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1 Introduction

Contribution. Two great obstacles of applying models of telecommunications compe-
tition to real-world markets are that most either assume symmetric networks and / or
duopoly. To our knowledge, there are no realistic cases that can reasonably be portrayed
as a symmetric duopoly, since most telecommunications markets are characterized either
by at least three networks which have entered at different points in time, as in mobile tele-
phony, or by one large incumbent and several smaller rivals using different technologies,
as is usually the case in fixed telephony. One reason for the assumptions of symmetry and
duopoly that is usually advanced is that models with several asymmetric networks are not
tractable. Here we attempt to show otherwise, and then follow up on the implications.

While a series of recent papers has presented models of network competition with more
than two networks, as listed below, all either have assumed symmetry or have not been able
to give closed-form solutions for the equilibrium. In this paper we set out to develop and
solve a rather general model of competition between interconnected telecommunications
networks. As in Hoernig (2007) for the duopoly case, there are tariff-mediated network
externalities, i.e. networks price discriminate between on- and off-net calls, and call
externalities, i.e. receiving calls conveys utility, and networks can be asymmetric in size.
Still, we go beyond the scope of that paper by allowing for an arbitrary number of networks
and asymmetries in network and per-customer fixed costs. While being at the centre of the
ongoing debate about the regulation of mobile termination rates (MTRs) in the European
Union, cost differences seem to have been largely ignored in the economic literature on
network competition, again due to the alleged difficulty of solving for the equilibrium
outcomes.

Our model is set up such that it can easily be calibrated to real-world communications
markets. This exercise is becoming ever more useful for academics and regulators, as the
quality of the assessment of the impact of different regulatory options depends heavily
on which features of the relevant market can be captured. In this case it is essential
to represent the presence of varying numbers of networks of asymmetric size. A first
practical application of our approach is Harbord and Hoernig (2010), which contains a
study of different options for regulating mobile termination rates proposed by the UK
communications regulator Ofcom, plus estimates of how the merger between two of the
UK’s five mobile networks (Orange and T-Mobile) might affect consumer surplus.

The paper has two principal parts. First we set out the theory, and then we consider
applications to interconnection regulation. In the theory part, we show how to set up and
solve network competition models with many asymmetric networks, both for competition
in linear and multi-part tariffs. The model and most of the calculations are rendered in
matrix notation, exploiting maximally the underlying linear structure which is inherited
from the traditional Hotelling model. This vastly reduces the complexity of the derivations
and leads to equilibrium conditions in the form of “one-liners”.

As a first step, we propose a generalization of the condition of stability in expectations
introduced by Laffont, Rey and Tirole (1998b, LRTb) to multiple networks. It imposes
an upper limit on the intensity of preferences, as a function of tariff-mediated network
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externalities, the number of networks and characteristics of consumers’ preference space.
This stability condition is independent of whether networks compete in linear or multi-
part tariffs.

We then derive the Nash equilibrium outcomes in the price competition games with
linear and multi-part tariffs, respectively. As concerns off-net prices, we allow networks
to set a “uniform off-net price”, i.e. the same off-net price to all other networks, or to set
different prices to groups of other networks. With linear tariffs, we show that the condition
in Hoernig (2007) which links the level of the off-net price to the level of the on-net price
in the case of two networks, continues to hold “on average” in the case of many networks.
If there is a uniform off-net price to all competing networks then this price is set based
on average perceived off-net cost. With multi-part tariffs, we show that identical off-net
prices to a group of competing networks are set based on average perceived off-net cost,
and as if all other competitors had the same average market share as the members of this
group. Naturally, the on-net prices continue to be set at the efficient level independently
of cost asymmetries and the number of networks.

Furthermore, we complement our main analysis by deriving market outcomes under
uniform pricing, i.e. in the absence of tariff-mediated network externalities, and by con-
sidering how market outcomes evolve in the symmetric case as the number of networks
becomes large. As concerns the latter, it becomes clear that these outcomes are strongly
driven by assumptions about the size of the preference space.

In terms of applications, we explore the implications of our results for the effects
of mobile termination rate levels. We first reconsider the “waterbed effect” in fixed-to-
mobile (FTM) interconnection, i.e. the phenomenon where profits from fixed-to-mobile
termination are handed on to consumers. For competition in multi-part tariffs, we show
that the standard result from a symmetric Hotelling duopoly, which is that all termination
profits are passed on to mobile subscribers (a “full waterbed effect”), continues to hold
even in the presence of multiple asymmetric networks. On the other hand, we demonstrate
that with linear tariffs this is no longer true: The waterbed is only partial, i.e. networks
retain a part of the termination profits. The extent of this partial waterbed is shown to
depend on how competitive the market is, as measured by the number of networks and
the intensity of horizontal preferences.

Concerning mobile-to-mobile (MTM) termination rates, we reconsider the question of
how the latter affect market equilibrium, and mobile subscribers in particular, for the case
of many networks. Gans and King (2001) found for duopoly competition in multi-part
tariffs that networks maximize joint profits by setting off-net prices below the efficient level
and therefore MTRs below the true cost of termination. We show that as the number
of networks increases, joint profit-maximizing off-net prices converge towards the efficient
price. The corresponding MTRs only converge to termination cost in the absence of call
externalities; otherwise they remain further below cost. More importantly, it also becomes
clear from LRTb and Gans and King (2001) that in the duopoly case subscribers gain
from higher MTM termination rates: The latter lead to larger off-net prices and therefore
stronger tariff-mediated network effects, which in turn make networks compete harder
for customers through lower fixed fees. We show that with more than two networks the
effect on competitive intensity persists, but that on the other hand the overall effect on
subscribers will be reversed: With more networks, a higher portion of calls is made off-net
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and subscribers will not obtain sufficient compensation for higher off-net prices through
lower fixed fees if termination rates go up.

With linear tariffs, we show that with more than two networks a new effect can arise:
While the direct cost effect of higher termination rates leads to increased off-net prices
independently of the number of networks, and in the duopoly case the on-net price will
decreases accordingly, in the presence of at least three networks the on-net price may go
up as well. This is a direct result from the reduction in competitive intensity that higher
off-net prices cause under linear tariffs.

