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ABSTRACT 

Nonlinearities in the Oil Price-Output Relationship* 

It is customary to suggest that the asymmetry in the transmission of oil price 
shocks to real output is well established. Much of the empirical work cited as 
being in support of asymmetries, however, has not directly tested the 
hypothesis of an asymmetric transmission of oil price innovations. Moreover, 
many of the papers quantifying these asymmetric responses are based on 
censored oil price VAR models which recently have been shown to be invalid. 
Other studies are based on dynamic correlations in the data that do not shed 
light on the central question of whether the structural responses of real output 
triggered by positive and negative oil price innovations are asymmetric. 
Recently, a number of new methodologies have been introduced and applied 
to the problem of testing and quantifying asymmetric responses of U.S. real 
economic activity to positive and negative oil price innovations. Our objective 
is to put this literature in perspective, to contrast it with more traditional 
approaches, to highlight directions for further research, and to reconcile some 
seemingly conflicting results reported in the literature. 
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1.  Introduction 

There is an ongoing debate in the macroeconomic literature about whether unexpected increases 

in the price of oil cause recessions in oil-importing countries (see, e.g., Kilian 2008; Hamilton 

2009). Standard theoretical models of the transmission of exogenous oil price shocks that imply 

symmetric responses to oil price increases and decreases cannot explain large declines in 

aggregate economic activity in response to positive oil price shocks. In contrast, less 

conventional models that imply asymmetries in the response of aggregate real output to positive 

and to negative oil price shocks have the ability to explain both larger recessions in response to 

unexpected oil price increases and smaller economic expansions in response to unexpected 

declines in the price of oil. Proponents of the view that positive oil price shocks have been the 

major cause of recessions in the United States therefore inevitably appeal to the presence of 

asymmetries in the transmission of oil price shocks. This makes the question of how asymmetric 

the responses of real output are to oil price shocks central for the larger question of what lessons 

to draw from the historical evidence of the 1970s and 1980s.  This question also is paramount 

when assessing the effects of major unexpected declines in the price of oil, as occurred in 1986 

and 1998, for example, or, more recently, in late 2008. 

It is customary to suggest that the asymmetry in the transmission of oil price shocks to 

real output is well established. Much of the empirical work cited as being in support of 

asymmetries, however, has not directly tested the hypothesis of an asymmetric transmission of 

oil price innovations. In fact, many of the papers quantifying these asymmetric responses are 

based on precisely the censored oil price VAR methodology that Kilian and Vigfusson (2009) 

proved to be invalid. Other studies are based on dynamic correlations in the data that do not shed 

light on the central question of whether the structural responses of real output triggered by 

positive and negative oil price innovations are asymmetric.  

Recently, there has been renewed interest in developing empirical methodologies aimed 

at establishing and quantifying asymmetries of the response of real output depending on the sign 

of oil price innovations. One problem is how to detect asymmetric response functions. The 

problem is not that there have not been earlier attempts to test for asymmetries, but that the 

simple diagnostic tests commonly used in the literature dating back to the 1990s are not 

informative about the degree of asymmetry of the response functions of real economic activity. 

A more suitable impulse-response based test of the null of symmetric response functions has 
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recently been developed by Kilian and Vigfusson (2009). At the same time, there has been 

increasing recognition of the importance of using fully specified structural models in 

constructing estimates of asymmetric impulse responses to oil price innovations (see, e.g., Kilian 

and Vigfusson 2009, Elder and Serletis 2010). The new econometric models proposed in the 

recent literature differ in how much parametric structure they impose in estimating these 

response functions. They also tend to produce different empirical results. 

Our objective is to put this recent literature in perspective, to contrast it with more 

traditional approaches, to highlight directions for further research, and to reconcile some 

seemingly conflicting results reported in the literature. The remainder of the paper is organized 

as follows. Section 2 reviews the theoretical rationale for asymmetric responses of real economic 

activity to oil price shocks. In section 3 we discuss the key modeling choices that affect the 

strength of the empirical evidence in favor of asymmetries. Section 4 focuses on the 

encompassing regression approach employed by Kilian and Vigfusson (2009) and Herrera, 

Lagalo, and Wada (2010) to quantify potentially asymmetric responses. Section 5 reviews the 

GARCH-in-mean VAR model designed by Elder and Serletis (2010) to quantify the effect of oil 

price uncertainty on real economic activity. Section 6 investigates the related conjecture by 

Hamilton (2010) that incorporating asymmetries into joint forecasting models for real GDP 

growth and the price of oil helps reduce the out-of-sample mean squared prediction error 

(MSPE) of cumulative real GDP growth forecasts. We conclude in Section 7. 
 

 

2. The Theoretical Rationale for Asymmetric Responses of Real Output 

It is useful to review the theoretical rationale for asymmetric responses of real output to oil price 

innovations before discussing the empirical evidence. Standard theoretical models of the 

transmission of oil price shocks have focused on the implications of fluctuations in the price of 

imported crude oil. The most immediate effect of an unexpected increase in the price of imported 

crude oil is a reduction in the purchasing power of domestic households, as income is being 

transferred abroad. It is important for the argument that it is the price of imported crude oil that 

increases because an increase in the price of domestically produced crude oil by itself would 

merely cause a redistribution of income rather than a reduction of domestic income in the 

aggregate. This direct effect of an increase in the real price of oil imports is symmetric in oil 

price increases and decreases. An unexpected increase in the real price of oil will cause 
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aggregate income to fall by as much as an unexpected decline in the real price of oil of the same 

magnitude will cause aggregate income to increase. 

 The rationale for asymmetric responses of real output to oil price innovations hinges on 

the existence of additional indirect effects of unexpected changes in the real price of oil. There 

are three main explanations of such effects in the literature. First, it has been stressed that oil 

price shocks are relative price shocks that can be viewed as allocative disturbances which cause 

sectoral shifts throughout the economy (see, e.g., Hamilton 1988). For example, the case has 

been made that reduced expenditures on energy-intensive durables, such as automobiles, in 

response to unexpectedly high real oil prices may cause a reallocation of capital and labor away 

from the automobile sector. As the dollar value of such purchases may be large relative to the 

value of the energy they use, even relatively small changes in the relative price of oil can have 

potentially large effects on demand. A similar reallocation may occur within the same sector as 

consumers switch toward more energy-efficient durables. If capital and labor are sector specific 

or product specific and cannot be moved easily to new uses, these intersectoral and intrasectoral 

reallocations will cause labor and capital to be unemployed, resulting in cutbacks in real output 

and employment that go beyond the changes in households’ purchasing power triggered by 

unexpectedly high oil prices. The same effect may arise if unemployed workers simply wait for 

conditions in their sector to improve. 

 The reallocation effect arises every time the relative price of oil changes unexpectedly, 

regardless of the direction of the oil price change. In the case of an unexpected real oil price 

increase, the reallocation effect will reinforce the recessionary effects of the loss of purchasing 

power, allowing the model to generate a much larger recession than in standard linear models. In 

the case of an unexpected real oil price decline, the reallocation effect will partially offset the 

increased expenditures driven by the gains in purchasing power, causing a smaller economic 

expansion than implied by a linear model. This means that in the presence of a reallocation 

effect, the responses of real output to oil are necessarily asymmetric in unanticipated oil price 

increases and unanticipated oil price decreases.  

The quantitative importance of this channel depends on the extent of expenditure 

switching in response to real oil price shocks and on how pervasive frictions in capital and labor 

markets are. There is general agreement that the domestic automobile sector is most susceptible 

to the reallocation effect. For example, Edelstein and Kilian (2009) have suggested that the 
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magnitude of the reallocation effect depends primarily on the size of the domestic automobile 

industry (as measured by shares in employment and real output) as well as on the extent to which 

households substitute imported cars for domestic cars. A more extensive study of the U.S. 

automobile sector is provided in Ramey and Vine (2010).  Related evidence for the 2007/08 

recession has also been presented in Hamilton (2009). 

 A second explanation of asymmetric response functions focuses on the effects of 

uncertainty about the future price of oil on investment decisions. To the extent that the cash flow 

from an irreversible investment project depends on the price of oil, real options theory implies 

that, all else equal, increased uncertainty about the price of oil causes firms to delay investments, 

causing investment expenditures to drop to the extent that unexpected changes in the price of oil 

are associated with increased uncertainty about the future price of oil (see, e.g., Bernanke 1983, 

Pindyck 1991). As in models of the reallocation effect, the relevant oil price variable in these 

models is the real price of oil. Uncertainty in practice is measured by the expected volatility of 

the real price of oil over the relevant investment horizon. Exactly the same reasoning applies to 

purchases of energy-intensive consumer durables such as cars.  Because any unexpected change 

in the real price of oil may be associated with higher expected volatility, whether the real price of 

oil goes up or down, this uncertainty effect may serve to amplify the effects of unexpected oil 

price increases and to offset the effects of unexpected oil price declines, much like the 

reallocation effect, resulting in asymmetric responses of real output. The quantitative importance 

of this channel depends on how important the real price of oil is for investment and durables 

purchase decisions and on the share of such expenditures in aggregate spending. For example, it 

seems intuitive that uncertainty about the price of oil would be important for decisions about oil 

drilling in Texas, but less obvious that it will be quite as important for other sectors of the 

economy such as textile production or information technology.1 

 A closely related argument has been made in Edelstein and Kilian (2009) who observed  

that increased uncertainty about the prospects of staying employed in the wake of unexpected 

changes in the real price of oil could cause an increase in precautionary savings (or equivalently 

a reduction in consumer expenditures). In this interpretation, uncertainty may affect not merely 

                                                            
1 Bernanke (1983) also suggests that the magnitude of the uncertainty effect will depend on the how certain 
consumers are about the persistence of changes in the real price of oil. Recent evidence in Anderson, Kellogg and 
Sallee (2010) based on Michigan consumer survey data, however, suggests that U.S. consumers have consistently 
employed a no-change forecast of the real price of oil which treats all unexpected changes in the real price of oil as 
permanent. 
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energy-intensive consumer durables such as cars, but other consumer expenditures as well. This 

argument is logically distinct from the observation that households will smooth their 

consumption to the extent that unexpectedly higher real oil prices are associated with an 

increased likelihood of becoming unemployed. The key difference is that consumption 

smoothing motives are symmetric in unexpected oil price increases and decreases, whereas 

precautionary motives are not. 

 As a third explanation it has been suggested that the response of the Federal Reserve to 

oil price shocks is responsible for the depth of the recessions following positive oil price shocks 

(see, e.g., Bernanke, Gertler and Watson 1997). The premise is that the Federal Reserve responds 

to incipient or actual inflationary pressures associated with unexpected real oil price increases by 

raising the interest rate, thereby amplifying the economic contraction. The asymmetry arises 

because the Federal Reserve does not respond as vigorously to unexpected declines in the real 

price of oil. There is no theoretical model underlying this explanation of asymmetry and indeed 

earlier studies have imposed this asymmetry hypothesis in estimation rather than testing it with 

the exception of Balke, Brown and Yücel (2002) who concluded that monetary policy alone 

cannot account for the asymmetry in the responses of real output. More generally, the notion that 

policy makers should respond to oil price shocks in recent years has been shown to be at odds 

with economic theory, and the empirical evidence in support of such a link has been shown to be 

fragile and to suffer from identification problems and inconsistent estimates (see, e.g., Hamilton 

and Herrera 2004; Carlstrom and Fuerst 2006; Herrera and Pesavento 2009, Nakov and Pescatori 

2010; Kilian and Lewis 2010). 

 We conclude that of the three main explanations for asymmetric responses in real output 

only the reallocation effect and the uncertainty effect are firmly grounded in economic theory. 

