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Patterns* 

We introduce a flexible model of telecommunications network competition with 
non-uniform calling patterns, which account for the fact that customers tend to 
make most calls to a small subset of people. Equilibrium call prices are 
distorted away from marginal cost, and competitive intensity is affected by the 
concentration of calling patterns. Contrary to previous predictions, jointly 
profit-maximizing access charges are set above termination cost in order to 
dampen competition, and the resulting on-net prices are below off-net prices, 
if calling patterns are sufficiently concentrated. 
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1 Introduction

Modern communication networks allow users to easily establish a large number of links,

both on the same network and across networks. Still, most users�contacts are often limited

to only a small fraction of all other users. Exchanges tend to be with friends and family or

between people who have, for di¤erent reasons, close social links, such as members of user

groups linked to business customers. While each user thus calls only a small fraction of

all other users at all, the subset of links with whom he has also frequent communications

may be even smaller. For instance, Shi et al. (2009) �nd, for a Chinese cellular network,

that people make most of their calls (�80%�) to a very small proportion (�20%�) of their

contacts.1

These observations contrast with a standard assumption that is frequently made in

the literature on competition between telecommunications networks: That of �uniform

calling patterns�, whereby each subscriber is assumed to be equally likely to call any other

subscriber in the market (e.g., Armstrong, 1998; La¤ont et al., 1998a, 1998b). As calls

between networks (called �o¤-net calls�) involve the payments of wholesale charges (also

called access charges, or termination rates, in the literature), the assumption of uniform

calling patterns also bears consequences on how access charges impact on consumers�

retail prices. When competing networks can set access charges strategically, Gans and

King (2001) �nd that access charges are set below cost. Under multi-part tari¤s, this

leads to higher prices for on-net than for o¤-net calls. Together with the assumption of

uniform calling patterns, this implies that the fraction of call minutes that a subscriber

makes on-net should be below the market share of the network to which he subscribes.

Typically, the opposite seems to be the case. For instance, for mobile networks in Italy the

subscriber market shares and the share of on-net calls compare as follows (on-net shares

in brackets): TIM 36% (70%), Vodafone 34% (78%), Wind 20% (70%), and H3G 10%

(33%).2 A similar picture emerges in Portugal: Over the years 2003-2009, the share of

on-net calls in all national mobile-to-mobile calls has been fairly constant at 75%, while

under uniform calling patterns this share should have been at most 40%.

1Also Birke and Swann (2006) show empirically that calling patterns are heavily on-net biased, and
that consumers tend to choose networks following their calling clubs.

2The share of on-net calls is computed by taking into account only the total number of on-net and
o¤-net calls to mobile phones, while calls to �xed lines are excluded (source: Relazione Annuale 2009,
AGCOM, http://www.agcom.it/default.aspx?message=viewdocument&DocID=3239).
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This paper introduces non-uniform calling patterns in a tractable model of network

competition. Customers di¤er in their preferences for a particular network, and instead of

stipulating that each subscriber calls any other subscriber with the same probability, we

suppose that he is more likely to call other subscribers with similar preferences than those

further away in preference space. For instance, the brand positioning of a network may be

more appealing to a particular age group.3 Likewise, di¤erences in local network coverage

could generate similar patterns of call preferences. We analyze how non-uniform calling

patterns, with the resulting high fraction of on-net calls, a¤ect equilibrium outcomes.

When calling patterns are uniform, economic theory predicts that under multi-part

tari¤s variable prices for calls should be set equal to marginal costs. Instead, with non-

uniform calling patterns, we �nd that networks practice price discrimination by using

on- and o¤-net prices as metering devices. We derive a simple general pricing formula.

This relates the deviation from marginal-cost pricing to the di¤erence between the calling

pattern of a network�s �marginal subscriber�, who is just indi¤erent between joining this

and a competitor�s network, and the average calling pattern of subscribers on this network.

An important implication of our results concerns networks�choice of pro�t-maximizing

access charges. Under a uniform calling pattern, networks would choose access charges

below cost to dampen competition (Gans and King, 2001). This induces o¤-net prices

below on-net prices, leading to negative �tari¤-mediated network e¤ects�(La¤ont et al.,

1998b): The average call price on a smaller network will be lower due to the larger share

of o¤-net calls. Consumers then prefer to join a smaller rather than a larger network,

which dampens competition. However, when calling patterns are no longer uniform, the

proportion of on- and o¤-net calls of the marginal subscriber is less closely tied to the

respective market shares of the two networks. This dampens the role of the aforementioned

tari¤-mediated network e¤ects. We derive conditions for when, with non-uniform calling

patterns, networks would choose access charges above cost, while o¤-net prices will exceed

on-net prices, as observed in practice. Then, as we show, higher access charges tend to

make the marginal subscriber less attractive to �rms, which dampens competition.

Our �nding that access charges above cost can dampen competition is related to,

3This seems to be the case, for instance, in the UK for customers of Virgin Mo-
bile, who are typically young people attracted by the brand of the Virgin group. See
http://www.ofcom.org.uk/research/cm/cmr09/. Also, when mobile operators sponsor di¤erent sport ac-
tivities or speci�c clubs, subscribers may sort according to their respective preferences over sport or clubs.
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but conceptually di¤erent from, the standard logic of �raising rivals�cost�. When, in a

standard oligopoly model without network competition, �rms cross-licence an essential

input to each other, a higher marginal royalty unambiguously increases both a �rm�s own

true cost and its opportunity cost of serving more customers. As acquiring the marginal

customer thus becomes less attractive, this reduces the intensity of competition. To see

the di¤erence to the case of network competition, note that when o¤-net and on-net prices

are the same, a change in access charges would not a¤ect competition, as it would not

change the pro�ts that �rms can make with the marginal subscriber: When calls between

networks are balanced, for both networks the higher charges for o¤-net calls are exactly

o¤-set by the higher revenues from received calls.4 We show how the endogenous price

di¤erence between on-net and o¤-net prices, together with the degree of concentration of

calling pattern, determine when lower or higher access charges dampen competition.

By considering changes in the concentration of calling patterns, we also contribute,

more broadly, to the literature that analyzes how network e¤ects a¤ect the intensity of

competition (e.g. Katz and Shaprio, 1985). In the literature on competition between

telecom networks, previous models incorporating non-uniform calling patterns have only

considered the extreme case where a fraction of calls is made to exactly the same location

in preference space, see, e.g., Gabrielsen and Vagstad (2008) and Calzada and Valletti

(2008). In these models, only subscribers with identical preferences are part of the same

calling club, and these clubs are completely disjunct from each other. Instead, in our

model we allow for arbitrary overlap between calling patterns of di¤erent subscribers.

