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Abstract

We analyze the effects of competition with quantity discounts in a

duopoly model with asymmetric firms. Consumers are privately informed

about demand, so firms use quantity discounts as a price discrimination

device. However, a dominant firm may also use quantity discounts to

weaken or eliminate its competitor. We analyze the effects of quantity

discounts on firms’ profits and consumer surplus. Our main finding is that

quantity discounts can decrease social welfare (i.e., the sum of producers’

and consumers’ surplus) for a small set of parameter values.

1 Introduction

Many firms offer quantity discounts, i.e., lower prices for large purchases. It is

generally recognised that these discounts can simply be a way to pass economies

of scale on to buyers, or to allow firms to better extract the surplus of their cus-

tomers. But there may be other rationales as well, and antitrust authorities are

sometimes concerned that dominant firms may use non-linear prices to eliminate

or soften competition.1

∗We thank Piercarlo Zanchettin and seminar participants at the EARIE 2010 conference
in Istanbul for useful comments.

1 See Kolay, Shaffer and Ordover (2004) and Beard, Ford and Kaserman (2007). The

competition policy debate has also centred around other forms of loyalty discounts, including

bundled discounts (where price discounts are conditioned on the customer’s total purchases

of various products supplied by the firm), market-share discounts (i.e., discounts conditioned

on the firm’s share of the customer’s total purchases), and exclusivity discounts. Still other

forms of loyalty rebates are conditioned on the customer’s past purchasing history. For an

overview of the current debate, see Heimler (2005), Kobayashi (2005), Spector (2005), Faella

(2006), Ordover and Shaffer (2007), and Ahlborn and Bailey (2008).
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One theory contends that quantity discounts provide a cost-effective way

to deprive a rival of economies of scale so as to drive it out of business. This

theory implies that in assessing the competitive harm of quantity discounts

the courts should apply the demanding standards required in predatory pricing

cases. That is, plaintiffs must be able to demonstrate that the incumbent had

suffered a loss by pricing below marginal cost or average variable cost, and that

it had a reasonable prospect of recouping this loss in the future. This theory is

consistent with the current policy in the U.S., where the courts have typically

been reluctant to prohibit single-product quantity discounts under the antitrust

laws.2

The European case law, by contrast, is implicitly or explicitly based on the

notion that quantity discounts can have exclusionary effects even if they are not

part of a predatory strategy. In Michelin II, for instance, the European Court

of Justice did not require a proof that price was less than unit cost, and ruled

that any quantity discount that does not reflect cost efficiencies is presumed to

be abusive if practiced by a dominant firm.3

Are the concerns of the European antitrust authorities well grounded? Are

the concerns of the European antitrust authorities well grounded? To answer

this question, we consider a model where two asymmetric firms supply differ-

entiated products and compete in non-linear prices. We contrast the non-linear

pricing equilibrium with the one that would obtain if firms were constrained

to use linear prices. The model is timeless — a static, one-shot game of price

competition — and there are no economies of scale. As a result, there is no room

for predatory pricing. However, consumers are privately informed about their

demand, so firms may use quantity discounts as a price discrimination device.

Martimort and Stole (2009) have characterised the equilibrium with non-

linear prices in the symmetric case. Although they have not developed the

comparison with the case where firms are restricted to use linear prices, it is

easy to show that with symmetric firms quantity discounts always increase so-

cial welfare (i.e., the sum of producers’ and consumers’ surplus). Thus, the

symmetric model provides little support to the view that quantity discounts

can be anti-competitive.

In the asymmetric case, by contrast, we find that anti-competitive effects

are not only possible, but also likely, at least in some senses. First, quantity dis-

counts often harm the smaller firm, which can be excluded by the dominant firm

more easily than with linear prices. Second, while in the symmetric case quan-

tity discounts harm consumers only when the products are weak substitutes, if

the firms are sufficiently asymmetric consumers are harmed for any degree of

2 In two recent decisions — Brooke Group and Concord Boats — the U.S. courts have explic-

itly applied to cases involving quantity discounts the standards required in predatory pricing

cases: see Klein and Lerner (2008).
3The 2008 Commission’s Guidance Paper has reiterated that loyalty discounts can have

anticompetitive effects “without necessarily entailing a sacrifice for the dominant undertaking”

(§ 37). It has also stressed, however, that the possible exclusionary effects of quantity discounts

can only materialize when firms are sufficiently asymmetric. However, Michelin II and the

subsequent cases where quantity discounts were found abusive all involved all-units discounts.

Incremental discounts are generally treated more leniently: see Waelbroeck (2005).
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product substitutability. Third, in the asymmetric case quantity discounts can

decrease social welfare for a range of parameter values.

Thus, the analysis does provide some support to the concerns of the Euro-

pean antitrust authorities. However, we also argue that identifying the circum-

stances in which a ban of quantity discounts can improve social welfare may be

an extremely challenging task. After presenting our main results, we discuss

their implications for competition policy more fully in the concluding section.

There is an extensive literature on monopolistic non-linear pricing: see

Mussa and Rosen (1978) for a pioneering contribution, and Wilson (1994) for

a comprehensive treatment. The analysis of the oligopoly case, however, is

much less developed.4 Yin (2004) analyses a model in which firms compete in

two-part tariffs. Kolay, Shaffer and Ordover (2004) model all-units discounts

assuming that firms can offer only piecewise linear price schedules. Martimort

and Stole (2009) are the first to allow for any non-linear price schedule. Another

recent contribution is Hoerning and Valletti (2010), who focus on the special

case where total demand is fixed.

Another strand of the literature (Armstrong and Vickers, 2001; Rochet and

Stole, 2002) focuses on models of one-stop shopping, where consumers patron-

ize only one firm. In this case, firms effectively compete in utility space, and in

equilibrium they offer two-part tariffs with a marginal price equal to marginal

cost. Armstrong and Vickers (2010) extend the analysis to the case in which

consumers can purchase from both firms at an extra cost. However, they fo-

cus on the case of multiproduct firms, so their contribution properly belongs

to the literature on bundled discounts (see also Greenlee, Reitman and Sib-

ley, 2008). There is also a small literature on market-share discounts, which

includes Majumdar and Shaffer (2009), Ordover and Shaffer (2007), and Cal-

zolari and Denicolò (2009). Finally, turning back to quantity discounts, Beard,

Ford and Kaserman (2007) have argued that quantity discounts can be used

as an imperfect substitute for exclusive contracts in models where the incum-

bent can contract with the buyers before an entrant enters the market. Their

analysis highlights an additional channel whereby quantity discounts can have

anti-competitive effects, one that is not considered in this paper.

The rest of the paper is organized as follows. Section 2 sets up the model.