Both models imply that an unexpected increase in the real price of oil will cause a negative 

response of real output that is larger in absolute terms than the positive response of real output to 

an unexpected decline in the real price of oil of the same magnitude. At issue is not so much 

whether these theoretical models are correct, but how quantitatively important the asymmetry 

implied by these models is for the response of U.S. aggregate real economic activity.  

Broadly speaking, there have been two strategies for evaluating these economic models. 

One strategy exemplified by Kilian and Vigfusson (2009) has been to specify an econometric 

model that can capture asymmetric responses to positive and negative oil price innovations 
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building on Mork (1989). This approach is not derived from any specific economic model, but 

may be used to provide a semiparametric approximation to potentially asymmetric responses 

generated by a variety of models. The other strategy has been to model one specific source of 

asymmetric responses. A good example is Elder and Serletis (2010), who focus on the 

uncertainty effect on real output at the expense of abstracting from other asymmetric 

transmission channels. Obviously, the latter approach allows the use of more parametric structure 

which helps improve the precision of the estimates and the power of tests of the symmetry null.  

On the other hand, it is not clear how to interpret these estimates, if there are multiple sources of 

asymmetric responses and the results may be sensitive to the specific parameterization of oil 

price uncertainty. 

In addition, a number of authors have suggested alternative asymmetric model 

specifications that combine asymmetries with additional nonlinearities. The best known example 

is the net oil price increase specification of Hamilton (1996, 2003, 2009, 2010). These models 

were introduced in recognition of the fact that conventional asymmetric models building on the 

distinction between oil price increases and oil price decreases do not appear to fit the U.S. data 

(see, e.g., Hooker 1996). The net oil price increase specification has been motivated on the basis 

of (untested) behavioral arguments rather than economic theory. A joint test of the asymmetries 

and the additional nonlinearities implicit in the approach proposed by Hamilton may be 

conducted based on an alternative version of the test proposed by Kilian and Vigfusson (2009). 

The approach of Elder and Serletis (2010), in contrast, is not designed to evaluate the 

econometric model proposed by Hamilton. 
 

 

3. Model Specification Issues  

There are a number of model specification issues that arise in testing the null hypothesis of 

symmetric response functions and in quantifying the degree of asymmetry of the estimated 

response functions, regardless of the modeling approach. These modeling choices explain many 

of the differences in the empirical results reported in the literature and hence deserve some 

discussion. 

Which Price of Oil to Use? 

Empirical results, for example, can be sensitive to the choice of oil price measure. Leading 

candidates for the oil price series include the price of West Texas Intermediate crude oil, the U.S 
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producer price of crude oil, and the U.S. refiners’ acquisition cost available for imported crude 

oil, for domestic crude oil, and for a composite of domestic and imported crude oil. There is no 

general consensus on which price of oil to use.  

Hamilton (2010) makes the case that, for the purpose of testing for asymmetries in the 

transmission of oil price shocks to U.S. real GDP, the U.S. producer price of crude oil is a better 

proxy than the refiners’ acquisition cost for imported crude oil because the producer price is 

more highly correlated with the price of gasoline. This argument has some merit, but, taking this 

argument to its logical conclusion, we should not be using the price of oil at all, but rather the 

retail price of gasoline, which itself is a good proxy for the retail price of energy faced by 

consumers and firms (see Edelstein and Kilian 2009). This is indeed the approach taken in the 

empirical work of Edelstein and Kilian (2009), in Ramey and Vine (2010) and in some of the 

results shown in Hamilton (2009).2 

On the other hand, traditionally, oil price shocks have been associated with events in the 

global oil market. The usual view has been that these foreign shocks were the cause of domestic 

economic declines. As discussed in section 2, it is essential for the economic reasoning 

underlying the baseline linear model of the transmission of oil price shocks that we focus on the 

price of imported crude oil. After all, typical macroeconomic models of the transmission of oil 

price shocks are specified in terms of the price of imported crude oil, not the retail price of 

gasoline. This line of reasoning suggests that taking the price of imported crude oil as the starting 

point, as in Kilian and Vigfusson (2009), also has merits. To illustrate this point consider the 

limiting case of an autarchic economy in which all oil is produced domestically.  In that case, 

there would be no reason to expect aggregate purchasing power to change in response to an 

unexpected increase in the price of oil, with the implication that a change in the price of oil of 

given magnitude would be equally recessionary, regardless of sign. It would no longer be the 

case that unexpected oil price increases are more recessionary than unexpected oil price declines 

of the same magnitude. 

To further complicate matters, Mork (1989) cautions against the use of the U.S. producer 

price of oil favored by Hamilton for a different reason. His concern is that this oil price has been 

subject to government regulation and may not be representative of true market prices. Mork 

                                                            
2 It has been shown that retail gasoline prices may evolve quite differently from the price of crude oil in the short run 
(see Kilian 2010). 
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(1989, p. 741) observes that “during the price controls of' the 1970s, this index is misleading 

because it reflects only the controlled prices of domestically produced oil. However, since the 

price control system closely resembled a combined tax/ subsidy scheme for domestic and 

imported crude oil, the marginal cost of crude to U.S. refiners can be approximated by the 

composite (for domestic and imported) refiner acquisition cost (RAC) for crude oil.” 

Thus, there is unlikely to be one price of oil that is the right choice for all purposes. We 

certainly agree with the sentiment in Hamilton (2010) that it is worthwhile to assess the 

sensitivity of the test results with respect to alternative oil price measures. To the extent that 

different oil price measures yield similar test results, our confidence in these results would 

increase. If evidence of asymmetry were to vanish with minor changes in the data, on the other  

hand, caution would be called for.  
 

Which Sample Period to Use? 

Another important modeling choice is the sample period. Empirical models of the response of 

U.S. real output to oil price shocks have been fit on a number of different sample periods with 

different results. Understanding which specifications are appropriate and which are not therefore 

is important. One possibility is to base the model in question on data for the nominal WTI price 

of crude oil prior to 1973, as shown in Figure 1. This price series is essentially identical to the 

U.S. producer price index for the same period. It is immediately evident that the nominal price of 

oil is adjusted only at discrete intervals during that period. As is well known, this pattern is the 

result of government regulation. Because the nominal oil price data are generated by a discrete-

continuous choice model, conventional dynamic regressions models are not appropriate for 

constructing the responses of real output to oil price shocks during the pre-1973 period. One way 

of illustrating this problem is by fitting a random walk model with drift to these data and plotting 

randomly generated draws from the fitted model against the actual data. Figure 1 shows one such 

sequence. Figure 1 illustrates that the fitted time series model – like any conventional time series 

model – is unable to replicate the discontinuous adjustment process underlying the pre-1973 

nominal oil price data. This is true even allowing for leptokurtic error distributions. In other 

words, standard time series processes are inappropriate for these data and impulse responses 

constructed from such models are invalid. 

This problem may be ameliorated by deflating the nominal price of oil, which renders the 

oil price data continuous and more amenable to VAR analysis. For example, one could fit a 
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standard time series model to the pre-1973 data shown in the left panel of Figure 2 and construct 

the implied responses of real output. Additional problems arise, however, when combining oil 

price data generated by a discrete-continuous choice process with oil price data from the post-

1973 era that are fully continuous. This approach is obviously inadvisable when dealing with 

nominal oil price data because these data cannot be represented as a standard time series process 

for the pre-1973 subsample and are not homogenous over time.  Perhaps less obviously, the 

approach of combing pre- and post-1973 data is equally unappealing when dealing with dynamic 

regressions involving the real price of oil.  

The problem is not only that the dynamic process governing the real price of oil is not 

homogenous over time, as can be seen by comparing the left and right panels of Figure 2, but 

that the nature and speed of the feedback from U.S. macroeconomic aggregates to the real price 

of oil differs by construction. For example, it can be shown that the responses to real oil price 

innovations are systematically different in pre- and post-1973 data.3 In particular, the real output 

responses tend to be systematically larger in pre-1973 data. The same instability arises in the 

predictive regressions commonly used to test for lagged nonlinear feedback from the real of price 

of oil to real GDP growth (see, e.g., Balke, Brown and Yücel 2002). The p-value for the null 

hypothesis that there is no break in 1973.Q4 in the coefficients of this predictive regression is 

0.001. Given this evidence of instability, combining pre- and post-1973 real oil price data is not a 

valid option. Regression estimates of the relationship between the real price of oil and domestic 

macroeconomic aggregates obtained from the entire post-war period are not informative about 

the strength of these relationships in post-1973 data.4 It is therefore essential that we restrict the 

analysis to the post-1973 period in assessing the evidence for asymmetric real output responses. 

This is one point where our views differ from Hamilton (2010) who favors extending the sample 

back to 1949. 

This point is not just academic. As the analysis in Herrera, Lagalo and Wada (2010) 

                                                            
3 This result is expected.  Hamilton (2003) showed that oil price innovation prior to 1973 were driven by oil supply 
shocks, whereas Kilian (2008) demonstrated that oil price innovations after 1973 have been dominated by oil 
demand shocks. Because oil demand and oil supply shocks have different effects on U.S. real GDP the dynamic 
correlations between oil price innovations and U.S. real GDP growth should be different across these subsamples. 
4 This situation is analogous to that of combining real exchange rate data for the pre- and post-Bretton Woods 
periods in studying the speed of mean reversion toward purchasing power parity. Clearly, the speed of adjustment 
toward purchasing power parity will differ if one of the adjustment channels is shut down, as was the case under the 
fixed exchange rate system, than when both prices and exchange rates are free to adjust as was the case under the 
floating rate system. Thus, regressions on long time spans of real exchange rate data produce average estimates that 
by construction are not informative about the speed of adjustment in the Bretton Woods system. 



10 
 

illustrates, the evidence of asymmetries using the full sample appears to be driven in large part 

by the inclusion of pre-1973 data. Herrera et al. show that there is much less evidence of 

asymmetric responses of aggregate industrial production based on post-1973 data, consistent 

with the findings for aggregate real GDP in Kilian and Vigfusson (2009) based on post-1973 

data. It is, of course, possible that this difference in results merely reflects the reduction in power 

from working with a shorter sample, but this does not mean that using pre-1973 data is a valid 

option. It is equally possible that this difference in results reflects the structural change in the 

underlying time series process in 1973. Either way, the evidence for the post-1973 period is the 

only evidence we have to go by and earlier results in the literature based on longer time series  

have to be viewed with caution. 
 

Nominal Price of Oil versus Real Price of Oil 

Another key difference between existing studies relates to whether the price of oil is specified in  

real or in nominal terms. Although an increasing number of empirical studies of the post-1973 

data have focused on the real price of oil, many other studies have relied on the nominal price of 

oil. One argument sometimes made in support of computing the responses of real output to 

nominal price shocks is that in the pre-1973 period the nominal price of oil often remained 

frozen for extended periods in which case fluctuations in the real price simply reflect inflation 

adjustments that are endogenous to the U.S. economy (see Figures 1 and 2). This means that 

innovations in the real price of oil during the pre-1973 period are not necessarily indicative of 

exogenous shocks in the oil market. This argument is correct, but does not justify the use of the 

nominal price of oil for constructing impulse responses for pre-1973 data because the standard 

dynamic regression models from which these responses are computed are not appropriate for 

discrete-continuous oil price data, as discussed above. More importantly, it does not justify the 

use of the nominal price of oil for the post-1973 period. After 1973, one would expect inflation 

innovations to be immediately reflected in the nominal price of oil to the extent that the nominal 

price of oil is free to adjust to inflation pressures. As discussed above, this conclusion is more 

likely to apply to some oil price measures than to others because of the continued regulation of 

the domestic price of oil in the United States. In the absence of regulation, a  positive U.S. 

monetary disturbance, for example, would be expected to raise the nominal dollar price of oil 

and U.S. consumer prices to the same extent, leaving the real price of oil unaffected (see Gillman 

and Nakov 2009; Alquist, Kilian and Vigfusson 2010).  This argument would hold even if the 
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nominal price of imported crude oil were set by OPEC. Thus, there is good reason to expect 

innovations to the real price of oil in the post-1973 period to reflect real demand and real supply 

shocks in the crude oil market. 

