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1 Introduction

Social interactions are an important aspect of everyday’s life. For example, firms interact with other

firms to exchange information about new technologies, individuals meet friends and researchers go

to workshops and conferences. In the economics literature, social interactions are often related to

particular forms of externalities, in which the actions of a reference group affect an individual’s

utility. The reference group depends on the context, and it typically consists of an individual’s

family, neighbors, friends or peers. Social interactions are sometimes called non-market interactions

to emphasize the fact that these interactions are not regulated by the price mechanism (see, in

particular, Scheinkman, 2008). As pointed out by Becker (1974) and recently emphasized by the

literature on social capital,1 social interactions have a crucial importance in the determination of

an individual’s outcomes and, hence, on his well-being. The aim of this paper is to investigate the

interaction between productive effort and the creation of synergies in a tractable framework. We

model this interaction in a way that allows us to characterize how agents devote resources to both

activities optimally. In turn, this permits a full-fledged equilibrium/welfare analysis of individual

decisions and to derive unambiguous comparative statics results. Let us describe in more detail our

model.

The environment Our model has two main ingredients.

First, we consider a model with local complementarities in productive investment. More pre-

cisely, spillovers are generated by paired agents and are multiplicative in own’s and other’s pro-

ductive effort. We allow for two different sources of heterogeneity. On the one hand, agents can

differ in their marginal returns to own productive effort. On the other hand, for identical levels of

productive efforts, spillovers can vary with the strength of the synergistic linkage across different

pairs of agents. It turns out that this payoff structure allows to exactly pin down how the level of

productive effort varies with the pattern of external effects exerted on each individual, and with

the idiosyncratic characteristics of the agents.

Second, we assume that agents devote a (joint) amount of resources to building synergies with

others. The collection of socialization efforts determines the meeting possibilities across pairs of

agents and results in a pattern of, possibly heterogeneous, bilateral interactions. The intensity of

each bilateral interaction which results from this socialization process becomes a scaling factor on

the local production complementarities arising between these two agents.

An innovation of our study is, precisely, that the synergistic effort is generic within a community

−a scalar decision. Socializing is not equivalent, in our approach, to elaborating a nominal list of
intended relationships, as in the literature on network formation surveyed by Jackson (2009).2 In

1Coleman (1990) and Putnam (2000) are standard references. Sobel (2002) and Durlauf (2002) offer critical

surveys of this literature.
2We discuss the relationship between our model and this literature below.
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other words, network formation is not the result of an earmarked socialization process.

This is realistic in many applications, particularly when networks are so large that keeping

track of every participant becomes a burdensome task, or when the individuals do not yet know

one another. For example, businessmen go to fairs, and researchers to conferences and workshops to

present their ideas or products, to listen to those of other people’s, and to meet peers in general. In

order to motivate the model and to better understand its empirical implications, we provide a very

concrete example of a situation captured by the model. Then, we discuss all notions and results

of our paper through the lens of this example. The example is as follows. The decision makers in

the model are parents. Each parent is altruistic and cares about the future educational outcome of

his child. Each parent exerts two types of costly effort: productive effort with the child (i.e. doing

homework with the child, doing sport activities together, driving him to different activities, and

so on) and socialization effort related to education (going to parental evenings, birthday parties,

or any activity that involves other parents). In this example, each parent does not directly decide

with whom he interacts, but rather participates in parental activities (parental evenings, birthday

parties) which can eventually lead to social interactions with other parents. These activities provide

valuable information about parenting techniques, reading or study materials, school conditions

and other important educational inputs. As a result of these activities, some parental and child

friendships are created, which then continue producing synergies, and further directed socialization

over time. For those relationships, which also have important educational implications, ours can

be seen as a model of how they are created.

Our choice of a model without earmarked socialization greatly improves the tractability of the

analysis. Unlike with richer models of link formation, we can resort to off-the-shelf Nash equilibrium

analysis without being burdened by the extreme (combinatorial) multiplicity problems of the other

models.3 As a result, we can perform a standard type of equilibrium analysis that equates marginal

costs and benefits of both production and socialization. Of course, this equilibrium characterization

also greatly simplifies welfare and comparative statics analyses.

Results We characterize the equilibria of the model when agents take their decision about

their productive effort and their socialization effort simultaneously. We show that there are two

interior equilibria and one (partially) corner equilibrium, when a sufficiently large number of in-

dividuals is implicated. The (partially) corner equilibrium where agents do not invest at all in

3 In a typical game of network formation, players simultaneously announce all the links they wish to form with. The

links that form are those that are mutually announced by both partners. The cost of creating and maintaining links

are then paid. As a consequence of the large multi-dimensional strategy space, and because link creation requires the

mutual consent of the two parties involved, a severe coordination problem arises. As such, the game often displays a

multiplicity of Nash equilibria, and very different network geometries can arise endogenously. A partial solution to

this problem can be found by allowing pair-wise or coalitional deviations, or by restricting to cooperative-like network

stability notions (Jackson and Wolinsky, 1996). Jackson (2009) surveys this literature, while Calvó-Armengol and

Ilkiliç (2009) derive the connections between this approach and standard game-theoretic refinements.
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building synergies is unstable. Instead, the two interior equilibria are stable. Existence and stabil-

ity of interior equilibria are obtained when the level of cross synergies as well as the heterogeneity

in individual traits are not too large, which amounts to bounding from above a compound index of

both payoff parameters.

For large enough populations, equilibrium actions take a particularly simple form. Recall that

agents can display different marginal returns to own productive effort. We label “individual type”

the value of this marginal return at the origin. We first show that the ratios of productive as well

as socialization efforts across different pairs of agents are all equal to the ratio of their individual

types. In other words, at equilibrium, the productive and socialization efforts for a given agent are

the product of his individual type with some baseline values for the productive and socialization

efforts. These baseline values, in turn, are obtained from a system of two equations with two

unknowns that admits exactly two positive solutions −hence the two interior equilibria. Compared
to the case of an isolated agent, these baseline values are all scaled up by a synergistic multiplier,

which is homogeneous across players and which depends on a compound index of heterogeneity in

the community within which they interact.

This simple equilibrium characterization has a number of interesting implications. In particular,

we can show that one of the interior equilibria displays both higher socialization and productive

efforts than the other, so that we can talk of a high-action and a low-action equilibrium. It also

turns out that the high-action equilibrium is Pareto superior. Furthermore, the socially efficient

outcome lies in between the two equilibria, so that we can effectively talk about a too-high and a

too-low equilibrium.

An important question is then how an exogenous change in the returns to production and

socialization affect the relative production and socialization efforts at equilibrium. In turns out

that, when the returns increase, all equilibrium actions decrease at the Pareto-superior equilibrium,

while they increase at the Pareto-inferior equilibrium. In both cases, the percentage change in

socialization effort is higher (in absolute value) than that of the productive effort.

To summarize, we provide a simple operational model of network formation with welfare pre-

dictions and clear-cut comparative statics. In substance, we identify a “too cold” and a “too hot”

equilibrium. We show that socialization is more responsive than production to exogenous shocks

in the parameters.

Relation to the literature on network formation and social interactions A growing

literature over the last two decades has examined the problem of social network formation and

its implications for economic phenomena. With respect to this literature (for literature surveys,

see Vega-Redondo, 2007; Goyal, 2008; Jackson, 2009) our model, as many others in the literature,

studies the effects of social interactions via its impact on production. The novelty is that we

model socialization/network formation via a generic effort variable, rather than as the result of an
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earmarked socialization process.4

One of the main objectives of the paper is to provide a tractable framework where both social-

ization (or network formation) and productive efforts can be analyzed in a single model. We do

this in a context of Ballester et al. (2006) framework because this is a simple model that has nice

properties. Observe, however, that the insight of using non-directed socialization should carry over

to other types of models. Our model also differs from that of Ioannides and Soetevent (2007) in

that we can characterize the exact solutions of equilibria and analyze the comparative statics and

welfare properties of our model.

The paper is organized as follows. Section 2 describes the model and introduces the baseline

game as well as the replica game. Section 3 contains the equilibrium and welfare analysis. The

comparative statics results are gathered in Section 4. Section 5 discusses some empirical implica-

tions of our model while Section 6 proposes different specifications that generalizes our model. All

proofs are gathered in the Appendix.

2 The game

The replica game N = {1, ..., n} is a finite set of players, and T = {1, . . . , t} is a finite set
of types for these players. We let n be a multiple of t, that is, n = mt for some integer m ≥ 1, so
that there is the same number of players of each type.

More precisely, we refer to the case n = t as the baseline game, and to the general case n = mt

as the m−replica of this baseline game. In an m−replica game, there are exactly m players of each

type τ ∈ T . This replica game allows us to take limits as the population becomes large without

having to specify the types of the new individuals that are added.

For each player i ∈ N , we denote by τ (i) ∈ T his type.

We consider a simultaneous move game of network formation (or social interactions) and in-

vestment. The returns to the investment are the sum of a private component and a synergistic

component. The private returns are heterogeneous across players and depend on their type. We

denote by b = (b1, ..., bt) the profile of these private returns, where 0 < b1 ≤ b2 ≤ ... ≤ bt. Even

though each type in the replica game has the same number of individuals, we can match any finite

distribution of types in a population by adding multiple copies of an individual type.5

The synergistic returns depend on the network formed on account of individual choices, as

described below.

Network formation Consider some m−replica game, m ≥ 1. Let n = mt.

4See Bloch and Dutta (2009) for a model with endogenous link strength but in a standard framework of directed

socialization.
5With enough replications, of course.
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Each player i selects a socialization effort, si ≥ 0. Let s = (s1, ..., sn) be a profile of socialization
efforts. Then, i and j interact with a link intensity given by:

gij(s) = ρ (s) sisj (1)

By definition, links are symmetric, that is, gij = gji. We also allow for self-loops (when i = j).