In our model, local network externalities are induced by the endogenously set tari¤s,

which is di¤erent in Fjeldstad et al. (2010). Still, our modeling of social interaction

patterns, through "calling circles", may be useful also for wider applications in the area of

network economics. In fact, Fjeldstad et al. (2010) quote Farrell and Klemperer (2007),

who note: "A more general formulation (of network externalities) would allow each user i

to gain more from the presence of one other user j than of another k." In our framework

this is the case due to the interaction of (local) calling patterns and di¤erences between

4This does no longer hold, however, when tari¤s are restricted to be linear, in which case networks
jointly would choose access charges above cost. Starting from a symmetric equilibrium, a deviating
�rm could only acquire market share through undercutting the marginal price, which would lead to an
imbalance of calls (call minutes): Any of its customers would make more o¤-net calls than he receives (or
he would call for fewer minutes). Higher access charges then dampen competition through this (out�of-
equilibrium) imbalance (cf. Armstrong, 1998 and La¤ont et al., 1998a).
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on-net and o¤-net calls.

Cabral (2009) provides a recent (dynamic) analysis of the impact of various access

charges on competition. This, as well as ours, contributes to a large literature, starting

with Armstrong (1998) and La¤ont et al. (1998a,b), on how networks gain from choosing

(unregulated) reciprocal access charges. An important puzzle is the prediction of Gans

and King (2001) that with two-part tari¤s and discrimination between on- and o¤-net

calls networks would jointly choose access charges below cost, which seems to be at odds

with how networks set access charges in reality. Still within the constraints of uniform

calling patterns, Lopez and Rey (2009) show that high access charges can serve foreclosure,

Jullien et al. (2009) show how they can arise from price discrimination between heavy and

light useres5, and in Armstrong and Wright (2009) they may arise under the simultaneous

presence of mobile and �xed networks. As noted previously, in our model we also obtain

for non-uniform calling patterns that o¤-net prices may, in equilibrium, be indeed higher

than on-net prices.6

The rest of this paper is organized as follows. Section 2 introduces the model and the

necessary notions related to calling patterns. In Section 3 we determine the on- and o¤-

net pricing structure. Section 4 determines the market equilibrium. In section 5 networks

choose reciprocal access charges. In Section 6 we derive some additional results for a

speci�c family of non-uniform calling patterns. Section 7 o¤ers some concluding remarks.

2 AModel of Competition with Non-Uniform Calling
Patterns

We consider competition between two interconnected telephone networks, i = 1; 2. Both

networks incur a �xed cost f to serve each subscriber. The marginal cost of providing

a minute of a telephone call consists of the terminating and originating cost, which are

equal to c0, and the conveying cost, c1. As a result, the total marginal cost of an on-net

call initiated and terminated on the same network i is cii � 2c0 + c1. Networks pay each
5See, however, Hurkens and Jeon (2009), who �nd below-cost access charges in a model with elastic

subscription demand. Dessein (2003) as well as Armstrong (2004) also allow for heterogeneity between
high- and low-volume users, while the probability that any given subscriber is called by any other subscriber
is independent of their respective locations.

6In the extant literature, when subscribers receive utility also from received calls, such a pricing struc-
ture is obtained by Jeon et al. (2004), but disappears once access charges are endogenized (Cambini and
Valletti, 2008).
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other a reciprocal access charge (or termination rate) a when a call initiated on network

i is terminated on a di¤erent network j. Thus, for an o¤-net call, the economic marginal

cost is still cii, but the �perceived�marginal cost for the network that initiates the call is

cij � c1 + c0 + a.
Networks o¤er multi-part tari¤s and discriminate between on-net and o¤-net calls. As

a result, network i = 1; 2 o¤ers a tari¤ with the following structure:7

Ti(qii; qij) = Fi + piiqii + pijqij;

where Fi is the �xed monthly subscription fee that consumers pay to network i, pii and qii

are the price and quantity of on-net call minutes, and pij and qij are the respective price

and quantity for o¤-net call minutes from network i to network j 6= i.

Consumer preferences over networks and call demand. The market consists of a

continuum of size 1 of consumers. A consumer is indexed by his relative preference for the

two networks, where we normalize the space of preferences to x 2 X � [0; 1]. To simplify
expressions, we stipulate that consumers are uniformly distributed over X, though it is

straightforward to extend results in this direction. The two networks�own �attributes�

are represented by their locations at the two extremes x1 = 0 and x2 = 1, respectively.

Preferences and networks� locations may relate to the brand image that networks have

created through marketing and services directed at speci�c customer groups. If a consumer

at location x subscribes to network i, he bears a disutility or �transport cost� � jx� xij
with � > 0. Consumers receive a �xed utility v0 from being connected. We assume

that v0 is large enough so that all consumers connect to some network. This convenient

assumption may be understood to re�ect the fact that most markets for �xed or mobile

telephony are highly saturated.

Once a call is placed to somebody, its length depends on the call price. Given a price

per minute p, consumers demand calls of length qii = q (pii) and qij = q (pij), with demand

elasticity �(p) = �pq0(p)=q(p): The level of consumer surplus associated with this demand
function is denoted by vii = v(pii) for on-net calls, and similarly vij = v(pij) for o¤-net

7With this simple tari¤ structure we can, as we show, go a long way in characterizing the equilibrium
even with general demand and calling patterns. In future work, the analysis could be extended to allow for
a menu of tari¤s (or for a single non-linear tari¤), which would o¤er �rms more scope to price discriminate.
(Cf. Armstrong and Vickers, 2001 and Rochet and Stole, 2002 for models of competition with nonlinear
pricing.)
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calls. This indirect utility function v(�) has standard properties. In particular, it holds for
the respective price p and quantity q that dv=dp = �q.

Calling patterns. The novel ingredient in our model is that consumers di¤er in their

individual calling patterns. The latter are represented by a function G(yjx) on X2, the

likelihood with which a consumer of preference (�location�) x will call consumers at loca-

tions y0 � y, with G(0jx) = 0 and G(1jx) = 1 for all x 2 X. Depending on whether the
chosen recipient belongs to the same network or not, the respective call minutes will then

equal qii or qij. G(yjx) is assumed to be di¤erentiable in (x; y), and non-decreasing in y
with density g(yjx). This density may be zero for certain (x; y) 2 X2. A uniform calling

pattern is obtained when G(yjx) � GU(yjx) = y.
We focus on symmetric network competition and thus stipulate symmetric calling

patterns: G(yjx) = 1 � G(1 � yj1 � x) for all (x; y) 2 X2. In particular, this implies

G(1=2j1=2) = 1=2 and g(yjx) = g(1� yj1� x).
Below we provide conditions for when, in equilibrium, there will be a cuto¤ customer

type x̂ such that all x � x̂ subscribe to network 1 and all x > x̂ subscribe to network 2.
For given x̂, we de�ne the total expected number of on-net calls on network 1 by

L11(x̂) =

Z x̂

0

G(x̂jx)dx;

and the total expected number of o¤-net calls by

L12(x̂) =

Z x̂

0

[1�G(x̂jx)] dx:

Since network 1 has the mass x̂ of subscribers who each make a unit mass of calls, it

holds that L11(x̂) + L12(x̂) = x̂. In a similar manner, for network 2 we de�ne on-net calls

L22(x̂) =
R 1
x̂
[1�G(x̂jx)] dx and o¤-net calls L21(x̂) =

R 1
x̂
G(x̂jx)dx, with L22(x̂)+L21(x̂) =

1� x̂.
Calls between networks are balanced when, for given x̂, it holds that L12(x̂) = L21(x̂).