In section 3 we derive the equilibrium with linear prices, and in section 4 that

with non-linear prices. Section 5 compares these two modes of competition in

terms of profits, consumer surplus, and social welfare. Section 6 analyzes the

case of a selective ban imposed only on the dominant firm. Section 7 discusses

the policy implications of our results and concludes the paper. All proofs are in

the appendix.5

4Most of the literature on common agency games with incomplete information has focused

on the intrinsic common agency case, where the agent must choose between participating

with all principals or none at all. This framework suits such cases as a firm that is regulated

by several regulatory agencies. As a rule, however, a consumer can choose to buy from only a

subsets of the firms. In the jargon of the common agency literature, this corresponds to the

case of delegated common agency.
5A Web Appendix (available at http://www2.dse.unibo.it/calzolari/) provides the detailed
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2 The model

Two firms, denoted by  = , supply differentiated products to a final con-

sumer. The consumer’s utility function in monetary terms,  (   ),
6 de-

pends on consumption of the two goods  and  and a parameter, , which

is the consumer’s private information. Following Martimort and Stole (2009),

we posit a quadratic utility function

 (  ) = ( + )− 1− 

2
(2 + 2)−  (1)

and assume that  is uniformly distributed over the interval [0 1]. These as-

sumptions serve to get explicit solutions, without which it would be impossible

to perform a thorough comparison between the two modes of competition (i.e.,

linear v. non-linear prices).7

The parameter  ∈ [0 1
2
) captures the degree of substitutability between the

goods. The goods are independent when  = 0 and perfect substitutes in the

limiting case  = 1
2
. The factor 1−

2
that multiplies the middle term in (1)

serves to prevent changes in  to affect the size of the market, as in Shubik and

Levitan (1980).

Firms have constant marginal costs  and  , with  ≤ . There are

no fixed costs. With no loss of generality, we normalize  to zero and denote

 =  ≥ 0. Thus, the parameter  captures the degree of asymmetry among
the firms.8 Since firm  is never active when   1, we can focus on the case

 ≤ 1, again with no loss of generality.
Firms simultaneously and independently offer a price schedule. With linear

prices, price schedules must take the simple form () = , so that firm ’s

strategy is simply its price  ∈ <+. When firms can use quantity discounts, a
strategy for firm  is a function () : [0 max]→ <+ where  is the quantity
that firm  is willing to supply,  ≥ 0 is the corresponding total payment

requested, and max is an upper bound large enough that no consumer may ever

want to consumer more than max.

Each firm maximises its expected profits

 = [(())− ()] (2)

and the consumer maximises his net utility given his type 

(  ) = (  )− ()− () (3)

derivation of the closed form solutions and all the numerical calculations. The software used

is Mathematica by Wolfram Research Inc..
6 In an alternative interpretation of the model, A and B are manufacturers that sell their

products through a common retailer, and the function  is the retailer’s gross profit.
7The linear-quadratic-uniform specification of the model is not special, as it corresponds

to the case in which each consumer has a linear demand for the goods. Martimort and

Stole (2009) show that several qualitative properties of the solution hold for any suitably

well-behaved utility function.
8The parameter  may also capture demand asymmetries. For example, one could add a

linear term (+ ) in the utility function, where  −  can be interpreted as a

measure of vertical product differentiation. Setting  −  = 0 and  =  −  ≥ 0 one

re-obtains the formulation used in the paper.

4



Given the timing of the game, it is natural to focus on subgame perfect equi-

libria where the consumer maximises  for any possible pair of price schedules

submitted by the firms.

In what follows, we shall say that a firm is active if its equilibrium output

is strictly positive, and that it is excluded if its equilibrium output is zero.

3 Linear prices

We start from the case in which firms compete in linear prices. We seek the

Bertrand equilibrium of the industry described in the previous section.

Although individual demand functions are linear, the total demand functions

obtained aggregating over the heterogeneous consumers are non linear. This

complicates the calculation of the equilibrium prices considerably. We have:

Proposition 1 When firms compete in linear prices, there is a unique equilib-

rium in pure strategies. If  ≥ , where

 ≡ 3− 5
3(1− )

(4)

firm B is not active and firm A charges the monopoly linear price  = 1
3
. If

instead   , both firms are active. The equilibrium prices can be calculated

explicitly and are reported in the Appendix. They satisfy 
∗
 ≤ ∗, with a strict

inequality when   0. In the symmetric case  = 0, equilibrium prices reduce

to

∗ = ∗ =
1− 2
3− 4  (5)

Proof. See the Appendix.

When firm  is active, in equilibrium there are three groups of consumers:

low demand consumers,  ∈ [0 ∗], who do not buy any product; intermediate
demand consumers,  ∈ [∗ ̂


], who buy only product ; and high demand

consumers,  ∈ [̂ 1], who buy both products. Notice that the inframarginal
consumers   ̂


are “captive,” in the sense that a small increase in  leads

these consumers to reduce , but not to purchase product .

This latter observation is crucial to understand a surprising property of the

equilibrium, namely, the absence of a limit pricing region. Another (and related)

surprising property is that firm  is excluded only if the cost  is greater than the

monopoly price  = 1
3
. One would expect, by contrast, that if the products

are sufficiently close substitutes firm  should be excluded even if the cost

gap  is small, because firm  engages in limit pricing. This is, indeed, what

happens in models of product differentiation with homogeneous consumers (see,

for instance, Zanchettin 2006).

The intuitive reason why firm  does not engage in limit pricing is that in

our model both firms compete for high-type consumers, but low-type consumers
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are effectively captive to firm . By reducing its price, firm  may increase its

profit on consumers of type  ∈ [̂ 1], but it will certainly decrease its profit on
its captive consumers as long as  is below the monopoly price  = 1

3
. This

effect makes firm  less aggressive and is stronger, the closer is ̂

to 1.

Consider, in particular, under what circumstances a limit pricing strategy

might be optimal for firm . Such a strategy requires setting  such that

̂

= 1. But when ̂


is close to 1, almost all consumers are captive, so firm 

will have an incentive to charge the monopoly price  . This means that firm

 will drive  out of the market only if it can do so by charging the monopoly

price.9

Another property of the equilibrium is that an increase in the degree of prod-

uct differentiation may increase ∗ when  is already sufficiently large. When

 increases, the products become better substitutes. As a result, competition

is more intense, decreasing both prices. However, in our model a countervailing

effect is at work: when   0, an increase in  enlarges the set of consumers

that purchase only product . This reinforces firm ’s incentive to exploit these

captive consumers, reducing the intensity of competition. This latter effect can

prevail on the standard effect of greater substitutability when  is large enough,

leading to an increase in ∗.