 The focus on real oil price innovations also makes sense because the theoretical models 

that imply asymmetries in the transmission of oil price shocks are expressed in terms of the real 

price of oil, as discussed in section 2. This is why Kilian and Vigfusson (2009) specified their 

model in terms of the real price of oil, as have many other studies including Mork (1989), Lee, 

Ni and Ratti (1995), Elder and Serletis (2010), and Herrera, Lagalo and Wada (2010). Hamilton 

(2010) makes the counterargument that it is conceivable that consumers of refined oil products 

choose to respond to changes in the nominal price of oil rather than the real price of oil, perhaps 

because the nominal price of oil is more visible. There is no direct empirical evidence in favor of 

this behavioral argument which is at odds with theoretical models of the transmission of oil price 

shocks.5  Rather the case for this specification, if there is one, has to be based on the fit of 

models estimated at the aggregate level, as in Herrera et al., for example, or on the predictive 

success of such models, which explains the emphasis Hamilton (2010) puts on studying 

predictive relationships in the data. We will return to this question in section 6.  
 

Nonlinearity versus Asymmetry 

Even proponents of using the nominal price in empirical models of the transmission of oil price 

shocks have concluded that there is no stable dynamic relationship between percent changes in 

the nominal price of oil and in U.S. macroeconomic aggregates. There is evidence from in-

sample fitting exercises, however, of a predictive relationship between suitable nonlinear 

transformations of the nominal price of oil and U.S. real output, in particular. The most 

successful of these transformations is the net oil price increase measure of Hamilton (2003). Let 

ts  denote the nominal price of oil in logs and  the difference operator. Then the 3-year nominal 

                                                            
5 Direct evidence in this context refers to microeconomic evidence from structural models at the firm, plant or 
household level. One example would be evidence of nonlinear adjustment in consumer sentiment in response to oil 
price innovations. Although Edelstein and Kilian (2009) and Ramey and Vine (2010) have documented adjustments 
in U.S. consumer sentiment in response to retail energy price innovations, their analysis is based on linear regression 
models and cannot be used to motivate the use of nonlinear models based on net oil price increases. The same caveat 
applies to the evidence in Ramey and Vine (2010) on the responses of key indicators for the U.S. automobile 
industry to various measures of energy price shocks. Both papers transform retail energy price data to allow for 
time-variation, but the type of nonlinearity considered in these two papers is fundamentally different from that in 
Mork (1989) or Hamilton (1996, 2003), the focus is on retail energy prices rather than the price of oil, and no 
allowance is made for asymmetric responses. Thus, this evidence cannot be used as a motivation for using nonlinear 
models based on net oil price increases. 
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net oil price increase is defined as: 
 

, ,3 *max 0, ,net yr
t t ts s s        

where *
ts  is the highest oil price in the preceding 3 years. This transformation involves three 

distinct ideas. One is that consumers in oil-importing economies respond to increases in the price 

of oil only if the increase is large relative to the recent past. If correct, the same logic by 

construction should apply to decreases in the price of oil, suggesting a net change transformation 

that is symmetric in increases and decreases. The second idea implicit in Hamilton’s definition is 

that consumers do not respond to net decreases in the price of oil, allowing us to omit the net 

decreases from the model. In other words, consumers respond asymmetrically to net oil price 

increases and net oil price decreases and they do so in a very specific fashion. The third idea is 

that what matters for the transmission of oil price shocks is the nominal rather than the real price 

of oil. 

It is important to stress that the net oil price increase is not tightly linked to any of the 

theoretical models discussed in section 2, which imply the existence of an asymmetry in the 

response of real output to real oil price increases and decreases. First, there is general agreement 

that asymmetric model specifications that do not involve the additional nonlinearity proposed by 

Hamilton (1996, 2003) such as Mork’s (1989) real oil price increase variable  
 

( 0)t t tr r I r      , 

where ( )I   denotes the indicator function and tr  the log of the real price of oil, are not supported 

by the data.6 The additional nonlinear structure embodied in Hamilton’s (2003) net oil price 

increase measure, however, is not a feature of the theoretical models discussed in section 2, but 

is based on purely behavioral arguments. Second, the theoretical models of section 2 do not 

imply that (net) oil price decreases should receive zero weight.  They only imply that they should 

receive less weight than increases of the same magnitude. Third, the use of the nominal price of 

oil is not consistent with economic theory and requires a behavioral motivation. Nevertheless, 

Hamilton’s nominal net oil price increase variable has become one of the leading specifications 

                                                            
6 Although the empirical results in Mork (1989) continue to be cited as evidence of asymmetry, the substance of his 
results was overturned in Hooker (1996) and Hamilton (1996).  Moreover, Kilian and Vigfusson (2009) show that 
even the original statistical test used by Mork (1989) does not reject the null of symmetric slopes when using data 
for 1973.II-2007.IV. Qualitatively, similar results are obtained using the recently developed impulse-response based 
tests. 
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in the literature on predictive relationships between the price of oil and the U.S. economy. 

Hamilton (2010) interprets this relationship as capturing nonlinear changes in consumer 

sentiment in response to nominal oil price increases.  

The behavioral rationale for the net oil price increase measure, of course, a priori applies 

equally to the nominal price of oil and the real price of oil. While Hamilton (2003) applied this 

transformation to the nominal price of oil, several other studies have recently explored models 

that apply the same transformation to the real price of oil (see, e.g., Kilian and Vigfusson 2009; 

Alquist, Kilian, and Vigfusson 2010; Herrera, Lagalo and Wada 2010). In that case, we define 

analogously: 

, ,3 *max 0, .net yr
t t tr r r        

 

Lag Structure 

A final question is how many lags to include in the dynamic models used to study the 

transmission of oil price shocks. Hamilton (2010) favors more parsimonious models than Kilian 

and Vigfusson (2009) with only four quarterly lags. Greater parsimony may make sense in fitting 

a predictive model, which is Hamilton’s objective, but makes less sense in estimating the 

underlying structural model, which is the objective in Kilian and Vigfusson (2009). Moreover, as 

discussed in Hamilton (2010) it is not clear a priori which lag order specification is appropriate 

in the context of the Kilian and Vigfusson model. In the current paper, we report results for 

models with four lags for ease of comparison. Our main test results based on the real PPI of oil 

are essentially identical when using six lags, suggesting that this question is not a central issue. 
 

 

4. General Tests of the Hypothesis of Symmetric Response Functions 

An important question is how to test for the symmetry of the response functions of real output. 

Kilian and Vigfusson (2009) proposed a new and conceptually simple impulse-response based 

Wald test for this purpose that distinguishes between oil price shocks of different magnitudes and 

encompasses all channels of transmission discussed in section 2. This test is built on the 

observation that under the null of symmetric response function, the vector of impulse responses 

to a positive oil price innovation should be equal to the vector of impulse responses to a negative 

oil price innovation except for its sign such that the sum of these vectors is equal to a vector of 

zeros. Here we focus on a version of this test designed for models involving the 3-year net oil  

price increase. 
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Slope-Based Tests versus Impulse-Response Based Tests 

Kilian and Vigfusson’s approach differs from the traditional approach of conducting a Wald test 

of 0 : 0, 1,..., 4,iH i    based on the regression: 

4 4 4
, ,3

1 1 1

net yr
t i t i i t i i t i t

i i i

y s y s u    
  

  

           ,          (1) 

where ty denotes U.S. real GDP, or an equivalent regression for the real price of oil. Kilian and 

Vigfusson’s central point is not that this OLS slope-based test is not powerful enough (indeed 

that test tends to reject the null of symmetric slopes, so lack of power is not an obvious concern). 

Rather their point is that the slope-based test focuses on the wrong null hypothesis. Testing the 

null hypothesis of symmetric response functions requires a test based on impulse responses 

rather than slopes. The impulse-response based test proposed in Kilian and Vigfusson (2009) is 

superior to traditional tests in that it actually tests the null hypothesis of interest to economists. 

The slope-based test does not. 

As Kilian and Vigfusson demonstrate using actual data, the impulse-response based test 

may reject the null of symmetric response functions, when the null of symmetric slopes is not 

rejected; it also may fail to reject the null of symmetric response functions, when the null of 

symmetric slopes is rejected. This result is intuitive, given that the impulse responses are highly 

nonlinear functions of the slope parameters. Thus, the results of slope-based tests are neither 

necessary nor sufficient for testing the symmetry of the impulse-response functions of real 

output, and it does not make sense to compare the power of this test with the power of slope-

based tests, except to say that the impulse-response based tests may generate stronger rejections 

of symmetry than the slope-based test for the same data, as demonstrated in Herrera, Lagalo and 

Wada (2010), for example.  

In addition, Kilian and Vigfusson demonstrate that the degree of asymmetry of the 

response functions is in general highly dependent on the magnitude of the unexpected change in 

the price of oil. It is easily possible, for example, for a linear symmetric model to provide a good 

approximation to the response functions except for the most extreme oil price innovations, as we 

will illustrate in the next section. Slope-based tests do not distinguish between shocks of 

different magnitude, which shows that they are inherently unsuitable for evaluating the degree of 

asymmetry of the response functions. 
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This point illustrates the importance of being explicit about the objective of testing for 

asymmetry. Our objective and indeed the explicit objective of the related macroeconomic 

literature, as outlined in section 2, has been to test implications of structural models for the 

transmission of oil price shocks, as embodied in the model’s structural impulse responses 

functions. Using all implications of the structural models in question is appropriate in that 

context. Hamilton’s objective, in contrast, is finding out whether there is a predictive relationship 

between the price of oil and real GDP. We agree with Hamilton that the nature of this predictive 

relationship is a distinct subject from the question of the causal effects of oil price shocks on real 

output, but that does not detract from the points made in Kilian and Vigfusson who never 

considered the problem of prediction in their paper, but focused on testing the structural 

relationships in the data. We will return to the topic of prediction in section 6. 
 

Alternative Tests of the Null of Symmetric Slopes 

Although slope-based tests are not designed to assess the degree of asymmetry of the responses 

of real output to oil price innovations, they have been used extensively as tests of the null 

hypothesis that the data generating process is linear and symmetric. It is therefore useful to 

understand the tradeoffs between alternative types of slope-based tests that one might implement. 

The most common test in the literature is due to Balke et al. (2002) who proposed testing 

0 : 0, 1,..., 4,iH i    based on model (1), as discussed earlier. Note that this model includes 

regressors not included in the predictive model proposed by Hamilton (2003, 2010): 

4 4
, ,3

1 1

net yr
t i t i i t i t

i i

y y s u   
 

 

        ,                 (1 ) 

which imposes the restriction 0, 0,i i     in estimation. It may seem that we could 

alternatively use model (1 ) instead of model (1) to test 0 : 0, 1,..., 4.iH i    This test constitutes 

the second slope-based test to be included in our comparison.  

Yet another slope-based test has recently been proposed by Kilian and Vigfusson (2009). 