Related literature. There is now a vast amount of work that has sprung from the
seminal contributions of Armstrong (1998) and Laffont, Rey and Tirole (1998a,b). In
the following we will mostly concentrate on the papers that consider price discrimination
between on- and off-net prices, in the tradition of LRTb. See Laffont and Tirole (2000),
Armstrong (2002) and Vogelsang (2003) for surveys about the literature on network com-
petition.

Duopoly network competition in linear tariffs has been considered by Doganoglu and
Tauman (2002), Berger (2004), de Bijl and Peitz (2004), Hoernig (2007 ), and Geoffron
and Wang (2008). Duopoly equilibrium results under multi-part tariffs have been derived,
among others, by Gans and King (2001), Peitz (2005), Berger (2005), and Hoernig (2007).
Jullien et al. (2010) extended this literature to consumers with different subscription
elasticities.

Call externalities and their effects have previously been considered in Kim and Lim
(2001), Jeon et al. (2004), Hermalin and Katz (2004), Berger (2004, 2005), Hoernig
(2007), and Armstrong and Wright (2007, 2009), and Cambini and Valletti (2008). Our
modelling of asymmetries is related to that introduced by Carter and Wright (1999, 2003),
and which has been taken up in de Bijl and Peitz (2004), Peitz (2005) and Hoernig (2007).1

Several papers on mobile-to-mobile interconnection have considered more than two
competing networks, in different settings where all networks directly compete with each
other. Symmetric networks are assumed by Calzada and Valletti (2008)2 and Armstrong
and Wright (2007). Dewenter and Haucap (2005) consider more than two asymmetric
networks, but they take market shares as given and thus do not close the model. Closest to
our paper is Thompson, Renard andWright (2007), in using a similar demand specification
and considering an arbitrary number of networks which can differ in subscription surplus.
Yet, networks in their model do not price-discriminate between on- and off-net calls, and
no closed-form solution for the equilibrium is derived.3

Gans and King (2000) analyze how mobile networks set fixed-to-mobile termination
rates under customer ignorance about which mobile network is being called. Under the

1Cambini and Valletti (2004) and Valletti and Cambini (2005) present duopoly models where asym-
metries arise through previous investment choices.

2Calzada and Valletti (2008) consider asymmetric calling patterns with three networks in an extension
section.

3Other models of competition between multiple symmetric networks under non-discriminatory pricing
are Liu and Sun (2008) with three networks, Jeon and Hurkens (2008), Stennek and Tangerås (2008)
and Tangerås (2009). On the other hand, Hurkens and Jeon (2008) only consider two networks under
termination-based price discrimination.
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assumption that mobile networks’ market shares are fixed they consider an arbitrary num-
ber of asymmetric networks. On the other hand, they assume symmetric duopoly when
modelling competition in multi-part tariffs between networks. Wright (2002) considers
the setting of fixed-to-mobile termination rates by an arbitrary number of competing
symmetric mobile networks. While he abstracts from mobile-to-mobile calls and uses a
more general formulation of subscription demand, his pricing structure is equivalent to
multi-part tariffs with call prices set at cost. Thus his results can be compared to the ones
derived in our framework. He shows that all profits from fixed-to-mobile termination are
passed on to mobile customers, i.e. there is a full waterbed effect, if a common shift in
the cost of signing up subscribers does not change equilibrium profits. This is the case for
example in Hotelling models under full market coverage. The waterbed effect is less than
full for example if the market is less than fully covered.4 Armstrong (2002, section 3),
elaborating on Armstrong (1997), models the setting of fixed-to-mobile termination rates
by an indeterminate number of symmetric mobile networks under perfect competition.

This paper has the following structure: Section 2 presents the model, discusses stability
in consumer expectations and derives socially optimal prices and market shares. Section
3 presents the Nash equilibrium solutions in linear and nonlinear tariffs, while Section 4
derives more results for the symmetric case. Sections 5 and 6 consider applications to
fixed-to-mobile and mobile-to-mobile termination, while Section 7 concludes.

2 Theory: Model Setup

2.1 Demand, Market Shares and Consumer Surplus

The following model is a generalization of the network competition models of Armstrong
(1998) and Laffont, Rey, Tirole (1998a,b) to many asymmetric networks. It leads to
a demand formulation that is related to those of the “pyramid model” of von Ungern-
Sternberg (1991), Armstrong and Wright (2007) and the “spokes model” by Chen and
Riordan (2007),5 but allows explicitly for exogenous asymmetries between networks. All
networks directly compete against each other, which for more than three networks is
different from the most widely used generalization of the Hotelling model to multiple
firms, the circular city model of Salop (1979). The equilibrium concept we employ is
Nash equilibrium of the pricing game between networks in either linear or multi-part
tariffs with price discrimination between on- and off-net prices.

There are n ≥ 2 networks, each at one of the n nodes of a complete graph which
describes consumers’ space of preferences. The total size of the preference space is S(n),
with the distance between two nodes being l(n) = 2S(n)/n(n − 1). When appropriate,
we consider the size of this preference space as a function of the number of networks in
the market. Indeed, as we will see below, the exact form of this dependence determines

4Genakos and Valletti (2009) perform a similar analysis assuming a logit demand structure.
5The pyramid and spokes models are built from specific graphical foundations, while Armstrong and

Wright’s demand formulation is presented ad hoc. Renard et al. (2007) use the same preference space
but the rest of their model is very different, with heterogeneous consumers but restricted to uniform call
prices.

4



stability in expectations and market outcomes for a large number of networks. On the
other hand, we will drop the dependence on n when it is not needed. For now we only
note that the corresponding implied size of the preference space in Armstrong and Wright
(2007) is S(n) = n − 1 and S(n) = n(n − 1)/2 in von Ungern-Sternberg (1991) and
Chen and Riordan (2007). In Section 4 we will discuss the economic significance of this
observation.

The total mass of consumers is normalized to 1, distributed uniformly over the whole
preference space with density 1/S(n). Market shares are αi ≥ 0 with

∑n
i=1 αi = 1. All

networks are interconnected, and all consumers subscribe to some network.
Similar to Carter and Wright (1999) and Hoernig (2007 ), a subscriber of network i

receives a gross utility of wi + Ai, where Ai is a fixed surplus from being connected to
network i (which may derive from brand value, trust etc.), and wi is the surplus arising
from making calls, as defined below. Without loss of generality, we assume A1 ≥ A2 ≥
... ≥ An. While An must be large enough so that all consumers subscribe, we note that
otherwise only the differences Ai −Aj will matter. The disutility of not buying a perfect
match is modelled in Hotelling fashion through a linear transport cost td, where t > 0
and d is the distance between the subscriber and his network. As t → ∞ each network
becomes a local monopoly, while for t → 0 transport cost disappear and the market
approaches perfect competition.6

Subscribers’ utility from a call of length q is u(q), with indirect utility v(p) = maxq u(q)−
pq and demand function q(p) = −v′(p). The price elasticity of demand is η(p) =
−pq′(p)/q(p). Network i charges a multi-part tariff consisting of a fixed charge Fi, and
prices per minute of pii for on-net calls and pij for off-net calls to network j �= i.