The total interaction intensity for a player i is:

gi(s) =
n∑

j=1

gij(s) = ρ (s) si

n∑

j=1

sj .

We set

ρ (s) =

{
1/
∑n
j=1 sj , if s �= 0

0, if s = 0
(2)

so that gi(s) = si. That is, players decide upon their total interaction intensity.

In this model, the exact identity of the interacting partner is not an object of choice. Rather,

players choose an aggregate level of socialization effort. This total effort is then distributed across

each and every possible bilateral interaction in proportion to the partner’s socialization effort.

This interaction pattern arises naturally when meetings result from casual encounters rather than

from an earmarked socialization process. Using the example provided in the Introduction, si is the

socialization effort for parents related to education (e.g. participation in parental evenings, birthday

parties, etc.). The more parents i and j participate in common parental activities, the more likely

it is that they interact with each other. There is, quite naturally, congestion in socialization, as

captured by ρ (s).

The nature of this congestion is, of course an important part of the model, so some more

discussion is in order. Taking the parenting example, interaction in parental evenings (of which

there is a potentially unbounded number) happens in the form of conversations, which are always

pairwise. The variable si can be taken as the number of evenings a particular parent attends

(meaning that i can only devote a fixed amount of time to socialization activities). At the beginning

of an evening, parents are paired at random for the duration of the event. Thus, the fraction of

nights a parent i is matched with parent j is given by ρ (s) sj and hence the total number of

nights they interact is ρ (s) sjsi. Congestion arises in this example because of the random matching

technology. The higher is the number of parents, the more difficult is for a parent i to be matched

with a particular parent j.

The functional form in (1) and (2) can be tied back to simple properties of the link intensity

gij (s), as established below.

L���� 1 Suppose that, for all s �= 0, the link intensity satisfies:

(A1) symmetry: gij (s) = gji (s), for all i, j;
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(A2) aggregate constant returns to scale:
∑n
j=1 gij (s) = si;

(A3) anonymous socialization: gji (s) /sj = gki (s) /sk, for all i, j, k;

then, the link intensity is given by (1) and (2).

Conditions (A2) and (A3) reflect the fact that i controls his total number of contacts si, but the

actual type composition of these contacts depends on others’ socialization efforts. More precisely,

each player devotes the same share of his total socialization effort to interacting with player i.

Investment Each player i makes a productive investment, ki ≥ 0. In our example, ki ex-

presses parent’s productive effort with the child (like e.g. doing homework and driving the child to

different activities). The choices of si and ki are simultaneous. Let k = (k1, ..., kn) be a profile of

investments. These individual investments yield both a private and a synergistic return.

The private returns to player i only depend on his own investment level ki and his idiosyncratic

traits, summarized by bτ(i) ≥ 0. We adopt a simple quadratic expression bτ(i) ki − ck2i /2.

The synergistic return depends on both s and k. We consider multiplicative synergies kikj that

are additively separable across pairs of players. For each pair of players i, j, these cross effects

are scaled by a factor that reflects the intensity of the interaction between the two players. More

precisely, we assume that:
∂2ui(s,k)

∂ki∂kj
= agij(s), for all i �= j, (3)

where a ≥ 0 corresponds to the level of synergistic returns.
Notice that the symmetry (A1) in Lemma 1 is tantamount to payoffs being twice continuously

differentiable in the productive investments k.

Payoffs Let c > 0. Player i’s utility is equal to:

ui(s,k) = bτ(i) ki + a
n∑

j=1,j �=i

gij (s)kjki −
1

2
ck2i −

1

2
s2i (4)

Payoffs are a linear-quadratic function of kis with non-negative cross effects (3) reflecting strate-

gic complementarities in productive investments. The size agij(s) ≥ 0 of these complementarities
depends on the profile of socialization efforts, and varies across different pairs of players. For all

x ∈ Rt+, define x =
∑t
τ=1 xτ/t and x

2 =
∑t
τ=1 x

2
τ/t. Then, other patterns of complementarities

are given by:

∂2ui (s,k)

∂si∂sj
=

akikj
ns

− asikikj

(ns)2
+

n∑

l=1,l�=i

(
−aslkikl
(ns)2

+
agil (s)kikl

(ns)2

)

=
(
1− si

ns

) aki
ns



kj −
n∑

l=1,l �=i

kl
sl
ns
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∂2ui (s,k)

∂si∂kj
=

asjki
ns

− agij (s) ki
ns

=
akisi
ns

(
1− si

ns

)
> 0

∂2ui (s,k)

∂ki∂sj
=

asikj
ns

− agij (s)kj
ns

=
asikj
ns

(
1− sj

ns

)
> 0

Also let us note that

∂ui
∂sj

(s,k) =
asikikj
ns

−
n∑

l=1

asislkikl

(ns)2

=
asiki
ns

(

kj −
n∑

l=1

kl
sl
ns

)

Most of the interactions are positive with the exception of whether the socialization of a partic-

ular person j creates positive or negative externalities on i and whether the marginal benefit of

socialization of i increases or decreases on the socialization effort of j. In both cases, the effect on

i depends on whether person j is making higher or lower effort kj than an average of the others

(weighted by their own relative socialization effort).

Let us explain this utility function in the light of our education example. The term bτ(i) ki +

a
∑n
j=1,j �=i gij (s)kjki is the outcome of the child (future wage or current grade) while −1

2ck
2
i − 1

2s
2
i

is the cost of both efforts for parent i. In other words, the educational outcome of a child depends

on bτ(i), which represents either parental education or child’s own talent (for example, I.Q.), ki,

the productive effort his parent is exerting in educating him, and si, the socialization effort his

parent provides when participating in parental activities. The latter will help parent i to be more

productive (because of local complementarities) in educating his child. Indeed, the more a parent

participates in different parental activities, the higher is the probability that he interacts with other

parents and the more this parent will learn from them.

This general way of modeling the utility function in the context of education is similar to others

in the literature (see, e.g. Bisin and Verdier, 2000; Patacchini and Zenou, 2010). The main novelty

here is the way in which we model socialization through gij (s) and its interaction with productive

efforts ki and kj.

3 Equilibrium analysis and welfare

3.1 Equilibrium analysis

We solve for the interior Nash equilibria in pure strategies (s∗,k∗) = (s∗1, ..., s
∗
n, k

∗
1, ..., k

∗
n) of the

m−replica game with heterogeneous types b = (b1, ..., bt), and for m large enough.6

6 Instead of having a m−replica game with heterogeneous types and large population, we could have instead
considered a model with a continuum of agents and types. In that case, we would have obtained exactly the same

results, except for the fact that a(b) (defined below in equation (5)) would have been an integral rather than a sum.
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Under some conditions that we provide, there are exactly three such equilibria.

In one (partially corner) equilibrium, the level of socialization effort is null for all players.

Indeed, non-reciprocated unilateral socialization efforts do not yield any interaction supportive of

synergies. The two other equilibria are interior.

We first identify the (partially) corner equilibrium of the game.

L���� 2 For all m−replica game, (s∗i , k
∗
i ) =

(
0, bτ(i)/c

)
for all i = 1, ...,mt is a pure strategy

Nash equilibrium with corresponding equilibrium payoffs b2τ(i)/2c.

The intuition runs as follows. If nobody exerts any socialization effort, then it is optimal

for other players not to provide a positive socialization effort and thus s∗i = 0. This is a Nash

equilibrium. This equilibrium is a strict equilibrium, thus it cannot be discarded on the basis of

standard refinements.

Define:

a(b) = a

∑t
τ=1 b

2
τ∑t

τ=1 bτ
. (5)

Holding the average type
∑t
τ=1 bτ/t constant, the parameter a(b) increases with the hetero-

geneity in types. More generally, a(b) increases with the ratio
∑t
τ=1 b

2
τ/
∑t
τ=1 bτ , which many

authors refer to as the second-order average type (e.g., Vega-Redondo 2007). When types are all

homogeneous, that is, b1 = ... = bt = b, we have a(b) = ab.

T������ 1 Suppose that 2 (c/3)3/2 > a(b) > 0. Then, there exists an m∗ such that for all

m−replica games with m ≥ m∗, there are exactly two interior pure strategy Nash equilibria. These

pure strategy Nash equilibria are such that, for all players i of type τ , the strategies (si, ki) converge

to (s∗τ(i), k
∗
τ(i)) as m goes to infinity, where s∗τ(i) = bτ(i)s, k

∗
τ(i) = bτ(i)k, and (s, k) are positive

solutions to: {
s = a(b)k2

k [c− a(b)s] = 1
. (6)

In words, when a(b) is small enough compared to the infra-marginal cost for a productive

investment, the system of two equations (6) with two unknowns has exactly two positive solutions.

As m gets large, each such solution gets arbitrarily close to a pure strategy Nash equilibrium of

the corresponding m−replica game. We get two approximate Nash equilibria. Besides, as m gets

large, every pure strategy Nash equilibrium gets arbitrarily close to a solution of (6).

