leininger (1993), Morgan (2003) and Baik

and Shogren (1992) investigated the question of which form of contest, sequential or simultaneous, naturally

arises most often in competitive situations. They studied two-player models where contestants compete in

the (generalized) Tullock contest and each contestant is able to choose between two dates to make their ef-

forts. If the contestants choose di¤erent dates, a sequential contest occurs, but if they choose the same date

the contest will be a simultaneous one. They all showed that sequential contests may arise endogenously

in equilibrium.2 Despite these interesting �ndings, while numerous studies have dealt with simultaneous

all-pay auctions (all-pay contests) only a few have studied sequential all-pay auctions. In this type of con-

test, both simultaneous and sequential, each player submits a bid (e¤ort) and the player who submits the

highest bid wins the contest, but, independently of success, all players bear the cost of their bids. Various

applications of all-pay auctions have been made to rent-seeking and lobbying in organizations, R&D races,

political contests, promotions in labor markets, sports competitions, trade wars, and military and biological

wars of attrition. All-pay auctions have been studied either under complete information where each player�s

type (valuation for winning the contest or ability) is common knowledge3 or under incomplete information

1Dixit (1987) studied a sequential Tullock contest and examined whether the ability to commit to an e¤ort choice before

other contestants choose their e¤ort while assuming that they can then observe this choice is advantageous or not. Linster

(1993) analyzed two-player sequential Tullock contests and showed that if the stronger player is the �rst (second) mover in the

sequential contest the players�total e¤ort is larger (smaller) than in the simultaneous contest.
2Hamilton and Slutsky (1990) Deneckere and Kovenock (1992) and Mailath (1993) studied sequential oligopoly games and

showed that sequential choices of quantities in a Cournot competition can be the equilibrium outcome of non-cooperative play.
3All-pay auctions under complete information have been studied, among others, by Hillman and Samet (1987), Hillman and

Riley (1989), Baye et al. (1993, 1996), Che and Gale (1998) and Siegel (2009)).
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where each player�s type is private information and only the distribution from which the players�types is

drawn is common knowledge.4 Most studies dealing with sequential all-pay auctions assume a two-stage

contest under complete information. Leininger (1991) modeled a patent race between an incumbent and an

entrant as a sequential asymmetric all-pay auction under complete information, and Konrad and Leininger

(2007) characterized the equilibrium of the all-pay auction under complete information in which a group of

players choose their e¤ort �early�and the other group of players choose their e¤ort �late�. The assumption

of incomplete information complicates the analysis of the sequential all-pay auction but also makes it more

relevant and interesting. In this work, we study a sequential all-pay auction under incomplete information

where the ability of each contestant is his private information. We consider �rst a sequential all-pay auction

with two contestants where contestant 1 (the �rst mover) makes an e¤ort in the �rst period, while contes-

tant 2 (the second mover) observes the e¤ort of contestant 1 and then makes an e¤ort in the second period.

Contestant 2 wins the contest if his e¤ort is larger than or equal to the e¤ort of contestant 1; otherwise,

contestant 1 wins. This particular type of sequential all-pay auction has various applications. For example,

in some industries (e.g. the audit industry) it is customary for clients to give the incumbent �rm the right

to make a �nal o¤er for an engagement after learning about the o¤ers of its rival.5

In our model, contestant 2 has an obvious advantage over contestant 1, for which reason contestant 1

exerts a relatively low e¤ort and sometimes, depending on the distribution of his opponent�s abilities, he

might even prefer not to participate in the contest at all (it is worth noting that this feature of our model can

explain why players sometimes choose to stay out of a contest). Given the low e¤ort of contestant 1 in the

�rst period as well as the rules of the contest according to which contestant 2 needs only to equalize the e¤ort

of contestant 1 in order to win, we have a relatively low expected total e¤ort as well as a low expected highest

e¤ort. However, a designer who wishes to maximize the expected total e¤ort or the expected highest e¤ort

4All-pay auctions under incomplete information have been studied, among others, by Hillman and Riley (1989), Amman

and Leininger (1996), Krishna and Morgan (1997), Moldovanu and Sela (2001, 2006) and Moldovanu et al. (2010)).
5The concept of Stackelberg games in which players choose their strategies sequentially was introduced and analyzed also

by computer scientists such as Garg and Narahari (2008), Luh et al. (1984) and others. All these authors impose a hierarchical

decision making structure on a simultaneous game to describe sequential choices of strategies. The solution concept they use is

a Stackelberg equilibrium where the leaders use "secure strategies" which secure them a minimal payo¤ while the followers use

an optimal response strategy.
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can change the rules of the sequential all-pay auction to make it more pro�table by explicitly or implicitly

favoring contestant 1 over contestant 2. In other words, he can give contestant 1 a head start.

There are numerous examples of real-life contests in which players are given head starts. A common

situation occurs in the labor market when a favored applicant is given a head start and then other applicants

are required to do much better than the favored one in order to win the job. Therefore contests with

head starts may raise the contestants� expected total e¤ort or alternatively their expected highest e¤ort.

Kirkegaard (2009) studied asymmetric all-pay auctions with head starts under incomplete information where

players simultaneously choose their e¤orts. He showed that the total e¤ort increases if the weak contestant

is favored with a head start, but if the contestants are su¢ ciently heterogenous, then in some cases the weak

contestant should be given both a head start and a handicap.6 In our sequential all-pay auction, contestant

2 has an advantage over contestant 1 because of the timing of their play. In order that the �rst mover will

exert a higher e¤ort we therefore assume that contestant 1 is given a multiplicative head start. That is,

contestant 2 will win the contest if his e¤ort x2 is larger or equal to tx1, where x1 is the e¤ort of contestant 1

and t is a constant larger than 1. We provide su¢ cient conditions under which by imposing a head start for

contestant 1 the designer of the contest can signi�cantly increase the expected e¤orts of both contestants and

particularly the expected total e¤ort as well as the expected highest e¤ort. The optimal head start can be

high enough such that several types of contestant 1 will win for sure, since no type of contestant 2 will have

a chance to win against them. As such, head starts may also play the role of a winning bid in a sequential

all-pay auction when contestant 1 has an incentive to participate independently of the distribution of his

opponent�s type.

We then turn to study a sequential all-pay auction with n > 2 players. In this model in each period of

the contest, 1 � j � n, a new contestant joins and chooses an e¤ort. Contestant j; j = 1; :::; n observes the

e¤orts of all contestants in the previous j � 1 periods and then makes an e¤ort in period j: Contestant j

wins if his e¤ort is larger than or equal to the e¤orts of all the contestants in the j � 1 previous periods and

strictly larger than the e¤orts of all the contestants in the following n� j periods. In real-life contests with

more than two contestants, however, the contest designer may not want to wait until all the contestants join.