Though we will only make use of balancedness for almost symmetric market shares, x̂ �
1=2, for simplicity we stipulate, more generally,

L12(x̂) = L21(x̂) for all x̂ 2 [0; 1]:

In terms of primitives, network balancedness always holds when individual calls are bal-

anced pairwise across all call contacts, i.e., g(yjx) = g(xjy) for all x; y. Put di¤erently, ties

7



between two customers are then �equally strong�, e.g., they reciprocate calls, so that the

probability of calling is symmetric in both directions (though the duration of the call will

di¤er if consumers pay di¤erent call prices). Evidently, this holds under a uniform calling

pattern GU .

An immediate implication of balancedness that we will use frequently in the analysis is

the following. Note �rst that since calling patterns are symmetric, we have that L12(x̂) =

L21(x̂) = L12(1� x̂). Di¤erentiating the latter at x̂ = 1=2 then yields

L012(1=2) = 0: (1)

In words, a marginal change of x̂ at x̂ = 1=2 does not a¤ect the number of o¤-net calls.8

Our analysis rests on the following de�nition of �concentrated�calling patterns.

De�nition. Consider two calling patterns G1 and G2. G2 is more concentrated than G1

if the following conditions hold:

i) Customers with location 0 < x < 1=2, who have a preference for network 1, are less likely

under G2 to call customers with a stronger preference for network 2: For all y 2 [x; 1) it
holds that 1�G2(yjx) < 1�G1(yjx).
ii) Customers with location 1=2 < x < 1, who have a preference for network 2, are

less likely under G2 to call customers with a stronger preference for network 1: For all

y 2 (0; x) it holds that G2(yjx) < G1(yjx).

Note that by symmetry of calling patterns it would be su¢ cient to invoke the require-

ment only for customers x < 1=2 (condition i) or for customers x > 1=2 (condition ii).

Note also that the de�nition takes into account that always G(0jx) = 0, G(1jx) = 1, and
G(1=2j1=2) = 1=2.9 In the following, we will call a calling pattern �concentrated�when,
according to the above de�nition, it is more concentrated than the uniform calling pattern

GU .

In Section 6 we will obtain explicit expressions for our equilibrium characterization,

as well as additional implications, by using a family of calling patterns denoted as G�,

� 2 [0; 1] : Each customer calls with probability 1� � randomly someone else, while with
8From L11(x̂) + L12(x̂) = x̂, we then have for the number of on-net calls that L011(1=2) = 1 and

L022(1=2) = �1.
9Hence, for the sake of brevity we have not included into the de�nition the calling patterns at the

�corners�x = 0; 1. There, for y = x, the requirements can only hold weakly, as G(0j0) = 0 and G(1j1) = 1.
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probability � he makes a call to someone in his personal �calling circle�. For customers

who are not too close to the �corners�x = 0; 1, calling circles are de�ned symmetrically

around the customer�s own location, namely by a symmetric distribution function H(z)

with support z 2 [�"; "] for some " 2 (0; 1=2) (cf. Section 6 for more details). Then let

G�(yjx) = (1� �) y + �H(y � x):

It is easily veri�ed that G� satis�es symmetry and balancedness. It is also easy to see

that a higher value of � leads to a more concentrated calling pattern, according to our

de�nition, while for � = 0 the calling pattern reduces to a uniform calling pattern GU .

Utility. When network 1 serves all consumers x � x̂ and network 2 all consumers x � x̂,
the marginal consumer x̂ is just indi¤erent between the two o¤ers. Given x̂, for any

consumer x the net utility from subscribing to network 1 is given by

U1(x; x̂) = u1(x; x̂) + v0 � F1 � �x;

where

u1(x; x̂) = G(x̂jx)v(p11) + [1�G(x̂jx)] v(p12):

If the consumer subscribes, instead, to network 2, then his utility is

U2(x; x̂) = u2(x; x̂) + v0 � F2 � �(1� x);

with

u2(x; x̂) = [1�G(x̂jx)] v(p22) +G(x̂jx)v(p21):

Market game. At t = 1; for any given reciprocal access charge, networks compete for

consumers by simultaneously making contract o¤ers Ti. At t = 2; consumers subscribe and

place calls. At this stage, all payo¤s are realized. Below in Section 5, we will also consider

an initial stage t = 0 where networks jointly choose a pro�t-maximizing reciprocal access

charge.

Section 3 solves for networks�optimal call prices for given market shares. Here, the

focus is on networks�optimal price discrimination strategy for on-net and o¤-net calls.

Section 4 determines the symmetric Nash equilibrium in multi-part tari¤s. Section 5 con-

siders the choice of pro�t-maximizing access charges, and Section 6 provides an illustration

for a speci�c family of calling patterns.
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3 On- and O¤-Net Prices as Metering Devices

Given the contract T1, each subscriber at location x � x̂ of network 1 yields expected

pro�ts equal to the sum of the �xed part F1, the expected call pro�ts

�1(x; x̂) = G(x̂jx)(p11 � c11)q(p11) + [1�G(x̂jx)] (p12 � c12)q(p12);

and the expected termination pro�ts

R12(x; x̂) = (a� c0)q(p21)
Z 1

x̂

g(xjx0)dx0:

We can thus write the total expected pro�ts that network 1 obtains from a given subscriber

at location x as

�1(x; x̂) = �1(x; x̂) + F1 +R12(x; x̂)� f:

Total expected pro�ts of network 1 can now be written as

�1 (x̂) =

Z x̂

0

�1(x; x̂)dx

= x̂ (F1 � f) + L11(x̂)(p11 � c11)q(p11) (2)

+L12(x̂)(p12 � c12)q(p12) + L21(x̂)(a� c0)q(p21):

Similar expressions can be obtained for network 2.

Optimal prices. Take the marginal subscriber x̂, and thus the networks�market shares

x̂ and 1� x̂, as given. We consider how networks optimally choose on- and o¤-net prices
so as to maximize pro�ts, holding these market shares constant.

More speci�cally, we consider the following program. We take as given the gross utility

level that the marginal consumer must obtain: U1(x̂; x̂) � U . (In equilibrium, the latter

will be determined by the o¤er of the competing network, i.e., U = U2(x̂; x̂).) For given

x̂ and U , we then solve for the choices p11 and p12 that maximize ��1. We �rst relax this

program by only considering the participation constraint of the marginal consumer x = x̂

but not those of consumers x < x̂, and then state a su¢ cient condition for when (both

on- and o¤-equilibrium) the solution to the relaxed program is indeed a solution to the

original one.