7 When
considering linear tariffs we set Fi = 0. Uniform tariffs are obtained by restricting all pij
to be equal to pii. Let vij , qij, uij be defined as v(pij), q(pij), u(qij). The utility of receiv-
ing a call of length q is γu(q), where γ ∈ [0, 1). Assuming an ex-ante balanced calling
pattern, i.e. each subscriber calls every other subscriber with the same probability,8 the
call surplus on network i is

wi =
n∑

j=1

αj (vij + γuji)− Fi =
n∑

j=1

αjhij − Fi.

Defining the (n× n)−matrix h = (hij)ij and the (n× 1)−vectors F = (Fi)i and α =
(αi)i, we can restate the above in matrix form as

w = hα− F. (1)

The matrix h is a function of prices, and therefore as we will see below at equilibrium
prices indirectly a function of marginal costs, mobile termination rates and market shares
(the latter only in the presence of call externalities, though).

6An equivalent alternative formulation of the model would involve a constant size S of the preference
space and transport cost t(n) varying with the number of networks.

7While we do not consider calls to the fixed network here, these can be easily implemented in this
framework, see for example Harbord and Hoernig (2010).

8See Hoernig, Inderst and Valletti (2010) for a general model of unbalanced calling patterns and their
implications for the pricing equilibrium and the joint setting of mobile termination rates.
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We assume throughout that no segment is cornered by one of the networks, thus the
indifferent consumer on segment ij is located in its interior, at a distance xij from network
i defined by

wi +Ai − txij = wj +Aj − t(l(n)− xij).

Solving for xij yields network i’s part of segment ij as

xij =
l(n)

2
+
1

2t
(wi +Ai − wj −Aj) .

Defining σ(n) ≡ 1/[2tS(n)] and summing subscribers over segments yields network i’s
total market share:

αi =
1

S(n)

∑

j �=i
xij =

1

n
+ σ(n)

∑

j �=i
(wi +Ai − wj − Aj)

= α0i + σ(n)

(

(n− 1)wi −
∑

j �=i
wj

)

, (2)

where α0i = 1/n+
∑

j �=i(Ai −Aj) is network i’s ex-ante market share that would prevail

under identical call surpluses on all networks.9 Market shares are thus composed of an
idiosyncratic part which captures consumers’ relative preference for network i through
the α0i, and a second part that indicates how market shares are affected by the tariffs on
offer. In the symmetric case α0i = 1/n this expression for market shares is equivalent to
the one in Armstrong and Wright (2007, p. 31) for S(n) = n− 1.

Let E be the (n× 1) vector of ones, I the (n× n) identity matrix, B = nI − EE′

an (n× n) matrix with the values (n− 1) on the diagonal and −1 elsewhere, and A the
(n× 1) vector of connection surpluses Ai. Note that E

′B = nE′ − (E′E)E = 0, equally
BE = 0, and

BB = n2I − 2nEE′ + E (E′E)E = nB.

Let α0 = E/n + σBA be the (n× 1) vector of ex ante market shares α0i. In matrix
notation, market shares become

α =
1

n
E + σ(n)B(w +A) = α0 + σBw. (3)

In a fully covered market, the latter must add up to 1: Since E′B = 0 we have

n∑

i=1

αi = E
′α =

1

n
E′E + σE′B (w +A) = 1.

Plugging utility (1) into (3) leads to the condition

α = α0 − σBF + σBhα. (4)

9These market shares would also result if all networks were to offer the same uniform tariff.
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Solving the latter for α yields

α = (I − σBh)−1 [α0 − σBF ] = Gα0 − σHF, (5)

where we have defined G = (I − σBh)−1 and H = (I − σBh)−1B with elements Hij.
Thus we have found a simple unique solution for market shares when prices are given.10

The following technical Lemma states some properties of G and H which will be useful
later on.

Lemma 1 Assume (I − σBh)−1 exists. We have: E′G = E′, E′H = 0 and HE = 0. In
particular,

∑n

i=1Hij = 0 for all j, and
∑n

j=1Hij = 0 for all i.

Proof. First note that E′ (I − σBh) = E′ − σ0h = E′. Therefore

E′G = E′ (I − σBh) (I − σBh)−1 = E′.

Note that GE �= E in general. Furthermore, E′H = (E′G)B = E′B = 0 and HE =
G (BE) = 0 since BE = 0.

Finally, total consumer surplus consists of the difference between the surplus from
pertaining to networks and making calls, and “transport cost” which measures the welfare
cost of a less than perfect fit with preferences:

CS =
n∑

i=1

[

αi (wi +Ai)−
∑

j �=i

∫ xij

0

tz
1

S(n)
dz

]

=
n∑

i=1

[

αi (wi +Ai)−
t

2S(n)

∑

j �=i
x2ij

]

= α′ (hα+A− F )−
t

2S(n)

∑

i,j �=i
x2ij.

2.2 Stability

One important technical aspect, discussed at length in LRTb for the duopoly case, is
the stability of equilibrium in consumer expectations. Since under price discrimination
between on- and off-net calls consumers’ expected utility from joining a specific network
depends on the size of this and the other networks, network effects arise which may lead
to unstable equilibrium points. We will want to concentrate on stable equilibrium points
because the unstable ones are unlikely to arise in actual play of the game.

The following Lemma shows how the stability condition from LRTb can be generalized
to an arbitrary number of asymmetric networks.

10This solution does not yield equilibrium market shares explicitly in the presence of call externalities
since both G and H will depend on market shares indirectly through prices. We study price choice in
the next section.
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Lemma 2 The Nash equilibrium in the price competition game, no matter whether in
linear or in multi-part tariffs, is stable in consumer expectations if αi ≥ 0 for all i = 1, ..., n
and σ < 1/ρ, where ρ is the spectral radius of Bh (i.e. its eigenvalue with the largest
absolute value).