6Siegel (2010) provided an algorithm that constructs the unique equilibrium in simultaneous all-pay auctions with head

starts in which players do not choose weakly-dominated strategies.
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He might decide that as soon as he observes an e¤ort that is lower than the previous contestant�s e¤ort the

contest ends and the player before the last one wins the contest. For example, in an employee search the

employer may decide to interview applicants as long as their performances (weakly) increase but as soon as

an applicant�s performance is lower than than the previous applicant�s performance the search ends and the

highest contestant (the one before the last) gets the job. This might be optimal especially in cases where

the contest designer bears a cost for waiting (such as the cost of an unmanned job) or a cost for adding

contestants (such as a search cost). Such circumstances are our motivation for studying another version of

the sequential all-pay auction with n > 2 players that includes a "stopping rule." In this contest a contestant

wins if his e¤ort is larger or equal to the e¤ort of the contestant in the previous period and, moreover,

strictly larger than the e¤ort of the contestant in the following period. Therefore the contest ends as soon as

a contestant makes an e¤ort that is strictly smaller than the e¤ort of the contestant in the previous period.

The winner is the contestant who participated one period before the last one and his e¤ort is necessarily

higher than or equal to all previous contestants�e¤orts.

We also study this n-player model (with and without a "stopping rule" ) with head starts.7 The analysis

of the sequential all-pay auction with n players and head starts is quite complicated since a head start which

is given to the contestant in period k a¤ects the equilibrium strategies of all the contestants in the following

periods j � k: Furthermore, in contrast to the model with two players, the use of head starts in the sequential

all-pay auction with n > 2 players may decrease the number of active periods since players may choose to

withdraw, and therefore may lower the contestants�expected highest and total e¤ort. However, we provide

su¢ cient conditions under which there always exists some non-trivial head starts that increase the expected

total e¤ort. Furthermore, we show that using head starts for any subset of contestants who play in the �rst

n�1 periods increases the expected highest e¤ort independently of whether the contest ends after n periods

or even earlier. Hence, our analysis establishes a key role for head starts in sequential all-pay auctions and

7When the head starts are relatively large so that they play the role of a winning bid, our sequential all-pay auctions are

related to sequential second price auctions with a buy price (see, e.g., Milgrom 2003) in which buyers arrive one after the other

without knowing their place in the queue. When a bidder arrives, he can either buy the object at the publicly announced "buy

price" and end the auction, or place a bid lower than the buy price. If no bidder takes the buy price a second price auction

determines the outcome.
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particularly in sequential contests under incomplete information.

The rest of the paper is organized as follows: Section 2 presents the two-player sequential all-pay auction.

Section 3 presents the n-player sequential all-pay auction with a "stopping rule" and Section 4 presents the

general form of the n-player sequential all-pay auction. Furthermore, Sections 2, 3 and 4 all characterize

the unique sub-game perfect equilibrium with and without head starts and provide conditions under which

the use of head starts improves the contestants�performance. Section 5 concludes. All proofs are in the

Appendix.

2 The two-player model

We consider �rst a sequential all-pay auction with two contestants where contestant 1 (the �rst mover)

makes an e¤ort in the �rst period, while contestant 2 (the second mover) observes the e¤ort of contestant

1 and then makes an e¤ort in the second period. Contestant 2 wins the contest if his e¤ort (x2) is larger

than or equal to the e¤ort of contestant 1 (x1); otherwise, contestant 1 wins. Both contestants�valuation

for the prize is 1. An e¤ort xi causes a cost xi
ai
where ai � 0 is the ability (or type) of contestant i which

is private information to i. Contestants�abilities are drawn independently. Contestant i�s ability is drawn

from the interval [0; 1] according to a distribution function Fi which is common knowledge. We assume that

Fi; i = 1; 2 has a positive and continuous density function F 0i > 0:

We begin the analysis by considering the equilibrium e¤ort function of contestant 2 in the second period.

We assume that if both contestants make the same e¤ort then contestant 2 is the winner. Therefore contestant

2 makes the same e¤ort as contestant 1 as long as his type a2 is larger than or equal to the e¤ort of contestant

1; otherwise he stays out of the contest. Formally, the equilibrium e¤ort of contestant 2 is given by:

b2(a2) =

8>><>>:
0 if 0 � a2 < b1(a1)

b1(a1) if b1(a1) � a2 � 1

where we assume that contestant 1 uses a strictly monotonic equilibrium e¤ort function b1(a1). Applying

the revelation principle, contestant 1 with ability a1 chooses to behave as an agent with ability s that solves

the following optimization problem:

max
s

�
F2(b1(s))�

b1 (s)

a1

�
(1)
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The F.O.C. is then

a1F
0
2(b1(s))b

0
1(s)� b01(s) = 0 (2)

and the S.O.C. is

a1F
00
2 (b1(s))(b

0
1(s))

2 + a1F
0
2(b1(s))b

00
1(s)� b001(s) = a1F 002 (b1(s))(b01(s))2 < 0

Note that if F2 is convex, the S.O.C does not hold and then b1(a1) = 0 for all a1 is the solution of the

maximization problem (1). Thus, in the following we assume that F2 is concave (F1 is not necessarily

concave). Then the S.O.C. holds and in equilibrium, the maximization problem (1) must be solved by

s = a1: Thus we obtain that the equilibrium e¤ort of contestant 1 with type a1 is

b1(a1) =

8>><>>:
0 if 0 � a1 � ~a

(F 02)
�1
�
1
a1

�
if ~a � a1 � 1

(3)

where the cuto¤ ~a is de�ned by max
n

1
F
0
2(0)

; 0
o
. This cuto¤depends on the distribution of the second player�s

ability. If F
0

2 (0) is a �nite number then types 0 � a1 � ~a do not �nd it optimal to exert a positive e¤ort.

As was mentioned above, for the class of convex distribution functions we have ~a = 1 such that contestant

1 chooses to stay out of the contest (in the following we will solve this problem by providing an incentive (a

head start) for contestant 1 to participate in the contest). However, if contestant 2�s distribution function

F2 is concave, we have a real competition in the sequential all-pay auction even without head starts.