Let now L̂11(x̂) = x̂G(x̂jx̂) be the total number of on-net calls on network 1 that would
arise if all subscribers of network 1 had the same calling pattern as the marginal subscriber

10



x̂. With symmetric market shares we have L̂11(1=2) = 1=4. De�ne likewise the number of

o¤-net calls that would obtain if all subscribers had the same calling pattern as the marginal

subscriber L̂12(x̂) = x̂(1�G(x̂jx̂)). For network 2 we de�ne L̂22(x̂) = (1� x̂)(1�G(x̂jx̂))
and L̂21(x̂) = (1� x̂)G(x̂jx̂).

Proposition 1 Take the relaxed program of the two networks, where for each �rm only the

participation constraint of a given marginal customer x̂ binds. Then, network i0s charges

for on-net calls satisfy
pii � cii
p
ii

=
1

�(p
ii
)

 
1� L̂ii(x̂)

Lii(x̂)

!
; (3)

while those for o¤-net calls satisfy

pij � cij
pij

=
1

�(pij)

 
1� L̂ij(x̂)

Lij(x̂)

!
: (4)

For any market share x̂, if � is su¢ ciently large such that for all x � x̂

@G(x̂jx)
@x

(v11 � v12 + v22 � v21) � 2� (5)

holds, the above expressions characterize also the optimal prices for the two networks.

Proof. See Appendix.

While condition (5) is not stated in terms of the primitives alone, as the terms vij

depend on the respective prices, note that � does not enter call prices. Hence, holding

all else constant, we can always choose the degree of horizontal di¤erentiation � and the

�xed utility from participation v0 large enough such that all consumers participate and

(5) holds everywhere (cf. also La¤ont et al., 1998b) if @G=@x is bounded. In what follows,

we assume that this is the case.

When the calling pattern of the average infra-marginal subscriber is the same as that

of the marginal subscriber x̂, as is the case with the uniform calling pattern GU , then

L̂ii(x̂) = Lii(x̂) and L̂ij(x̂) = Lij(x̂). Proposition 1 then yields the standard (perceived)

marginal-cost pricing result pii = cii and pij = cij. Yet, when the marginal subscriber

makes more o¤-net calls and less on-net calls than the average subscriber, then it holds

that pii > cii and pij < cij. Intuitively, raising the on-net price above marginal cost and

lowering the o¤-net price below marginal cost then allows the network to extract more

11



of the �information rent�of all infra-marginal subscribers, who will not switch networks

when they have to cede slightly more of their surplus. The pricing formula in Proposition

1 trades o¤ the increase in pro�ts that is made from infra-marginal subscribers with the

compensation that must be given to the marginal subscriber in terms of an adjusted �xed

fee.

Symmetric market shares. In light of our subsequent characterization of a market

equilibrium, we now derive the metering result for the case with symmetric market shares

x̂ = 1=2. Thereby, we also link the characterization of prices in Proposition 1 to our

de�nition of concentrated calling patterns.

From the de�nition of more concentrated calling patterns, we have immediately that the

respective numbers of on-net calls, L11 (1=2) and L22(1=2), are strictly higher when calling

patterns are more concentrated. Likewise, the respective numbers of o¤-net calls, L12 (1=2)

and L21(1=2), are strictly lower. As, given symmetry, the marginal customer at x̂ = 1=2

always makes half of his calls on-net and half of it o¤-net, we have, regardless of how

concentrated calling patterns are, L̂11 (1=2) = L̂12 (1=2) = 1=4. From these observations

we have immediately that, as calling patterns become more concentrated relative to GU ,

prices in Proposition 1 become more distorted: The multiplier 1� L̂ii(1=2)
Lii(1=2)

> 0 in expression

(3) increases, which pushes up pii > cii, and the multiplier 1 � L̂ij(1=2)

Lij(1=2)
< 0 in expression

(4) decreases, which pushes down pij > cij.

For our following analysis it is convenient to restate this result by introducing some

additional notation. We de�ne � as a measure of how the average number of on-net calls

per subscriber changes as the marginal subscriber is shifted away from the symmetric

market share x̂ = 1=2:

� =
d

dx̂

�
L11(x̂)

x̂

�����
x̂=1=2

: (6)

As we can show that � = 4L12 (1=2),10 we have that � = 1 for a uniform calling pattern and

that � is strictly lower when calling patterns are more concentrated. As we have already

observed that L̂11 (1=2) = 1=4, we obtain the following result for symmetric market shares.

10From (1) it follows that L012(1=2) = 0, and thus

� = � d

dx̂

�
L12(x̂)

x̂

�����
x̂=1=2

=
L12(x̂)

x̂2
� L

0
12(x̂)

x̂

����
x̂=1=2

= 4L12 (1=2) :
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Corollary 1 With symmetric market shares, on-net and o¤-net prices are

pii � cii
p
ii

=
1

�(p
ii
)

�
1� �
2� �

�
;

pij � cij
pij

= � 1

�(pij)

�
1� �
�

�
; (7)

where � < 1 holds for concentrated calling patterns and is strictly lower as calling patterns

become more concentrated.

4 Market Equilibrium

To characterize the market equilibrium, it is convenient to introduce one more piece of

notation. We denote by bG(x̂) = G(x̂jx̂) the number of on-net calls of the marginal customer
x̂. Clearly, bG(0) = 0, bG(1=2) = 1=2; and bG(1) = 1. We assume that bG is di¤erentiable at
x̂ = 1=2, and further de�ne

�̂ = bG0(1=2): (8)

Since bG(x̂) is the marginal subscriber�s number of on-net calls on network 1, its deriv-
ative, �̂; measures how this number varies as the marginal subscriber changes. With a

uniform calling pattern, we have �̂ = 1, as the number of calls that the marginal cus-

tomer, just as any other customer, makes to a given network is just equal to the respective

market share. Intuitively, when the calling pattern is concentrated, then �̂ < 1, while

�̂ decreases when the calling pattern becomes more concentrated.11 After all, when the

calling pattern is more concentrated, as the marginal customer shifts, the fraction of calls

that he makes to either network is less closely tied to networks�market shares but more

closely to the customer�s own location (cf. also the discussion in Section 6).

The marginal cost of expanding market share. Throughout the subsequent analy-

sis we assume existence of a unique symmetric equilibrium in pure strategies.12 As

the marginal consumer must be indi¤erent between the o¤ers of the two networks, i.e.,

U1 (x̂; x̂) = U2 (x̂; x̂), we have

F1 = F2 + u1(x̂; x̂)� u2(x̂; x̂) + �(1� 2x̂): (9)

11Formally, this follows immediately from the de�nition of a more concentrated calling pattern around
x = 1=2.
12A proof of existence of equilibrium follows the same steps as in La¤ont et al. (1998a,b) and is therefore

omitted here.
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From this we obtain

dF1
dx̂

= bG0(x̂) (v11 + v22 � v12 � v21)� 2� ;
which in a symmetric equilibrium and after substituting from (8) becomes

dF1
dx̂

����
x̂=1=2

= �2 [� � �̂ (vii � vij)] : (10)

Expression (10) captures how expensive it is for a network to shift the marginal sub-

scriber and, thereby, capture market share. In the original Hotelling model the respective

marginal cost would be just 2� . This remains true when on- and o¤-net call prices are

identical, as then vii = vij. On the other hand, when o¤-net calls are more expensive

than on-net calls, as is usually the case in practice, vii > vij and tari¤-mediated network

externalities are created. If �̂ > 0 it then becomes less expensive for a network to expand

its market share. For pii > pij and thus vii < vij the opposite holds. Importantly, the

marginal cost of expanding a network�s market share (10) is a¤ected by the value of �̂ if

there are tari¤-mediated network externalities. The e¤ect of the latter is therefore reduced

under a more concentrated calling pattern.