A complete proof is derived in the appendix. But we now provide a sketch of the proof in order

to get a basic understanding of the result. Let G(s) = [gij(s)]i,j∈N and diag (G (s)) be matrix with

However, adopting a model with a continuum of players would make it more complicated for readers to link our

approach to the one used in the network literature. That would obscure an important point of the paper linking

network formation to network use.
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diagonal terms gii (s) and zero off-diagonal terms. Then, the first order condition with respect to

k is

[cI−aG(s)] · k+ adiag (G (s)) ·k = b. (7)

Observe that the term with diag (G (s)) appears in (7) because we allow for self-loops (when i = j)

in gij(s). The matrix [cI−aG(s)] can be shown (Debreu and Hernstein 1953) to be invertible and
has a particularly simple structure so that (7) becomes (see Lemma 3 in the Appendix):

ck+ a
[
I+ λa/c(s)G (s)

]
·diag (G (s)) ·k =

[
I+ λa/c(s)G (s)

]
·b,

where λa/c(s) =
a
cc/
(
s− a

c s
2
)
. The first order conditions for s are:

si = aki
s · k
ns

− asiki
s · k
(ns)2

− a
sik

2
i

ns
+ a

s2i k
2
i

(ns)2
, i = 1, ..., n. (8)

where s · k =∑n
j=1 sjkj. Since c > as2/s (which is necessary for λa/c(s) to be well defined), si is

bounded in the limit for large n. Since s is bounded, one can see from (7) that k must also be

bounded. And hence as the number of individuals for all types go to infinity we have that in the

limit (8) becomes:

si = aki
s · k
ns

, for all i = 1, ..., n. (9)

since the terms s · k/(ns)2, sik2i /ns and s2i k2i /(ns)2 all go to zero when n goes to infinity. Moreover.

ck =
[
I+ λa/c(s)G (s)

]
·b, (10)

since gii(s) = s2i /
∑n
j=1 sj and hence diag (G (s)) vanishes in the limit as n becomes large.

From (9) notice that si/ki is a constant for all types so that one can write si = θis and ki = θik,

for all i and for some k, s and θi. Then, (9) can be rewritten as:

s = ak2
θ
2

θ
, (11)

Note also that λa/c(s) = aθ/
(
cθ − asθ2

)
and thus (10) can be written as:

cθik = bi +
as

n

θi

cθ − asθ2

n∑

j=1

θjbj . (12)

Equation (12) implies that for any i, j we must have θi/θj = bi/bj and then, without loss of

generality, we can write θi = bi.
7 Then, (12) is equivalent to:

k =
1

c− a(b)s
(13)

7This also allows us to see that we are not focusing on the subset of symmetric equilibria, that is, on equilibria

where individuals of the same type choose the same action. To see this, notice that we can arbitrarily split a type

t ∈ T into two groups: t1 and t2. But if both groups keep the same bt, since the equilibrium action only depends

on bt, their actions will not change. So the commonality of actions is a requirement of all limits of equilibria, not a

consequence of us focusing on symmetric equilibria.
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and (11) is equivalent to:

s = ak2
b2

b
(14)

which lead to (6).

The second order conditions are satisfied at both equilibria. Since the reasons for why this is

true are related to those for which (and why) equilibria are stable we briefly postpone the discussion,

since we now study the stability of the equilibria described in Lemma 2 and Theorem 1.

P��
������ 1 For m sufficiently large, the two interior equilibria are stable while the equilibrium

with (s∗i , k
∗
i ) =

(
0, bτ(i)/c

)
for all i = 1, ...,mt is not stable.

First, suppose we start with an equilibrium where everybody provides zero socialization effort,

i.e. (s∗i , k
∗
i ) =

(
0, bτ(i)/c

)
for all i = 1, ...,mt. If in this situation some player j provides a positive

socialization effort, then the marginal revenue of si, for player j �= i, increases by a discrete amount

(which is akikj) even for a small value of sj , while the marginal cost of si is small if si is small. This

result does not rely on the linear quadratic structure but on the fact that benefits and costs have

different orders of power. From an economic viewpoint, any socialization effort, however small,

leads to a social interaction that generates synergy payoffs when at least one additional agent

socializes as well, which induces every other agent to socialize further.

This does not happen for the two interior equilibria described in Theorem 1. We consider a

gradient dynamical system (see e.g. Corchón and Mas-Colell 1996) for the dynamics of (s (t) ,k (t))

so that a variable is adjusted in a direction where payoffs improve (agents may only be imperfectly

aware of their environment and hence adjust their strategy in a direction where they know their

utility grows). Hence,

∂si(t)

∂t
=

∂ui(s(t),k(t))

∂si(t)
,

∂ki(t)

∂t
=
∂ui(s(t),k(t))

∂ki(t)

By linearizing around the equilibrium, we obtain:

∂si(t)

∂t
=

nh∑

j=1

∂2ui
∂si∂sj

(s∗,k∗)
(
sj(t)− s∗j

)
+

nh∑

j=1

∂2ui
∂si∂kj

(s∗,k∗)
(
kj(t)− k∗j

)

∂ki(t)

∂t
=

nh∑

j=1

∂2ui
∂ki∂kj

(s∗,k∗)
(
kj(t)− k∗j

)
+

nh∑

j=1

∂2ui
∂ki∂sj

(s∗,k∗)
(
sj(t)− s∗j

)

In the limit for large n and for i �= j, we obtain:

∂2ui
∂si∂sj

(
sh∗,kh∗

)
=

∂2ui
∂si∂kj

(
sh∗,kh∗

)
=

∂2ui
∂ki∂sj

(
sh∗,kh∗

)
=

∂2ui
∂ki∂kj

(
sh∗,kh∗

)
= 0 (15)

and
∂2ui
∂s2i

(s∗,k∗) = −1, ∂2ui
∂si∂ki

(s∗,k∗) = a(b)k,
∂2ui
∂k2i

(s∗,k∗) = −c

11



so that stability is determined in the limit by the eigenvalue of the following matrix Πh:

Πh =

[
A,B

B, cA

]

where A =





−1 ... 0

... ... ..

0 ... −1




 and B =





a(b)k ... 0

... ... ...

0 ... a(b)k






where A, B and cA are all diagonal matrices with only −1, a(b)k and −c in their diagonal,
respectively. It is now easy to demonstrate that the equations for the eigenvalues have a non-

trivial solution if and only if (λ+ 1) (λ+ c)− [a(b)k]2 = 0. This second-order equation in λ has a
discriminant equal to (c− 1)2+4 [a(b)k]2 ≥ 0, which always admits two real solutions, denoted λ1

and λ2. Besides

λ1 + λ2 = − (1 + c) < 0,

implying that at least one such solution is negative. Then, both are negative if and only if λ1λ2 =

c − (a(b)k)2 > 0, equivalent to c − a(b)s > 0, which is true when 2 (c/3)3/2 > a(b). This is the

condition that guarantees that the second order conditions are satisfied (see Theorem 1).

In words, the equations in (15) imply that there is no feedback from the changes in one individ-

uals’ strategies to any of the others’ when close to either equilibria. Then, the local dynamics are

entirely driven by one individual’s strategy and thus local stability is the same as local maxima,

which is why the condition for stability is the same than the condition that guarantees that the

second order conditions are satisfied.

Given that the partially corner equilibrium is unstable for high enough replications, we concen-

trate on the interior equilibria. Table 1 shows the discrepancy between equilibrium and approxi-

mated equilibrium actions for various population sizes when the population is homogeneous with

common trait b. The last column corresponds to the approximated equilibrium actions; the other

columns give the exact Nash equilibrium actions as m varies.

Table 1: Simulations with a = 2, c = 1, t = 1 and b = 0.1.8

m 2 5 10 20 50 100 500 ∞
Low equilibrium

k∗ 1,898 1,195 1,101 1,065 1,049 1,046 1,046 1,046

s∗ 2,366 815 458 303 234 222 218 219

High equilibrium

k∗ 3,346 4,643 4,591 4,508 4,444 4,420 4,400 4,394

s∗ 3,506 3,923 3,911 3,891 3,875 3,869 3,864 3,862

For an homogeneous population with common trait b, one can verify that the exact equilibrium

equations are: {
s = abk2

(
1− 1

m

)2

k
[
c− abs

(
1− 1

m

)]
= 1

8Numbers in the table must be multiplied by 10−3 to obtain the real equilibrium values.
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Comparing with (6), it can be checked that the approximation error is of the order of m−3/2. In

particular, when m = 100, the approximation error is of the order 10−3.

The approximated equilibria (s∗,k∗) characterized in Theorem 1 display three important fea-

tures.

First, the level of socialization per unit of productive investment is the same for all players,

that is, s∗i /k
∗
i = s∗j/k

∗
j , for all i, j. Given our quadratic cost structure, this is equivalent to having

a marginal rate of substitution of socialization versus investment for gross benefits uniform across

all players. An approximate equilibrium is thus fully characterized by specifying the value of this

ratio together with the population profile of productive investments.

Second, differences in productive investments reflect differences in idiosyncratic traits. More

precisely, k∗i /k
∗
j = bτ(i)/bτ(j), for all i, j. Indeed, absent of any synergy payoffs, private returns are

maximal when productive investment is equal to bτ(i)/c, and the ratio of these maximal investments

is then also equal to bτ(i)/bτ(j). At an approximate equilibrium, the relative value of productive

investments thus remains unchanged with and without synergies. The presence of synergies only

affects the absolute value of those investments.

Third, in the presence of synergies, productive investments are all scaled up (compared to the

case without synergies) by a synergistic multiplier.9 This multiplier, which is homogeneous across

all players, is a decreasing function of the infra-marginal productive investment cost c, and an

increasing function of the second-order average type a(b). Beyond this dependence on exogenous

payoff parameters, the synergistic multiplier also depends on the endogenous baseline equilibrium

socialization effort s∗.

In substance, individual traits enter multiplicatively into own actions at approximate equilibria.

Also, the population-wide heterogeneity collapses into a single index, a(b). Compared with the case

without synergies, productive investments are all scaled up by a common synergistic multiplier that

depends on this index. Finally, the ratio of socialization to productive effort is uniform across all

agents.

These properties of the equilibrium actions have implications for the type composition of the

social interaction circle of each player. Recall that s∗i gives the total interaction intensity, or size, of

the social circle of agent i. We deduce from the above discussion that social circles across players

of different types τ and τ ′ vary in fixed proportions bτ/bτ ′ . Beyond this size effect, the inner

composition of social circles is the same for all agents. More precisely, every agent i devotes an

identical fraction bτ ′/
∑
τ∈T bτ of his total socialization intensity to interacting with type τ

′ agents,

and this fraction is independent of his own type.

Figure 1 plots equations (6).