Their analysis shows that if we start with a structural representation of the data generating 

process for real GDP and the price of oil motivated by exactly the same economic reasoning that 

led earlier researchers to specify the predictive regression (1), then the dynamic relationship 

between the price of oil and real output by construction will include contemporaneous oil price 

variables on the right-hand side. This means that under the null of a symmetric structural model 
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there is an additional restriction that can be imposed in testing. This insight suggests a third 

slope-based test that involves fitting  

4 4 4
, ,3

0 1 0

net yr
t i t i i t i i t i t

i i i

y s y s u    
  

  

                   (1 ) 

and testing 0 : 0, 0,..., 4.iH i    rather than 0 : 0, 1,..., 4,iH i    where we have relied on the 

nominal price of oil to maintain notational consistency.  Note that model (1 ) follows directly 

from the unrestricted fully specified structural model discussed in Kilian and Vigfusson (2009) 

and that models (1) and (1 ) can be derived from special cases of this structural model after 

imposing additional restrictions.7 

As shown in the appendix, tests based on model (1 ) will suffer from excessive size if the 

maintained assumption 0, 0,i i    is violated. This size distortion persists asymptotically 

because censoring the oil price regressor renders the OLS estimator of i  inconsistent except in 

the unlikely case that 0, 0.i i     Hence, if any 0,i   the tests based on models (1) or (1 ) 

will have more accurate size than the test based on model (1 ). Only if the restriction holds that 

there is no feedback at all from oil price declines to real GDP in population (and that there is no 

feedback from oil price increases that do not exceed recent peak levels) does the test based on 

model (1 ) have accurate size and more power than alternative slope-based tests. Hence, it is 

possible for a test based on model (1 ) to generate stronger rejections of the null of symmetric 

slopes, but such evidence is equally compatible with a size distortion arising from 0i  for some 

i and with improved power arising from 0, 0.i i     We cannot infer which test is more 

appropriate from the empirical results. We can say, however, that economic theory does not 

imply that 0, 0.i i     The models reviewed in section 2 imply that the feedback from 

declines in the real price of oil is weaker than the feedback from increases in the real price of oil, 

not that it is zero. Virtually all asymmetric models therefore will be characterized by 

0, 0,i i   and even small departures from 0, 0,i i   will render the OLS estimator of i  

inconsistent and misleading (see Kilian and Vigfusson 2009). Nor can this issue be resolved by 

statistical testing. The fact that a statistical test of 0 : 0, 0,iH i    typically does not reject the 

                                                            
7 OLS estimation of model (1 ) is based on the premise that the error tu is uncorrelated with .ts  This is not an 

additional assumption, but a direct implication of the existence of a structural model in which the price of energy is 
predetermined with respect to real GDP. Model (1) does not require that assumption because it is not structural. 
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null of zero slopes, does not imply that this null is actually true or that it is safe to impose that 

restriction in estimation. Hence, in cases when a test based on (1 ) provides stronger rejections 

than the other tests on the same data set, it is unclear whether this outcome reflects size 

distortions or higher power.  

As to the choice between tests based on models (1) and (1 ), it can be shown that the 

slope-based test of the joint null of linearity and symmetry based on model (1 ) may have higher 

power against departures from 0 : 0,iH    0,..., 4,i  than the conventional test based on model 

(1), which omits the contemporaneous regressors. This point has been illustrated in the context of 

Mork’s (1989) asymmetric specification in Kilian and Vigfusson (2009).  Depending on the 

values of the parameters of the omitted contemporaneous regressors, however, it is also possible 

that the test based on model (1) may have higher power than the test based on model (1 ). The 

power ranking will differ in general, depending on the data set and model specification. For the 

three-year net oil price increase specification studied in the appendix, the test based on model (1) 

has slightly higher power, given comparable size.  

As expected given this evidence, the differences between using the slope-based tests for 

model (1) and for model (1 ) tend to be small for the 3-year net increase specification 

considered. In this context, Hamilton (2010) mistakenly claims that the slope-based test based on 

model (1 ), as implemented in Kilian and Vigfusson (2009) for the real price of oil, fails to reject 

the null of symmetric slopes for real GDP. Hamilton suggests that this test result is at odds with 

the rest of the literature and therefore likely to be wrong. Actually, however, Kilian and 

Vigfusson found results rather similar to the previous literature. For example, they found no 

evidence that the linear model is rejected in favor of the asymmetric model of Mork (1989), 

consistent with the substantive findings in Hooker (1996) and Hamilton (1996). Moreover, their 

test rejected the linear model at the 5% level in favor of a model including the 3-year net oil 

price increase, much like Balke, Brown and Yücel (2002) and Hamilton (2003, 2010) did. In 

fact, Kilian and Vigfusson use this example to illustrate the differences between standard slope-

based tests (which reject symmetry in the slopes) and impulse-response based tests (which do not 

reject symmetry in the response functions). Thus, Hamilton’s claim that Kilian and Vigfusson 

presented evidence based on slope-based tests that the predictive relationship is linear (and his 

conclusion that this alleged difference in results is driven by a number of changes in the model 

specification relative to previous studies) is not supported by the facts. 
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This does not mean, of course, that modeling choices such as the choice of sample period 

or whether the price of oil is expressed in real or in nominal terms cannot in some cases affect 

the degree of statistical significance. We have already discussed each of these modeling choices 

in detail. What Hamilton’s (2010) results show is that the rejection of the null of symmetric 

slopes reported in Kilian and Vigfusson (2009) is robust to a variety of alternative model 

specifications. We agree with Hamilton that given some alternative modeling choices one can 

reject the null of symmetric slopes at even higher significance levels than at the 5% level 

reported in Kilian and Vigfusson. The rejection decision is the same across all specifications, 

however, making this distinction moot.8 More importantly, all of these results are tangential to 

the question at hand because the results of slope-based tests are not informative about the degree 

of asymmetry in the response functions of real GDP, which is why Kilian and Vigfusson (2009) 

caution against the use of any slope-based test, whether the traditional test or the modified test. 

They are relevant only to the separate question posed by Hamilton (2010) of whether there is 

nonlinear predictability from the price of oil to real GDP growth. There is no way of inferring 

“cause” and “effect” from such predictive correlations, of course, which is why we focus on 

structural impulse response analysis. 
 

How to Model and Compute Nonlinear Structural Impulse Responses 

Hamilton (2010) does not disagree with the conclusion in Kilian and Vigfusson (2009) that 

earlier estimates of the responses of real output to oil price shocks were invalid. In fact, he fully 

agrees with Kilian and Vigfusson’s point that fundamental changes are needed in the way that 

potentially nonlinear models of impulse responses ought to be specified, estimated, and tested.   

 There are four distinct contributions in Kilian and Vigfusson (2009) that must be viewed 

in conjunction. First, Kilian and Vigfusson establish that impulse response estimates from VAR 

models involving censored oil price variables are inconsistent even when equation (1) is 

correctly specified. Specifically, they demonstrate that asymmetric models of the transmission of 

oil price shocks cannot be represented as censored oil price VAR models and are fundamentally 

misspecified whether the data generating process is symmetric or asymmetric. This 

                                                            
8 It should be noted that the three-year net oil price increase specification was originally selected by Hamilton 
(2003) on the basis of Bayesian model selection methods applied to data that overlap substantially with the sample 
on which the slope-based test of this specification is based. This introduces an element of data mining that is not 
reflected in standard asymptotic critical values (see, e.g., Inoue and Kilian 2004). Following the related literature our 
analysis ignores this caveat. 
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misspecification renders the parameter estimates inconsistent and inference invalid. Second, they 

show that standard approaches to the construction of structural impulse responses used in this 

literature are invalid, even when applied to correctly specified models. Instead, Kilian and 

Vigfusson proposed a modification of the procedure discussed in Koop, Pesaran and Potter 

(1996). Third, Kilian and Vigfusson demonstrate that standard slope-based tests for asymmetry 

based on single-equation models are neither necessary nor sufficient for judging the degree of 

asymmetry in the structural response functions, which is the question of ultimate interest to users 

of these models. Kilian and Vigfusson proposed a direct test of the latter hypothesis which 

requires the model to be correctly specified and the nonlinear responses to be correctly 

simulated, as discussed in points 1 and 2.  Fourth, using this test, they showed empirically that 

there is no statistically significant evidence of asymmetry in the response functions for U.S. real 

GDP using data for 1973.Q2-2007.Q4.  
 

The Relationship with Balke, Brown and Yücel (2002) 

Hamilton’s (2010) discussion may give the impression that the central idea of Kilian and  

Vigfusson is already contained in Balke, Brown and Yücel (2002). This is not the case. Balke, 

Brown and Yücel certainly deserve credit for being the first researchers to have recognized that 

censored oil price VAR models are inherently misspecified, but their solution to this problem is 

different from that in Kilian and Vigfusson (2009) in several dimensions. It is important to make 

these differences explicit. First, Balke et al. do not explain why impulse response estimates from 

censored oil price models are invalid nor do they establish that these estimates are inconsistent, 

which helps explain why  the use of censored oil price VAR models has remained standard to  

this day.9 

 Second, the structure and the identifying assumptions of Balke et al.’s model differ from 

the rest of the literature. Abstracting from nonessential variables, the model used in Balke et al.  

can be written as:10  

                                                            
9 The full extent of their analysis of the problems with censored oil price VAR models is a statement that censored 
oil price VAR models “are not completely suitable for an examination of asymmetry” and that “it is not at all clear 
how to interpret a negative Hamilton innovation”. 
10 The original specification in Balke et al. included additional macroeconomic aggregates, given their focus on 
separately identifying monetary policy reactions to the price of oil. For further discussion of this approach see Kilian 
and Lewis (2010). Under standard identifying assumptions, the inclusion of additional variables in the VAR model  
does not affect the asymptotic properties of the response of real GDP to oil price innovations, but it may affect the 
accuracy of the response estimates in small samples. Here we abstract from these small-sample issues and focus on 
the more fundamental differences between the analysis in Balke et al. (2002) and in Kilian and Vigfusson (2009). 
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The standard view in the literature is that the price of oil is predetermined with respect to U.S. 

real output, which implies that 12,0 0.B   This view is consistent with recent empirical evidence 

in Kilian and Vega (2010). The model used in Balke et al., however, imposes a recursive 

ordering that treats real output rather than the price of oil as predetermined. Their key identifying 

assumption is that there is feedback within the impact period from innovations in real output to 

the price of oil  12,0 0 ,B   but no feedback within the impact period from innovations in the 

price of oil to real output  21,0 0 .B   Kilian and Vigfusson (2009), in contrast, impose the 

standard identifying assumption familiar from structural VAR models of the relationship 

between oil prices and real output that 12,0 0B  and 21,0 0 :B   
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Another important difference between these models is that Kilian and Vigfusson postulate that 

the price of oil is a linear function of past data, similar to the specification in Hamilton (2003), 

for example. This modeling choice makes it even more difficult to compare Balke et al.’s results 

with standard linear VAR models of the transmission of oil price shocks. Moreover, Balke et 

al.’s model is specified in terms of the nominal price of oil rather than the real price of oil and 

the model is estimated on data starting in January 1965, which is not valid as discussed in section 

3, given that the process generating the price of oil prior to 1973 cannot be represented by 

standard dynamic models.  

Third, Balke et al. do not formally test the null of symmetric response functions. Neither 

the traditional slope-based test nor the additional t-tests for pointwise symmetry of the real 

output responses that they report are informative about the degree of symmetry of the response 

functions. The approach of conducting pointwise t-tests at all horizons would be valid if and only 

if the t-tests were independent across horizons, which they are not, necessitating a joint test of 
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these restrictions that takes account of the covariance terms. Moreover, a joint test also 

eliminates the size distortions that arise from the repeated application of t-tests across multiple 

horizons which cause spurious rejections of the symmetry null (see, e.g., Kilian and Vega 2010). 

For these three reasons, the evidence in Balke et al. cannot be compared directly with the 

evidence in Kilian and Vigfusson (2009) and is not dispositive about the degree of asymmetry in 

the response functions of U.S. real economic activity to oil price innovations. 
 