Proof. The condition that all αi are non-negative is a pre-condition for a well-defined
equilibrium candidate. Now consider, similar to LRTb, for given tariffs a virtual tâton-
nement process where consumers observe market shares αt−1 and then join networks based
on the resulting surplus. This leads to market shares

αt = α0 + σB (hαt−1 − F ) = [α0 − σBF ] + σBhαt−1.

The effect of market shares at t−1 on market shares at time t is given by dαt/dαt−1 = σBh.
For this tâtonnement process to converge, it is sufficient that the spectral radius of σBh
be less than 1 (while it is necessary that it is less than or equal to 1, see Moulin (1986),
p. 135), which is equivalent to the condition stated in the Lemma.11

One eigenvalue of Bh is always zero, since E′Bh = 0 ∗ E′. With symmetric prices, we
have hon = hii, hof = hij, and the other (n− 1) eigenvalues of Bh can be determined
explicitly. This gives rise to the following result:

Proposition 1 With networks competing in linear or multi-part tariffs, the symmetric
Nash equilibrium is stable if

σ(n) <
1

n |hon − hof |

Thus it is less likely to be stable:

1. for a smaller preference space as measured by S(n)/n;

2. for a very high or very low mobile termination rate a;

3. for a lower transport cost t.

Proof. With symmetric networks we can write h = (hon − hof) I + hofEE
′ and obtain

Bh = [nI − EE′] [(hon − hof ) I + hofEE
′]

= (hon − hof )B + hof [nEE
′ −E (E′E)E′]

= (hon − hof )B,

since E′E = n. Denote by ei the ith unit vector in Rn, i.e. the (n× 1) vector whole
ith element is equal to one and the others equal to zero. For all j = 2, ..., n we obtain
E′ (e1 − ej) = 0 and

Bh (e1 − ej) = (hon − hof) (nI −EE
′) (e1 − ej)

= n (hon − hof ) (e1 − ej) .

11The stability condition stated in LRTb only considers the largest positive eigenvalue, not the largest
one in absolute value, because it is implicitly assumed that “pessimistic market shares” do not exceed
1. The latter will not be true only in the (admittedly unrealistic) case where off-net prices fall far below
on-net prices.
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Since the eigenvectors (e1 − ej), j > 1, are independent of each other, this implies that
at least (n− 1) eigenvalues of Bh are equal to n (hon − hof). Since we know that one
eigenvalue is equal to zero, this implies that exactly (n− 1) eigenvalues are equal to
n (hon − hof).

As for the statements on stability, remember that σ(n) = 1/[2tS(n)]. 1. The equilib-
rium is stable if S(n)/n > |hon − hof | /2t. 2. |hon − hof | is large if a is either very low or
very high, as discussed below. 3. Stability implies that t be large enough.

While statements 2 and 3 carry over from LRTb, statement 1 is new. It establishes a
link between the density of subscribers in preference space and stability in expectations.
It is intuitive, though: The more concentrated preferences are, the larger are the network
effects created if expectations about network choice change.

It is of interest to note that our stability condition adapted to the parameterizations of
Armstrong and Wright (2007) and Chen and Riordan (2007) is |hon − hof | < 2t (1− 1/n)
and |hon − hof | < n − 1, respectively. Since in both cases by assumption the size of the
preference space S (n) expands at rate n or faster with the number of networks, we obtain
the counter-intuitive result that market stability increases (rather than decreases) as the
number of networks increases. Put differently, in these models instability is more likely
to occur in markets with few networks.

Stability of equilibrium implies a further useful result. We can see from (5) that
∂αj/∂Fi = −σHji for all i, j = 1, ..., n . That is, the effect of changes in fixed fees on
market shares is determined by the elements of the matrix H. One might expect that an
increase in Fi decreases αi and increases all αj, j �= i, i.e. Hii > 0 and Hij < 0 for j �= i.
The following example12 shows that this is not true in general: Let σ = 1 and

h =






403
804

605
804

101
402

1
2

1
2

1 1
2

1
2

25 301
40 602

61 205
81 204

70 501
81 204

1
2

605
804

202
201

605
804

1




 , then H =






−94 98 −202 198
−2 202 0 −200
98 −100 202 −200
−2 −200 0 202




 .

While the eigenvalues of Bh, which are 0, 199
201

and 349±
√
1409

404
are all between zero and one,

and therefore stability in expectations holds, we have H11 < 0 and H12, H14 > 0 (among
other “oddities”). What is happening is that an increase in F1, whose direct effect is
a reduction in α1 and an increase in α2 and α4, induces an opposite feedback through
network effects: Since in this example h12, h14 > h11, network 1 becomes more attractive.
When things settle down α1 has increased, and α2, α4 have decreased, as compared to
their previous level.

In an important case, though, we can show that Hii > 0 for all i. This is the case of
uniform off-net pricing, i.e. pij = pik for all i and j, k �= i and we can define vif ≡ vij and
γuif = γuij as the surplus from making and receiving off-net calls. Furthermore, let

βi =
1

1− nσ (vii + γuii − vif − γuif )
.

Then we obtain the following:

12My thanks to Iliyan Georgiev for help in constructing this example.
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Lemma 3 Under uniform off-net pricing and stability in expectations, we have

1. Hii = n
(
βi − β

2
i /
∑n

k=1 βk
)
and Hij = −nβiβj/

∑n
k=1 βk.

2. Hii > 0 for all i = 1, ..., n.

Proof. Let ∆i = vii + γuii − vif − γuif = (1− 1/βi) /nσ. First note that under uniform
off-net pricing we can write

h =

n∑

i=1

(∆ieie
′
i + vifeiE

′ + γuifEe
′
i) ,

and obtain, using E′E = n and E′ei = 1,

Bh = (nI − EE′) h =
n∑

i=1

[∆i (nei − E) e
′
i + vif (nei − E)E

′] .

1. H as stated in the Lemma can be written equivalently as

H = n
n∑

i=1

βiei

(

e′i −
1∑n
k=1 βk

n∑

j=1

βje
′
j

)

.

Thus, using e′iei = 1 and e
′
iej = 0 for j �= i, we have

σBhH =
n∑

i=1

(βi − 1) (nei − E)

(

e′i −
1∑n
k=1 βk

n∑

j=1

βje
′
j

)

= H −B,

which is equivalent to H = (I − σBh)−1B since the stability condition implies that
(I − σBh) is non-singular.