The expected e¤orts of contestants 1 and 2 are

TE1 =

Z 1

~a

(F 02)
�1(

1

a1
)F 01(a1)da1

TE2 =

Z 1

~a

�
1� F2((F 02)�1(

1

a1
))

�
(F 02)

�1(
1

a1
)F 01(a1)da1

Note that contestant 2 makes the same e¤ort as contestant 1 or else makes an e¤ort of zero. Therefore the

expected highest e¤ort is equal to the expected e¤ort of contestant 1 and is given by

HE =

Z 1

~a

(F 02)
�1(

1

a1
)F 01(a1)da1 (4)

The expected total e¤ort is given by8

TE = TE1 + TE2 =

Z 1

~a

�
2� F2((F 02)�1(

1

a1
))

�
(F 02)

�1(
1

a1
)F 01(a1)da1 (5)

8We assume that the contest designer does not discount the e¤ort in the second period. We discuss this generalization and

its implication in the results in Section 5.
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Example 1 Consider a sequential all-pay auction with two contestants whose abilities are distributed accord-

ing to the distribution functions F1(x) = F2(x) = x0:5. By (3), the equilibrium e¤ort function of contestant

1 in the sequential all-pay auction is

b1(a1) =
a21
4

for all a1 � 0

Therefore by (4) the expected highest e¤ort is given by

HE =

Z 1

0

a21
4

1

2
p
a1
da1 = 0:05

and by (5) the expected total e¤ort is

TE =

Z 1

0

 
2�

r
a21
4

!
a21
4

1

2
p
a1
da1 =

23

280
� 0:0821

In Example 1, the contestants�expected highest e¤ort as well as their expected total e¤ort are signi�cantly

lower than in the standard all-pay auction where both contestants simultaneously choose their e¤orts. In

the next subsection we change the rules of the sequential all-pay auction by adding head starts to improve

the contestants�performance in the contest.

2.1 Head starts

In our sequential all-pay auction, contestant 2 has an advantage over contestant 1 because of the timing

of their play. Thus, contestant 1�s e¤ort is relatively low and sometimes, depending on the distribution of

contestant 2�s abilities, will choose to stay out of the contest. In that case there is no real competition. Thus

we examine whether the players�performance can be enhanced by using a head start for contestant 1. We

assume that contestant 2 will win the contest if his e¤ort x2 is larger than or equal to tx1 where x1 is the

e¤ort of contestant 1 and t is a constant larger than 1. The equilibrium e¤ort of contestant 2 is then given

by

�2(a2) =

8>><>>:
0 if 0 � a2 < t�1(a1)

t�1(a1) if t�1(a1) � a2 � 1

where we assume that contestant 1 uses a strictly monotonic equilibrium e¤ort function �1(a1). Applying

the revelation principle, contestant 1 with ability a1 chooses to behave as an agent with ability s that solves

8



the following optimization problem:

max
s

�
F2(t�1(s))�

�1 (s)

a1

�
(6)

The F.O.C. is

a1F
0
2(t�1(s))t�

0
1(s)� �01(s) = 0

and the S.O.C. is

aF 002 (t�1(s))(t�
0
1(s))

2 + a1F
0
2(t�1(s))t�

00
1(s)� �001(s) = a1F 002 (t�1(s))(t�01(s))2 < 0

Thus, if F2 is concave, in equilibrium, the above maximization problem must be solved by s = a1: Then we

obtain the following condition

a1F
0
2(t�1(a1))t� 1 = 0

and the equilibrium e¤ort of contestant 1 with type a1 is

�1(a1) =

8>>>>>><>>>>>>:
0 if 0 � a1 � ba

1
t (F

0
2)
�1
�

1
ta1

�
if ba � a1 � a�

1
t if a� � a1 � 1

(7)

where ba is de�ned as maxn 1
tF 0

2(0)
; 0
o
and a� is either equal to 1 or determined by the solution to the following

equation

t�1(a
�) = (F 02)

�1(
1

a�t
) = 1

) a� = min

�
1;

1

tF 02 (1)

�
Note that a� � â since a� = 1 or a� = 1

tF 0
2(1)

, while â is either zero or â = 1
tF 0

2(0)
and F 02 is a decreasing

function. Furthermore, if 1 � t � 1
F 0
2(1)

, then a� = 1 and only if t > 1
F 0
2(1)

does there exist a cuto¤ type

0 < a� < 1 and an interval of types a� � a1 � 1 who exert the e¤ort b1 (a�) = 1
t and win for sure (this serves

as a winning bid).

The expected e¤orts of contestants 1 and 2 are given by

TE1(t) =

Z a�

â

1

t
(F 02)

�1(
1

a1t
)F 01(a1)da1 +

Z 1

a�

1

t
F 01(a1)da1

TE2(t) =

Z a�

â

�
1� F2((F 02)�1(

1

a1t
))

�
(F 02)

�1(
1

a1t
)F 01(a1)da1
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The expected total e¤ort is therefore

TE(t) = TE1(t) + TE2(t) (8)

=

Z a�

â

�
1

t
+ 1� F2((F 02)�1(

1

a1t
))

�
(F 02)

�1(
1

a1t
)F 01(a1)da1 +

Z 1

a�

1

t
F 01(a1)da1

Note that the expected e¤ort of contestant 1 is not always higher than the expected e¤ort of contestant 2

as was the case without a head start and therefore the expected highest e¤ort is not equal to the expected

e¤ort of contestant 1. The expected highest e¤ort is given by

HE(t) =

Z 1

0

Z 1

0

max f�1 (a1) ; �2 (a2)gF 02 (a2) da2F 01 (a1) da1 (9)

=

Z a�

â

�
F2((F

0
2)
�1(

1

a1t
))

�
1

t
(F 02)

�1(
1

a1t
)F 01(a1)da1 (10)

+

Z a�

â

�
1� F2((F 02)�1(

1

a1t
))

�
(F 02)

�1(
1

a1t
)F 01(a1)da1 +

Z 1

a�

1

t
F 01(a1)da1

The �rst term describes those types of contestant 2 who choose to stay out of the contest (0 � a2 < t�1(a1))

in which case the highest e¤ort is equal to that of contestant 1, �1 (a1) =
1
t (F

0
2)
�1( 1

a1t
). The second term

describes those types of contestant 2 who equalize the e¤ort of contestant 1 multiplied by t in which case

the highest e¤ort is equal to t�1 (a1) = (F
0
2)
�1( 1

a1t
). The last term describes those types of contestant 1 who

win for sure by choosing the winning bid.