[Insert Figure 1 here]

9The multiplier is, precisely, 1/ (1− a(b)s∗/c) . This is obtained by rewriting the second equation of (6) as k∗i =
bτ(i)k

∗ = bτ(i)/ (c− a (b) s∗), and by dividing the right-hand term by the optimal productive investment level in the

absence of synergies, bτ(i)/c.
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From the graph, it is clear that the system (6) need not always have a non-negative solution.

The upper bound on a(b) in Theorem 1 is a necessary and sufficient condition for the two graphs to

cross in the positive orthant of the space (s, k). When a(b) is too large, the synergistic multiplier

operates too intensively and there is no intersection. More precisely, holding s fixed, the level of

productive investments escalates without bound. In turn, this triggers and unbounded increase in

socialization effort, and both effects positively feed back into each other.

R����� 1 When 0 < a(b) < 2 (c/3)3/2, the system of equations (6) has two different non-negative

solutions. When a(b) = 2 (c/3)3/2, there is a unique non-negative solution (s, k) =
(
3/c,

√
3/c
)
/2.

When a(b) > 2 (c/3)3/2, there is no non-negative solution.

One slightly artificial feature of the model is the fact that the effort variables are unbounded.

This creates existence problems and generates the need for the assumption a(b) < 2 (c/3)3/2. In

addition, this generates a failure of upper-hemicontinuity in the equilibrium correspondence as the

high-action equilibrium diverges to infinity as a(b) goes to zero. A simple way to deal with this

problem is to assume that the effort of each individual is bounded. That is, si + ki ≤ T . This

is natural when one interprets this effort as an activity that consumes resources. It is relatively

easy to characterize the equilibria in this case. In particular, the Pareto superior equilibrium (see

below) disappears for a(b)T low enough. A bounded strategy space can also introduce upper corner

equilibria which may be stable.

3.2 Welfare

Given an approximate equilibrium (s∗,k∗), we denote by u (s∗,k∗) = (u1 (s
∗,k∗) , ..., um (s

∗,k∗))

the corresponding equilibrium payoffs. Denote also by and
(
sE ,kE

)
the (approximate) efficient

outcome, i.e., the one (almost) maximizing the sum of payoffs for all players in a large m−replica
game.

The next result compares equilibrium actions and payoffs across the two approximate equilibria

characterized in Theorem 1.10

P��
������ 2 Assume 0 < a(b) < 2 (c/3)3/2 and let (s∗,k∗) and (s∗∗,k∗∗) be the two differ-

ent approximate equilibria of an m−replica game. Then, without loss of generality, (s∗,k∗) ≥
(
sE,kE

)
≥ (s∗∗,k∗∗) and u

(
sE ,kE

)
≥ u (s∗,k∗) ≥ u (s∗∗,k∗∗), where ≥ is the component-wise

ordering.

10Notice that all the claims to follow are made on approximate equilibria rather than on the exact Nash equilibria

of the game. Given the local continuity of the equilibrium correspondence around interior equilibria, the claims about

approximate equilibria are generally portable to properties of Nash equilibria, although some qualifications may be

sometimes required.
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In words, the equilibrium actions are ranked component-wisely and the equilibrium payoffs are

Pareto-ranked accordingly. From now on, we refer to the Pareto-superior and to the Pareto-inferior

approximate equilibrium as the high and the low equilibrium, respectively. The socially efficient

outcome lies in between the two equilibria, so that we can effectively talk about a too-high and a

too-low equilibrium. To get an intuition for why the efficient outcome lies in between the equilibria,

note that the first order conditions for efficiency in the limit economy look as follows:

{
s = 2a(b)k2

k [c− 2a(b)s] = 1
(16)

These conditions are as in (6) but with 2a(b) replacing a(b), as a result of the externalities caused

by agents’ actions of others they do not take into account when maximizing their own welfare. But

proposition 3 shows that an increase in a(b) leads to new equilibria where the new high equilibrium

is below the earlier one, and the low equilibrium is above the previous one. Hence, the solutions to

(16) will lie in between equilibrium solution. Of those solutions the welfare maximizer will be the

higher one for reasons that are analogous to why the high equilibrium has a higher welfare than

the low equilibrium.

If we go back to our example on education, then this means that, compared to the socially

efficient outcome, there is an equilibrium where parents put too much effort in socializing and

educating their children and another one where they exert too little effort. This is due to local

complementarities and positive synergies so that the too-high (too-low) equilibrium is reached

because parents, who are obsessed with (not interested in) the education of their kids, meet other

obsessed (non-interested) parents, which, in turn, make parents even more obsessed (uninterested),

triggering even more (less) productive efforts on both side.

Denote by (s∗, k∗) and (s∗∗, k∗∗) the baseline socialization and productive efforts that solve

(6), and that enter the calculation of the high and the low equilibrium, respectively. Then, it is

already apparent from Figure 1 that s∗/k∗ ≥ s∗∗/k∗∗. That is, the level of socialization per unit

of productive investment is higher at the high equilibrium. At the high equilibrium, a high joint

socialization effort creates tight links across players who then invest heavily in productive effort

to build high cross synergies on this fertile ground. At the low equilibrium, low joint socialization

efforts lead to a loose interaction pattern which hampers the scope for cross synergies, and thus

the level of private investments. As a matter of fact, the synergistic multiplier is higher in the high

equilibrium, and pulls up the level of production investments compared to the low equilibrium.

The equilibrium multiplicity identified in Theorem 1 reflects an inter-twinned coordination

problem in the socialization process and in the production technology. These two coordination

problems are rooted separately on the payoffs strategic complementarity both in socialization effort

and in productive investment. The dependence of the cross returns in production on the population

socialization profile, ∂2ui(s,k)/∂ki∂kj = agij(s) for i �= j, relates these two coordination problems

with each other, as reflected by the endogenous dependence of the synergistic multiplier on the
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baseline socialization effort.

To sum up, we have characterized the set of equilibria for the model when a sufficiently large

number of agents participates in the game. We have shown that there are two stable interior

equilibria and one unstable corner equilibrium (without socialization). Existence and stability of

interior equilibria are obtained when the level of cross synergies, as well as the heterogeneity in

individual traits, are not too large. This amounts to bounding from above a compound index of

both kinds of payoff parameters. In the absence of that bound, the complementarities inherent to

the model would make equilibrium values of the variables to diverge. Finally, we have shown that

the stable equilibria are Pareto-ranked, and that the socially efficient outcome lies in between the

stable equilibria.

4 Comparative statics analysis and empirical implications

Recall that a(b) is a compound index of the technological synergy parameter and of the second-order

average type
∑t
τ=1 b

2
τ/
∑t
τ=1 bτ , that measures the population heterogeneity in private returns to

productive investment. This compound index directly enters in the equilibrium behavior (6) and,

in particular, in the value of the synergistic multiplier.

Exogenous changes in the value of the technological parameter and/or in the group character-

istics have an impact on socialization and investment that is channeled through the variations in

a(b) that follow these changes. The next result clarifies how socialization and investment react to

changes in a(b).

P��
������ 3 Suppose that a(b) increases. Then, in both approximate equilibria of the replica

game, the percentage change in socialization effort is higher than that of productive investment

for all agents. Besides, the baseline equilibrium actions that solve (6) both increase at the low

equilibrium and decrease at the high equilibrium.

Recall that equilibrium actions are multiplicative in own traits, (s∗i , k
∗
i ) = bτ(i) (s

∗, k∗), where

(s∗, k∗) are the baseline socialization and productive investments that solve (6). Proposition 3

implies that the socialization effort per unit of productive investment, s∗i /k
∗
i , decreases at the high

equilibrium and increases at the low equilibrium when a(b) goes up. It also states that the elasticity

of socialization with respect to productive investment, that accounts for the relative variation of

these two actions, is smaller than one at all equilibria.

At the high equilibrium, where socialization is overwhelming, agents substitute an increase in

a(b) by an endogenous decrease in baseline socialization s∗. As a result, the synergistic multiplier

decreases and the baseline productive investment is pulled down. This decrease in production feeds

back and further dampens the level of socialization. And so forth, until this chain of cross influences

sets at a new equilibrium. It turns out that socialization is more responsive than productive

investment.
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At the low equilibrium, instead, where the interaction pattern is diffuse, agents complement

an increase in a(b) by an increase in socialization, which triggers an upwards jump in baseline

productive investment. Again, socialization is here more responsive than productive investment.

The reason for this over-responsiveness of socialization can be better understood by remember-

ing that elasticity is given by:

η =
k

s

∂s
∂a(b)

∂k
∂a(b)

=

∂ ln s
∂a(b)

∂ ln k
∂a(b)

but inspecting the first order condition for socialization we see that

ln s = ln a(b) + 2 lnk

and hence

η =
1 + 2 ∂ ln k∂a(b)

∂ ln k
∂a(b)

> 2

In words, the result arises because the marginal benefit of socialization is a function of k2,

whereas the marginal cost is a function of s. This result, as we discuss in more detail in section 5,

has interesting and novel empirical implications.

Figure 2 illustrates how, at the low equilibrium, an increase in a(b) leads to an increase in

both socialization and investment. At the high equilibrium, instead, baseline socialization and

investment decrease.

[Insert Figure 2 here]

Changes in the compound index a(b) can subsume various effects of very different nature. More

precisely, this compound index responds positively to upwards shifts in the technological scale of

synergistic returns a, to changes in the population that increase the second-order average type
∑t
τ=1 b

2
τ/
∑t
τ=1 bτ , and to combination of both effects.

For instance, a mean-preserving spread in idiosyncratic traits leaves
∑t
τ=1 bτ constant while∑t

τ=1 b
2
τ grows. The ensuing upwards shift in the second-order average type increases a(b).