The Evidence from Impulse-Response Based Tests 

With these clarifications in mind, it is time to focus on the empirical evidence. Table 1 updates 

the results in Kilian and Vigfusson (2009) for U.S. real GDP growth. There are a number of 

differences in the specification. First, the sample period is set to 1974.Q1-2009.Q4. This takes 

account of the structural break in the predictive relationship in 1973.IV and facilitates a clean 

comparison of alternative oil price series. Second, for expository purposes we focus on the U.S. 

producer price index favored by Hamilton and the U.S. refiners’ acquisition cost for imported 

crude oil used in Kilian and Vigfusson (2009). Third, we show results for both the nominal and 

real price of oil. Fourth, we focus on a model with four lags rather than the six lags used in 

Kilian and Vigfusson (2009). The latter two changes are intended to facilitate the comparison 

with Hamilton’s preferred model specification.  

 Table 1 shows that there is no statistically significant evidence against the null of 

symmetric responses to unexpected oil price increases and unexpected oil price decreases for 

shocks of typical magnitude. For the real PPI, for example, the p-value of the impulse-response 

based test is 0.90. Qualitatively similar results are obtained whether the price of oil is specified in 

real or in nominal terms. The benchmark of one-standard deviation shocks is representative of 

about two thirds of all oil price innovations that occurred historically. Only when we focus on 

much larger two-standard deviation shocks is there statistically significant evidence of 

asymmetry with a p-value of 0.04 for both the real and the nominal PPI. Shocks of this 

magnitude or larger have historically occurred with a probability of only 5%. The actual 

estimates of the underlying response functions are shown in Figure 3. These estimates have been  

normalized such that under the symmetry null the two response functions should coincide 
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exactly. Similar results are obtained for the refiners’ acquisition cost for crude oil imports.11 

The results in Table 1 for two-standard deviation shocks differ from those reported in 

Kilian and Vigfusson (2009) for a sample period ending in 2007.Q4. That study found no 

evidence against the null of symmetric responses for one- as well as two-standard deviation 

shocks. It can be shown that the difference in results is mainly driven by the extended sample 

period. As discussed in section 6, there is reason to be cautious in interpreting the post-2007.Q4 

results, which are likely to be driven by the financial crisis. If we exclude data after 2007.Q4 

from the estimation period, all evidence of asymmetric responses vanishes, even in response to 

two-standard deviation shocks. 

 The analysis for U.S. real GDP growth in Kilian and Vigfusson (2009) has recently been 

complemented by additional evidence based on the same impulse-response based test applied to 

U.S. industrial production. Herrera, Lagalo and Wada (2010) investigate not only aggregate data, 

but industrial production data disaggregated by sector. Their sample period roughly corresponds 

to that underlying Table 1. Herrera et al.’s baseline model utilizes the real price of oil.  

It is important to understand that a priori there is no reason for the results for industrial 

production to match the results for real GDP.  One reason is that the share of the service sector in 

U.S. real GDP has greatly increased in recent decades. To the extent that the economic models 

implying asymmetric responses of real output are designed for the industrial sector, one would 

expect weaker evidence of asymmetric responses for aggregate real GDP than for aggregate 

industrial production. A second reason is that asymmetric responses may be important at the 

sectoral level without necessarily dominating aggregate real economic activity. That is why 

disaggregate analysis is valuable in assessing the empirical content of economic models of the 

transmission of oil price shocks. At the same time, disaggregate analysis involving a large 

number of sectors necessitates the use of critical values that are robust against data mining.  

Herrera, Lagalo and Wada (2010) show that there appears to be considerable evidence of 

asymmetric responses even after accounting for data mining when the model is estimated on the 

full sample including pre-1973 data. That evidence, however, weakens considerably when 

discarding the pre-1973 data, as we did in Table 1. The results in Herrera et al. for aggregate 

monthly industrial production are remarkably similar to those in Table 1. In both cases, the 

                                                            
11 Increasing the lag order to six increases the p-values somewhat. For the real PPI, for example, the p-values 
increase to 0.96 for the one-standard deviation oil price innovation and to 0.15 for the two-standard deviation oil 
price innovation.  
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impulse-response based test suggests that there is statistically significant evidence of 

asymmetries only in response to very large oil price innovations, but not in response to oil price 

innovations of more typical magnitude. Their p-values for responses up to one year are 0.80 and 

0.09 compared with 0.90 and 0.04 in Table 1. Thus, the additional evidence for aggregate 

industrial production in Herrera, Lagalo and Wada (2010) is broadly consistent with the results 

in Table 1 for aggregate real GDP growth.   

One important difference is that Herrera et al.’s analysis shows in which sectors the 

asymmetry originates. Their results illustrate that the impulse-response based test is powerful 

enough to detect departures from the null of symmetric responses to one-standard deviation 

shocks within a year. In particular, for oil price innovations of typical magnitude there is no 

evidence of asymmetric responses in aggregate industrial production based on , ,3 ,net yr
tr
  but 

there is statistically significant evidence (even after accounting for data mining) against the 

symmetry null at the disaggregate level for sectors such as chemicals, transit equipment, 

petroleum and coal, plastics and rubber, primary metal, and machinery, but interestingly not for 

motor vehicles. This evidence confirms that there can be considerable heterogeneity in the degree 

of asymmetry across sectors. It suggests that the failure to reject the null of symmetric responses 

at the aggregate level may simply mean that asymmetries at the sectoral level are not strong 

enough to be detected in the aggregate data.  

For oil price innovations corresponding to two-standard deviation shocks, Herrera, 

Lagalo and Wada (2010) find somewhat stronger evidence against the null of symmetric 

responses, but at the aggregate level the evidence remains somewhat mixed with at best a 

marginal rejection at the 10% level at a horizon of one year (not accounting for data mining). At 

the disaggregate level, significant rejections are found in sectors such as plastics and rubber, 

chemicals and transit equipment, which is to be expected as these industries are known to be 

energy intensive, but again not for motor vehicles. None of these rejections for two-standard 

deviation shocks is significant after controlling for data mining, however, which may reflect a 

loss of power, as large oil price innovations are rare in the data and the resulting responses are 

less precisely estimated. 

Overall, we conclude that the evidence in favor of asymmetries is mixed. For a one-

standard deviation shock the response functions of U.S. real economic activity appear to be well 

approximated by those of a linear symmetric VAR model. This means that the linear symmetric 
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model can be expected to provide a good approximation in modeling the responses of real output 

to innovations in the real price of oil in most situations. For very large innovations in the price of 

oil there is evidence that the aggregate responses are asymmetric in that the expansion triggered 

by negative oil price innovations is smaller than predicted by a linear model. An interesting 

question for future research will be to determine to what extent that asymmetry is associated with 

specific expenditure components, building on Edelstein and Kilian (2007, 2009). 

It should also be stressed that the nature of the nonlinearity that the impulse-response 

based test detects in response to very large oil price innovations is based on the net increase 

measure developed by Hamilton (1996, 2003) using purely behavioral arguments. It therefore 

does not provide any support for the reallocation effect or the uncertainty effect discussed in 

section 2. In fact, if we replaced the net increase measure by a more conventional measure of oil 

price increases – as defined in Mork (1989) – that is consistent with economic theory, all 

rejections of the symmetry null hypothesis would vanish. Thus, the economic nature of the 

apparently asymmetric response to very large oil price innovations remains to be investigated. 

One way of approaching this question would be to focus on consumer sentiment data as in 

Edelstein and Kilian (2009). 

Finally, we have to keep in mind that these test results are tentative only. There are 

indications that the evidence in favor of asymmetries in response to large oil price innovations 

may be spurious. The sensitivity of the test results to the inclusion of data from the 2008 

financial crisis suggests that the evidence in favor of asymmetric responses could reflect 

overfitting resulting from the use of a quadratic loss function in conjunction with a relatively 

short sample. The concern is that the coincidence of a financial crisis following a large net oil 

price increase may cause the model to attribute the effects of the financial crisis on real GDP to 

the earlier net oil price increases. Given the unusual decline in real GDP during this episode, the 

ability to fit this one episode greatly improves the overall fit of the net increase model. Longer 

samples will be required to resolve this question. 
 

 

5.  Tests of the Uncertainty Effect 

Although the uncertainty effect has played a prominent role in discussions of asymmetric 

responses of real output for two decades, the first study to provide a fully specified model of this 

transmission mechanism is Elder and Serletis (2010). In contrast, earlier studies such as Lee, Ni, 
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and Ratti (1995) and Ferderer (1996) focused on single-equation models of the effect of oil price 

uncertainty on real output in which the price of oil is treated as exogenous. That approach is 

consistent with theoretical models of the uncertainty effect such as Bernanke (1983) who treats 

the price of oil as exogenous with respect to the U.S. economy, but inconsistent with the modern 

view that the real price of oil contains an important endogenous component (see Kilian 2008). 

Moreover, earlier empirical studies of the uncertainty effect used data from the pre-1973 period, 

making the empirical results difficult to interpret. 

 Elder and Serletis’ baseline model is a VAR(4) model for real GDP growth and the 

percent change in the real price of oil with GARCH-in-mean. The oil price measure is the 

composite U.S. refiners’ acquisition cost. The model is estimated on post-1974 data. Oil prices 

are treated as predetermined with respect to real economic activity. Rather than testing the 

symmetry of the response functions directly, as proposed in Kilian and Vigfusson (2009), Elder 

and Serletis test the null of no feedback from the one-quarter ahead conditional variance of the 

real price of oil in the conditional mean equation. They report that information criteria favor the 

model including this term. The presence of GARCH-in-mean effects implies that the response of 

real output in this model is asymmetric in unexpected oil price increases and decreases. It also 

implies that the degree of asymmetry will in general depend on the magnitude of the shock. 

Elder and Serletis report shocks normalized to one standard deviation of the unconditional 

distribution of the percent change of the real price of oil (rather than one standard deviation of 

the unconditional regression residual). 

 They provide evidence that increased oil price volatility exacerbates the negative 

response of real economic activity to an unexpected increase in the real price of oil, while 

dampening the positive response to an unexpected decline in the real price of oil. One of their 

striking findings is that the net effect of a unexpected drop in the real price of oil is to cause a 

recession. This is not in accordance with the underlying economic theory, which predicts a net 

positive effect on real output. Elder and Serletis attribute this result to sampling error. It is 

difficult to compare the impulse response estimates in Elder and Serletis to those in Kilian and 

Vigfusson because the magnitude of the oil price shock differs and because Elder and Serletis do 

not provide a formal test of the symmetry of the response functions, but if we take their point 

estimates at face value, there appears to be strong evidence of asymmetric responses.  

One possibility is that their results for U.S. real GDP and for U.S. industrial production 
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are stronger than the results in Kilian and Vigfusson (2009) and Herrera, Lagalo and Wada 

(2010) for similar sample periods because their approach is more parametric and therefore has 

greater power to detect departures from linearity. A useful exercise for future research would be 

to evaluate data generated from the asymmetric model estimated in Elder and Serletis using the 

methodology of Kilian and Vigfusson (2009) to determine whether that procedure has the power 

to detect the underlying departures from the null of symmetric responses. If it did, this would 

cast doubt on the findings in Elder and Serletis. If it did not, the power argument would seem 

compelling. 

 Such a finding would raise the additional question of how plausible it is that the 

uncertainty effect is so large. There is reason to be skeptical. The only study to date to provide 

formal empirical evidence of an uncertainty effect at the firm level is Kellogg (2010) who 

analyzed the investment decisions of oil companies in Texas. Kellogg showed that competitive 

oil companies, all else equal, significantly reduce their drilling of oil wells in response to 

increased expected oil price volatility. This finding makes sense given the overriding importance 

of the price of oil for the cash flow of oil producers. A similar argument may be plausible for 

purchases of automobiles, but the share of the automobile sector is relatively small in the U.S. 

economy, and more generally energy prices constitute a small determinant of the cash flow of 

investment projects. This is clearly an area that deserves further study. 