Below we discuss the equilibrium behavior of the contestants when the distribution function of contestant

2�s types is convex rather than concave (again, there is no restriction on the distribution of contestant 1�s

types). When F2 is convex and a head start t > 1 is given to contestant 1 then the equilibrium e¤ort of

contestant 2 is once again

�2(a2) =

8>><>>:
0 if 0 � a2 < t�1(a1)

t�1(a1) if t�1(a1) � a2 � 1

while the equilibrium e¤ort of contestant 1 is given by

�1 (a1) =

8>><>>:
0 if 0 � a1 < 1

t

1
t if 1

t � a1 � 1

Note that when F2 is convex and a head start is given to contestant 1 some of contestant 1�s types participate

in the contest. In this case the expected total e¤ort and the expected highest e¤ort are the same and are

both equal to contestant 1�s expected e¤ort.
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Example 2 Consider a sequential all pay auction with two contestants where F1(x) = F2(x) = x0:5. By

(7), the equilibrium e¤ort function of contestant 1 is given by

�1(a1) =

8>><>>:
1
t (F

0

2)
�1( 1

a1t
) =

ta21
4 if 0 � a1 � min

�
2
t ; 1
	

1
t if min

�
2
t ; 1
	
< a1 � 1

The expected total e¤ort is given by

TE =

Z minf 2t ;1g

0

�
a21t

4

�
1

2
p
a1
da1 +

Z 1

minf 2t ;1g

�
1

t

�
1

2
p
a1
da1

+

Z minf 2t ;1g

0

 Z 1

a21t
2

4

�
a21t

2

4

�
1

2
p
a2
da2

!
1

2
p
a1
da1

The following �gure presents the expected total e¤ort as a function of t.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

t

TE

The optimal head start that yields the highest expected total e¤ort in the sequential all-pay auction is therefore

ttotal =
7

4

�
199� 5

p
1561

�
= 2: 541 9

and the expected total e¤ort is then

TE(ttotal) = 0:16492

The expected highest e¤ort is

HE =

Z minf 2t ;1g

0

0@Z a21t
2

4

0

�
a21t

4

�
1

2
p
a2
da2 +

Z 1

a21t
2

4

�
a21t

2

4

�
1

2
p
a2
da2

1A 1

2
p
a1
da1

+

Z 1

minf 2t ;1g
1

t

1

2
p
a1
da1
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The following �gure presents the expected highest e¤ort as a function of t.
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The optimal head start that yields the highest expected highest e¤ort in the sequential all-pay auction is

therefore

thigh =
1�

1
180

p
10
p
317 + 7

36

p
2
�
2
= 2: 894 5

and the expected highest e¤ort is then

HE(thigh) = 0:1468

From Examples 1 and 2 we can see that the optimal head start signi�cantly increases the contestants�

expected highest e¤ort as well as their expected total e¤ort.

We now turn to examine the conditions under which a head start is e¢ cient in the sequential all-pay

auction, namely, those conditions on the distribution of the contestants�abilities that ensure that a head

start increases the expected highest e¤ort or the expected total e¤ort. The following condition is required

for establishing the e¤ects of a head start on contestant 1�s equilibrium e¤ort.

Condition 1 The equilibrium e¤ort function of contestant 1 in the sequential all-pay auction without a head

start given by (3) is strictly convex for all ~a � a1 � 1

If Condition 1 is satis�ed, any head start t close to 1 increases the expected e¤ort of contestant 1 since

then, for t > 1 and ~a � a1 � 1 we have b1 (a1) < 1
t b1 (ta1) = �1 (a1). Given that without any head start, the

12



expected highest e¤ort is equal to the expected e¤ort of contestant 1, we obtain the following result about

the positive e¤ect of head starts on the expected highest e¤ort in the contest.

Proposition 1 If Condition 1 holds, then the expected highest e¤ort in the two-player sequential all-pay

auction with a head start 1 < t � 1
F 0
2(1)

is higher than the expected highest e¤ort in the sequential all-pay

auction without any head start.

Proof. See Appendix.

Now we examine the e¤ect of head starts on the expected e¤ort of contestant 2. On the one hand, the

e¤ort of every type of contestant 1 increases when a head start is given and therefore contestant 2 should

also increase his e¤ort if he wants to win the contest. But, on the other hand, by giving a head start to

contestant 1, low types of contestant 2 will prefer to stay out of the contest since the minimal e¤ort which

is required from them in order to win is relatively high.

The following conditions are required for establishing the e¤ect of a head start on the e¤ort of contestant

2.

Condition 2 The function G (x) = (1� F2 (x))x is convex.

Condition 3 The highest equilibrium e¤ort of contestant 1 (the e¤ort of type a1 = 1) in the contest without

a head start is lower than x� = argmaxx2[0;1]G (x). Formally,

b1 (1) = (F
0
2)
�1
(1) < x�

Using conditions 1, 2 and 3 we obtain a positive e¤ect of relatively small head starts on the expected

e¤ort of contestant 2 as well.

Proposition 2 If Conditions 1,2 and 3 hold, then for t > 1 su¢ ciently close to 1, the expected e¤ort of

contestant 2 increases in t:

Proof. See Appendix.

Note that all the three conditions 1,2 and 3 hold for a large class of distribution functions including,

for example, every concave distribution function of the form F (x) = x ; 0 <  < 1. The combination of

13



Proposition 1 and Proposition 2 yields the result that the use of a head start in the sequential all pay auction

is e¢ cient for a designer who wishes to maximize the expected total e¤ort.

Proposition 3 If Conditions 1,2 and 3 hold, then the expected total e¤ort in the two-player sequential all-

pay auction with a head start t > 1 which is su¢ ciently close to 1 is higher than the expected total e¤ort in

the two-player sequential all-pay auction without any head start.

By Theorem 3, a head start t > 1 that is su¢ ciently close to 1 increases the expected highest e¤ort as

well as the expected total e¤ort. However, we cannot conclude that the optimal head start for a designer

who wishes to maximize the expected highest or total e¤ort is close to 1. Note that for 1 < t � 1
F 0
2(1)

the

e¤ort of every type of contestant 1 is higher than in the contest without a head start. However, for t > 1
F 0
2(1)

the e¤ort of low types of contestant 1 is higher than in the contest without a head start but the e¤ort of the

high types in the contest with a head start is not necessarily higher than their e¤orts in the contest without

a head start. In this case, the head start serves as a winning bid and therefore some high types will choose

the winning bid but not any bid above it as they might have done without the head start. Nevertheless, as

we can see from Example 2, the optimal head starts (those that imply the highest expected total e¤ort and

the highest expected highest e¤ort) might be obtained for a head start satisfying t > 1
F 0
2(1)

although such a

head start does not necessarily increase the e¤ort of all possible contestants�types.