4 Non linear prices

Now we turn to the case where firms can offer non-linear price schedules ()

The difficulty in finding the equilibrium with non-linear prices is that the strat-

egy space is very large. We overcome this difficulty by using a guess-and-check

strategy. We start by guessing a specific functional form of the equilibrium price

schedules, so that they are fully identified by a few parameters. If the initial

guess is correct, the equilibrium of the original game will coincide with that of a

restricted game where firms can choose only those parameters. The equilibrium

of the restricted game then becomes the candidate equilibrium of the original

game. Finally, we verify that the candidate equilibrium strategies satisfy the

best response property over the unrestricted strategy space. The drawback of the

guess-and-check strategy is that it fails to locate equilibria that do not conform

to the initial guess, if there are any.

To simplify the exposition, we present separately the equilibrium when firm

 is active and when it is excluded. We start by determining the conditions

under which firm  is, indeed, active. Recall that in any standard screen-

ing environment like ours equilibrium quantities must satisfy two properties:

monotonicity (firms sell larger quantities to higher types), and no distortion at

the top. These properties imply that firm  will stay active as long as the mar-

9Only in the limiting case  = 1
2
does one obtain the familiar limit pricing equilibrium,

where firm  prices at  and firm  prices at  −  and serves the entire market. When

 approaches 1
2
, ∗ converges to  from above and ∗ converges to  from below. The

equilibrium quantity ∗ converges to zero, but is positive for any   1
2
.
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ginal willingness to pay for product  of consumer  = 1 when he consumes the

efficient stand-alone quantity of product  (which is 1
1− ) exceeds the marginal

cost .10 Since

0


µ
1

1− 
 0 1

¶
=
1− 2
1− 

(≡ ) (6)

it follows that firm  is active if and only if    The threshold  decreases

with the degree of product substitutability , is equal to 1 when  = 0 and

converges to 0 when  approaches 12.

Since the utility function is quadratic, we guess that firm  will offer a

quadratic price schedule

() = 0 + 1 + 2
2
 for 0 ≤  ≤ max (7)

As for firm , which being more efficient may serve some consumers who pur-

chase only product , we guess that its price schedule comprises various piece-

wise quadratic branches. To be more specific, we guess that in addition to an

upper branch, intended for high demand consumers who purchase both prod-

ucts, which is

 
() = 0 + 1 + 2

2
 for ̃ ≤  ≤ max (8)

firm  may strategically engage in limit pricing (to induce some intermediate

demand consumers to purchase only product ) and in monopoly pricing (to

exploit those low demand consumers who are effectively captive).

The monopoly part of price schedule can be easily calculated using standard

monopolistic screening techniques and is


 () =

1

2
 − 1− 

4
2 for ̄ ≤  ≤ ̃ (9)

modulo a fixed fee. The limit pricing schedule must lead intermediate demand

consumers to purchase a limit quantity lim () that induces consumers to pur-

chase only product . The limit quantity lim () is such that the marginal

willingness to pay for product  is just equal to the marginal price of product

 at  = 0, i.e. 
0


(lim () 0 ) =  0∗ (0) It is easy to show that this implies

 lim () = 1 −
µ
1

2
− 

¶
2 for 0 ≤  ≤ ̄ (10)

again modulo a fixed fee.

Summarizing, our guess is that firm  will submit a price schedule that

combines the duopoly, limit pricing and monopoly branches described above.

Proposition 2 describes the equilibrium that conforms to this guess.

10Recall that there are no fixed costs.
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To state the proposition, it is convenient to define the price schedule which

obtains in the symmetric equilibrium where  = 0 (the case analysed by Marti-

mort and Stole, 2009), which is:11

 ∗() = ∗1 −
∗1
2
2 (11)

where

∗1 =
1

4

h
3(1− )−

p
1− 2 + 92

i
 (12)

We are now ready to state:

Proposition 2 When firm B is active, i.e., if   , the following is an equi-

librium in non-linear prices. Firm B offers the price schedule

 ∗() =  ∗() + 

µ
1− ∗1

1− 

1− 2
¶
 for 0 ≤  ≤ 1− 

1− 

1− 2 

and firm  offers the price schedule

 ∗() =

⎧⎪⎨⎪⎩

 () for 0 ≤  ≤ ̃∗

lim ∗0 +  lim () for ̃∗ ≤  ≤ ̂∗
∗0 +  ∗() + 

∗1
1−2  for ̂∗ ≤  ≤ 1 + 



1− 2 

The constants lim ∗0  ∗0 ̃
∗
 and ̂∗ are such that firm ’s price schedule is

continuous and differentiable at ̃∗ and ̂
∗
; the precise expressions are given in

the Appendix.

Proof. See the Appendix.

In equilibrium, consumers are divided into three groups, as in the linear

pricing case: low demand consumers, who do not buy any product; intermediate

demand consumers, who buy only product ; and high demand consumers, who

buy both products. Unlike the linear pricing case, however, firm  now engages

in limit pricing for some intermediate demand consumers consumers. Thus,

firm ’s price schedule comprises three parts, in accord with our guess: the

monopoly part, which is intended for consumers who purchase only product 

and are not contested; the limit pricing part, which applies to consumers who

in equilibrium purchase only product  but are contested by firm ; and the

duopoly part, which is intended for consumers that purchase also product .

Firm , by contrast, will serve only consumers who purchase also product .

11Martimort and Stole (2009) use a slightly different parametrization of the utility function,

which however is equivalent to ours. See Calzolari and Denicolò (2009) for the derivation of

the symmetric equilibrium with out parametrization.

8



Figure 1: Equilibrium quantities with firm B active (for  = 022 and  = 05).

The equilibrium quantities are

∗() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

⎧⎨⎩0 2 − 11− 

 −

h
∗1 + 

³
1− ∗1

1−
1−2

´i


⎫⎬⎭ for  ≤ ̂
∗

∗() + 


1− 2 for   ̂
∗


∗() = ∗()− 
1− 

1− 2  (13)

where

∗() =
 − ∗1
1− ∗1

(14)

is the symmetric equilibrium quantity, and

̂
∗
= ∗1 +  (1− ∗1)

1− 

1− 2  (15)

Equilibrium quantities are depicted in Figure 1.

Various comments are in order. First, the equilibrium price schedules satisfy

the no-fixed fee property  ∗ (0) = 0. As argued by Wilson (1994), this property
must always hold in the absence of fixed costs. Second, the equilibrium price
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schedules are everywhere concave. This means that firms always offer quantity

discounts and never charge quantity premia. Third, the equilibrium satisfies

the no-distortion-at-the-top property, which implies that type  = 1 must pur-

chase the efficient quantities 

 (1).