An alternative explanation is that the parametric GARCH-in-mean VAR model is 

misspecified. One limitation of this approach, acknowledged by the authors, is that it is not clear 

that the conditional variance implied by the GARCH model is the appropriate measure of oil 

price uncertainty. To illustrate this point consider three alternative measures of expected oil price 

volatility. The upper panel of Figure 4 shows the 1-month implied volatility time series for 

2001.1-2009.12, computed from daily CRB data. The next panel plots a realized volatility 

estimate constructed from daily percent changes in the nominal WTI price of (see, e.g., 

Bachmeier, Li and Liu 2008).  The bottom panel shows the 1-month-ahead conditional variance 

obtained from recursively estimated Gaussian GARCH(1,1) models.12  

 Although all three measures agree that by far the largest volatility peak occurred near the 

                                                            
12 The initial estimation period is 1974.1-2000.12. The estimates are based on the percent change in the nominal 
WTI price; the corresponding results for the real WTI price are almost indistinguishable at the 1-month horizon. 
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end of 2008, there are systematic differences that are likely to affect estimates of the uncertainty 

effect. For example, the implied volatility measure peaks in December 2008, whereas GARCH 

volatility only peaks in January 2009. This ranking is consistent with the view that implied 

volatility is the most forward-looking volatility measure and GARCH volatility the most 

backward looking volatility estimate. A similar pattern can be observed during the volatility 

spikes of 2001/02 and 2003. On this basis, one would be hard pressed to make the case that 

uncertainty about the future price of oil continued to increase in early 2009, as suggested by the 

GARCH estimate in Figure 4. Poon and Granger (2003), among others, have shown that implied 

volatility typically is a better real time predictor of future price volatility than is GARCH 

volatility. The fundamental problem is that GARCH volatility is inherently backward looking, 

whereas investors’ expectations tend to be forward looking. Even implied volatility may not be a 

good predictor of price volatility, however, given its reliance on oil futures prices which Alquist, 

Kilian and Vigfusson (2010) showed to be of limited use in forecasting the price of oil. 

Moreover, the assumptions used in constructing implied volatility measures may not hold in 

practice. 

In addition, a good case can be made that the market’s uncertainty about the future price 

of oil may actually fall during sharp oil price declines, making price volatility a poor measure of 

the uncertainty about future oil prices. For example, as the OPEC regime collapsed in 1986, the 

likelihood of future supply disruptions caused by OPEC evaporated removing a major source of 

uncertainty about the future price of oil. There was no reason to extrapolate from the observed 

price volatility in 1986 to future volatility if the collapse of OPEC is viewed as a one-time event. 

Finally, there is reason to believe that investors in the oil industry respond to the risk that 

the real price of oil will fall below a pre-specified level corresponding to the marginal cost of 

production rather than to oil price volatility because upside risk in the form of higher oil prices 

should not prevent the investment from going ahead. Similarly, investors outside the oil sector 

will be primarily concerned with the risk of energy prices rising above a pre-specified level. The 

construction of such oil price risk measures is discussed in Alquist, Kilian and Vigfusson (2010). 

Clearly, different forms of risk will be relevant for different sectors of the economy suggesting 

that generic oil price volatility measures may not be appropriate. 

A second and more fundamental concern is that the relevant measure of oil price 

volatility in the theoretical models described by Bernanke (1983) and Pindyck (1991) is not the 
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one-quarter ahead volatility of the real price of oil used by Elder and Serletis. Rather the relevant 

volatility measure is the volatility of the real price of oil at horizons relevant to purchase and 

investment decisions, which is typically measured in years or even decades rather than days or 

months, making all standard measures of short-term price volatility inappropriate. Measuring the 

volatility of the real price of oil at longer forecast horizons is inherently difficult given how short 

the available time series are, and indeed researchers in practice have typically asserted rather 

than measured these shifts in longer-horizon real price volatility. Elder and Serletis (2010) 

effectively treat measures of the short-horizon oil price volatility as a proxy for longer-horizon 

volatility, which may or may not be appropriate. 

 One problem with using standard monthly or quarterly GARCH model to quantify 

changes in the longer-term expected volatility of the real price of oil is that GARCH forecasts of 

the conditional variance quickly revert to their time-invariant unconditional expectation, as the 

forecasting horizon increases. If the economically relevant longer-term volatility is constant by 

construction, it cannot explain variation in real activity over time. If investment projects take 

time to implement before they start generating a cash flow, this weakens and possibly eliminates 

the feedback from the current uncertainty to investment decisions.  

It may seem that if there is increased uncertainty about the real price of oil that we expect 

to be resolved next quarter, then firms affected by this price should necessarily postpone their 

investment decisions, even if there is no change in the longer-term oil price uncertainty. Upon 

reflection that conclusion is not self-evident. For example, consider a company deciding whether 

to build a plant to produce a new SUV. The company’s profits depend on the price of oil in that 

demand for this vehicle will decline if the price of oil increases. Suppose that if the company 

decides to build the plant today, it will take four quarters to start production and for the cash flow 

from selling the SUVs to start. Also take as given that the investment is supposed to amortize 

itself within five years. To the extent that our forecast of the conditional variance converges back 

to the unconditional variance within four quarters, an unexpected increase in the conditional 

variance of the price of oil today will not affect this investment decision (because the cash flow 

from the investment that depends on the price of oil does not start within that horizon). More 

generally, even if the predictable variation in the conditional variance is more persistent and will 

affect expected oil price volatility for a few additional quarters, the overall effect is likely to be 

small considering the long horizon for which the cash flow arises (quarters 5 through 24 in the 
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example) and the tendency for GARCH forecasts of the conditional variance to revert to the 

unconditional variance at short horizons.  

This reasoning suggests that additional survey data on the distribution of long-run 

forecasts and beliefs about future oil prices at long horizons would be helpful in refining tests of 

the uncertainty hypothesis.13 Some progress in this direction may be expected from ongoing 

work conducted by Anderson, Kellogg and Sallee (2010) based on Michigan survey consumer 

expectations of 5-year-ahead gasoline prices. 

One could indeed make the case that the GARCH-in-mean model specified by Elder and 

Serletis (2010) is more likely to capture the reallocation effect of Hamilton (1988) than the 

uncertainty effect of Bernanke (1983) in that it effectively measures volatility in the current real 

price of oil (indicative of relative price changes) rather than the expected price of oil at the 

horizons relevant to investment decisions. If so, we should be able to show in more detail how 

oil price uncertainty affects employment flows at the sectoral, firm and plant level. This is a 

question already investigated by Davis and Haltiwanger (2001), except that this earlier work was 

based on censored oil price VAR models of the type shown to be invalid in Kilian and Vigfusson 

(2009). Further studies using updated time series data and state-of-the-art methods of estimation 

and inference appear promising avenues for research. 

A third concern with the model specification of Elder and Serletis is that it leaves no 

room for other forms of nonlinearity such as the nonlinear adjustment implied by Hamilton’s net 

increase measure. If we believe that such nonlinearities matter (or for that matter that there are 

other sources of asymmetries not formally modeled), then the GARCH-in-mean VAR model will 

be misspecified, making it difficult to determine what the estimated responses of real economic 

activity represent.  

A final concern is how to reconcile the disaggregate results in Elder and Serletis for U.S. 

real consumption with those in Edelstein and Kilian (2009) who showed that a linear symmetric 

model does quite well in explaining the historical evolution of U.S. consumption in both 1979 

and 1986. One difference is that Edelstein and Kilian (2009) allow for nonlinearities related to 

                                                            
13 In rare cases, the relevant forecast horizon may be short enough for empirical analysis. For example, Kellogg 
(2010) makes the case that for the purpose of drilling oil wells in Texas, as opposed to Saudi Arabia, a forecast 
horizon of only 18 months is adequate. Even at that horizon, however, there are no oil-futures options price data that 
would allow the construction of implied volatility measures. Kellogg (2010) therefore converts the one-month 
volatility to 18-month volatilities based on the term structure of oil futures. That approach relies on the assumption 
that oil futures prices are reliable predictors of future oil prices. 
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the evolution of the share of energy in consumption, whereas Elder and Serletis do not. Another 

difference is that Edelstein and Kilian focused on retail energy prices rather than the price of oil. 

An interesting question, considered in ongoing research, is to what extent the apparent 

asymmetry in the consumption responses in Elder and Serletis (2010) may be caused by omitted 

nonlinearities linked to the time-varying expenditure share on energy or by the choice of the 

energy price series.14  
 

 

6. Out-of-Sample Prediction of Real GDP Growth with Asymmetric Models 

The lack of evidence in Kilian and Vigfusson (2009) against the symmetry of the response 

functions does not necessarily imply that the reduced-form model is linear or that model (1) is 

misspecified. Rather the analysis in Kilian and Vigfusson demonstrates that the outcome of tests 

of the symmetry of coefficients in predictive regressions models is not informative about the 

degree of asymmetry in the response functions. Hamilton (2010) agrees with Kilian and 

Vigfusson as far as impulse response analysis from censored oil price VAR models is concerned, 

but suggests that nonlinear models such as model (1) may still be useful for out-of-sample 

forecasting. This is a legitimate conjecture that we explore in some detail in this section. 

 The fundamental difference between impulse response analysis and out-of-sample 

forecasting is that in the latter context parsimony may be more important than specifying the 

model correctly. Thus, models that are suitable for impulse response analysis need not be 

suitable for out-of-sample forecasting. It is important to keep in mind that the question of 

whether nonlinear models improve forecast accuracy also is distinct from the question of 

whether there is a nonlinear predictive relationship in population, which is the question that 

Hamilton (2003) focused on. As is well known, the in-sample fit of nonlinear predictive models 

selected using tests such as the slope-based tests discussed earlier does not guarantee gains in 

out-of-sample forecast accuracy.  

How to construct a suitable nonlinear forecasting model for real GDP growth is still an 

open question. Hamilton (2003) suggested that the predictive relationship between oil prices and 

U.S. real GDP is nonlinear in that (a) oil price increases matter only to the extent that they 

                                                            
14 A closely related point has recently been made by Ramey and Vine (2010), who propose to adjust the real price of 
gasoline for the cost of gasoline shortages induced by regulation. They also consider defining energy price shocks in 
terms of unanticipated changes in Michigan consumer sentiment regarding car buying conditions. As in Edelstein 
and Kilian’s work, these adjustments allow us to convert a nonlinear regression relationship into a linear regression 
model. 
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exceed the maximum oil price in recent years and that (b) oil price decreases do not matter at all. 

This view was based on the in-sample fit of a single-equation predictive model of the form (1 ). 

Even granting the presence of such asymmetries in the forecasting model, one point of 

contention in the literature is whether the forecasting model should be specified as in Hamilton 

(2003), or rather as model (1), as in Balke, Brown and Yücel (2002), for example. The latter 

specification encompasses the linear reduced-form model as a special case. Kilian and Vigfusson 

prove that dropping the lagged percent changes from model (1) will cause an inconsistency of 

the OLS estimates, except in the theoretically implausible case that there is no lagged feedback 

from percent changes in the price of oil to real GDP. Hamilton, in contrast, argues in effect that 

0, .i i    Hamilton (2010) suggests that the potentially misspecified nonlinear predictive 

regression model (1 ) that omits the lagged percent changes in the price of oil is preferred for 

out-of-sample forecasting given its greater parsimony compared with model (1). Below we 

explore the merits of imposing 0, ,i i   not only in the context of single-equation models 

designed for one-step ahead forecasting, but for multivariate nonlinear dynamic forecasting 

models.  