2. We will now proceed in two steps to show that the diagonal elements of H are
positive. In a first step we will show that Bh has (n− 1) eigenvectors which have real
eigenvalues and are orthogonal mutually and to E (The remaining eigenvector has eigen-
value zero but will not be used below.) In a second step we diagonalize H.

a) Let x be a generic eigenvector of Bh, with eigenvalue δ. Then δE′x = E′Bhx = 0,
i.e. δ = 0, or x is orthogonal to E, or both hold. Furthermore, (I − σBh)x = (1− σδ)x
and thus (I − σBh)−1 x = λx, i.e. x is an eigenvector of (I − σBh)−1 with eigenvalue
λ = (1− σδ)−1. If E′x = 0 then also Bx = nx.

a1) Assume for now that h has full rank, i.e. at most one ∆i, i = 1, ..., n can be equal
to zero. In this case Bh has rank n−1 and therefore n−1 non-zero eigenvalues (including
multiple ones). Let x be a corresponding eigenvector, then E′x = 0, and we multiply x
with the following real symmetric matrix:

(
n∑

i=1

∆i [neie
′
i −Ee

′
i − eiE

′]

)

x = Bhx = δx.
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Thus x is an eigenvector of a real symmetric matrix, and therefore δ is real and x is
orthogonal to all other eigenvectors of Bh with non-zero eigenvalues (If there are mul-
tiple eigenvalues then the eigenvectors can be chosen to be orthogonal). Let X be the
(n× (n− 1)) matrix whose columns xi are these (n− 1) orthogonal eigenvectors. A de-
cisive observation is that no row of X is identical to zero: If row i were equal to zero then
these n − 1 eigenvectors would simultaneously be orthogonal not only to E and to each
other, but also to ei, which is impossible in R

n.
a2) Now let h have less than full rank, i.e. without loss of generality we have ∆i = 0

for i = 1, ..., k where 1 < k ≤ n. Let ∆̃i (ε) = ε > 0 for i = 1, ..., k, and define h̃ (ε),
which has full rank, accordingly. Thus the results in a1) apply to Bh̃ (ε). In particular,
eigenvectors x̃ (ε) and ỹ (ε) to non-zero eigenvalues obey x̃ (ε)′ ỹ (ε) = 0 and E′x̃ (ε) = 0.
Continuity maintains these properties in the limit ε→ 0, thus Bh has n− 1 eigenvectors
which are orthogonal to each other and to E and have real eigenvalues even if h does not
have full rank.

b) Since all eigenvalues δ of Bh are real and we have assumed stability, λ = (1− σδ)−1

is real and positive. Let Λ be the diagonal matrix with Λii = λi = (1− σδi)
−1 and zeros

otherwise.
The columns of X, i.e. the eigenvectors xi, span the same (n− 1)−dimensional sub-

space as the eigenvectors of B (which are vectors ei − ej for j �= i), thus χB = B where

χ = X
(
XTX

)−1
XT is the projection onto the subspace spanned by the xi. Thus:

H = (I − σBh)−1B = (I − σBh)−1X (X ′X)
−1
X ′B

= (I − σBh)−1XX ′B = (I − σBh)−1XnX ′

= nXΛX ′.

This already implies that H is a symmetric matrix with non-negative eigenvalues, and
thus Hii ≥ 0. Still, note that, for all i = 1, ..., n,

Hii = e
′
i (nXΛX

′) ei = nr
′
iΛri = n

n−1∑

j=1

λjr
2
ij > 0.

where ri = X
′ei = (ri1, ..., ri,n−1) �= 0 is the ith row of X.

Interestingly, we cannot conclude that Hij < 0 for all j �= i even under uniform off-net
pricing, but only that

∑
j �=iHij < 0 (from HE = 0). This is borne out by the following

example: Let σ = 2/11,

h =




3 1 1
1 2 1
1 1 2



 , H =




22 −11 −11
−11 44

5
11
5

−11 11
5

44
5



 .

Here H23 > 0, i.e. an increase in F2 decreases α3. The reason is that an increase in
F2 drives too many consumers towards network 1, which has the self-reinforcing effect of
further reducing the attractiveness of both networks 2 and 3.
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2.3 Profits, Welfare and the First-Best Allocation

Networks incur a fixed cost per customer of fi, and have on-net cost cii = coi + cti,
where the indices o and t stand for origination and termination, respectively. The mobile
termination rate on network i is ai, so that costs of off-net calls from network i to network
j �= i are cij = coi+ aj. The mobile termination margin is mi = ai− cti. Networks’ profits
are

πi = αi

(∑n

j=1
αjRij + Fi +Qi − fi

)
, (6)

where Rij = (pij − coi − aj)qij + (ai − cti)qji are the profits from an incoming and an
outgoing call between networks i and j. Note that this simplifies to Rii = (pii − cii)qii,
and Rij = (pij − cij)qij + miqji for j �= i. Furthermore, Qi = miqfi are fixed-to-mobile
termination profits, where qfi denotes the number of incoming call minutes from the fixed
network.

Let J ij = eie
′
j be the (n× n) matrix with entry 1 at position (i, j) and zeros elsewhere,

R be the (n× n) matrix with entries Rij, and F , Q, f be the (n× 1)-vectors with entries
Fi, Qi, and fi, respectively. We can express network i’s profits in matrix notation as

πi = α
′J ii (Rα+ F +Q− f) ,

and, since
∑n

i=1 J
ii = I, joint profits of all networks as

n∑

i=1

πi = α
′ (Rα + F +Q− f) .

Total welfare in the market for mobile telephony is given by

W = CS +
n∑

i=1

πi

= α′ [(R+ h)α +Q+A− f ]−
t

2S(n)

∑

i,j �=i
x2ij

We can now describe first-best prices and market shares:

Proposition 2 1. First-best per-minute prices are p∗ij =
coi+ctj
1+γ

for all i, j = 1, ..., n.

2. Let M ≡ R + h at first-best prices. Then socially optimal market shares in the
mobile telephony market are

α∗ = (I − σB (M ′ +M))
−1
[α0 + σB(Q− f)] , (7)

if asymmetries are small enough. With symmetric network cost, optimal market
shares become

α∗ = α0 + σB(Q− f).
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Proof. In the expression for aggregate profits the terms corresponding to mobile-to-
mobile termination payments and revenues cancel, so that after some re-ordering of terms
with indices ij and ji,

α′ (R+ h)α =
∑

i,j

αiαj [(pij − coi − ctj) qij + vij + γuij] .