Equilibrium pro�ts. We will now derive from (2) networks��xed fees and pro�ts in

symmetric equilibrium. Given the tari¤of network 2 and the optimal structure of call prices

discussed above, network 1 maximizes its pro�ts by adjusting its �xed fee, or equivalently,

its market share.

In a symmetric equilibrium, we have pii = pjj and pij = pji. It is then convenient to

denote the per-call pro�ts from on-net calls by

rii = (pii � cii)q(pii):

Also denote

rij = (pij � cij)q(pij) + (a� c0)q(pji);

which represents network i�s pro�ts from an exchange of one pair of o¤-net calls with

network j. This can be simpli�ed, after substitution of cij � c1 + c0 + a, to obtain for a
symmetric equilibrium where pij = pji that rij = (pij � cii)q(pij), where cii � 2c0 + c1 is
the true marginal cost.
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In the proof of Proposition 2 below we show how, after substituting for dF1=dx̂ from

(10) and using symmetry, we can solve the �rst-order condition for pro�t-maximization to

obtain

F � = f + � � rii � �̂ (vii � vij) : (11)

The equilibrium �xed fee increases in the per-customer �xed cost and in the transport

cost, as usual. Substituting F � back into expression (2) for pro�ts leads to the following

outcome.

Proposition 2 In a symmetric equilibrium, pro�ts for each network are equal to

��� =
1

2

h
� � �̂(vii � vij) +

�

2
(rij � rii)

i
: (12)

Proof. See Appendix.

Note that so far we still consider the access charge a to be exogenous. Before we make

use of the result in Proposition 2 to endogenize the latter, we o¤er some interpretation for

expression (12). In the original Hotelling model pro�ts would be equal to �=2. Thus, the

�rst term in expression (12) captures, in the traditional manner, how pro�ts depend on

the substitutability of networks.

The second term in expression (12) captures the e¤ect of the tari¤-mediated network

externalities on the marginal subscriber. If the term �̂(vii � vij) is positive, as a result of
o¤-net prices above on-net prices, then these externalities are positive and it is easier to

capture market share. When on-net prices are above o¤-net prices, on the other hand, then

these externalities are negative, and it is more costly to capture market share. Importantly,

when it is easier to capture market share, competition is more intense, and equilibrium

pro�ts are lower. The relevance of this term depends on the relevance of the calling circle

of the marginal consumer, as described by �̂.

We come now to the third term in expression (12), which describes how pro�ts due

to infra-marginal subscribers change with the di¤erence between on- and o¤-net prices.

Starting from symmetric market shares, when a network deviates and captures more mar-

ket share, it increases the number of on-net calls at the expense of decreasing the number

of both outgoing and incoming o¤-net calls. Observe also that rij � rii captures the true
di¤erence in pro�ts between o¤-net and on-net calls, i.e., evaluated at the true marginal

cost. The third term in (12) thus captures how, through turning o¤-net calls into on-net
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calls, a marginal increase in market share, starting from x̂ = 1=2, impacts on pro�ts. As

this e¤ect works through all subscribers on a given network, its importance depends on the

average behavior of subscribers, as described by the term �. A more concentrated calling

pattern, i.e., a lower �, reduces the pro�ts that can be derived from tari¤-mediated net-

work externalities. Taken together, the second and third terms in expression (12) capture

the tari¤-induced costs and bene�ts from acquiring customers.13 Both costs and bene�ts

decrease for more concentrated calling patterns.

5 Dampening Competition through Access Charges

In this section we will determine the jointly pro�t-maximizing reciprocal access charge a.

This is the access charge that networks would want to negotiate if they were free to choose

between themselves.

When �rms set the reciprocal access charge, they maximize joint pro�ts, which in a

symmetric equilibrium are equal to 2���. There are now two opposing e¤ects that need to be

considered, corresponding to the second and third terms in expression (12) for pro�ts. We

referred to these terms as the costs and bene�ts from capturing additional market share.

Take �rst the costs, i.e., the second term in expression (12). Decreasing the access charge

pushes down o¤-net prices (cf. Proposition 1), leading to a decrease in the utility di¤erence

vii�vij. This makes joining a smaller network more attractive for customers and, thereby,
dampens competition through increasing the costs of capturing market share. From this

perspective alone �rms should thus lower a. However, lower o¤-net prices decrease the

pro�ts rij = (pij � cii)qij from making and receiving o¤-net calls, at least as long as the

o¤-net price induced by a is still below the �monopoly price�

pM = argmax
p
[(p� cii)q(p)]:

This increases the bene�ts from capturing market share, so that there is a countervailing

e¤ect from the third term in expression (12).

Put di¤erently, when a increases the e¤ect that works through a reduction of the cost of

acquiring the marginal customer leads to more intense competition and thus lower pro�ts.

13Note that if �rms were constrained to o¤er uniform two-part tari¤s, i.e., if they were to charge identical
prices for on- and o¤-net calls, then the second and the third term in expression (12) would be zero. Pro�ts
would be constant at �=2 and thus independent of the level of the access charge. Under uniform pricing,
therefore, the access charge is pro�t-neutral even for non-uniform calling patterns.
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This e¤ect is stronger when �̂ is larger due to a less concentrated calling pattern, since then

a shift of the marginal customer has a larger e¤ect on the marginal customer�s share of

on-net calls. The other e¤ect, which works through a decrease in the bene�ts of acquiring

the marginal customer when a increases, leads to less intense competition and thus higher

pro�ts. This e¤ect also increases with a less concentrated calling pattern, i.e., � is larger,

since more o¤-net calls will be transformed into on-net calls.

As shown in the proof of the Proposition 3 below, from the aforementioned two opposing

e¤ects, we obtain that the optimal o¤-net price that the networks wish to jointly implement

through their choice of the access charge is indeed strictly decreasing in �̂ and strictly

increasing in �:
pij � cii
pij

=
1

� (pij)

�
1� 2�̂

�

�
: (13)

When calling patterns are uniform, such that �̂ = 1 and � = 1, from (13) we obtain

pij < cii, which together with Proposition 1 results in a < c0, i.e., the result of Gans and

King (2001). More generally, once we substitute the equilibrium prices from Proposition

1 into (13), we obtain the following result.