 A second point of contention is whether nonlinear forecasting models should be specified  

in terms of the nominal price of oil or the real price of oil. For linear models, a strong economic 

case can be made for using the real price of oil. For nonlinear models, the situation is less clear, 

as noted by Hamilton (2010). Because the argument for using net oil price increases is 

behavioral, one specification appears as reasonable as the other. Below we therefore consider 

models for real as well as nominal oil prices. 

 A third issue that arises only in constructing iterated forecasts for higher horizons is how 

to specify the process governing the price of oil. The case can be made that treating this process 

as exogenous with respect to real GDP might help reduce the out-of-sample MSPE, even if that 

restriction is incorrect. Below we therefore consider specifications with and without imposing 

exogeneity.  

 In Table 2, we investigate whether there are MSPE reductions associated with the use of 

the 3-year net increase in the producer price of crude oil, which is the oil price specification 

favored by Hamilton (2003, 2010), at horizons of one and four quarters. In this table, we focus 

on models with four lags rather than six lags as in Kilian and Vigfusson’s (2009) impulse 

response analysis.  This reflects the well-known fact that out-of-sample forecasting in practice 



32 
 

tends to call for greater parsimony than the analysis of population impulse responses. Evaluating 

a model designed with one purpose in mind in light of a different objective does not make much 

sense. Another reason for choosing four lags for the forecasting model is that it nests the AR(4) 

benchmark model for real GDP growth which can be shown to be the most accurate linear 

forecasting model. This specification also makes our analysis compatible with Hamilton’s (2003, 

2010) preferred model specification for prediction and facilitates direct model comparisons. 

Our starting point is an unrestricted multivariate nonlinear forecasting model based on the 

real price of oil: 
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An analogous nonlinear forecasting model may be constructed based on the nominal price of oil: 
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 In addition, we consider a restricted version of models (4) and ( 4 ) which imposes the 

hypothesis that the price of oil is exogenous with respect to real GDP growth 12,( 0, ),iB i   

resulting in:  
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and 
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Alternatively, we may restrict the feedback from lagged percent changes in the price of oil, as 
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suggested by Hamilton (2003). After imposing 21, 0, ,iB i   the baseline nonlinear forecasting 

model reduces to: 
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Finally, we can combine the restrictions 12, 0, ,iB i   and 21, 0, ,iB i   resulting in the 

forecasting models: 
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           ( 7 ) 

Note that, at the one-quarter horizon, real GDP growth forecasts from model ( 6 ) and ( 7 ) only 

depend on the second equation, which is equivalent to using Hamilton’s model (1 ).  

All models are estimated recursively by least squares, as is standard in the literature. The 

forecasts are constructed by Monte Carlo integration based on 10,000 draws. Our baseline results 

employ the PPI used in Hamilton (2003). Additional results for other oil price series and model 

specifications are discussed at the end of this section. We start with raw data for January 1974 

(which is when the EIA started collecting RAC data) to avoid both the well-documented 

structural change in the predictive relationship in late 1973 and to avoid having to make ad hoc 

assumptions about backdating the oil price data. This facilitates a clean comparison of alternative 
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oil price measures and implies that the estimation period starts in 1975.Q2. The initial estimation 

period ends in 1990.Q1 (right before the invasion of Kuwait in August of 1990) and the forecast 

evaluation ends in 2010.Q2.  Table 2 displays the MSPE ratios for all eight models by horizon. 

All results are normalized relative to an AR(4) benchmark model for real GDP growth.  

The key results can be summarized as follows: First, no nonlinear model in Table 2 is 

more accurate than the benchmark AR(4) model at the one-quarter horizon. This includes 

Hamilton’s single-equation model (1 ). Second, although model (1 ) performs poorly at the one-

quarter horizon, model ( 7 ) which combines Hamilton’s assumptions with that of exogenous oil 

prices and embeds all these assumptions in a multivariate dynamic framework, yields gains in 

accuracy relative to the benchmark model at the one-year horizon. The reduction in MSPE is 

12%.  The main reason for this gain in accuracy is the greater parsimony from omitting the 

lagged percent changes in the nominal price of oil; the imposition of exogeneity only plays a 

minor role. Third, there are no gains in accuracy relative to the benchmark model from 

specifying nonlinear models in the real price of oil, regardless of the additional restrictions 

imposed.  

An obvious question of interest is to what extent the nonlinearities improve our ability to 

forecast major economic downturns in the U.S.  In Figure 5 we focus on the model that performs 

best in Table 2. The upper panel of Figure 5 shows that the 3-year net oil price increase model 

( 7 ) based on the nominal PPI is quite successful in forecasting the downturn of 2008 and the 

subsequent recovery four quarters ahead. There are indications, however, that this forecast 

success arises for the wrong reasons. In particular, if these forecasts are to be believed, the 

financial crisis played almost no role in the economic decline of 2008/09, which does not seem 

plausible. Figure 5 illustrates that the net increase model has a tendency to predict major 

economic declines anytime the net price of oil increases substantially. In many cases those 

predictions proved incorrect.  A case in point is the 2005/06 episode. The ability to forecast the 

extreme decline of 2008/09, however, under a quadratic loss function more than compensates for 

these earlier forecasting errors and accounts for the higher average forecast accuracy of the four-

quarter ahead model. Without that episode, the ranking would be reversed.  

The lower panel of Figure 5 shows that the nonlinear model ( 7 ) produces systematically 

less accurate forecasts than the AR(4) benchmark model for real GDP growth throughout most of 

the evaluation period. By early 2008, very few analysts would have had the courage to stick with 
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the prediction of a sharp decline in real GDP over the next year, given the previous large forecast 

misses of the nonlinear model in 2005-06 and given its persistent underperformance compared 

with the AR(4) benchmark model for real GDP growth. Only starting in 2009.Q1, the recursive 

MSPE of model ( 7 ) drops below that of the benchmark model, highlighting how sensitive the 

results are to one extreme episode in the data. This finding reinforces the concerns with 

overfitting we already expressed in section 4 when discussing the in-sample fit of the model. 

In Table 2 we focused on the PPI because that is the price upon which Hamilton’s earlier 

in-sample analysis in favor of a nonlinear predictive relationship between the price of oil and 

U.S. real GDP was based. Table 3 extends the analysis of one-quarter-ahead forecasts to a 

variety of oil price measures, alternative lag orders and real as well as nominal prices. A robust 

finding across all specifications is that model (1 ) is less accurate out of sample than the AR 

model for real GDP growth, except during the recent financial crisis period. This conclusion is 

robust to the choice of lag order, to the choice of oil price series, and to the use of nominal or 

real oil prices. To the extent that some of the 20 model specifications considered beats the AR 

benchmark on the full evaluation sample, this result as well is driven entirely by the financial 

crisis episode. Moreover, there is no consistent pattern as to which specifications work well. 

Finally, we note that models based on the PPI that appear to fit the data well based on in-sample 

predictive analysis (such as then slope-based tests discussed earlier) do not perform well in out-

of-sample forecasting.  

Even leaving aside these concerns, it is useful to discuss what we would learn from 

evidence of forecasting success. First, forecasting success tells us nothing about the direction of 

causality or the transmission of oil price innovations. For example, it is conceivable that the price 

of oil as well as U.S. real GDP could be driven by a third variable such as global real activity 

(see Ravazzolo and Rothman 2010). Second, the nature of the nonlinearity embodied in the 

forecasting model ( 7 ) and the use of the nominal price of oil cannot be motivated based on the 

economic models discussed in section 2. Third, one of the reasons for the apparent success of 

some nonlinear forecasting models may very well be the use of information about the long-run. 

An interesting question is whether alternative model specifications that embody information 

about the long-run would be as successful or perhaps more successful than the class of models 

we considered here.  Fourth, the fact that the average out-of-sample forecast accuracy is highly 

dependent on one episode in the data suggests that the forecast evaluation period may be too 
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short for reliable rankings. 
 

7. Conclusion 

The problem of how to test the null of symmetric responses of U.S. real economic activity to oil 

price innovations has been solved only very recently. Kilian and Vigfusson (2009) proposed a 

statistical test of this hypothesis based on a class of econometric models that encompasses all 

standard theoretical explanations of asymmetric responses or, alternatively, can be modified to 

test alternative explanations of asymmetries not based on economic theory. Preliminary evidence 

based on these models revealed no evidence against the null of symmetric response functions in 

U.S. real GDP data.   

Additional results in this paper based on an extended data set that includes observations  

until 2009.Q4 showed some evidence of asymmetry in the response of real GDP to very large 

shocks, but none in response to shocks of typical magnitude.  Herrera, Lagalo and Wada (2010) 

provided related evidence for U.S. aggregate industrial production based on the same 

econometric approach. Their findings are broadly consistent with the results for real GDP. They 

found stronger evidence of asymmetric responses at the sectoral level, however, than in the 

aggregate data. In short, the econometric methodology developed in Kilian and Vigfusson 

indicates that most of the time the linear symmetric model provides a good approximation in 

modeling the responses of real output to innovations in the real price of oil. What evidence for an 

asymmetric response there is appears limited to uncommonly large innovations in the real price 

of oil. There are indications, however, that even this limited evidence may be spurious. If we 

exclude data after 2007.Q4 from the estimation period, all evidence of asymmetric responses 

vanishes. The sensitivity of the test result to one very unusual episode in the data may reflect the 

use of a quadratic loss function and a relatively short sample. Longer samples will be required to 

resolve this question. 

 In related work, Elder and Serletis (2010) proposed an alternative econometric model that 

imposes additional parametric structure in an effort to isolate one of the nonlinear transmission 

mechanisms discussed in the literature. As we discussed, this approach has both advantages and 

disadvantages compared with the semiparametric approach of Kilian and Vigfusson (2009). 

Although the estimates in Elder and Serletis are suggestive of strong asymmetries in the 

transmission of oil price innovations, formal tests of the degree of asymmetry of their response 

function estimates are not yet available. A natural approach would be to adapt the impulse- 
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response based test of Kilian and Vigfusson (2009) for this purpose. For now a fair summary of 

this empirical literature is that the evidence on the degree of asymmetry of the responses of U.S. 

real output may be highly dependent on what parametric structure we impose.  

 We also investigated the view recently expressed in Hamilton (2010) that we should 

focus on the problem of jointly forecasting real GDP growth and the price of oil out-of-sample 

rather than testing the structural economic models proposed in the literature. We showed that the 

forecasting success of nonlinear asymmetric models depends in general on the model 

specification, horizon, and evaluation period. We stressed that there are reasons to be skeptical of 

the apparent forecasting success of some nonlinear models of real GDP growth during 2008-10. 

For example, we showed that the one-step ahead nonlinear forecasting model favored by 

Hamilton (2010) based on extensive in-sample model specification searches is less accurate out 

of sample than a linear AR model for real GDP growth, except during the recent financial crisis 

period. This conclusion is robust to the choice of lag order, to the choice of oil price series, and 

to the use of nominal or real oil prices.  

 We also noted the difficulties of explaining the forecasting success based on existing 

economic models of asymmetries and of giving these results a causal interpretation. In particular, 

we cautioned economists against confusing predictive correlations with evidence of “cause” and 

“effect” (also see Cooley and LeRoy 1985). The predictive correlations studied by Hamilton 

(2003, 2010) in particular do not shed light on the macroeconomic effects of oil price shocks. As 

such, we disagree with Hamilton’s (2010) claim that structural impulse responses are simply 

conditional forecasts plotted as a function of the horizon.15 Similarly, we need to distinguish 

between overall variation in the price of oil and unpredictable variation in the price of oil. A 

common misconception is to equate a large cumulative increase in the price of oil with a large oil 

price innovation. The consequences of extraordinary events in oil markets can only be studied 

with the help of historical decompositions based on structural models, not by inspecting dynamic 

                                                            
15 In this regard, Hamilton (2010) provides additional evidence based on nonlinear local projections (LP) in the spirit 
of Jorda (2005, 2009), but his analysis ignores precisely the concerns articulated in Kilian and Vigfusson (2009) that 
such local projections depend on recent history and on the magnitude of the innovation . The need for Monte Carlo 
integration methods in these models is also discussed at length in Jorda (2005, p. 168). Moreover, Hamilton’s local 
projections are not designed to capture structural responses. This would require a consistent estimate of the 
structural impact multiplier matrix from an external structural model such as the model proposed by Kilian and 
Vigfusson (see, e.g., Jorda (2009) and Kilian and Kim (2010), equations (5)-(7)). Nor can the slope-based test that 
Hamilton reports for the LP be interpreted as a test of the symmetry of the impulse response. In short, Hamilton’s 
LP analysis does not shed any new light on the macroeconomic effects of oil price innovations. 
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co-movement in the data. There is no substitute for structural econometric modeling in 

quantifying possibly nonlinear effects of unexpected oil price shifts. 