3 The n-player model with a "stopping rule"

We consider now a sequential all-pay auction with n > 2 contestants and a head start t � 1 (the case of

t = 1 will be referred to as a contest without a head start). Contestant j; 1 � j � n�1 makes an e¤ort xj in

period j and contestant j + 1 observes this e¤ort and then makes an e¤ort xj+1 in period j + 1. Contestant

j wins a prize equal to 1 i¤ xj � txj�1 and txj > xj+1, j = 2; :::; n � 1 (contestant 1 wins i¤ tx1 > x2,

and contestant n wins i¤ xn � txn�1). Therefore the contest ends in period k < n if the contestant in that

period exerts an e¤ort strictly lower than txk�1. This serves as a "stopping rule" for the contest. The use of

a stopping rule makes sense in contests in which adding a new contestant is costly for the contest designer

(either because time is costly or because it involves a cost to bring in a new contestant).
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An e¤ort xi causes a cost xiai for contestant i, where ai � 0 is the ability (or type) of contestant i which is

private information to i. As previously, contestant i�s ability is drawn (independently of the other contestants�

abilities) from the interval [0; 1] according to a distribution function Fi which is common knowledge. We

assume that Fi has a positive and continuous density F 0i > 0; i = 1; 2; :::; n:

Note that contestant n faces the same problem as that of contestant 2 in the two-player model. Thus,

the equilibrium e¤ort of contestant n, if called to play, is given by

�n(an) =

8>><>>:
0 if 0 � an < t�n�1(an�1)

t�n�1(an�1) if t�n�1(an�1) � an � 1

We assume that contestant i; i = 2; :::; n� 1 uses a strictly monotonic equilibrium e¤ort function �i(ai).

If contestant i observes an e¤ort �i�1 (ai�1) of the previous contestant, and t�i�1 (ai�1) is higher than his

type, he will stay out of the contest. Otherwise, applying the revelation principle, player i, i = 2; :::; n � 1

with ability ai chooses to behave as an agent with ability s to solve the following optimization problem:

max
s

�
Fi+1(t�i(s))�

�i (s)

ai

�
(11)

s:t �i (s) � t�i�1 (ai�1)

Then, all types that �nd it optimal to participate (namely, ai � t�i�1 (ai�1)), but for whom the constraint

in the above maximization problem is binding, will exert the e¤ort of t�i�1 (ai�1) such that contestant i
0s

equilibrium e¤ort, i = 2; :::; n� 1 is given by:

�i (ai) =

8>>>>>>>>>><>>>>>>>>>>:

0 if 0 � ai < t�i�1 (ai�1)

t�i�1 (ai�1) if t�i�1 (ai�1) � ai < �a i

1
t

�
F 0i+1

��1 � 1
tai

�
if  �a i � ai < �!a i

1
t if �!a i � ai � 1

(12)

where  �a i and �!a i are de�ned by

1

t

�
F 0i+1

��1� 1

t �a i

�
= t�i�1 (ai�1)

and

(F 0i+1)
�1(

1

t�!a i
) = 1
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respectively. Note that t�i�1 (ai�1) <
 �a i since t�i�1 (ai�1) = 1

t

�
F 0i+1

��1 � 1
t �a i

�
<  �a i (the e¤ort function

is always smaller than the type). However it is not necessarily true here that  �a i < �!a i, and then the third

range of (12) does not exist. Moreover it is also not necessarily true that �!a i � 1 and then the fourth range

of (12) does not exist.

Contestant 1 solves the same maximization problem as in the two-player model and therefore

�1(a1) =

8>>>>>><>>>>>>:
0 if 0 � a1 � a1;t

1
t (F

0
2)
�1
�

1
ta1

�
if a1;t � a1 � �!a 1

1
t if �!a 1 � a1 � 1

(13)

where a1;t is de�ned as previously as max
n
0; 1

tF 0
2(0)

o
and �!a 1 is de�ned as �!a 1 = min

n
1

tF 0
2(1)

; 1
o
:

The expected e¤ort of contestant 1 is then given by

TE1 =

Z 1

a1;t

(F 02)
�1(

1

a1
)F 01(a1)da1

and the expected e¤ort of contestant i, i = 2; :::; n is given by

TEi =

Z 1

0

Z 1

t�1(a1)

:::

Z 1

t�i�2(ai�2)

Z 1

t�i�1(ai�1)

�i(ai)F
0
i (ai)daiF

0
i�1(ai�1)dai�1:::F

0
2(a2)da2F

0
1(a1)da1

The expected total e¤ort is therefore

TE =
nX
i=1

TEi (14)

For a given realization of the players�abilities a1; ::; an we de�ne

HE (a1; ::; an) = max
1�i�n

�i (ai)

Then, the expected highest e¤ort is given by

HE =

Z 1

0

Z 1

0

:::

Z 1

0

Z 1

0

HE (a1; ::; an)F
0
n(an)danF

0
n�1(an�1)dan�1:::F

0
2(a2)da2F

0
1(a1)da1 (15)

An immediate result is the following.

Proposition 4 The expected e¤ort of contestant i; i = 1; 2; :::; n in the sequential all-pay auction with n+1

contestants is always higher than or equal to his expected e¤ort in the sequential all-pay auction with n
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contestants. Thus, in particular, the expected total e¤ort as well as the expected highest e¤ort increase if new

contestants are added to the contest:

Proof. See Appendix.

The following example illustrates the e¤ects of head starts in a three-player sequential all-pay auction.

Example 3 Consider a sequential all-pay auction with three contestants and Fi(x) = x0:5; i = 1; 2; 3, and

assume that contestants 1 and 2 are given a head start t � 4: By (13), the equilibrium e¤ort of contestant 1

is given by

�1(a1) =

8>><>>:
ta21
4 if 0 � a1 < min

�
2
t ; 1
	

1
t if min

�
2
t ; 1
	
� a1 � 1

By (12), the equilibrium e¤ort of contestant 2 is as follows: if 2 � t � 4 and 0 � a1 < 2
t
p
t
then

�2 (a2) =

8>>>>>>>>>><>>>>>>>>>>:

0 if 0 � a2 < t2a21
4

t2a21
4 if t2a21

4 � a2 <
p
ta1

ta22
4 if

p
ta1 � a2 � 2

t

1
t if 2

t � a2 � 1

if 2
t
p
t
� a1 < 1p

t
then

�2 (a2) =

8>>>>>><>>>>>>:
0 for 0 � a2 < t2a21

4

t2a21
4 for t2a21

4 � a2 <
p
ta1

ta22
4 for

p
ta1 � a2 � 1

and if 1p
t
� a1 < 2

t then

�2 (a2) =

8>><>>:
0 for 0 � a2 < t2a21

4

t2a21
4 for t2a21

4 � a2 � 1

The equilibrium e¤ort of contestant 3 is as follows: if 0 � a1 < 2
t
p
t
and t2a21