Thus for each pair ij the same surplus maximization problem is posed, with first-order
condition

qij +
(
p∗ij − coi − ctj

)
q′ij − qij + γu

′
ijq

′
ij = 0.

Since u′ij = p∗ij at the consumer’s optimal choice of call minutes the above result is
obtained.

Let M ≡ R+ h at prices (p∗ij)ij. Then we need to maximize social surplus

W = α′Mα+ α′ (Q+A− f)−
t

2S(n)

∑

i,j �=i
x2ij

subject to the conditions xji = l(n) − xij and xij ≥ 0 for all j �= i, i = 1, ..., n.
Omitting for the moment the non-negativity constraints, and substituting out xji in

αj =
(∑

k �=j xjk

)
/S(n), we have dα

dxij
= (ei − ej) /S(n). Thus, maintaining the sub-

stitution of xji, we have the first-order conditions, for all i and j �= i,

S(n)
dW

dxij
= (ei − ej)

′ (M ′ +M)α∗ + (ei − ej)
′ (Q+A− f)− tx∗ij + t

(
l(n)− x∗ij

)
= 0.

Summing the above conditions over j �= i, we obtain

Bi (M
′ +M)α∗ +Bi (Q+A− f)− 2tS (n)α

∗
i +

2tS (n)

n
= 0,

where Bi is row i of the matrix B. Stacking these equations leads to

B (M ′ +M)α∗ +B (Q− f)−
α∗

σ
+
α0
σ
= 0

and the condition

(I − σB (M ′ +M))α∗ = α0 + σB (Q− f) .

Note that B (M ′ +M) = 0 with symmetric network cost because then M = kEE′ for
some constant k. These results hold as long as all xij ≥ 0, which is true if and only if the
asymmetries in network cost and α0 + σB (Q− f) are not too large.

First-best call prices follow a simple principle: They are equal to the marginal cost of
origination on the calling network plus the marginal cost of termination on the receiving
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network, correct by the call externality. The existence of the latter implies that welfare
is maximized if calls are longer than would be optimal by just considering callers’ utility.

The above computation of first-best market shares serves purely as a benchmark with
which the competitive outcome can be compared. Note, though, that we have considered
the transfer Q from the fixed telephony market as given. In particular, we did not take
into account the welfare loss caused by this transfer. These optimal market shares also
take as given the ex ante market shares α0 which distinguish networks in the eyes of
consumers. Nevertheless, at potential “optimal” values of Q and α0 the first-best market
shares are still given by (7).

With symmetric network cost, since Bh∗ = 0, by (5) the socially optimal market shares
α∗ can be induced by introducing fixed fees equal to F = f−Q+kE, for some constant k.
That is, not the absolute value of fixed fees is relevant, but only the differences between
networks count. What needs to be signalled to consumers is the difference in net fixed
cost (f −Q) per consumer. If on the other hand network costs are not symmetric, then
there is no longer a simple correspondence between conditions (5) and (7), and fixed fees
must be chosen such that

σBF = α0 − (I − σBh) (I − σB (M
′ +M))

−1
[α0 + σB (Q− f)] .

3 Theory: Pricing Equilibrium

In this section we describe equilibrium prices and market shares under both linear and
multi-part tariffs. As economic predictions differ significantly between these two types of
tariffs (see e.g. Laffont, Rey and Tirole 1998a,b ), it seems useful to consider the case of
many networks for both types of tariffs.

3.1 Linear Tariffs

Since we consider linear tariffs let F = 0. Each network chooses the prices pii and pij in
order to maximize its profits

πi = αi
(∑n

j=1
αjRij +Qi − fi

)
= α′J ii (Rα+Q− f) .

We first state a central result about how per-minute prices affect market shares.

Lemma 4 For any price plk, l, k = 1, ..., n, we have dα
dplk

= σH dh
dplk
α, with

∑n

i=1
dαi
dplk

= 0.

Proof. From condition (4) we have (I − σBh)α = α0. Taking derivatives on both sides
leads to

−σB
dh

dplk
α + (I − σBh)

dα

dp
= 0,

from which the result follows (dh/dplk is (n× n)-matrix of derivatives dhij/dplk). Fur-
thermore,

∑n

i=1
dαi
dplk

= E ′ dα
dplk

= σ (E ′H) dh
dplk
α = 0 since E′H = 0.
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As is common in models of network competition in linear prices, we cannot give explicit
expressions for the equilibrium prices. Still, we can show how the equilibrium off-net prices
relate to on-net prices. For the sake of generality, we consider the case where network
i divides its competitors into separate groups K and charges a uniform off-price piK to
each group. Extreme cases are where each group contains a single member (in which case
there is price discrimination between all networks), or where all other networks are in
the same group (the case of a uniform off-net price). We obtain the following results on
equilibrium prices:

Proposition 3 1. Network i’s equilibrium on-net price satisfies the following condi-
tion:

Lii =
pii − cii
pii

=
1

η
−
σ (1 + γη)Hii

η

(
πi
α2i
+

n∑

j=1

Rij
Hji
Hii

)

. (8)

2. If network i sets uniform prices piK to different groups K of competing networks,
its average off-net Lerner index

L̄ij =

∑
K

∑
j∈K αj (piK − cij) /piK

1− αi

satisfies the condition

L̄ij =
1

η
−
(1 + γη)−1 − αi

1− αi

(
1

η
− Lii

)
. (9)

3. Network i’s profits are given by

πi = α
2
i

(
1

σHii

1− ηLii
1 + γη

−
n∑

j=1

Rij
Hji
Hii

)

. (10)

Proof. For on-net prices we obtain

dh

dpii
= (γpiiq

′
ii − qii) J

ii = − (1 + γη) qiiJ
ii.