12 For the consumer  = 1 to be willing to

purchase the efficient quantities, the slopes of the equilibrium price schedules at

the efficient quantities must equal the marginal costs, i.e.  0 (

 ) = . Fourth,

marginal prices are never smaller than marginal costs. This confirms that there

is no rule for predatory pricing in our model.13 Fifth, the intensity of quan-

tity discounts (as measured by the degree of concavity of the price schedules,
 00()
 0() ) is the same for both firms when consumers purchase both products,

and is smaller than under monopoly. Finally, an increase in  shifts up the

price schedules of both firms (since ∗1 
1−2
1− ), demonstrating that prices are

strategic substitutes even in the presence of quantity discounts.

When firm  is not active, we can posit, without any substantial loss of

generality, that it stands ready to supply consumers at marginal cost. That is,

firm  offers a price schedule () = . We have:

Proposition 3 When firm  is not active, i.e., if  ≥ , in equilibrium it

offers the competitive price schedule  ∗() = . Firm  offers the price

schedule

 ∗() =
½

 lim () for 0 ≤  ≤ ̃∗
∗0 + 

 () for ̃∗ ≤  ≤ 1
1−

(16)

where the constants ̃∗ and 
∗
0 are such that firm ’s price schedule is contin-

uous and differentiable at ̃∗ ; the precise expressions are given in the Appendix.

Proof. See the Appendix.

Obviously, firm’s price schedule now comprises only two parts, the monopoly

part and the limit pricing part. The twist with respect to the case in which firm

 is active is that now the limit pricing schedule applies to low demand con-

sumers and the monopoly schedule to high demand ones.

This new pattern is a consequence of the downward distortion in quantities

caused by rent extraction under asymmetric information. Consider the marginal

willingness to pay for product  of a consumer who purchases the monopoly

12The efficient quantities are implicitly defined by the conditions

0(

  


  ) = 

and hence are




() =  +



1− 2



() =  − (1− )

1− 2 

13However, the no-distortion-at-the-top property means that marginal prices are equal to

marginal costs for type  = 1. Thus, if a firm approximates the true equilibrium price schedule

with a piecewise linear schedule, it might inadvertently price below marginal cost over a range

of quantity levels.
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quantity of product :

0

( () 0 ) =

 + (1− 3)
1− 

 (17)

This expression is increasing in  when   1
3
, whereas it is decreasing in 

when   1
3
. It follows that if  charged the monopoly price schedule, ’s

threat of entry would be stronger for higher types when the products are weak

substitutes, and for lower types when the products are close substitutes. But

we know that firm  is active in equilibrium precisely when the good are weak

substitutes, in which case firm  can engage in monopoly pricing for low types.

In contrast, when the products are close substitutes firm  is not active, and

monopoly pricing will apply to high types.

The equilibrium quantities now are ∗() = 0 and

∗() = max
½
0
 − 


  ()

¾
 (18)

We conclude the presentation of the non-linear pricing equilibrium by noting

that certain branches of firm ’s price schedule may vanish for a range of pa-

rameter values. In particular, when  is active the monopoly part of ’s price

schedule vanishes (that is, ̃∗ = 0) when   ̃, where

̃ ≡ 1
2

(1− 2∗1)(1− 2)
1− ∗1(1− )− 2 

Likewise, when  is not active the limit pricing part of ’s price schedule

vanishes (that is, ̃∗ = 0) when   1
2
.

Figure 2 illustrates how the parameter space ( ) splits into four regions

that correspond to the possible equilibrium patterns: themonopoly-limit-duopoly

region,  ≡
©
( ) :     ̃

ª
, where firm  is active but some con-

sumers are captive to firm; the limit-duopoly region,  ≡
©
( ) :   min

©
 ̃

ªª
,

where firm  is active and there are no captive consumers; the limit-monopoly

region,  ≡ {( ) :  ≤   1
2
}, where firm  is not active but still con-

tends some consumers to firm ; and the monopoly region,  ≡ {( ) :  ≥
max{ 1

2
}}, where firm  is an unconstrained monopolist.

5 Comparison

This section compares the equilibria with linear and non-linear prices in terms

of profits, consumer surplus, and welfare. Although we have obtained explicit

solutions for the equilibrium with both linear and non-linear prices, the ex-

pressions for equilibrium profits, consumer surplus and social welfare are cum-

bersome and analytically intractable. Therefore, we resort to numerical cal-

culations. These are reported in the Web Appendix which is available at

http://www2.dse.unibo.it/calzolari/. Since there are only two parameters in

11



Figure 2: The four regions with non linear pricing.

our model, the degree of product substitutability  and the degree of asymme-

try , we can conveniently present the outcome of the numerical calculations by

a series of figures.14

5.1 The symmetric case

It is useful to start from the symmetric case  = 0, where we can easily determine

the effect of quantity discounts in terms of the unique parameter, the degree of

product substitutability .

Proposition 4 In the symmetric case, there exist two thresholds,  ' 025

and  ' 014, such that firms are better off with quantity discounts if the

products are weak substitutes (0 ≤  ≤  ), and consumers are better off if the

products are close substitutes ( ≤   1
2
). Social welfare is always larger with

quantity discounts.

Proof. See the Web Appendix.

14The figures have been drawn by Mathematica, using the closed form solutions for equi-

librium variables and payoffs: see the Web Appendix.
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These conclusions follow from two opposing effects of quantity discounts,

which are at work also in the asymmetric case. On one hand, quantity discounts

intensify competition, reducing profits and benefiting consumers. On the other

hand, they also allow firms to better extract consumer surplus, increasing profits

and harming consumers. The former effect prevails when the products are close

substitutes, in which case firms are caught in a prisoners’ dilemma: both would

gain from a ban of quantity discounts, but if quantity discounts are permitted,

each firm has a unilateral incentive to use them. The latter effect prevails when

the products are relatively independent.15 However, competition in non-linear

prices increases social welfare for any degree of product differentiation. Thus,

under symmetry the model provides little support to the view that quantity

discounts can be anti-competitive.

5.2 The asymmetric case

The asymmetric case is more interesting from a competition policy perspective,

as it opens the possibility that the dominant firm may use quantity discounts

to eliminate (or weaken) its competitor.

5.2.1 Exclusion

Quantity discounts increase the likelihood that the less efficient firm is excluded

from the market. However, this outcome results from inefficient participation

of the less efficient firm under linear prices, not from inefficient exclusion with

quantity discounts.16

Proposition 5 When firms compete with non-linear prices exclusion of firm

 is efficient. When they compete with linear prices, exclusion is inefficiently

low since firm  remains active also for parameters values where exclusion is

socially efficient.