Proposition 3 The jointly pro�t-maximizing access charge is

a� = c0 + cii
1� 2�̂

� [� (pij)� 1] + 2�̂
: (14)

In particular, a� is strictly above the cost of termination (a� > c0) if calling patterns are

su¢ ciently concentrated so that

�̂ <
1

2
; (15)

while a� < c0 applies when �̂ > 1
2
.

Proof. See Appendix.

Whether the pro�t-maximizing access charge is above or below the cost of termination

is thus closely tied to the parameter �̂. When calling patterns are su¢ ciently concentrated,

the result that Gans and King (2001) obtained with a uniform calling pattern is overturned,

as then the access charge is chosen above cost in order to dampen competition. In other

words, the balance between the costs and bene�ts of expanding market share changes for

more concentrated calling patterns, with the bene�ts of higher o¤-net prices outweighing

their cost.
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On-net vs. o¤-net prices. Having determined the jointly pro�t-maximizing access

charge, we can �nally return to the question of whether on-net prices will be higher or

lower than o¤-net prices if networks adopt this access charge. While metering makes o¤-

net prices lower than the respective cost, the access charge e¤ect pushes in the opposite

direction, to the extent that a� > c0; as characterized by the previous Proposition. The

following result shows that the outcome is determined by the relative strength of these two

countervailing e¤ects.

Proposition 4 The on-net price is lower than the o¤-net price, at the pro�t-maximizing

access charge, i¤

�̂ <
1

2

�

2� �: (16)

Proof. See Appendix.

The e¤ects of more concentrated calling patterns involves contradictory forces in this

case. Essentially, we need to distinguish between the e¤ects on marginal and average

subscribers. If the calling pattern is su¢ ciently concentrated for the marginal subscriber

(low �̂), and at the same time su¢ ciently less concentrated for the average subscriber (high

�), then the on-net price will be below the o¤-net price at the pro�t-maximizing access

charge. This happens because lower �̂ implies a higher access charge and higher � a higher

o¤-net price, both of which favor setting o¤-net prices above on-net prices.

With a uniform calling pattern, where �̂ = � = 1, condition (16) clearly is not satis�ed,

thus con�rming the result of Gans and King (2001). Below we further analyze condition

(16) for the family of calling patterns G�.

Welfare and consumer surplus. We ask next how the networks�pro�t-maximizing

access charge compares with the access charge that a social planner would optimally set.

The consumer surplus, in a symmetric equilibrium, is

CS = v0 + 2Lii(1=2)vii + 2Lij(1=2)vij � F � � 2
Z 1=2

0

�xdx:

Substituting for F � from (11), we have

CS = v0 � f �
5

4
� + rii +

�
1� �

2
+ �̂
�
vii +

��
2
� �̂

�
vij: (17)
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Suppose now that the social planner would want to maximize social welfare: W = 2��� +

CS. As shown in the Appendix, this yields pij = cii and

aW = c0 + cii
1� �
�

1

�(cii)
; (18)

where 1 � � = 0 in the case of a uniform calling pattern and strictly positive for any

concentrated calling pattern. Intuitively, for non-uniform calling patterns, it is e¢ cient to

set the access charge above cost so as to �compensate�for the �rms�using distorted prices

as a �metering device�.

Proposition 5 A social planner would set a� = aW , as given by (18), when he wants to

maximize social welfare. This results in an access price strictly above cost for all concen-

trated calling patterns. The pro�t-maximizing access charge is socially optimal if and only

if

�̂ = �=2:

Proof. See Appendix.

For completeness, suppose now instead the social planner would want to maximize

consumer surplus. As only o¤-net prices but not on-net prices are a¤ected by the access

charge a�, this yields a �bang-bang�solution that is immediately obtained by looking at

the last term in expression (17): When �̂ < �=2, to maximize consumer surplus the social

planer would want to push down a� as far as possible, thereby decreasing pij and increasing

vij. This happens when �̂ is low, and the access charge has a limited e¤ect on the �xed fee

F �; as given by (11). On the other hand, when �̂ > �=2, the regulator would want to push

up a� as far as possible. This is because, despite shutting down o¤-net communications

and the associated surplus, in this range the externality e¤ect intensi�es competition for

the market via lower �xed fees, to the bene�t of consumers.

6 Implications

In this section we use our characterization of the market equilibrium to obtain some ad-

ditional positive implications on readily obtainable market data from the industry. As

we will make use also of our particular choice of �calling circles�, which we introduced in

Section 2, we �rst complete the speci�cation of the respective family of calling patterns
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G�. Recall that with this speci�cation, each customer calls any other customer randomly

with probability 1 � �, while he calls those in his symmetric calling circle with probabil-
ity �. For the calling circle, we speci�ed the symmetric distribution H(z) with support

z 2 [�"; "], where 0 < " < 1=2. For those customers who are not too close to the �corners�,
as " � x � 1 � ", we then have G� (yjx) = (1� �) y + �H (y � x).14 We already noted
above that for � = 0 the calling pattern is uniform, while it becomes more concentrated

the higher is �.

It is further convenient to denote the dispersion of calls within the calling circle by15

� =

Z "

�"
jxjh(x)dx = 2

Z "

0

xh(x)dx � ":

With this notation at hand, we have that, for z 2 ["; 1� "] ;

L11 (z) = (1� �) z2 + �
Z z

0

H (z � x) dx = (1� �) z2 + �
�
z � �

2

�
;

and from the de�nition (6) we obtain that � = 1� � (1� 2�) for the family G�, which is
thus indeed decreasing in �. Recall that � measures how di¤erent is the calling pattern

of the marginal customer, x̂ = 1=2, from the average calling pattern of all infra-marginal

customers, e.g., customers x < 1=2 for network 1. Further, from G� (xjx) = (1� �)x, we
now have �̂ = 1 � �. This expression is particularly revealing. With a uniform calling

pattern, we already observed that as the marginal customer x̂ increases, his fraction of

calls made to network 1 increases one-by-one with the market share of this network, so

that �̂ = 1. This clearly corresponds to the case where � = 0. At the other extreme, when

a customer only makes calls to his calling circle and no random calls, then the fraction of

calls that the marginal customer makes to either network is completely independent of his

location, so that �̂ = 0 when � = 1.
14Though this is inconsequential for our analysis, for all other customers, x < " and x > 1� ", we can

complete the speci�cation by choosing, for instance, that

G� (yjx) = (1� �) y + � [H (y � x) +H (y + x)�H (2� y � x)] :

Essentially, the bits of the calling clubs that �stick out�are thereby folded back into the preference space.
Note that with this speci�cation calling patterns are always symmetric and balanced. For callers x and
receivers y such that " � y + x � 2 � ", this simpli�es to the expression in the main text. We also note
that the results we derive below for this example could also be obtained using the Salop circle instead of
the often-employed Hotelling line, with two networks placed at opposite points of a unit circumference.
The only di¤erence is that, with the Salop circle, every consumer always has people to call both on his
left and on his right. This di¤erence is immaterial for our �ndings.
15For example, if H is a uniform distribution with density h(z) = 1=2", then � = "=2, or if H is a tent

distribution with density h(z) = ("� jzj) ="2 we have � = "=3.
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6.1 Call Imbalance Ratios