Suppose also that a and all the bτ ’s a are all scaled up by a common factor. In particular,

consider the following variation of payoffs (4), where λ > 0:

ui(s,k) = bτ(i) ki + a
n∑

j=1,j �=i

gij (s) kjki −
λ

2
ck2i −

λ

2
s2i , (17)

The game with payoffs (17) has the same equilibria than the game with original payoffs (4), where

the types bτ and the synergy scale parameter a, and thus the compound index a(b), are all scaled

homothetically by 1/λ.

Proposition 3 encompasses all those cases and many others, and pins down the relative variation

of socialization and productive investment, and the absolute variation of baseline socialization and

productive investment, for all these multifarious changes in parameters.
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Notice, however, that equilibrium actions (s∗i , k
∗
i ) = bτ(i) (s

∗, k∗) need not move in the same

direction than baseline equilibrium actions (s∗, k∗). This may be so at the low equilibrium when

the changes in a(b) result from variations in parameter values for which bτ(i) moves in the opposite

direction than a(b), and at the high equilibrium if bτ(i) moves in the same direction than a(b).

The following result clarifies this point.

C�������� 1 An increase in a (b) for which bτ does not decrease (resp. does not increase) in-

creases (resp. decreases) the socialization and investment efforts of all type τ players at the low

equilibrium (resp. at the high equilibrium).

We now document the comparative statics of individual and aggregate equilibrium payoffs when

a(b) varies, with a particular emphasis on the effect of the group heterogeneity.

When m gets large, approximate equilibrium payoffs corresponding to baseline efforts (s∗, k∗)

that solve (6) are given by the following expression:

u∗i =
b2τ(i)
2a(b)

s∗

k∗
+ o (1) =

b2τ(i)
2

k∗ + o (1) , for all i = 1, ...,mt. (18)

Given the expression for equilibrium payoffs (18), the comparative statics of equilibrium actions

established in Proposition 3 and Corollary 1 above have straight implications for the reaction of

individual well-being to changes in the compound index a(b).

P��
������ 4 An increase in a (b) for which bτ does not decrease (resp. does not increase)

increases the low equilibrium payoffs (resp. decreases the high equilibrium payoffs) of all type τ

players.

In particular, an increase in the synergy parameter a induces a downwards shift of equilibrium

payoffs at the high equilibrium, and an upwards shift at the low equilibrium. Indeed, scaling

up the scope for synergies helps alleviating the coordination features of both equilibria. At the

low equilibrium, characterized by an under-provision of production and socialization efforts, the

interaction pattern is tightened and investments increment. At the high equilibrium, instead, where

over-provision prevails, the social network is loosened and investments reduced.

Proposition 4 also documents the changes in individual welfare following a change in the pop-

ulation distribution of types. We explore some changes in the types profile b = (b1, ..., bt) that

induce an increase in a (b).

Consider two type profiles b′ ≥ b, where ≥ is the component-wise ordering. The marginal

private returns to productive investment of every agent are not smaller under b′ than under b,

and are strictly higher for at least one type when b′ �= b. Even though b′ is obtained from b

by increasing the type of some agents, it is not always true that the value of a (b′) so obtained is

higher than that of a (b). The following results clarify this point.

Recall that 0 < b1 ≤ b2 ≤ ... ≤ bt.
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P��
������ 5 Let b = (b1, ..., bt) be a type profile such that 2b1 ≥ bt. Then for all τ ∈ T,

τ �= τ (i), ∂u∗∗i /∂bτ > 0 (i.e. the low equilibrium payoffs of every player increase with bτ ), while

∂u∗i /∂bτ < 0 (the high equilibrium payoffs decrease with bτ ).
11

Recall that, at equilibrium, all agents have the same distribution of types in their social circle,

and interactions with a type τ represent a fraction bτ/
∑
τ ′∈T bτ ′ of the agent’s total socialization

intensity. When 2b1 ≥ bt, the ratio of higher to lower type values is never higher than two. As a

result, the type composition of agent’s social circles are moderately uneven, and high types are not

over-represented with respect to lower types.

With a moderately uneven type distribution, agents of different types contribute in not too

disparate proportions to the creation of cross-synergies.

More precisely, the synergistic payoff to a bilateral interaction between players i and j is

agij (s)kikj . At equilibrium, we can rewrite this spillover as as
∗
i s
∗
jk
∗
i k
∗
j /
∑
τ∈T bτs

∗. Holding the

average type constant, the two players contribute to (respectively, s∗i k
∗
i and s∗jk

∗
j ) the creation of

the synergy payoffs. Relative contributions to the synergy are thus equal to b2τ(i)/b
2
τ(j). Two inter-

acting players with identical type contribute symmetrically to the cross spillover they exert on each

other, while two interacting players with different type contribute asymmetrically. When 2b1 ≥ bt,

these asymmetric contributions are not too strikingly different, with values in [1/4, 4], and cross

spillovers are moderately asymmetric.

With moderately asymmetric cross spillovers, any type value unilateral increase benefits all

players at the low equilibrium who each increase the spillovers they exert to every other interacting

partner.

Instead, when type values differ drastically with each other, players’ contributions to the

spillovers with players of a different type are highly asymmetric. An increase in the low type

value can now decrease the welfare of high type players at the low equilibrium, as illustrated below.

E���
�� 1 Consider two types b = (b1, b2) with b1 <
(√
2− 1

)
b2. Then, a (b) is a strictly

decreasing function of the low type b1.
12 An increase in b1 decreases the payoffs of the high type

players at the low equilibrium.

When b1 <
(√
2− 1

)
b2, the fraction of type 2 players in every individual social circle is bounded

from below by 1/
√
2, a lower bound of roughly 70.7% interactions with type 2 players. In particular,

high type 2 players interact overwhelmingly with players of the same type. This in-breeding bias

is accompanied by symmetric cross-spillovers across high type players to which they all contribute

intensively. High type players also contribute asymmetrically to spillovers they exert on low type

11A weakening of the sufficient condition 2b1 ≥ bt is to assume that b2τ +2bτ
∑

τ ′ �=τ bτ ′ ≥ 2
∑

τ ′ �=τ b
2
τ ′ , for all τ ∈ T .

12We have a(b) =
(
b21 + b

2
2

)
/ (b1 + b2). The sign of ∂a(b)/∂b1 is that of b

2
1 + 2b1b2 − b22, which is negative when

(b1 + b2)
2 < 2b22, that is, b1 <

(√
2− 1

)
b2.
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players. But the interactions sustaining these spillovers are rare, and they main concern is the

creation of within-type symmetric spillovers.

Suppose now that the value of b1 increases. The asymmetric high-low type interactions become

more prevalent. A higher share of the socialization and production efforts of high type players is now

beneficial to low type players, who partially free-ride on these spillovers to which they themselves

don’t contribute much. High type players then react to this increase in b1 by narrowing down the

size of their social circles at the low equilibrium and, more generally, by decreasing the generation

of cross-spillovers that they now share symmetrically among themselves in a smaller proportion.

The previous results characterize the effect on individual payoffs of changes in type composition.

Now following a mean preserving effect in types, the compound index a (b) increases. This induces

an upward shift of baseline actions at the low equilibrium. Individuals experiencing an increase

in type will certainly experience an increase in payoffs, but the effect is ambiguous for agents

experiencing a decrease in types. The next result shows, however, that the overall aggregate effect

is positive. The argument is symmetric at the high equilibrium.

P��
������ 6 Aggregate payoffs increase at the low equilibrium and decrease at the high equilib-

rium following a mean-preserving spread of the population type profile b = (b1, ..., bt).13

5 Empirical implications in terms of education

Let us now go back to our example in terms of education where each parent i exerts two types

of costly effort: productive effort ki with the child and socialization effort si related to education.

This interpretation of the model makes the empirical predictions more precise. We find that:

(i) Better educated parents exert more productive effort educating their kids than low-educated

parents, i.e. ki and bi are positively related (Proposition 3). This fact is well-documented. For

example, for England, using the National Child Development Study, Patacchini and Zenou (2010)

find that more educated parents put more effort in educating their children than less educated

parents. More precisely, they find that around 70 percent of educated parents are highly interested

in their child education (measured by the frequency they read to their child) while it is roughly 30

percent for less educated parents.

(ii) Better educated parents are more prone to socialize with other parents than low-educated

parents, i.e. si and bi are positively related (Proposition 3). There is also empirical evidence on

this issue. Putman (1995) documents that less educated people are less engaged in the life of

their communities, in particular, group membership. Moreover, using data from the US General

Social Survey (GSS) from 1972 through 1996 and from the DDB-Needham Life Style survey data

from 1975 through 1997, Helliwell and Putnam (2007) investigate the effects of education on trust

and social engagement, two key variables often used as measures of social capital. They find, in

13That leaves
∑t

τ=1 bτ constant but increases
∑t

τ=1 b
2
τ .
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particular, that higher-educated parents are more likely to participate socially in school activities

than low-educated parents.14

(iii) Our model has multiple equilibria. This feature (Theorem 1) can help to explain why, in

different locales, children whose parents have similar characteristics (e.g. income, education level)

or are similarly talented as other children (say, measured by I.Q.) end up having very different

educational outcomes or different levels of parental educational efforts. Glaeser et al (1996) make

a similar observation about crime. Their argument runs as follows. If one compares different

neighborhoods with the same fundamentals (in terms of unemployment rate, poverty and so on),

one observes that crime rates are very different. Social interactions, which are usually not observed

by the econometrician, can explain these differences. The same argument can be used to test

whether social interactions between parents with the same education levels can explain different

educational outcomes of children.

(iv) Different levels of parental education affect (positively or negatively) proportionally more

the socialization effort of those parents si than their direct effort ki with children (Proposition 3).

This is an interesting prediction that, to the best of our knowledge, has not been yet tested.

An important question is then how an exogenous change in the returns to production and

socialization affect the relative production and socialization efforts at equilibrium. In turns out

that, when the returns increase because either all bi increase or a does, all equilibrium actions

decrease at the Pareto-superior equilibrium, while they increase at the Pareto-inferior equilibrium.