4 � a2 <
p
ta1 then

�3 (a3) =

8>><>>:
0 if 0 � a3 < t3a21

4

t3a21
4 if t3a21

4 � a3 < 1

and if 0 � a1 < 2
t
p
t
and
p
ta1 � a2 � 2

t then

�3 (a3) =

8>><>>:
0 if 0 � a3 < t2a22

4

t2a22
4 if t2a22

4 � a3 < 1
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In all other cases, �3 (a3) = 0. The following �gure presents the total e¤ort as a function of the head start t.
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Thus, if we give a head start to contestants 1 and 2, the optimal head start that maximizes the expected total

e¤ort is

ttotal = 2: 170 6

and the highest expected total e¤ort is then

TE(ttotal) = 0:2663

The following �gure presents the expected highest e¤ort as a function of the head start t.
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Thus, if we give a head start to contestants 1 and 2, the optimal head start that maximizes the expected

highest e¤ort is

thighest = 2: 430 5

and the highest expected highest e¤ort is then

HE(thighest) = 0:2255

The analysis of the expected total e¤ort as well as the expected highest e¤ort in this model with a head

start t > 1 is quite complicated since as we can see from the equilibrium analysis a head start which is

given to the contestant in period k a¤ects the equilibrium strategies of all consecutive contestants j � k:

Furthermore, in contrast to the model with two contestants, the use of a head start in the sequential all-pay

auction with n > 2 contestants may decrease the number of active contestants and therefore may decrease

the contestants�expected total e¤ort and the expected highest e¤ort. However, as we show in the following

there are su¢ cient conditions on the distribution functions of the contestants�types according to which the

use of head starts is pro�table for a designer who wishes to maximize the expected highest e¤ort as well as

the expected total e¤ort in the sequential all-pay auction with any number of contestants.

We �rst need a generalization of Condition 1 for all the contestants who participate in the �rst n � 1

periods.

Condition 4 The equilibrium e¤ort function of contestant i; i = 1; :::; n�1 in the sequential all-pay auction

without a head start (t = 1) given by (13) and (12) is strictly convex for all  �a i � ai < 1:

Using Condition 4 we can show our main result.

Theorem 1 If Condition 4 holds, then the expected highest e¤ort of the contestants in the sequential all-pay

auction with n players and a head start t > 1 su¢ ciently close to 1 is higher than the expected highest e¤ort

in the sequential all-pay auction without a head start.

Proof. See Appendix.

According to Theorem 1, if every contestant is given a head start with respect to his next opponent then

the expected highest e¤ort in the sequential contest with head starts is higher than in the sequential contest
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without head starts. Moreover, by the proof of Theorem 1 this result holds even if a head start is given

only for a subset of the contestants. In the following, we will assume that the head start is not necessarily

given to all the contestants. In particular, we only give a head start to player n � 1: Then similarly to the

two-player model we assume the following conditions.

Condition 5 The function Gn (x) = (1� Fn (x))x is convex.

Condition 6 The equilibrium highest e¤ort of contestant n� 1 (the e¤ort of type an�1 = 1) in the contest

without a head start is lower than x�n = argmaxx2[0;1]Gn (x). Formally,

�n�1 (1) = (F
0
n)
�1
(1) < x�n

By the same arguments as in the proof of Proposition 3 we obtain

Proposition 5 If Conditions 4,5 and 6 hold, then the expected total e¤ort in the sequential all-pay auction

with a head start to contestant n � 1, t > 1 which is su¢ ciently close to 1 is higher than the expected total

e¤ort in the sequential all-pay auction without a head start.

By Proposition 5, if a head start is given to contestant n � 1 only, the expected total e¤ort increases,

but obviously this is not the optimal allocation of head starts that maximizes the expected total e¤ort.

Furthermore, the optimal allocation of head starts may include di¤erent head starts for contestants according

to their timing of play.

4 The generalized n-player model

We consider now a generalized sequential all-pay auction with n > 2 contestants with a head start t � 1

but without a "stopping rule." In this generalized model, contestant j; 1 � j � n; observes the e¤orts of

contestants 1; 2; :::; j � 1 in the previous periods and then makes an e¤ort xj at period j. Contestant j wins

a prize equal to 1 i¤ xj � txi for all i < j and txj > xi for all i > j . In the case without head starts (t = 1)

contestant j wins if his e¤ort is larger than or equal to the e¤orts of all the contestants in the previous

periods and his e¤ort is larger than the e¤orts of all the contestants in the following periods.
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By the same arguments as in the previous section, the equilibrium e¤ort of contestant n is given by

�n(an) =

8>><>>:
0 if 0 � an < maxj<n t�j(aj)

maxj<n t�j(aj) if maxj<n t�j(aj) � an � 1

Contestant i; i; i = 2; :::; n � 1 uses a strictly monotonic equilibrium e¤ort function �i(ai) which is the

solution to the following optimization problem:

max
s

�
Hi(t�i(s))�

�i (s)

ai

�
(16)

s:t �i (s) � t�j (aj) for all j < i

where Hi (x) = �nj=i+1Fj (x). If Hi (x) is concave then contestant i
0s equilibrium e¤ort, i = 2; :::; n � 1 is

given by

�i (ai) =

8>>>>>>>>>><>>>>>>>>>>:

0 if 0 � ai < maxj<i t�j(aj)

maxj<i t�j(aj) if maxj<i t�j(aj) � ai < ai

1
t (H

0
i)
�1
�
1
tai

�
if ai � ai < !a i

1
ti

if  !a i � ai � 1

(17)

where ai and
 !a i are de�ned by

max
j<i

t�j(aj) =
1

t
(H 0i)

�1
�
1

tai

�
and (H 0i)

�1(
1
 !a it

) = 1

Note that it is not necessarily true that maxj<i t�j(aj) � ai, in which case the second range of (17) does

not exist. Moreover, it is not necessarily true that  !a i � 1 and then the third range of (17) does not exist.

Contestant 1 solves the same maximization problem as in the two-player model and therefore

�1(a1) =

8>>>>>><>>>>>>:
0 if 0 � a1 � a1

1
t (H

0
1)
�1
�

1
ta1

�
if a1 � a1 �  !a 1

1
t1

if  !a 1 � a1 � 1

where a1 is de�ned as previously as max
n
0; 1

tH0
1(0)

o
and  !a 1 is de�ned as

 !a 1 =
1

tH0
1(1)

:

If Hi (x) = �nj=i+1Fj (x) is convex, then contestant i
0s equilibrium e¤ort, i = 2; :::; n� 1 is given by

�i (ai) =

8>>>>>><>>>>>>:
0 if 0 � ai < maxj<i t�j(aj)

maxj<i t�j(aj) if maxj<i t�j(aj) � ai < ai

1
ti

if ai � ai � 1
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and contestant 1�s equilibrium e¤ort is given by

�1 (a1) =

8>><>>:
0 if 0 � a1 < 1

t1

1
ti

if 1
t1
� ai � 1

The expected total e¤ort and the expected highest e¤ort are de�ned as in the previous section. Then,

exactly the same arguments we used to establish Theorem 1 hold here and we obtain that our main result

also holds for the generalized all-pay auction.