The proof is very simple. Consider the circumstances under which exclusion

is socially efficient. Because the products are differentiated, the product supplied

by the less efficient firm should be consumed unless  is large enough. To be

precise, the condition is that  should be lower than the maximum marginal

willingness to pay for product  when the efficient quantity of product  is

already being consumed. The maximum is achieved at  = 1 and is equal to ,

so exclusion is socially desirable only if  ≥ . This means that with quantity

discounts, firm  is excluded precisely when exclusion is socially efficient.17

15This result depends on the specific functional forms we have used in this paper. When

the products are weak substitutes, quantity discounts tend to have the same effects as under

monopoly. As is well known, however, these effects may well be ambiguous for different

specifications of demand.
16However, recall that we have ruled out fixed costs. With fixed costs, the picture would be

less clear. Since there is no definite relation between a firm’s marginal contribution to social

welfare and its profits, both over- and under-participation seem possible.
17This property of the equilibrium follows from the no-distortion-at-the-top property, which

implies that type  = 1 consumes the efficient quantity of product .
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With linear prices, by contrast, firm  prices above marginal cost, so consumer

 = 1 buys less than the efficient quantity of product . Since the products are

substitutes, the demand for product  is inefficiently high. Hence, with linear

prices firm  is active when  ≤   , even if it should actually be excluded.

5.2.2 Profits

As we have seen above, in the symmetric case both firms benefit from quantity

discounts if the products are weak substitutes. In the asymmetric case, the

picture is quite different. Figures 3 and 4 depict the region of parameter values

where the profit of the more and the less efficient firm, respectively, are lower

with quantity discounts. It appears that the more efficient firm is much more

likely to benefit from quantity discounts than the less efficient one.

Figure 3: Quantity discounts decrease the profit of the more efficient firm in the

gray region.

As in the symmetric case, an increase in the degree of substitutability 

reduces the likelihood that firms may gain from quantity discounts. An increase

in the degree of asymmetry , by contrast, increases the likelihood that quantity

discounts benefit the more efficient firm and harm the less efficient one. Unless

firms are almost symmetric, or products almost independent, quantity discounts

harm the less efficient firm.

14



Figure 4: Quantity discounts decrease, or do not affect, the less efficient firm’s

profit in the gray region.
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Figure 5: Quantity discounts decrease consumer surplus in the gray region.

5.2.3 Consumer surplus

The effect of quantity discounts on consumer surplus is illustrated in Figure 5.

An increase in the degree of asymmetry increases the likelihood of a negative

effect. Consumers may benefit from quantity discounts only if the degree of

asymmetry is low and the products are close substitutes.

5.2.4 The Carlton and Waldman test

Though the maximisation of consumer surplus is sometimes advocated as the

proper goal of competition policy, this criterion may be misleading in price

discrimination cases. Carlton and Waldman (2008) argue that

[...] an antitrust claim involving exclusion requires that there be (i)

harm to a rival, (ii) harm to consumers and (iii) a linkage between

the harm to the rival and the harm to consumers. For example, a

monopolist who switches from simple monopoly pricing to discrimi-

natory pricing may harm consumers but because no rival is affected

should not (and is not) regarded as violating the antitrust laws.

(Carlton and Waldman, 2008, p. 1 [Roman numbering added])
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Figure 6: Conditions (i) and (ii) of the Carlton and Waldman test are satisfied

in the grey region.

Figure 6 represents the region where conditions (i) and (ii) of the Carlton and

Waldman test are both met. If condition (iii) is also satisfied (which, however,

should not be taken for granted), the Carlton and Waldman test seems to imply

that quantity discounts may be anti-competitive in a sizeable region of the

parameter space.

5.2.5 Social welfare

Consider, finally, the classic criterion of social welfare maximisation, where social

welfare is defined as the sum of producers’ and consumers’ surplus. Unlike the

symmetric case, there does exist a region where quantity discounts decrease

social welfare — the grey area in Figure 7. However, social welfare can decrease

only for intermediate values of  and , so identifying the circumstances in which

a ban is desirable may be a formidable task in practice.

The reason why prohibiting quantity discounts cannot increase social welfare

for “extreme” values of the parameters is easy to grasp. When  is low, firms are

almost symmetric and hence the results for the symmetric case apply. When  is

high, the less efficient firm exerts little competitive pressure and so the market

resembles a monopoly, where quantity discounts are welfare increasing. When 

is close to zero, the products are almost independent. There are effectively two

separate monopolies, so quantity discounts are again welfare increasing. When

 is large, the products are close substitutes, and the positive “competition-
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Figure 7: Quantity discounts decrease social welfare in the grey region.

enhancing” effect of quantity discounts prevails.

For intermediate values of  and , the picture is less clear. To illustrate

how quantity discounts can decrease welfare, consider for instance the point

 = 1
2
and  = 1

4
, where social welfare is higher with linear prices. With non-

linear prices, firm ’s output is zero and firm  behaves as an unconstrained

monopolist. With linear prices, by contrast, firm  is active. As we have seen

above, the intuitive reason is that firm  prices above marginal cost and so high

type consumers purchase an inefficiently low amount of product . Although

firm  is not very efficient, it exerts some competitive pressure on firm . As a

result, firm  lowers its price, and a much larger set of types than under non-

linear prices is served. This increases consumer surplus significantly, leading to

a welfare improvement.

6 A selective ban

So far we have compared the case in which both firms can engage in quantity

discounts to the case where both are constrained to use linear prices. But

competition policy can regulate the unilateral behavior of dominant firms only.

In the legal jargon, the less efficient firm, which cannot possibly have a dominant
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position, has no “special responsibility,” and hence is always free to use quantity

discounts. Thus, it is interesting to compare the case in which both firms

can engage in quantity discounts to the case where only the dominant firm

is constrained to use linear prices.

In this case, firm  is excluded when  ≥ , as in the case of linear prices

The argument is exactly the same and will not be repeated here. It is also

obvious that if firm  is excluded, the equilibrium (where firm  is a de facto

monopolist) is the same as under linear prices. We therefore focus on the case

in which firm  is active.

Proposition 6 With a selective ban, when firm B is active, i.e., if   ,

the following is an equilibrium. Firm A sets a linear price ∗∗ , which can be
calculated explicitly and is reported in the Appendix, and firm B offers the price

schedule

 ∗∗ () =
1

2

∙
1 +

∗∗  − (1− )

1− 

¸
 − 1− 2

4(1− )
2 for 0 ≤  ≤ 1

Proof. See the Appendix.

Although firm  alone can now use quantity discounts, low demand con-

sumers still purchase only product , irrespective of the level of . The intuition

is that quantity discounts entail not only greater marginal prices, but also bigger

quantity distortions for lower types. This means that the set of consumer types

who will purchase exclusively from firm  will be even larger than in the fully

non-linear pricing equilibrium, all else equal.