One of our motivations from the Introduction was that observed calling patterns are dif-

�cult to reconcile with the speci�cation of uniform calling patterns that is mostly used

in the literature. A useful empirical measure of inter-network calling patterns is the call

imbalance ratio, which is de�ned as the ratio of on- to o¤-net calls per recipient. When

we calculate the imbalance ratio that obtains in equilibrium, where market shares are

symmetric, we obtain for either network the ratio16

r =
Lii(1=2)

Lij(1=2)
=
2� �
�

:

This is equal to one when the calling pattern is uniform, and strictly above one when

the calling pattern is concentrated. It is also decreasing in �, so that the imbalance ratio

is strictly higher when the calling pattern is more concentrated. For our speci�cation of

calling circles G�, we have in terms of primitives

r =
1 + � (1� 2�)
1� � (1� 2�) ;

which is always greater than 1 for any � > 0 and indeed increases as calling patterns

become more concentrated.

This measure of call imbalances is in terms of the number of calls that are made.

Empirically, one may also have access to the overall number of minutes, which in our

model are sensitive to o¤- and on-net prices. In a symmetric equilibrium, we have for the

respective minutes imbalance ratio for either network

rm =
2� �
�

q(pii)

q(pij)
:

Our speci�cation of calling patterns G� allows us now to proceed further in obtaining

equilibrium prices and, thereby, rm in terms of the primitives of the model. For this

we specify, in addition, that demand is isoelastic and thus captured by � > 1. From

Proposition 1 we then �rst obtain the respective on- and o¤-net prices

pii � cii
pii

=
1

�

� (1� 2�)
1 + � (1� 2�) ; and

pij � cij
pij

= �1
�

� (1� 2�)
1� � (1� 2�) : (19)

16For asymmetric market shares, the imbalance would be, for network 1 for instance, r1(x̂) =
L11(x̂)=x̂

L12(x̂)=(1�x̂) : The Italian data given in the Introduction imply imbalance ratios of, respectively, 4.15
(TIM), 6.88 (Vodafone), 9.33 (Wind) and 4.43 (H3G).
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Note that as calling circles become more concentrated (higher �), on-net prices increase

and o¤-net prices decrease. The same holds as calls made to the calling circle become less

dispersed (lower �). In both cases, prices become more distorted as the calling pattern of

the marginal customer diverges more from that of infra-marginal customers. To evaluate

prices in (19) at the pro�t-maximizing access charge, we obtain next

a� = c0 �
1� 2�

(� + 1) (1� �) + 2 (� � 1)��cii; (20)

so that we have from (19) and (20) that now the on-net price is below the o¤-net price

when

� � �� = 1� 6� +
p
9� 28� + 36�2

4(1� 2�) : (21)

That is, calling circles must be su¢ ciently relevant for o¤-net calls to be more expensive

than on-net calls. The condition is stricter when � is low, i.e., when calls made to the

calling circles are less dispersed. This e¤ect arises because, as we observed, less dispersion

of calls made to calling circles implies lower o¤-net prices, which counters the e¤ect of the

rising access charge.

Taken together, we can substitute from (19) and (20) to obtain, for the chosen speci�-

cation of calling circles and with isoelastic demand,

rm =
1 + � (1� 2�)
1� � (1� 2�)

 
� + 1���2��

1��+2��

� � (1�2�)�
1+��2��

!��
:

Note that from (21), at � = ��, both imbalance ratios will take the same value rm =

r > 1, both in terms of calls and in terms of minutes, as on-net prices are identical to

o¤-net prices and thus call minutes are also the same. More generally, for call minutes,

an increase in the importance of calling circles now increases the imbalance through two

channels when � > �� and the access price is set at its pro�t-maximizing level: Both as

more calls will be made to the circle and as on-net calls will become relatively cheaper

compared to o¤-net calls. Instead, when the calling pattern is uniform, o¤-net calls are

always cheaper than on-net calls and the imbalance ratio will be below one when calculated

in terms of minutes.17

17At � = 0, it is rm =
�
�+1
�

���
< 1 for all � > 1.
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6.2 Waterbed E¤ect

In many jurisdictions around the world, wholesale access charges are subject to some form

of regulation. While changes in a should obviously directly a¤ect the price for o¤-net

calls and networks�termination revenues, policy-makers also have a practical interest in

understanding how their intervention may in�uence the structure of other prices and,

ultimately, the customer�s bill, which is frequently referred to as a �waterbed�or �seesaw�

e¤ect. This possible rebalancing in the price structure is an information readily obtainable

from price data.18 In particular, with two-part tari¤s a change in the access price translates

into a change of o¤-net prices and the �xed fees.

We thus return to Section 4, and notice that inspection of (11) shows that the access

charge a has an indirect e¤ect on the equilibrium �xed fee through the o¤-net indirect

utility, vij, since the latter depends on the o¤-net price pij and thus on a. With constant

elasticity of demand, the o¤-net price pij = (cii + a� c0) ��
�(��1)+1 increases in a, and for

the �xed fee
dF �

da
= ��̂qij

dpij
da

= ��̂ pijqij
cii + a� c0

:

Recall now that a more concentrated calling pattern leads to a lower �̂, which dampens the

waterbed e¤ect, i.e., it mitigates the decrease in the �xed fee. This happens because with

concentrated calling patterns additional marginal subscribers will make relatively more

o¤-net calls. These customers become even less attractive with a higher access charge,

so that the compensation in the �xed fee o¤ered is lower. Apart from the direct e¤ect

through �̂ there is, however, also an indirect e¤ect of a change in concentration of calling

patterns, namely through �: A lower value of �, as implied by a more concentrated calling

pattern, now ampli�es the waterbed e¤ect. This second e¤ect arises because

@2pij
@a@�

=
�

[� (� � 1) + 1]2 > 0:

That is, a more concentrated calling pattern reduces the pass-through of the access charge

to o¤-net prices. What ultimately matters, though, is how � a¤ects o¤-net call revenues

pijqij. As we are in the elastic portion of the demand for calls, � > 1, total revenues

decrease with pij, and hence with �. This e¤ect will depend on the elasticity: it is highest

for high values of �; while it disappears as we approach unit-elastic demand.

18Cf. Genakos and Valletti (2010).
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Again, for the family of calling patterns G�, we can proceed somewhat further. In

particular, in the limit, when consumers make only calls to their circle (� = 1), the �xed

fee is independent of the access charge, such that there is no waterbed e¤ect on the �xed

fee.19 Generally, we have from

dF �

da
= �(1� �) (cii + a� c0)��

�
1� 1

�
+
1

�

1

1� � (1� 2�)

���1
that at least when calling patterns are very concentrated (�! 1), there should be only a

marginal waterbed e¤ect with respect to the �xed fee.