 All three lines of research reviewed in this paper suggest ample opportunities for further 

research. Although much progress has been made in recent years in studying asymmetries in the 

relationship between the price of oil and U.S. real economic activity, many uncertainties remain. 

We conclude that the study of asymmetric effects of oil price innovations on domestic real 

activity is likely to remain an active area of research for years to come.  
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Figure 1: The Impossibility of Modeling Pre-1973 Nominal Oil Prices as an ARMA Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
NOTES: The fitted model is a random walk with drift in logs. The fitted values have been 
exponentiated. The figure illustrates that – unlike the original data – the data generated at random 
from the fitted model will never remain unchanged for extended periods of time.  Hence, the 
class of ARMA processes is not suitable for modeling this data set. The oil price is the West 
Texas Intermediate (WTI) price of oil, which is essentially identical with the U.S. wholesale 
price of crude oil for this period. Source: Alquist, Kilian and Vigfusson (2010). 
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Figure 2: Percent Changes in the Real Price of Oil 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Alquist, Kilian and Vigfusson (2010). RAC stands for the U.S. refiners’ acquisition cost. The data source is the EIA. 
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Figure 3: Responses of Real GDP Based on Innovations in the Real Price of Oil Price 
U.S. Producer Price Index for Crude Oil 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The estimation period is 1974.Q1-2009.Q4. All estimates are based on model (3). Similar results are obtained with  
other oil price measures. ( )I  denotes the response function of real GDP to a positive one-standard deviation oil price 
innovation. 
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Figure 4: Alternative Measures of Nominal Oil Price Volatility 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The GARCH volatility estimate is for the percent change in the nominal WTI price. The realized volatility was obtained 
from daily WTI prices. The implied volatility measure refers to the arithmetic average of the daily implied volatilities from at-the-
money put and call options associated with 1-month oil futures contracts and was constructed by the authors from CRB data. All 
volatility estimates are monthly and expressed as standard deviations, following the convention in the literature. Source: Alquist, 
Kilian and Vigfusson (2010).
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Figure 5: Nonlinear Forecasts from Model ( 7 ) of Cumulative Real GDP Growth Four Quarters Ahead  
U.S. Producer Price Index for Crude Oil 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The nonlinear forecasting model is a suitably restricted VAR(4) model for real GDP growth and the percent change  
in the nominal PPI for crude oil augmented by four lags of the corresponding 3-year nominal net oil price increase. This is the  
model with the lowest MSPE in Table 2.
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Table 1: p-Values of Joint Tests of the Null of Symmetric Response Functions 
Real GDP Responses to Oil Price Innovations at Horizons Up to One Year 

  Impulse Response Based Test 
  1 std dev shock 2 std dev shock 
PPI Real 0.96 0.04 
 Nominal 0.96 0.04 
Import RAC Real 0.98 0.06 
 Nominal 0.72 0.04 

 

 NOTES: Based on model (3) with four lags. PPI stands for the U.S. producer price index  
for crude oil and Import RAC for the U.S. refiners’ acquisition cost for imported crude  
oil. Using data ending in 2007.Q4, there is no evidence against the null of symmetric  
responses for any of these tests. 

 
 
 
 
 

Table 2: h -Quarter Ahead MSPE Ratios for Cumulative U.S. Real GDP Growth Rate: 
Nonlinear Dynamic Models Based on 3-Year Net Oil Price Increase 

Relative to AR(4) Benchmark Model 
 

 
U.S.  
Producer Price  

                                                          Forecast Evaluation Period:  
                                                                 1990.Q2-2010.Q2 
                                                                            Horizon 

Of Crude Oil Model 1h   4h   
Real Unrestricted Model (4) 1.35 1.18 
 Exogenous Model (5) 1.35 1.20 
 Restricted Model (6) 1.23 1.07 
 Restricted and Exogenous (7) 1.23 1.08 
    
Nominal Unrestricted Model ( 4 ) 1.33 0.99 
 Exogenous Model (5 ) 1.32 0.99 
 Restricted Model ( 6 ) 1.23 0.88 
 Restricted and Exogenous ( 7 ) 1.23 0.88 

 

NOTES: The nonlinear regression models, the estimation and the evaluation periods are all 
described in the text. All models include four lags. Boldface indicates gains in accuracy relative 
to AR(4) benchmark model for real GDP growth. The exogenous model suppresses feedback 
from lagged real GDP growth to the current price of oil. The restricted model suppresses 
feedback from lagged percent changes in the price of oil to current real GDP growth, as proposed 
by Hamilton (2003, 2010). The restricted exogenous model combines this restriction with that of 
exogenous oil prices, further increasing the parsimony of the model. 
 
 
 
 



47 
 

Table 3: One-Quarter Ahead MSPE Ratios for U.S. Real GDP Growth Based on Model (1 )  
 

 Forecast Evaluation Period 
 1990.Q2-2007.Q4 1990.Q2-2010.Q2 2008.Q1-2010.Q2 
 Real Nominal Real Nominal Real Nominal 
Specification (I) (II) (III) (IV) (V) (VI) 
 MSPE Relative to AR(4) Benchmark 
Four Lags:       
Import RAC 1.11 1.22 0.91 1.02 0.50 0.60 
Composite RAC 1.50 1.58 1.16 1.26 0.48 0.60 
Domestic RAC 1.55 1.50 1.23 1.23 0.57 0.69 
PPI 1.63 1.58 1.23 1.23 0.42 0.53 
WTI 1.24 1.01 1.04 0.92 0.63 0.74 
 MSPE Relative to AR(6) Benchmark 
Six Lags:       
Import RAC 1.40 1.49 1.10 1.18 0.45 0.52 
Composite RAC 2.80 3.30 2.04 2.41 0.47 0.55 
Domestic RAC 2.18 2.09 1.66 1.63 0.57 0.66 
PPI 2.05 2.11 1.53 1.59 0.43 0.51 
WTI 1.32 1.12 1.08 0.97 0.60 0.67 
 

NOTES:  Reductions in the MSPE relative to the benchmark are shown in boldface. The 
estimation period starts in 1975.Q2 and 1975.Q4, respectively, owing to the data constraints 
discussed earlier. All MSPE ratios are expressed relative to the corresponding AR model for real 
GDP growth. Model (1 ) is the nonlinear forecasting model favored by Hamilton (2010).  In 
contrast, model (1) estimated using the real import RAC would be the one-step ahead forecasting 
model implied by structural model employed in Kilian and Vigfusson (2009).  For completeness, 
we note that the recursive MSPE ratio for the latter model with six lags is 1.10 on the evaluation 
period 1990.Q2-2010.Q2. Hamilton (2010) reports an MSPE ratio of 0.87 for the same model for 
the evaluation period 1990.Q2-2010.Q2. The difference in result is due to the use of additional 
pre-1974 data in Hamilton’s regression. It can be shown that after excluding the financial crisis 
period Hamilton’s regression estimated on his data yields an MSPE ratio of 1.08 and the same 
regression estimated on our data yields an MSPE ratio of 1.41.



48 
 

Appendix: The Size and Power Properties of Slope-Based Tests of the Net Increase Model 

This appendix compares the size and power properties of three alternative slope-based tests of 

the net increase model. We consider two data generating processes. Model (A1) is an 

unrestricted multivariate nonlinear forecasting model based on the real price of oil: 
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Model (A2) imposes the additional restrictions of 0 0  and 21, 0 :iB i   
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The fact that we focus on the real price of oil rather than the nominal price is immaterial for the 

purpose of our simulation study. The data generating processes (DGPs) used in the size 

simulations are based on the least-squares parameter estimates obtained from fitting models (A1) 

and (A2) to U.S. data after imposing 0.   The parameter estimates for the power simulations 

are obtained from fitting (A1) and (A2) to the same data after imposing 1.   In generating the 

pseudo data under the alternative we impose  0.25,0.5,1, 2 .   The larger , the greater is the 

degree of asymmetry. The innovations in the DGP are treated as Gaussian white noise for 

expository purposes. All pseudo data sets are of the same length as the original data. 

For each pseudo data set, we employ the three versions of the slope-based test of the null 

of symmetry described in section 3. Table A1 summarizes the rejection rates for 

 0,0.25,0.5,1, 2 .  The nominal size is 5%. Under the unrestricted structural DGP, the test 

based on model (1 ) suffers from substantial size distortions. It rejects the null of symmetry too 

often. The reason for this size distortion is that the OLS estimates of i  are inconsistent due to 

the censoring of the oil price regressors unless 21, 0 0,iB i    as shown in Kilian and Vigfusson 

(2009). In other words, these size distortions persist asymptotically. The other two tests have 

accurate size because they do not impose that 21, 0, 0.iB i   Adjusting for the size distortions of  
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the test based on model (1 ) has substantially lower power than the other two tests for all 0.    

As expected, the size problems of the test based on model (1 ) vanish when considering 

the restricted structural DGP (A2). If 21, 0 ,iB i  the analysis in Kilian and Vigfusson (2009) 

shows that Hamilton’s predictive regression will consistently estimate 0.i i    Moreover, the 

test based on model (1 ) will be more efficient than a test based on a regression that includes 

additional irrelevant regressors, making it more powerful. Table (A1) confirms that for the 

restricted DGP all three tests have accurate size, but the test based on model (1 ) has higher 

power than the other two tests. 

As to the choice between tests based on models (1) and (1 ), Hamilton (2010) argues that 

it seems unlikely that another test could have higher power than a test based on (1) because OLS 

estimation of the regression model produces asymptotically efficient estimates of the predictive 

regression parameters under i.i.d. Gaussian errors. Leaving aside the issue that there is no reason 

for the regression errors to be i.i.d. Gaussian in practice, both tests are based on OLS estimation, 

so the choice of the estimation method is a non-issue. Instead, what determines the relative 

power of tests based on models (1) and (1 ) is the contemporaneous conditional correlation 

between the oil price variables and real GDP growth, which may differ for each data set and 

model specification. For the specification of interest here, Table A1 suggests that the test based 

on model (1) will have slightly higher power than a test based on model (1 ) under both DGPs.
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Table A1: Rejection Rates of Nominal 5% Slope-Based Tests of the 3-Year Net Increase Model 

 Size Power 

  0 0.25 0.5 1 2 

 Unrestricted DGP (A1) 

Model (1) 5.5 15.7 48.1 90.8 99.0 

Model (1 ) 12.6 11.1 45.7 91.9 99.2 

Model (1 ) 5.6 14.6 45.0 89.7 98.9 

 Restricted DGP (A2) 

Model (1) 5.6 13.6 40.1 86.7 99.2 

Model (1 ) 5.5 18.5 55.6 92.7 99.2 

Model (1 ) 5.4 12.6 36.7 84.5 98.5 
 

NOTES: The DGPs and slope-based tests are described in the text.  The parameter   controls the degree of asymmetry. The larger ,  
the greater the degree of asymmetry. 
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