With a selective ban firm  still charges no fixed fee, but the no-distortion-

at-the-top property no longer holds. The intuitive reason is that firm  now

prices above marginal costs, so consumer  = 1 purchases an inefficiently low

amount of product . Firm  does not further distort the consumption of

consumer  = 1; that is, the marginal price faced by consumer  = 1 is equal to

. However, since this consumer buys an inefficiently low amount of product 

and the products are substitutes, he will purchase an inefficiently large amount

of product .

The qualitative effects of a selective ban on producers’ and consumers’ sur-

plus and social welfare are as follows. Firm  is almost always harmed by a

selective ban: it can benefit only in a small subset of the (already small) region

where non-linear pricing would generate a prisoners’ dilemma for the firms. Firm

, by contrast, always benefits from a selective ban. There is also an increase in

the region of the parameter space in which banning quantity discounts increases

social welfare, as shown in Figure 8. However, the region is still relatively small

and difficult to identify.

7 Conclusion

Our analysis has revealed that quantity discounts can have anti-competitive

effects even if they are not part of a predatory strategy. This means that
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Figure 8: Quantity discounts by the inefficient firm only decrease social welfare

in the dashed contour region.

competition policy should not necessarily apply to quantity discount cases the

standards required in predatory pricing cases.

Having said this, we must stress that even though we have used a fully

specified model, most of our welfare results are ambiguous. In particular:

(a) Quantity discounts facilitate the exclusion of the less efficient firm when

the products are close substitutes. However, in the absence of fixed costs the

less efficient firm is excluded only when exclusion is, indeed, socially efficient.

(b) Quantity discounts decrease consumer surplus when firms are highly

asymmetric or the products are weak substitutes.

(c) Using the Carlton and Waldman test (according to which exclusionary

abuses require (i) harm to a rival, (ii) harm to consumers and (iii) a linkage

between the two), quantity discounts should be prohibited when firms are highly

asymmetric and the products are fairly close substitutes.

(d) Quantity discounts decrease social welfare (i.e., the sum of producers’ and

consumers’ surplus) for certain intermediate values of the degree of asymmetry

and the degree of product substitutability. However, identifying the circum-

stances in which banning quantity discounts increases social welfare can be an

exceedingly difficult task for antitrust authorities.

Ultimately, the question of whether, and in what circumstances, quantity

discounts should be considered abusive rests on the welfare criterion adopted by
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antitrust authorities. Given all this uncertainty, abstaining from intervention

may well be the optimal policy after all.
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Appendix

Proof of Proposition 1.

Consumer ’s demand for product  is

 =
 − (1− )

1− 2 + 

if   0, and

 =
 − 

1− 

if  = 0.

Next we aggregate the individual demands into the total demand functions.

To proceed, we assume that  ≥  as firm  has a greater unit cost than

firm . Later, we verify that this inequality holds in equilibrium.

When  ≥   0 there are three groups of consumers: low- types,

 ∈ [0 ], who do not buy any product; intermediate- types,  ∈ [ ̂

], who

buy only product ; and high- types,  ∈ [̂

 1], who buy both products. The

critical threshold ̂

is implicitly defined by the condition  = 0, which gives:

̂

=
(1− ) − 

1− 2

Summing across consumers one obtains the total demand for the two prod-

ucts:

 =

̂
Z



 − 

1− 
 +

1Z
̂


∙
 +

 − (1− )

1− 2
¸


=
(1− )( − )

2 + [1− 2 − (1− ) + ] [1− 2 + (1 + ) + ]

2(1− 2)2

 =

1Z
̂


∙
 +

 − (1− )

1− 2
¸


=
[1− 2 − (1− ) + ]

2

2(1− 2)2

Firms’ profits are  =  and  = ( − ), respectively.

The best response function of firm  is

 =
1− 2 + 2(1− ) + 

3(1− )

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This has a positive intercept and is increasing, with a slope equal to 
3(1−)  1

The best response function of firm  is

 =
2[1− (3− )] + 22(1− )−

√
Ξ

3[1− (3− )]

where

Ξ = 1+
©−3 +  + 43 + 2(1− 2) [−3 + (5 + )]  +

£
3− 12 + 2(12 + )

¤
2
ª


’s best response function has a positive intercept too. It is always increasing,

with a slope lower than one.

Equilibrium prices are

∗ =
2(3− )(1− 2)(3− 5) + 102(1− )− 3

√
Ω

(3− 4)[9− 4(6− )]


where

Ω ≡ {3− 2 [5 + (2 − 5)]}2 − 8(1− )(1− 2) {3−  [7− (2 + )]} +
+4(1− )2 {3−  [12− (12 + )]} 2

and

∗ =
1− 2 + 2(1− ) + ∗

3(1− )


The calculations leading to these results are reported in the Web Appendix,

which also shows that ∗ ≥ ∗
The above analysis assumes that firm  is active. It is immediate to check

that the optimal linear price for firm  when it is a pure monopolist is  = 1
3
.

Now consider firm ’s best response to  =
1
3
. This is

 =
5 + 6− 2

(1−)
9



It is easy to verify that  −  ≥ 0 iff  ≤  This means that when   

firm  is active, whereas when  ≥  firm  can engage in monopoly pricing.

In other words, firm ’s linear limit price coincides with the linear monopoly

price. ¥

Proof of Proposition 2.

We start by reporting the equilibrium value of the coefficients 0 
lim
0

̂ and ̃. As stated in the proposition, these must guarantee that the smooth

pasting conditions hold, that is, that ’s price schedule be continuous and con-

tinuously differentiable at ̂ and ̃. Continuity of firm ’s price schedule at

̂ and ̃ requires

0 + ∗1̂ −
∗1
2

̂2 = lim0 + ∗1 ̂ −
µ
1

2
− 

¶
̂2
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and

lim0 + ∗1 ̃ −
µ
1

2
− 

¶
̃2 =

1

2
̃ − 1− 

4
̃2

respectively. Differentiability of ’s price schedule is equivalent to continuity of

the equilibrium quantity, which requires

̂ = ∗ (̂) = lim (̂)

and

̃ = lim (̃) =  (̃)

When   ̃, where

̃ ≡ 1
2

(1− 2∗1)(1− 2)
1− ∗1(1− )− 2 

the solution to this system of equations is

lim ∗0 = − [(1− 2)(1− 2− 2
∗
1) + 2

∗
1(1− )]2

4(1− 2)2(1− 3)  0

∗0 = lim0 −
2(1− 2 − ∗1)
2(1− 2)2  0

̂∗ =


1− 2  0

and

̃∗ =
2∗1
1− 2 −

(1− 2∗1)(1− 2)
1− 3  0

When instead  ≤ ̃, firm ’s cost is so small that the monopoly region

vanishes, ̃∗ = 0, and firm  is always constrained by its competitor. The fixed

fee lim0 also vanishes, so that the no-fixed-fee property 
∗
(0) = 0 continues to

hold, and we have

∗0 = −
2(1− 2 − ∗1)
2(1− 2)2 

The cutoff quantity is ̂∗ is the same as above.
Next we show that the price schedules specified in the proposition satisfy

the best response property in the set of all feasible price schedules (that is, not

necessarily piecewise linear-quadratic). The verification procedure is as follows.