In both cases, the percentage change in socialization effort is higher (in absolute value) than that

of the productive effort.

To sum up, in this section we have shown that the comparative statics for the model are very

tightly connected to the parameter a (b). This allows us, for example, to relate the variations in

equilibria with changes in the strength of incentives, or with relative population heterogeneity. We

have also shown that socialization is more responsive than production to exogenous shocks in the

parameters. Finally, we have explored some empirical implications of the model. Some are well

established, and some are novel.

6 Discussion

In this paper, we provide a simple operational model of network formation with productive ef-

fort, synergies and population heterogeneity. An innovation of our study is that socializing is not

equivalent to elaborating a nominal list of intended relationships, as in the literature on network

formation. In other words, network formation does not result of an earmarked socialization process.

This shortcut greatly improves the tractability of the model and allows us to perform a standard

14See also Dee (2004) and Milligan et al. (2004), which use instrumental variables to estimate the effects of own

education. The results show that individuals with more education tend to be more engaged citizens.
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type of equilibrium analysis that equates marginal costs and benefits of both production and so-

cialization.15 We obtain welfare predictions and clear-cut comparative statics. In substance, we

identify a “too cold” and a “too hot” equilibrium. We show that socialization is more responsive

than production to exogenous shocks in the parameters. We also demonstrate that our analysis is

robust to different specifications generalizing the model.

As all models, ours relies on specific assumptions due to the functional form of payoffs given in

equation (4). The three main characteristics of this functional form are:

(a) the linear-quadratic returns to productive investment,

(b) aggregate constant returns to scale in socialization effort (condition (A2) in lemma 1),

(c) the generic socialization effort (condition (A3) in Lemma 1),

Combining the linear equilibrium equations for productive investment with conditions (A2) and

(A3), Nash equilibrium conditions (both for productive investments and for socialization efforts)

take a relatively manageable closed-form matrix expression. In turn, when the population gets

large, and because we are able to control the population size effect in our matrix closed-form

expression, approximate equilibrium conditions boil down to a simple system of equations (6).

Our results (in terms of characterization of equilibria, multiple equilibria, welfare and compar-

ative statics results) are robust to certain extensions of the model,16 that we discuss now.

(a) Linear-quadratic production payoffs give rise to linear equilibrium conditions for the levels of

productive investment. Linear equilibrium conditions for productive investment play an important

role in the analysis, as they allow to express existence and interiority of the productive investment

decisions (for a given socialization profile s) as a a function of the spectral radius of the matrix of

link intensities G(s) = [gij (s)]. However, it is important to stress that linear-quadratic payoffs are

not a necessary condition for equilibrium equations to be linear.17 Indeed, equilibrium analysis boils

down to solving a so-called linear complementarity problem for a relatively broad class of payoff

function, beyond the particular linear-quadratic specification. Ballester and Calvó-Armengol (2010)

provide examples of these payoff functions. Our analysis would carry over to any such environment.

By considering non-quadratic cost structures, we can show that our analysis is robust to (at least

some form of) non-linearities in these equilibrium conditions.

15Because of its simplicity and flexibility, our model could be used to analyze different outcomes where social

interactions matter. A recent paper by Galeotti and Merlino (2009) uses our network formation process to analyze

social interactions and job search. They find interesting results that are empirical relevant. Golub and Livne (2010)

also use a similar approach (i.e. network formation is not the result of an earmarked socialization process) to analyze

the characteristics of equilibrium networks.
16All detailed proofs of these robustness results are available upon request.
17For example, in the model of public goods in networks by Bramoullé and Kranton (2007), the best-reply functions

are linear, even though they use a general utility function and not a linear-quadratic one. For an interesting discussion

on this issue, see Bramoullé et al. (2009).
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(b) Condition (A2) is mainly chosen for its operationally virtues. We can accommodate varia-

tions of this condition, and thus alternative expressions for the link intensities gij(s) that allow for

some aggregate scale effects in socialization. For example, instead of constant aggregate returns

to scale, we can adopt non-constant returns to scale (i.e. increasing or decreasing) and show that

most of our results still hold.

(c) On top of its operational virtues, condition (A3) embodies the central assumption of our

approach, the genericity of socialization efforts, not earmarked to particular targets. We can extend

condition (A3) by, for example, introducing productivity bi in the link formation process so that

the ratio gji(s)/gki(s) is not only a function of sj/sk but also of bj/bk. Again, in this extension,

our main results are still valid.

Our model has, however, some limits. For example, if we consider a model where there is no

congestion in social interactions, i.e. gij(s) = sisj, then the analysis becomes very difficult. Indeed,

when there is no congestion in the socialization process, then for large population n, the condition

on invertibility of the socialization matrixM will not be satisfied. This is because, when there is no

congestion, benefits from socialization explode when n is large. There are, in a sense, “too many”

synergies from friends.

We have also illustrated our model in terms of parental involvement in education and derive

interesting empirical predictions. We find, in particular, that high-educated parents tend to par-

ticipate more in social activities related to schools (like e.g. parental evenings) than low-educated

parents and that different levels of parental education affect (positively or negatively) proportionally

more the socialization of those parents than their direct effort with their children.
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Appendix

Proof of Lemma 1: Fix s. Combining (A1) and (A3) gives skgij(s) = sjgik(s). Summing

across all j’s and using (A2) gives gik(s) = sisk/
∑n
j=1 sj .

Proof of Lemma 2: The equilibrium analysis is clear.

Proof of Theorem 1: It follows from the following Lemmata 3, 4, 5 and 6.

Consider an m−replica game involving n = mt players, where m ≥ 1 is fixed for the time being.
Let G(s) = [gij(s)]i,j∈N be the n−symmetric adjacency matrix for the network with link inten-

sities in (1).

For all α ≥ 0 and for all x ∈ Rn+, define x =
∑n
τ=1 xτ/n, x

2 =
∑n
τ=1 x

2
τ/n, and:

λα(x) =
αx

x− αx2
.

We extend this definition to any non-negative vector in an Euclidean space of arbitrary finite size.

L���� 3 Let s∈ Rn+, s �= 0 and α ≥ 0 such that 1 > α s2/s. Then, M(s)= [I−αG(s)]−1 is a

well-defined and non-negative n−square matrix, equal to M(s)= I+ λα(s)G(s).

Proof. WhenM(s) ∈ Rn2 is well-defined, we haveM(s) =∑+∞
p=0 α

pG(s)p. We computeG(s)p.

First, note that (we omit s when there is no confusion):

g
[2]
ij =

n∑

l=1

gilglj =
sisj
ns

n∑

h=1

s2h
ns
=
s2

s
gij, for all i, j = 1, ..., n

By a trivial induction on p = 1, 2, ..., we deduce that g
[p]
ij = (s

2/s)
(p−1)

gij , for all i, j and all p ≥ 1.
Therefore:

M(s) = [I−αG(s)]−1 = I+
+∞∑

p=1

(

α
s2

s

)p
G = I+ λα(s)G(s).

We know from Debreu and Herstein (1953) that M(s) is well-defined and non-negative if and

only if 1 > αρ(G(s)), where ρ(G(s)) is the modulus of the largest eigenvalue of G(s) (see also

Theorem 1 in Ballester et al. 2006). Let us show that ρ(G(s)) = s2/s.

First, note that s2/s is an eigenvalue of G for the eigenvector s. Indeed, G · s= (s2/s) s.
Second, let x such that ‖x‖ = 1. We have:

G · x =s · x
ns

s,

where s · x =∑n
i=1 sixi is the scalar product, with |s · x| ≤ ‖s‖ × ‖x‖ ≤ ‖s‖. Therefore, ‖G · x‖ ≤

‖s‖2 /ns = s2/s. Note that, by definition, ρ(G) = sup {‖G · x‖ / ‖x‖ : ‖x‖ = 1}. Altogether, we
can conclude that ρ(G) = s2/s.
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Let now m1,m2,m3, ... be an increasing sequence of integers such that mh → +∞ as h→ +∞.
Each h ∈ N defines a mh−replica game involving nh = mht players. In the mh−replica game,
there are mh players of each type (b1, ..., bt). In each such game, a profile of strategies is

(
kh, sh

)
∈

R
nh
+ ×Rnh+ . Given a player i = 1, ..., nh, recall that bτ(i) denotes his type, where τ (i) ∈ T .

L���� 4 Let
{(
sh,kh

) }
h∈N

be a sequence of Nash equilibria of the mh−replica games such that

c > ash2/sh, for all h ∈ N. Suppose that the system of equations:

{
[c− a(b)s] k = 1

s = a(b)k2
(19)

has a solution (s, k) ∈ R2+ such that c > a(b)s. Then, for all ε > 0, there exists some hε ∈ N such

that, for all h ≥ hε, we have max{
∣∣khi − bτ(i)k

∣∣ ,
∣∣shi − bτ(i)s

∣∣} < ε, for all i = 1, ..., nh, where (s, k)

is a solution to (19).

Proof. Let
{(
kh, sh

) }
h∈N

be a sequence of Nash equilibria such that c > a(sh), for all h. Let

diag
(
G
(
sh
))
be the diagonal matrix with diagonal terms gii

(
sh
)
and zero off-diagonal terms. For

each h, the first-order necessary equilibrium conditions for kh are:

[cI−aG(sh)] · kh + adiag
(
G
(
sh
))
·kh = bh.

Using the expression for [I − αG(sh)]−1 ∈ Rnh
2

in Lemma 3 and letting α = a/c, we rewrite this

first-order necessary equilibrium conditions for kh as:

ckh + a
[
I+ λa/c(s

h)G
(
sh
)]
·diag

(
G
(
sh
))
·kh =

[
I+ λa/c(s

h)G
(
sh
)]
·bh, (20)

where bh ∈ Rnh+ is defined by bhi = bτ(i), for all i = 1, ..., nh. In words, the ith coordinate of bh

corresponds to the private returns of player i’s type. Note that the nh coordinates of bh take t

different possible values, b1, ..., bt, each repeated m
h times.