Theorem 2 If Condition 4 holds, then the expected highest e¤ort of the contestants in the generalized all-pay

auction with n players and a head starts t > 1 su¢ ciently close to 1 is higher than the expected highest e¤ort

in the generalized all-pay auction without a head start.

5 Concluding remarks

We presented various models of sequential all-pay auctions in which contestants arrive one by one and where

each contestant observes the e¤ort of the previous contestants before making his e¤ort. We characterized the

equilibrium behavior of the contestants and derived expressions for the expected total and highest e¤orts.

Then we analyzed the implications of using a head start mechanism in which early contestants are favored

over later ones. These head starts, on the one hand, encourage early contestants to exert higher e¤orts but,

on the other, may cause later contestants to withdraw from the contest. We demonstrated that in our model

the allocation of head starts increases the expected highest e¤ort as well as the expected total e¤ort.

If we will assume in our sequential all-pay auctions that the contest designer incurs some cost for each

contestant - either because of the discount of time or because of the cost of adding a new contestant - then

the results in this paper will still hold. In the two-player model, for example, the contest designer values

more the e¤ort made in the �rst period and therefore he will want to increase the �rst mover�s expected

e¤ort by increasing the head start. Thus, we can show that every head start that increases the expected

total e¤ort or the expected highest e¤ort without any discount of time will also increase these terms when

the second mover�s e¤ort is discounted by some �xed factor between zero and one. This argument remains

true also for the n-player models with and without a "stopping rule".
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In this paper we assumed throughout that the contestants have asymmetric distribution functions for

their types Fi; i = 1; :::; n but are given the same head start t: It can be easily veri�ed that all the results in

this paper hold for asymmetric head starts ti; i = 1; :::; n as long as they are su¢ ciently close to 1.

A Appendix

A.1 Proof of Proposition 1

The expected highest e¤ort in the two-player model without a head start is equal to contestant 1�s expected

e¤ort, while the expected highest e¤ort in the two-player model with a head start is larger than or equal to

contestant 1�s expected e¤ort. Thus, in order to prove that a head start increases the expected highest e¤ort

it is su¢ cient to show that a head start increases contestant 1�s expected e¤ort. However, what we actually

show is even stronger. In that for every type of contestant 1 who made a positive e¤ort when there was no

head start, this e¤ort increases when a head start is given. Therefore we show that

�1(a1) � b1(a1) for all 0 � a1 � 1 and 1 � t �
1

F 02 (1)

Note that if Condition 1 holds then since b1 (a1) is increasing in a1 and ~a � 0 then for all t > 1;

�1 (a1) =
1

t
(F 02)

�1
�
1

ta1

�
> (F 02)

�1
�
1

a1

�
= b1 (a1)

Likewise, the lowest type of contestant 1 who is active in the two-player model with a head start is lower

than the lowest active type of contestant 1 in the two-player model without any head start. Formally,

ba = maxn 1
tF 0

2(0)
; 0
o
� ea = maxn 1

F 0
2(0)

; 0
o
for any t � 1: Thus, we have

�1 (a1) =
1

t
(F 02)

�1
�
1

ta1

�
> (F 02)

�1
�
1

a1

�
= b1 (a1) for all ea � a1 � 1

�1 (a1) =
1

t
(F 0)

�1
�
1

ta1

�
> b1 (a1) = 0 for all ba � a1 � ea

�1 (a1) = b1(a1) = 0 for all 0 � a1 � ba
and the expected e¤ort of contestant 1 with a head start t is higher than his expected e¤ort without any

head start. Q:E:D:
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A.2 Proof of Proposition 2

The expected e¤ort of contestant 2 given an e¤ort �1 (a1; t) > 0 of contestant 1 is

E2(t; a1) = (1� F2 (t�1 (a1; t))) t�1 (a1; t)

The expected e¤ort of contestant 2 is then

TE2(t) =

Z 1

0

E2(t; a1)F
0
1(a1)da1 =

Z 1

ba E2(t; a1)F
0
1(a1)da1 > 0

The function t�1 (a1; t) = (F 02)
�1
�

1
a1t

�
is increasing in a1 as well as in t. By Condition 3 we know that

(F 02)
�1
(1) < x�. Therefore we obtain that, for t > 1 close enough to 1 and for all a1 � 1;

t�1 (a1; t) � t�1 (a1 = 1; t) = (F 02)
�1
�
1

t

�
< x�

Thus by Condition 2 we have

dE2(t; a1)

dt
> 0

So far we showed that for all types ba � a1 � 1 for which contestant 1 exerts a positive e¤ort the expected
e¤ort of contestant 2 increases in t as long as t is su¢ ciently close to 1. By Condition 1, the interval of types

of contestant 1 who exert a positive e¤ort increases in t, i.e., dbadt = d
dt max

n
1

tF 0
2(0)

; 0
o
� 0 and therefore, if t

is su¢ ciently close to 1 we established that

d

dt
TE2(t) =

d

dt

Z 1

0

E2(t; a1)F
0
1(a1)da1 =

d

dt

Z 1

ba E2(t; a1)F
0
1(a1)da1 > 0

Q:E:D:

A.3 Proof of Proposition 4

By (13) and (12), the expected e¤orts of contestants 1; ::; n�1 are the same in the sequential all-pay auction

with either n or n + 1 contestants. The expected e¤ort of contestant n in a contest with n contestants is

given by

�n(an) =

8>><>>:
0 if 0 � an < t�n�1(an�1)

t�n�1(an�1) if t�n�1(an�1) � an � 1
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while his expected e¤ort in a contest with n+ 1 players is given by

�n (an) =

8>>>>>>>>>><>>>>>>>>>>:

0 if 0 � ai < t�n�1 (an�1)

t�i�1 (an�1) if t�n�1 (an�1) � an < �a i

1
t

�
F 0n+1

��1 � 1
tan

�
if  �a n � an < �!a n

1
t if �!a n � an � 1

Since for all  �a n < an � �!a n we have 1
t

�
F 0n+1

��1 � 1
tan

�
� t�n�1(an�1) and for all �!a n � an � 1 we have

1
t > t�n�1(an�1); the result is obtained. Q:E:D:

A.4 Proof of Theorem 1

By Condition 4, the function
�
F 0i+1

��1 � 1
ai

�
is strictly convex and therefore, for t > 1 and i = 1; :::; n � 1

we have

1

t

�
F 0i+1

��1� 1

tai

�
>
�
F 0i+1

��1� 1
ai

�
(18)

Denote the equilibrium e¤ort of contestant i with a type ai in the contest without any head start by