Given  ∗ , firm  faces a monopolistic screening problem where type  has an

indirect utility function

∗ ( ) = max
≥0

£
(   )−  ∗ ()

¤


which accounts for any benefit he can obtain by optimally trading with firm .

Since  is quadratic and  ∗ is piecewise quadratic, 
∗
 is also piecewise quadratic.

It may have kinks, but we shall show that any such kink preserves concavity, so

the indirect utility function is globally concave.
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However, the consumer’s reservation utility ∗ (0 ) is now type dependent.
Thus, in order to apply the standard approach of pointwise maximisation of the

virtual surplus function, we will have to check not only that the sorting condition

is satisfied, but also that the equilibrium rent increases with  more quickly than

∗ (0 ) so that the consumer’s participation constraint 
∗
 ( ) ≥ ∗ (0 ) binds

only at the lowest participating type ̂ (see Jullien, 2000).

This latter property, however, is implied by the sorting condition. To show

this, notice that when the indirect utility function is differentiable, the sorting

condition is satisfied if the following condition holds

Z
0

2∗ ( )


 ≥ 0

This is equivalent to
∗ ( )


≥ ∗ (0 )




But this inequality implies that if ∗ ( ) ≥ ∗ (0 ) then the participation
constraint is, indeed, satisfied for any  ≥ ̂

Thus, provided that the sorting condition holds, firm ’s problem reduces to

finding a function + () that pointwise maximises the “indirect virtual surplus”

( ) = ∗ ( )−  − (1− )
∗




We check ex-post, as usual, that the maximiser () satisfies the standard

monotonicity condition. The verification of the best response property is com-

pleted by checking that + () = ∗ ().
Consider, then, firm ’s best response to the equilibrium price schedule of

firm ,  ∗() The indirect utility function is piecewise quadratic, with two
branches corresponding to the case in which the argmax≥0 [(  )−  ∗()]
is 0 or is strictly positive, and a kink between the two branches:

∗( ) =

(
 − 1− 

2
2 if  = 0 or, equivalently,  ≥ lim ()

0 +1 +2
2
 if   0 or, equivalently,   lim ()

The coefficients 0, 1 and 2 can be calculated as

0 =
[( − )(1− 2)− ∗1(1− (1− )− 2)]2

2(1−  − ∗1)(1− 2)2


1 = 
(1− 2) + ∗1(1− (1− )− 2)

(1−  − ∗1)(1− 2)
+ 

1− 2 − ∗1
1−  − ∗1

2 = −1− 2 + ∗1(1− )

2(1−  − ∗1)
 0

On both branches of the indirect utility function, the coefficients of the quadratic

terms are negative. In addition, it can be checked that

2∗( )
2

¯̄̄̄
≤lim ()

= 2 ≥ 2∗( )
2

¯̄̄̄


lim

()

= − (1− ) 
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so the function ∗ is globally concave. It can also be checked that the sorting
condition is satisfied since

2∗


=

⎧⎨⎩ 1 if  ≥ lim ()
1− 2 − ∗1
1−  − ∗1

 0 if   lim ()

We can therefore obtain ’s best response by maximising the virtual surplus

function ( ). Like the indirect utility function, the virtual surplus function

is piecewise quadratic with a kink. The maximum can occur in either one of the

two quadratic branches, or at the kink. To be precise:

+() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 − 1
1− 

if   1
3
and 1

2
≤  ≤ 1

lim () if   1
3
and 1 ≤  ≤ 2 or if  ≥ 1

3
and ∗1 ≤  ≤ 2

 − ∗1
1− ∗1

+


1− 2 if  ≥ 2

where

lim () ≡  − ∗1


+ 
∗1 − (1− ∗1)(1− 2)

(1− 2) 

1 =
∗1(1− )− 

1− 3 + (1− )
1− ∗1(1− )− 2
1 + (6 − 5) (= ̃

∗
)

and

2 =
(1− ) + ∗1(1− 2 − (1− ))

1− 2 (= ̂
∗
)

When  ≥ 1
3
or   1

3
and 1 

1
2
, which happens for   ̃, the optimum is never

achieved on the upper branch of the indirect utility function. In other words,

firm ’s best response never involves setting the quantity at the monopoly level.

Finally, one can easily check that +() = ∗(), which implies that in order
to implement the quantities +() firm  must, indeed, offer the equilibrium

price schedule  ∗()
Consider now firm  The procedure is the same as form firm , but now we

must distinguish between two cases, depending on whether ’s price schedule

comprises also the lower (monopoly) branch or not. Consider first the case in

which ̃∗ = 0 and hence there is no monopoly branch of ’s price schedule.
The indirect utility function of a consumer who trades with firm  then is

∗( ) =

⎧⎨⎩
 − 1−

2
2 if  = 0 or, equivalently, if  ≥ lim ()

̂0 + ̂1 + ̂2
2
 if 0   ≤ ̂ or, equivalently, if ̌() ≤   lim ()

0 +1 +2
2
 if   ̂ or, equivalently, if 0   ≤ ̌()

where

lim () =
 − ∗1


− ∗1
1− 2

̌() =
 − ∗1 − (1− ∗1)


+

∗1
1− 2 
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The coefficients of the lower branches of the indirect utility functions are

̂0 =
( − )2

2

̂1 = 

̂2 = −1− 2
2

and

0 =
2 − 1
2(1− )

1 =  − 

1− 

2 = −1− 

2


All branches are concave, and global concavity can be checked by comparing

the left and right derivatives of ∗( ) at the kinks. The sorting condition
can also be checked as for firm . We can therefore find ’s best response by

pointwise maximisation of the virtual surplus function.

One can easily check that there is never an interior maximum on the upper

or intermediate branch of the virtual surplus function. This is equivalent to

saying that firm  is active only when firm  supplies the duopoly quantity

∗ (). Pointwise maximisation of the virtual surplus function leads to

+() =
 − ∗1
1− ∗1

− 
1− 

1− 2 

This coincides with ∗(), thereby confirming that 
∗
() is the best response.