We also compute the first-order necessary equilibrium conditions for shi , which are:

shi = akhi
sh·kh
nhsh

− ashi k
h
i

sh·kh
(nhsh)2

− a
shi k

h2
i

nhsh
+ a

sh2i kh2i
(nhsh)2

, i = 1, ..., nh. (21)

Given that c > ash2/sh, for all h and that nh → +∞ as h → +∞, necessarily, shi ∈ O (1),18

for all i = 1, ..., nh and for all h. Indeed, suppose that shj ∈ O
(
nh

p)
, p > 0, for some j. Let then

q > 0 such that shi ∈ O
(
nh

q)
, p ≥ q ≥ 0, for all i. Then, ash2/sh ∈ O(nh

p

), and the inequality

c > ash2/sh is violated for large enough h.

18f(h) = O(g(h)) if and only if ∃M > 0, ∃ h0 > 0 such that ∀h > h0, we have 0 ≤ f(h) < M g(h). In other words,

f(h) = O(g(h)) means that g(h) bounds f(h) from above (for large h) up to a constant.
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Given that shi ∈ O (1), we have gij
(
sh
)
= shi s

h
j /
(∑nh

l=1 s
h
l

)
∈ o (1)19 when h → +∞, for all

i, j = 1, ..., nh

The first-order conditions (20) imply that khi ∈ O (1), for all i = 1, ..., nh and for all h.

Then, using (21), we deduce that for h high enough, we have

shi = akhi
sh·kh

nhsh
+ o (1) , for all i = 1, ..., nh and for all h. (22)

By (20), khi is a continuous function of s
h. Therefore, shi = σhi + o (1) and khi = κhi + o (1), for

all i = 1, ..., nh and for all h, where
(
σ
h,κh

)
are such that:

cκh =
[
I+ λa/c(σ

h)G
(
σ
h
)]
·bh, (23)

and

σhi = aκhi
σ
h·κh

nhσh
, i = 1, ..., nh. (24)

We solve for (23) and (24).

Note, first, that (24) implies that σhi /κ
h
i = σhj /κ

h
j , for all i, j. Without any loss of generality,

we can thus write σhi = θhi s and κ
h
i = θhi k, for all i = 1, ..., n

h and for some k, s. Then, (24) can be

rewritten as:

s = ak2
θ
h2

θ
h
, (25)

Note also that gij
(
σ
h
)
= θhi θ

h
j s/n

h
θ
h and that λa/c(σ

h) = aθh/
(
cθh − asθh2

)
. We thus

rewrite (23) as:

cθhi k = bhi +
as

nh
θhi

cθh − asθh2

nh∑

j=1

θhj b
h
j , i = 1, ..., n

h. (26)

From equation (26)

θhi



ck − as

nh

∑nh

j=1 θ
h
j b
h
j

cθh − asθh2



 = bhi , i = 1, ..., n
h.

which implies that for all i, j we must have

θhi
θhj
=

bhi
bhj

and hence, w.l.o.g. θhi = bhi . Then, (26) becomes:

ck = 1+
asb2

cb− asb2
=

c

c− a(b)s
,

19f(h) = o(g(h)) if and only if ∀M > 0, ∃ h0 > 0 such that ∀h > h0, we have 0 ≤ f(h) < M g(h). In other words,

f(h) becomes insignificant relative to g(h) as h approaches infinity: limh→+∞ [f(h)/g(h)] = 0.
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equivalent to:

k =
1

c− a(b)s

while (25) becomes s = a(b)k2.

Finally, note that the condition c > ash2/sh is then equivalent to c > a(b)s.

L���� 5 If 2 (c/3)3/2 > a(b), then the system of equations (19) has exactly two solutions (s, k) ∈
R
2
+ such that c > a(b)s.

Proof. Plugging the expression for k into the expression for s in (19), one concludes that every

solution (s∗, k∗) of (19) is such that g (s∗) = s∗ where:

g(s) =
a(b)

[c− a(b)s]2
. (27)

We establish conditions such that the graph of g(s) crosses (twice) the 45 degree line for some

s such that c > a(b)s. Note that g (0) = a(b)/c2 and lims↑c/a(b) g (s) = +∞, so that the function
g (·) maps [0, c/a(b)) into [a(b)/c2,+∞). We have:

g′(s) =
2a(b)2

[c− a(b)s]3
.

Therefore, g′ (0) = 2a(b)2/c3 and lims↑c/a(b) g
′ (s) = +∞. If there exists a tangent to the graph

of g (·) on [0, c/a(b)) which is parallel to the 45 degree line, and if this tangent is strictly below
(resp. tangent to) the 45 degree line, the system (19) has exactly two solutions (resp. one solution)

on [0, c/a(b)). Such a tangent exists if 2a(b)2 ≤ c3, equivalent to a(b) ≤ 2−1/2c3/2.
Next, we solve:

g′(x∗) = 1⇔ a(b)x∗ = c− 21/3a(b)2/3 (28)

Thus, (19) has two solutions (resp. one solution) if and only if a(b) ≤ 2−1/2c3/2 and g(x∗) < x∗

(resp. g(x∗) = x∗), where x∗ is defined by (28). We have:

g(x∗) =
a(b)

(2a(b)2)2/3
=

a(b)−1/3

22/3
.

Therefore,

g(x∗) < x∗ ⇔ a(b) < 2c3/2/3
√
3.

The overall condition is thus a(b) < c3/2min{2/3
√
3, 2−1/2}. However, it is readily checked that

2/3
√
3 < 2−1/2 (indeed, this is equivalent to 2

√
2 < 3

√
3). When a(b) < 2 (c/3)3/2 (resp. a(b) =

2 (c/3)3/2), the graph of g (·) thus crosses the 45 degree line twice (resp. once) on [0, c/a(b)).
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L���� 6 Let
{(
sh∗,kh∗

) }
h∈N

be such that sh∗i = sbτ(i) and kh∗i = kbτ(i), for all i = 1, ..., nh,

where (s, k) is some given solution to (19). If 2 (c/3)3/2 > a(b), then there exists some h ∈ N such

that, for all h ≥ h, the second-order equilibrium conditions for u = (u1, ..., unh) hold at
(
s∗h,k∗h

)
.

Proof. First note that Lemma 5 implies that (19) has a solution such that c > a(b)k. Consider

this solution. We also know from Lemma 4 that both khi , s
h
i ∈ O (1), for all i = 1, ..., nh. We now

compute the cross partial derivatives of u at
(
sh∗,kh∗

)
.

First, we have:

∂ui
∂si

(
sh∗,kh∗

)
=

nh∑

j=1,j �=i

(
ash∗j kh∗i kh∗j

nhsh∗
−
agij

(
sh∗
)
kh∗i kh∗j

nhsh∗

)

− sh∗i (29)

∂ui
∂ki

(
sh∗,kh∗

)
= bτ(i) + a

nh∑

j=1,j �=i

gij
(
sh∗
)
kh∗j − ckh∗i (30)

Thus

∂2ui
∂s2i

(
sh∗,kh∗

)
=

nh∑

j=1,j �=i




−

ash∗j kh∗i kh∗j
(
nhsh∗

)2 −
ash∗j kh∗i kh∗j
(
nhsh∗

)2 +
2agij

(
sh∗
)
kh∗i kh∗j

(
nhsh∗

)2




− 1

∂2ui
∂si∂ki

(
sh∗,kh∗

)
=

nh∑

j=1,j �=i

(
ash∗j kh∗j

nhsh∗
−
agij

(
sh∗
)
kh∗j

nhsh∗

)

∂2ui
∂k2i

(
sh∗,kh∗

)
= −c

So, for h large enough, we get:

∂2ui
∂s2i

(
sh∗,kh∗

)
= o (1)− 1 (31)

∂2ui
∂si∂ki

(
sh∗,kh∗

)
= o (1) + ak

b2

b
= o (1) + a(b)k (32)

∂2ui
∂k2i

(
sh∗,kh∗

)
= −c (33)

The second-order conditions amount to checking that the principal minors of the Hessian matrix



∂2ui
∂s2i

∂2ui
∂si∂ki

∂2ui
∂si∂ki

∂2ui
∂k2i



 =

[
o (1)− 1 o (1) + a(b)k

o (1) + a(b)k −c

]

have alternating signs.

But the determinant of a matrix is a continuous (polynomial) function of the matrix entries.

Given that (31) and (33), are negative, when h → +∞, we are thus left to check that the sign of
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the determinant is positive, that is, c − a(b)2k2 > 0, which is equivalent to c− a(b)s > 0, which

Lemma 5 shows is true when 2 (c/3)3/2 > a(b).

Proof of Proposition 1: Let ǫ > 0. Take h large enough such that Theorem 1 holds for this

ǫ. We check stability by looking at the behavior of the gradient system

∂ki(t)

∂t
=

∂ui(s(t),k(t))

∂ki(t)
(34)

∂si(t)

∂t
=

∂ui(s(t),k(t))

∂si(t)
(35)

around the equilibrium points.

Let us first look at the partially corner equilibrium. By (29) we have that the first derivative

with respect to ki when h is large is

o (1) +
nh∑

j=1,j �=i

ash∗j kh∗i kh∗j

nhsh∗
− sh∗i

Consider a perturbation around the equilibrium sε = (ε1, ..., εn), with b = min{b1, ..., bn}. Then,
the first derivative with respect to si is approximately

abi

∑n
j=1 εjbj∑n
j=1 εj

− εi > abib− εi > 0,

for εi small enough. For any small enough perturbation, si would tend to increase for all i, thus

negating stability.