Thus, using J ij = eie
′
j,

dα

dpii
= −σ (1 + γη) qiiHJ

iiα = −σ (1 + γη) qiiαiH·i,

where H·i is the ith column of H. Furthermore, dR
dpii

= (1− ηLii) qiiJ
ii, where Lii =

(pii − cii) /pii is the Lerner index for on-net calls. The first-order condition for profit-
maximization with respect to the on-net price is

dα′

dpii
J ii (Rα +Q− f) + α′J ii

dR

dpii
α+ α′J iiR

dα

dpii
= 0,
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which simplifies to

−Hii (Ri·α +Qi − fi)− αiRi·H·i +
αi (1− ηLii)

σ (1 + γη)
= 0 (11)

or

πi = α
2
i

(
1

σHii

1− ηLii
1 + γη

−
n∑

j=1

Rij
Hji
Hii

)

. (12)

Solving for Lii leads to the condition on the on-net price.

2. Assume that network i sets a uniform off-net price piK to a set K of other networks.
We have

dh

dpiK
= −qiKJ

iK + γpiKq
′
iKJ

Ki = −qiK
(
J iK + γηJKi

)
,

where J iK and JKi are matrices with ones at locations ij and ji where j ∈ K, respectively,
and zeros elsewhere. Thus

dα

dpiK
= −σqiKH

(
J iK + γηJKi

)
α = −σqiK

(
∑

j∈K
αjH·i + γηαi

∑

j∈K
H·j

)

The first-order condition for a profit maximum becomes

dα′

dpiK
J ii (Rα +Q− f) + α′J ii

dR

dpiK
α + α′J iiR

dα

dpiK
= 0,

where dR
dpiK

has elements qiK (1− ηLij), where Lij = (piK − cij) /piK at locations ij, j ∈ K,
and mjq

′
iK at locations ji, j ∈ K. Note that off-net costs cij may differ between receiving

networks j. This first-order condition can be rewritten as

0 = −

(
∑

j∈K
αjHii + γηαi

∑

j∈K
Hij

)

(Ri·α +Qi − fi)

−αiRi·

(
∑

j∈K
αjH·i + γηαi

∑

j∈K
H·j

)

+
αi
σ

∑

j∈K
αj (1− ηLij) .

Summing over all sets K, and making use of
∑

j �=iH·j = −H·i from Lemma 1, leads to

−Hii (Ri·α +Qi − fi)− αiRi·H·i +
αi (1− αi)

(
1− ηL̄ij

)

σ (1− αi − γηαi)
= 0, (13)

where L̄ij =
∑

j �=i αjLij/ (1− αi) is the weighed average Lerner index of off-net prices, or

πi = α
2
i

(
(1− αi)

(
1− ηL̄ij

)

σ (1− αi − γηαi)Hii
−

n∑

j=1

Rij
Hji
Hii

)

. (14)
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Taking the difference between the latter and (12) we obtain

(1− αi)
(
1− ηL̄ij

)

1− αi − γηαi
=
1− ηLii
1 + γη

,

from which the above result follows.

The condition describing on-net prices is the generalization to n asymmetric networks
of condition (12) in Laffont, Rey and Tirole (1998b) and (3) in Berger (2004). The result
on off-net prices is the generalization to n networks with asymmetric costs, and up to n
different off-net prices to groups of networks, of equations (6) in Laffont, Rey and Tirole
(1998b), (4) in Berger (2004) and (11) in Hoernig (2007) for two networks. It is remarkable
that the relationship between the average level of off-net prices, as measured by L̄ij, and
on-net prices remains the same even with many asymmetric networks.

The first term in the parenthesis of equilibrium profits (10) translates the type and
intensity of competition. Essentially, it describes by how much the marginal customer
must be compensated to make him change networks. As a result, higher transport cost
t and a larger preference space S(n), i.e. lower σ, both increase equilibrium profits. As
we will explain below, expression (10) also holds for both linear and multi-part tariffs,
with Lii taking on corresponding values. The second term then describes how marginal
changes in market share affect call profits.

If network i charges a uniform off-net price piu to all other networks, then we can
reformulate L̄ij as follows:

L̄ij =

∑
j �=i αj (piu − cij) /piu

1− αi
=
piu − c̄iof
piu

,

where c̄iof =
(∑

j �=i αjcij

)
/ (1− αi) is the weighted average off-net cost faced by network

i. Thus for a uniform off-net price, L̄ij simply becomes the Lerner index based on weighted
average off-net cost. Expression (9) allows us now to consider how the differential between
on- and uniform off-net prices evolves as a function of asymmetries and / or the number
of networks in the market.

Corollary 1 When networks compete in linear tariffs with uniform off-net prices, the
following holds for the differential between equilibrium on- and off-net prices:

1. For given αi, pii and c̄iof , piu−pii does not depend on the number of other networks,
nor on how asymmetric they are;

2. The differential piu − pii increases with average off-net cost c̄iof and, if γ > 0, with
market share αi.

Proof. Note first that (9) implies that L̄ij ≥ Lii, so that for c̄iof ≥ cii we have piu ≥ pii.
When we solve equation (9) for the uniform off-net price piu, we find

piu − pii =
c̄iof

γ(η−1)
(1+γη)(1−αi) +

(1+γη)−1−αi
1−αi

cii
pii

− pii.
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Thus the differential does not depend directly on n nor on the other networks’ character-
istics, but it increases in c̄iof , and also in αi if γ > 0.

Thus, similar to Hoernig (2007) for the duopoly case, our prediction is that under
linear tariffs the on-/off-net differential is larger on larger networks. Furthermore, with a
uniform off-net price the effect of each competing networks’ MTR aj is mediated through
the average off-net cost c̄iof . In particular, a small network’s MTR has a small effect on
c̄iof and thus on piu, which increases the small network’s incentives to unilaterally raise
its MTR.

Uniform prices. If networks set uniform prices, i.e. if they do not discriminate at
all between on-net and off-net calls as in Armstrong (1998) and Laffont, Rey and Tirole
(1998a), our approach from above still applies. Let the uniform prices be given by pi,
with corresponding demand qi = q(pi), utility ui = u(qi) and surplus vi = v(pi). We find
the following:

Proposition 4 If networks set uniform prices then the Nash equilibrium in linear tariffs
has the following properties:

1. Equilibrium uniform prices are defined by the condition

Li ≡
pi − c̄i
pi

=
1

η

(
1− σ (n− 1)

(
πi
α2i
− (ai − ā−i) qi − (ai − cti) (q̄−i − qi)

))
,

(15)

where c̄i =
∑n

j=1 αicij is average marginal cost.