The case where firm ’s price schedule comprises also the lower (monopoly)

branch is similar. The indirect utility function ∗( ), and hence the virtual
surplus ( ), now comprise four branches (all quadratic). The equation of

the fourth branch, which corresponds to 0    ̃∗, is

∗( ) = ̃0 + ̃1 + ̃2
2


where

̃0 =
(2 − 1)2
4(1− )

̃1 =
 + (1− 3)

1− 

̃2 = −1− (2 + )

2(1− )


However, it turns out that the optimum still lies on the lower branch where

  ̂ and that it entails +() = ∗(). This observation completes the
proof of Proposition 2. ¥
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Proof of Proposition 3.

Like in the proof of Proposition 2, we start by determining the equilibrium

values of the coefficients 0 and ̃. They are determined by a smooth pasting

condition that imposes the continuity and differentiability of the price schedule

at ̃. Continuity requires that

̃ −
µ
1

2
− 

¶
̃2 = 0 +

1

2
̃ − 1− 

4
̃2

whereas differentiability, which is equivalent to the continuity of the equilibrium

quantity, requires

̃ = lim (̃) =  (̃)

where now

lim () =
 − 


.

The solution is

̃∗ =
2− 1
1− 3  0

and

∗0 =
(2− 1)2
4 (1− 3)  0

when   1
2
, and ̃∗ = ∗0 = 0 when  ≥ 1

2
.

The rest of proof is similar to the proof of Proposition 2. Now, however, it

suffices to find firm ’s best response to  ∗() = . The indirect utility

function is:

∗( ) =
½

 − 1−
2
2 if  = 0 or, equivalently,  ≥ lim ()

0 +1 +2
2
 if   0 or, equivalently,   lim ()

where now

0 =
( − )2

2(1− )

1 =
(1− 2) + 

1− 

2 = − 1− 2
2(1− )



On both branches of the indirect utility function, the coefficients of the quadratic

terms are negative. In addition, it can be checked that

2∗( )
2

¯̄̄̄
≤lim ()

= 2 ≥ 2∗( )
2

¯̄̄̄


lim

()

= − (1− ) 

so the function ∗ is globally concave. It can also be checked that the sorting
condition is satisfied since

2∗


=

½
1 if  ≥ lim ()
1−2
1−  0 if   lim ()
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We can therefore obtain ’s best response by maximising the virtual surplus

function ( ). Like the indirect utility function, the virtual surplus function

is piecewise quadratic with a kink. The maximum can occur on the upper

branch, or at the kink. It can never occur on the lower branch, where

  lim () =
 − 




To show this, notice that the optimum on the upper branch is

−() = 2 [2 − 1 +  (1− 2)] 
However, it can easily be checked that −() 

−

 a contradiction.

When   1
3
or  ≥ 1

3
and   1

2
, the maximisation of the virtual surplus

leads to

+() =
2 − 1
1− 

(≡  ())

When instead  ≥ 1
3
and  ≤ 1

2
, we have

+() = lim () if  ≤  ≤ 3
+() =  () if 3 ≤  ≤ 1

where

3 =
 − (1− )

3 − 1 (= ̃
∗
)

Finally, one can easily check that +() = ∗(), which implies that in order
to implement the quantities +() firm  must, indeed, offer the equilibrium

price schedule  ∗()
To complete the proof, it suffices to check that +() ≥ lim (), which implies

that the demand for product  when  =  vanishes. ¥

Proof of Proposition 6.

To calculate the equilibrium with a selective ban, consider firm ’s best

response function first. For any given , define the indirect utility function as

(  ) = max
≥0

[− ]

This indirect utility function accounts for any benefit the consumer can obtain

by purchasing product  at the constant price . The maximum is achieved

at

 = max

½
 −  − 

1− 
 0

¾


As discussed in the main text, in equilibrium firm  will serve only consumers

who purchase positive amounts of product . Thus, there is no loss of generality

in focusing on the solution where   0, where the indirect utility function

becomes

( ) =
2 + (2 −  − ) [(1− 2) − ]

2(1− )

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It is easy to verify that the indirect utility function satisfies the sorting

condition 2


 0, and that the participation constraints binds for the low-

est participating type. (Although there is a type-dependent reservation utility
2−(2−)

2(1−) , this does not affect the solution.) Thus, firm ’s best response

can be determined as the solution to a well-behaved monopolistic screening

problem. Define the virtual surplus function as

( ) = ( )− (1− )
( )


− 

=
32 − 2 + (4 −  −  − 2) [(1− 2) − ]

2(1− )
− 

The optimal quantity +() is found by pointwise maximisation of the virtual

surplus function, yielding

() = 2 − 1 +  − (1− )

1− 2 

One can finally calculate the price schedule that supports the quantity +(),

given that firm  prices at :

() =
1− 2 + (1− ) + 

2(1− )
 − 1− 2

4(1− )
2 

This if firm ’s best response function. Notice that the coefficient of the

quadratic term is independent of . Thus, the pricing game is effectively

equivalent to a standard Bertrand game where firms choose linear prices, with

the twist that firm  is actually choosing the coefficient of the linear term of a

quadratic pricing function

() =  − 1− 2
4(1− )

2

In this pricing game, firm ’s best response function is

 =
1− 2 + (1− ) + 

2(1− )


as we have just seen. When firm  offers a non linear price  −2
2
 where

2 =
1−2
4(1−) and firm  offers a linear price , firm ’s quantity is

 =

̂
Z



 − 

1− 
 +

1Z
̂


(1− 2 + 22)− (1−  + 22) + 

1− 2 + 22(1− )


where the first integral corresponds to types buying only from firm , the second

to types buying from both firms, and

̂


=
(1− ) − 

1− 2 
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maximising  =  with respect to  gives firm ’s best response:

 =
2[1− 3 + 22(1− 2)] + 22(2− )− 12

√
Ψ

62(1− 2) + 3[1− (3− )]

where

Ψ = 12[(3− ) − 22(1− 2)− 1][1 + 22 − (4− 2 + 2 + 42) + (2− )
22] +

+16[1− 22(1− 2)− (3 + (2− ))]
2

The equilibrium price of firm  is (see the Web Appendix for details):

∗∗ =
4−  {16−  [19 + 3(1− )− 6]}−√2

√
Θ

6−  [24(1− ) + 52]

where

Θ = (1− ){2− [2(1− 2)(3− 6 + 23)− 2(1− )(3 + 2(−6 + (6 + ))) +

+(1− )(−11 + 2(7 + 2(−5 + 2)))]}

Substituting this expression into ’s best response one gets the coefficient of

the linear term in ’s price schedule.

Finally, substituting the equilibrium prices into ̂

, the Web Appendix

verifies that ̂


 1, and hence firm  is active, if and only if   ¥
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