�i(ai; t = 1) = bi(ai); then we have

Lemma 1 For t > 1 close enough to 1 if the equilibrium e¤ort of contestant i with a type ai is positive,

then this equilibrium e¤ort is higher than or equal to his equilibrium e¤ort in the contest without a head start

(t = 1). Formally, for i = 1 if a1 � a1;t then

�1 (a1; t) � b1 (a1)

and for i = 2; :::; n if ai � t�i�1 (ai�1; t) then

�i (ai; t) � bi (ai)

Proof: By (13) and (12) if t = 1 contestant i�s equilibrium e¤orts i = 2; :::; n� 1 are given by

bi (ai) =

8>>>>>><>>>>>>:
0 if 0 � ai < bi�1 (ai�1)

bi�1 (ai�1) if bi�1 (ai�1) � ai < ai�
F 0i+1

��1 � 1
ai

�
if ai � ai � 1

(19)
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and

b1 (a1) =

8>><>>:
0 if 0 � a1 � a1

(F 02)
�1
�
1
a1

�
if a1 � a1 � 1

while for t close enough to 1

�i (ai; t) =

8>>>>>><>>>>>>:
0 if 0 � ai < t�i�1 (ai�1; t)

t�i�1 (ai�1; t) if t�i�1 (ai�1; t) � ai < �a i

1
t

�
F 0i+1

��1 � 1
tai

�
if  �a i � ai < 1

and

�1(a1; t) =

8>><>>:
0 if 0 � a1 � a1;t

1
t (F

0
2)
�1
�

1
ta1

�
if a1;t � a1 � 1

For i = 1 since a1;t � a1 the result follows from (18). We prove the rest of the lemma by induction on i.

For i = 2,

b2 (a2) =

8>>>>>><>>>>>>:
0 if 0 � a2 < (F 02)

�1
�
1
a1

�
(F 02)

�1
�
1
a1

�
if (F 02)

�1
�
1
a1

�
� a2 < a2

(F 03)
�1
�
1
a2

�
if a2 � a2 � 1

where a2 = 1

F 0
3

�
(F 0

2)
�1� 1

a1

�� and

�2 (a2; t) =

8>>>>>><>>>>>>:
0 if 0 � a2 < (F 02)

�1
�

1
ta1

�
(F 02)

�1
�

1
ta1

�
if (F 02)

�1
�

1
ta1

�
� a2 < �a 2

1
t (F

0
3)
�1
�

1
ta2

�
if  �a 2 � a2 < 1

where  �a 2 = 1

tF 0
3

�
t(F 0

2)
�1� 1

ta1

�� .
We thus need to show that for a2 � (F 02)

�1
�

1
ta1

�
we have �2 (a2; t) > b2 (a2). To do this we consider

two cases. Case 1) If a2 < a2 since the e¤ort function is increasing in the type we obtain that �2 (a2; t) �

(F 02)
�1
�

1
ta1

�
> (F 02)

�1
�
1
a1

�
= b2 (a2). Case 2) If a2 � a2 � 1 then b2 (a2) = (F 03)

�1
�
1
a2

�
and we have

two sub-cases. Case (2a): if a2 <
 �a 2 then by construction �2 (a2; t) = (F 02)

�1
�

1
ta1

�
> 1

t (F
0
3)
�1
�

1
ta2

�
and

therefore by (18) we obtain, �2 (a2; t) = (F
0
2)
�1
�

1
ta1

�
> 1

t (F
0
3)
�1
�

1
ta2

�
> (F 03)

�1
�
1
a2

�
= b2 (a2). Case (2b):

if  �a 2 � a2 < 1 then �2 (a2; t) = 1
t (F

0
3)
�1
�

1
ta2

�
> (F 03)

�1
�
1
a2

�
= b2 (a2).

Assume by induction that the lemma is true for all i = 2; :::; l � 1. We need to show that for all

al � t�l�1 (al�1; t) we have bl (al) < �l (al; t). By the induction assumption, we know that bl�1 (al�1) <
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t�l�1 (al�1; t). Thus, similarly to the case of i = 2 we have two cases. Case 1) If al < al then �l (al; t) �

t�l�1 (al�1; t) > bl�1 (al�1) = bl (al). Case 2) If al � al � 1 then bl (al) =
�
F 0l+1

��1 � 1
ai

�
and we have two

sub-cases. Case (2a): if al <
 �a l then by ( 18) we obtain �l (al; t) = t�l�1 (al�1; t) >

1
t

�
F 0l+1

��1 � 1
tal

�
>�

F 0l+1
��1 � 1

ai

�
= bl (al). Case (2b): if

 �a l � al < 1 then �l (al; t) =
1
t

�
F 0l+1

��1 � 1
tal

�
>
�
F 0l+1

��1 � 1
ai

�
=

bl (al).�

We use Lemma 1 to prove the theorem. For a given realization of the contestants�abilities: a1; :::; an we

denote by HE (a1; :::; an) the highest e¤ort. Notice that this e¤ort can be made by more than one contestant.

Therefore we denote by j0 = j (a1;:::; an) the �rst (i.e. the lowest indexed) contestant that makes this highest

e¤ort. Formally, if l 2 argmax1�i�n bi (ai) then l � j0.

It is su¢ cient to prove that when a head start t su¢ ciently close to 1 is given to the contestants, then

for any given realization the highest bid increases i.e.,

HEt (a1; :::; an) = max
1�i�n

�i (ai; t) � bj0 (aj0) = HE (a1; :::; an)

Since HEt (a1; :::; an) � �j0 (aj0 ; t) it is enough to show that

�j0 (aj0 ; t) � bj0 (aj0)

This last inequality was proved in Lemma 1 but only if �j0 (aj0 ; t) > 0: Thus, it remains to show that

�j0 (aj0 ; t) > 0 or equivalently that aj0 � t�j0�1 (aj0�1; t). First note that we must have

bj0 (aj0) =
�
F 0j0+1

��1� 1

aj0

�
and aj0 � aj0

Otherwise, either bj0 (aj0) = 0 (but then obviously this cannot be the highest bid), or bj0 (aj0) = bj0�1 (aj0�1)

which contradicts the de�nition of j0 as the lowest indexed player who submits the highest e¤ort. By (19)

bj0�1 (aj0�1) < aj0 (20)

and from Lemma 1

bj0�1 (aj0�1) < �j0�1 (aj0�1; t) (21)

Moreover, since

lim
t!1

t�j0�1 (aj0�1; t) = bj0�1 (aj0�1)
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then by (20) and (21) we can �nd t > 1 close enough to 1 such that

bj0�1 (aj0�1) < t�j0�1 (aj0�1; t) < aj0 � aj0

Q:E:D:
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