If we linearize the dynamic system (34, 35) around the equilibria we get, for all i = 1, ..., nh:

∂ki(t)

∂t
=

nh∑

j=1

∂2ui
∂ki∂kj

(
sh∗,kh∗

)(
kj(t)− k∗j

)
+

nh∑

j=1

∂2ui
∂ki∂sj

(
sh∗,kh∗

) (
sj(t)− s∗j

)
(36)

∂si(t)

∂t
=

nh∑

j=1

∂2ui
∂si∂sj

(
sh∗,kh∗

)(
sj(t)− s∗j

)
+

nh∑

j=1

∂2ui
∂si∂kj

(
sh∗,kh∗

) (
kj(t)− k∗j

)

For i �= j, we have:

∂2ui
∂si∂sj

(
sh∗,kh∗

)
=

akh∗i kh∗j

nhsh∗
−
ash∗i kh∗i kh∗j
(
nhsh∗

)2 +
nh∑

l=1,l �=i




−

ash∗l kh∗i kh∗l(
nhsh∗

)2 +
agil
(
sh∗
)
kh∗i kh∗l(

nhsh∗
)2






∂2ui
∂si∂kj

(
sh∗,kh∗

)
=

ash∗j kh∗i

nhsh∗
− agij

(
sh∗
)
kh∗i

nhsh∗

∂2ui
∂ki∂sj

(
sh∗,kh∗

)
=

ash∗i kh∗j

nhsh∗
−
agij

(
sh∗
)
kh∗j

nhsh∗

∂2ui
∂ki∂kj

(
sh∗,kh∗

)
= agij

(
sh∗
)
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Thus, we have when h gets large and for i �= j:

∂2ui
∂si∂sj

(
sh∗,kh∗

)
= o (1) (37)

∂2ui
∂si∂kj

(
sh∗,kh∗

)
= o (1) (38)

∂2ui
∂ki∂sj

(
sh∗,kh∗

)
= o (1) (39)

∂2ui
∂ki∂kj

(
sh∗,kh∗

)
= o (1) (40)

The coefficients of the linearized gradient system (36) correspond to the cells of a 2nh × 2nh
matrix Πh

((
sh∗,kh∗

))
which, when h is large enough, gets arbitrarily close to the following matrix

Πh:

Πh =

[
A,B

B, cA

]

where A,B are the following nh × nh diagonal matrices

A =





−1 ... 0

... ... ..

0 ... −1




 , B =





a(b)k ... 0

... ... ...

0 ... a(b)k






Let λ be an eigenvalue of Πh for some eigenvector ν⊺λ = [x
h⊺
λ ,yh⊺λ ], i = 1, ..., n

h where xhλ and y
h
λ

are nh × 1 vectors with coordinates xhi,λ and yhi,λ, i = 1, ..., n
h. The eigenvalue and the eigenvalue

satisfy the following identity: Πh
νλ = λνλ, that is:

(λ+ 1)xhi,λ − a(b)kyhi,λ = 0, i = 1, ..., nh

−a(b)kxhi,λ + (λ+ c) yhi,λ = 0, i = 1, ..., nh

These systems have a non-trivial solution if and only if (λ+ 1) (λ+ c) − (a(b)k)2 = 0. This

second-order equation has a discriminant equal to (c− 1)2+4 (a(b)k)2 ≥ 0. It thus always admits
two real solutions, denoted λ1 and λ2. Besides:

λ1 + λ2 = − (1 + c) < 0,

implying that at least one such solution is negative. Then, both are negative if and only if λ1λ2 =

c− (a(b)k)2 > 0, equivalent to c− a(b)s > 0, which is true when 2 (c/3)3/2 > a(b).

Summing up, when 2 (c/3)3/2 > a(b) > 0, the matrix Πh has two different negative eigenvalues

λ1, λ2 < 0. Each eigenvalue λr, r = 1, 2 has an associated eigenspace of dimension nh with gener-

ating eigenvectors [a(b)kih⊺, (λr + 1) ih⊺], i = 1, ..., nh where ih is an nh × 1 vector containing a 1
in position i = 1, ..., nh and 0’s in the other nh − 1 positions.
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Proof of Proposition 2: Let ǫ > 0. Take h large enough such that Theorem 1 holds for this

ǫ, and let
(
sh∗,kh∗

)
and

(
sh∗∗,kh∗∗

)
be the two approximate equilibria, where sh∗i = s∗bτ(i), k

h∗
i =

k∗bτ(i), and sh∗∗i = s∗∗bτ(i), k
h∗∗
i = k∗∗bτ(i), for all i = 1, ..., n

h, and (s∗, k∗) , (s∗∗, k∗∗) are the two

different solutions to (6). Suppose that sh∗i ≥ sh∗∗i , for some i. Then, necessarily, s∗ ≥ s∗∗. By (6),

we deduce that k∗ ≥ k∗∗. Therefore, both sh∗i ≥ sh∗∗i and kh∗i ≥ kh∗∗i , for all i = 1, ..., nh.

To establish the welfare ranking, we first use the expression for payoffs in (4) and the first-order

conditions for khi , to obtain the following expression for approximate equilibrium payoffs:

uh∗i =
b2τ(i)
2

(
ck∗2 − s∗2

)
+ o (1) , for all i = 1, ..., nh.

Next, using the fact that (s∗, k∗) are solutions to (6), we write:

ck∗2 − s∗2 = c
s∗

a(b)
− s∗2 =

s∗

a(b)
(c− a(b)s∗) =

1

a(b)

s∗

k∗
= k∗, (41)

and thus:

uh∗i =
b2τ(i)
2

k∗ + o (1) , for all i = 1, ..., nh, (42)

and similarly for the approximate equilibrium payoffs uh∗∗i that correspond to
(
sh∗∗,kh∗∗

)
. Since,

by definition k∗ ≥ k∗∗, the welfare at the equilibrium
(
sh∗,kh∗

)
is higher than at the equilibrium

(
sh∗∗,kh∗∗

)
.

To establish the position of the efficient outcome, the planners’ problem is:

n∑

i=1



bτ(i) ki + a
n∑

j=1,j �=i

gij (s) kjki −
1

2
ck2i −

1

2
s2i





for which FOC’s are given by:

ckh + 2a
[
I+ λa/c(s

h)G
(
sh
)]
·diag

(
G
(
sh
))
·kh =

[
I+ λa/c(s

h)G
(
sh
)]
·bh, (43)

shi = 2ak
h
i

sh·kh
nhsh

− 2ashi khi
sh·kh
(nhsh)2

− 2as
h
i k
h2
i

nhsh
+ 2a

sh2i kh2i
(nhsh)2

, i = 1, ..., nh. (44)

Notice that conditions (43) and (44) are like (21) and (20) except with 2a rather than a, and

therefore its approximate version is:

{
s = 2a(b)k2

k [c− 2a(b)s] = 1
. (45)

We can thus use the results of proposition elasticity to establish that the (two) solutions of (45) will

lie between the two solution of 6. Since the second order conditions will be satisfied (by a reason

analogous to the one in lemma (6), one of those solutions will be the optimal point. Indeed, by
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the reasoning in this same proposition the componentwise higher solution is the optimal one. The

result now follows.

Proof of Propositions 3: Let ǫ > 0. Take h large enough such that Theorem 1 holds for this

ǫ. We denote by
(
sh∗,kh∗

)
and

(
sh∗∗,kh∗∗

)
the corresponding ǫ−equilibria, where

(
sh∗,kh∗

)
≥

(
sh∗∗,kh∗∗

)
are computed with two different solutions (s∗, k∗) ≥ (s∗∗.k∗∗) of (19). On the (s, k)

plane, an increase in a(b) results in an upward shift of the graph of:

k =
1

c− a(b)s
, (46)

and a downward shift of the graph of:

s = a(b)k2. (47)

Therefore, the equilibrium actions of the Pareto-inferior equilibrium
(
sh∗∗,kh∗∗

)
all increase,

while those of the Pareto-superior equilibrium
(
sh∗,kh∗

)
all decrease. The elasticity η that keeps

track of the relative changes on s and k when a(b) varies is:

η =
s

k

∂k
∂a(b)

∂s
∂a(b)

.

Differentiating (46) and (47) with respect to a(b) gives:

∂k

∂a(b)
= sk2 + a(b)k2

∂s

∂a(b)

∂s

∂a(b)
= k2 + 2

s

k

∂k

∂a(b)

Solving for the two partial derivatives gives:

∂k

∂a(b)
=

2sk2

1− 2a(b)sk (48)

∂s

∂a(b)
=

k2

1− 2a(b)sk

(
2
s2

k
+ 1

)
(49)

and thus:

η =
s

k

∂k
∂a(b)

∂s
∂a(b)

=
2s2

k + 2s2
< 1.

Proof of Proposition 5: It is readily checked that ∂a (b) /∂bτ > 0 if and only if b2τ +

2bτ
∑
τ ′ �=τ bτ ′ ≥ 2

∑
τ ′ �=τ b

2
τ ′ , for all τ ∈ T , a sufficient condition for which is 2b1 ≥ bt.

Proof of Proposition 6: Let ǫ > 0. Take h large enough such that Theorem 1 holds for this

ǫ. We denote by
(
sh∗,kh∗

)
and

(
sh∗∗,kh∗∗

)
the corresponding ǫ−equilibria, where

(
sh∗,kh∗

)
≥

(
sh∗∗,kh∗∗

)
are computed with two different solutions (s∗, k∗) ≥ (s∗∗, k∗∗) of (6).
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Using (42) and (6), and summing across all players gives the following expression for the pop-

ulation average equilibrium payoffs:

nh∑

i=1

uh∗i =
1

nh

nh∑

i=1

b2τ(i)
2a(b)

s∗

k∗
+ o (1) =

1

at

s∗

k∗

t∑

τ=1

bτ + o (1) .

Following a mean preserving spread in individual traits, a(b) increases and we can conclude.
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