7 Conclusions

We introduce a �exible model of network competition with non-uniform calling patterns.

The model allows us to analyze the implications of non-uniform calling patterns (�calling

circles�) on equilibrium outcomes as well as pro�t-maximizing reciprocal access charges.

We show how equilibrium tari¤s (on- and o¤-net call prices, and �xed fees) vary de-

pending on the calling pattern. If calling patterns are concentrated then networks attempt

to extract more rents from subscribers by setting higher on-net and lower o¤-net prices

than under the uniform calling pattern. Concentrated calling patterns can also help to

explain the (on-net to o¤-net) imbalance ratios that are observed in practice.

We analyze when networks would choose reciprocal access charges above cost or below

cost so as to thereby dampen competition. With uniform calling patterns, it is known

that this is achieved through setting access charges below cost. We show that this result is

reversed if calling patterns are su¢ ciently concentrated: Pro�t-maximizing access charges

are set above cost, which sustains high o¤-net prices. Our results on above-cost access

charges also imply that contrary to other results in the literature, at the pro�t-maximizing

reciprocal access charge on-net prices can be below o¤-net prices. We analyze how these

di¤erent results are obtained from the interaction of two e¤ects: Competition is dampened

when it becomes relatively more expensive to �capture�the marginal customer or when the

marginal customer is made less pro�table for both networks. We show how the strength

of either e¤ect changes when calling patterns become more concentrated.

19The access charge has, however, an e¤ect on o¤-net prices also in this case. In fact, we can show
generally that the total bill of each individual customer strictly increases in a.
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As in much of the literature on network competition, we restricted consideration to

a model with only two networks. This has the bene�t of making our results comparable

to extant results. Also, we are able to o¤er a simple de�nition of our concept of more

concentrated calling patterns. Extending this concept, as well as results, to cases where

more networks compete could be a fruitful avenue to bring the analysis closer to models

of real markets. Likewise, consumers� preferences for networks, which may arise from

marketing e¤orts, could be endogenized in future work.

8 Appendix: Omitted Proofs

Proof of Proposition 1. Given constant market shares, network 1�s marginal customer

is determined by the condition U1 (x̂; x̂) = �U , which can be restated as F1 = u1(x̂; x̂) +

v0 � � x̂� �U . Substituting L̂11(x̂) = x̂G(x̂jx̂) and L̂12(x̂) = x̂(1�G(x̂jx̂)) into network 1�s
pro�ts leads to

�1 (x̂) = L̂11(x̂)v(p11) + L11(x̂)(p11 � c11)q(p11)

+L̂12(x̂)v(p12) + L12(x̂)(p12 � c12)q(p12) + const:;

where the last term on the right-hand side does not depend on p11 and p12. We obtain

from the maximization of the relevant terms with respect to p11 the �rst-order condition

(p11 � c11)q0(p11) +
 
1� L̂11(x̂)

L11(x̂)

!
q(p11) = 0;

which solves for the expression presented in the proposition. The result for the o¤-net

price is derived similarly.

Finally, we state a su¢ cient condition that allows us to ignore the participation con-

straint of all subscribers with location x < x̂, i.e., when indeed, as presumed in the relaxed

program, U1(x; x̂) � U2(x; x̂) for all x � x̂. We have

U1(x; x̂)� U2(x; x̂) = [u1(x; x̂)� u2(x; x̂)] + �(1� 2x)� [F1 � F2] ;

where

u1(x; x̂)� u2(x; x̂) = fG(x̂jx)v(p11) + [1�G(x̂jx)] v(p12)g

�f[1�G(x̂jx)] v(p22) +G(x̂jx)v(p21)g :
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A su¢ cient condition for U1(x; x̂) � U2(x; x̂) holding for all x < x̂ is that
@

@x
[U1(x; x̂)� U2(x; x̂)] � 0;

which is equivalent to

@G(x̂jx)
@x

[v(p11)� v(p12) + v(p22)� v(p21)] � 2� ,

as stated in the text. Q.E.D.

Proof of Proposition 2. Since calls are balanced with L12(x̂) = L21(x̂), and using for

the accompanying change in on-net and o¤-net prices the envelope theorem, we obtain for

symmetric call prices

d�1 (x̂)

dx̂
= F1 � f + x̂

dF1
dx̂

+ L011(x̂)r11 + L
0
12(x̂)r12:

Note next that L011(x̂) + L
0
12(x̂) = 1, which yields the �rst-order condition

F � � f + rii +
1

2

dF1
dx̂

����
x̂=1=2

+ L0ij(1=2)(rij � rii) = 0:

Using L0ij(1=2) = 0 and substituting �nally for dF1=dx̂ from (10) yields expression (11).

To obtain equilibrium pro�ts, in a symmetric equilibrium, and after substituting for

F � from (11), pro�ts (2) become

��� =
1

2
(F � � f + rii) + Lij(1=2) (rij � rii)

=
1

2
[� � �̂(vii � vij)] +

�

4
(rij � rii):

Q.E.D.

Proof of Proposition 3. When di¤erentiating pro�ts in (12) w.r.t. a, note �rst that

at a symmetric equilibrium x̂ = 1=2 does not change. Moreover, from Proposition 1 only

o¤-net but not on-net prices change with a. Note further that dpij=da > 0 and that pro�ts

do not directly depend on a. Therefore we can equivalently maximize ��� over pij. We

obtain20

2
d���

dpij
= ��̂qij +

�

2

�
qij + (pij � cii) q0ij

�
=

�
�

2

�
1� pij � cii

pij
� (pij)

�
� �̂

�
qij = 0;

20It is easy to show that the su¢ cient second-order condition for a strict local maximum holds for a
constant demand elasticity, which implies also that pro�ts are quasi-concave in pij .
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or
pij � cii
pij

=
1

� (pij)

�
1� 2�̂

�

�
: (22)

This condition can be solved for pij as

pij = cii
�� (pij)

� (� (pij)� 1) + 2�̂
:

On the other hand, from (7) we obtain

pij = (cii + a� c0)
��(pij)

� (�(pij)� 1) + 1
: (23)

Equating and solving for a leads to the result stated in the Proposition. Q.E.D.

Proof of Proposition 4. Equating pij in (22) and pii from (7) leads to 1 � 2�̂=� =
(1� �) = (2� �), or �̂ = �= (4� 2�). For larger �̂ we will have pij < pii, due to (22).

Q.E.D.

Proof of Proposition 5. Substituting for CS and concentrating only on the o¤-net

elements, we obtain

W = 2��� + CS =
�

2
(rij + vij) + const: (24)

Thus the socially optimal o¤-net price continues to be pij = cii even for general calling

patterns, as should be expected. Equating to (23) and solving for a leads to the result in

the text. The pro�t-maximizing access charge is equal to the socially optimal one if and

only if the relative weights in the objective functions (12) and (24) on rij and vij are equal,

or if �̂ = �=2. Q.E.D.
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