2. Equilibrium profits are

πi = α
2
i

(
1− ηLi
σ (n− 1)

+ (ai − ā−i) qi + (ai − cti) (q̄−i − qi)

)
. (16)

Proof. Let V = (vi)i and U = (ui)i. With uniform prices we can write h = V E′ + γEU ′

and obtain

(I − σBh)B = B − σBV E′B + γBEU ′B = B,

since BE = E′B = 0. Thus H = (I − σBh)−1B = B, which implies that Hii = n − 1
and Hij = −1. Then adding (11) and (13) leads to

(

−
Hii
αi
πi − αi

n∑

j=i

RijHji

)

+
αi
σ

(
1− η

pi − c̄i
pi

)
= 0,

or

1− η
pi − c̄i
pi

= σ

(
n− 1

α2i
πi + (n− 1)Rii −

n∑

j=i

Rij

)
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from which the above results follow. Furthermore,

1

n− 1

∑

j �=i
Rij −Rii = (pi − cio − ā−i) qi + (ai − cti) q̄−i − (pi − cii) qi

= (ai − cti) q̄−i − (ā−i − cit) qi

= (ai − ā−i) qi + (ai − cti) (q̄−i − qi)

where ā−i =
1
n−1

∑
j �=i aj, q̄−i =

1
n−1

∑
j �=i qj.

Thus under uniform pricing call externalities do not influence equilibrium outcomes
(they still determine the first best, though), since call prices are set based on average
perceived marginal cost. Note that (15) is the generalization to multiple asymmetric
networks of (8) in LRT98a.13

Expression (16), on the other hand, is a generalization of equilibrium profits (6) of
Andersson and Hansen (2009), who considered a model of uniform pricing under inelastic
demand and thus had profits depending the MTR differential (ai − ā−i) qi. We will come
back to the economic significance of these equilibrium profits in Section 6.

3.2 Multi-Part Tariffs

In this section, we determine the equilibrium prices, fixed fees and market shares for the
case of competition in multi-part tariffs. We find the following:

Proposition 5 If networks compete in multi-part tariffs,

1. On-net prices are set efficiently at pii = cii/(1 + γ).

2. The uniform off-net price to a group K of competing networks is

piK =

∑
j∈K αjcij

∑
j∈K αj −

|K|
n−1γαi

. (17)

3. Equilibrium fixed fees are given by

F = f −Q+
(
R̂−R

)
α, (18)

where R̂ is an (n× n) matrix with elements R̂ii =
1

σHii
−
∑n

j=1
Hji
Hii
Rij and R̂ij = 0

for j �= i.

Proof. 1. In order to determine equilibrium call prices, we follow the standard procedure
of first keeping market shares α constant and solving (2) for Fi,

Fi =
n∑

j=1

αjvij + αiγuii −
αiγ

n− 1

∑

j �=i
uij + const,

13Note that in LRT98a, “π” denotes profit per subscriber, so that for n = 2 and symmetric networks
the two expressions are indeed identical.
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where “const” denotes terms that do not depend on network i’s prices. Substituting this
into profits leads to

πi = αi

(
n∑

j=1

αj (Rij + vij) + αiγuii −
αiγ

n− 1

∑

j �=i
uij

)

+ const. (19)

This expression can now be maximized over call prices. As concerns the on-net price,
network i solves

max
pii

{Rii + hii} = {(pii − cii) qii + vii + γuii} ,

which has first-order condition

qii + (pii − cii) q
′
ii − qii + γu

′
iiq
′
ii = 0.

Since u′ij = pij at the consumer’s optimal choice for all i, j = 1, ..., n, we obtain pii =
cii/(1 + γ).

2. Assume now that network i wants to set a uniform off-net price piK towards a group
K of other networks, solving

max
piK

{
∑

j∈K

(
αj [(piK − cij) qiK + viK ]−

αiγ

n− 1
uiK

)}

.

Here qiK = q(piK), viK = v(piK) and uiK = u(qiK). Performing similar calculations as
above leads to

piK =

∑
j∈K αjcij

∑
j∈K αj −

|K|
n−1γαi

.

3. Now we determine the equilibrium fixed fees. Take the call prices and fixed fees
of networks j �= i as given, and consider the first-order condition of network i’s profit
maximum in (6) with respect to its fixed fee:

∂πi
∂Fi

=
∂αi
∂Fi

(
n∑

j=1

αjRij + Fi +Qi − fi

)

+ αi

(
n∑

j=1

∂αj
∂Fi

Rij + 1

)

= 0.

From (5), for all i, j = 1, ..., n we have ∂αj
∂Fi

= −σHji, where Hji is the ji-element of matrix
H. The first-order condition can then be solved for Fi as

Fi = fi −Qi + αi

(
1

σHii
−

n∑

j=1

Hji
Hii
Rij

)

−
n∑

j=1

αjRij.

Letting R̂ be an (n× n) matrix with R̂ii =
1

σHii
−
∑n

j=1
Hji
Hii
Rij and R̂ij = 0 if j �= i, we

can write

F = f −Q+
(
R̂−R

)
α.
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Thus we confirm the standard result of the efficiency of on-net prices under multi-part
tariffs for the case of many asymmetric networks. If there are no call externalities (γ = 0)
then pii = cii, while in the presence of the latter the efficient on-net price is below cost.

As concerns the off-net prices, in the absence of call externalities they are equal to
weighted average off-net cost:

piK =

∑
j∈K αjcij∑
j∈K αj

.

This is a natural generalization of the result for two networks. Furthermore, as in Jeon
et al. (), Berger (2005) and Hoernig (2007), the off-net prices increase in γ and are above
(weighted average) off-net cost if γ > 0. Expression (17) shows that network i sets its
off-net price to a set K of networks as if it was setting a uniform off-net price to all
networks, assuming they all have the same average market share as those in the set K.

Two special cases of off-net prices are a uniform off-net price

piu =

∑
j �=i αjcij

1− αi − γαi
,

and price discrimination between all networks, with

pij =
αjcij

αj −
1
n−1γαi

.

We now consider equilibrium profits and market shares.

Proposition 6 Equilibrium profits and market shares are, respectively,

π∗i = α2i

(
1

σHii
−

n∑

j=1

Hji
Hii
Rij

)

, (20)

α∗ =
(
I − σB

[
h+R− R̂

])−1
(α0 + σB (Q− f)) . (21)

Proof. The expression for profits results from substituting equilibrium fixed fees into (6).
Finally, substituting fixed fees into (4) yields the condition for the equilibrium market
share.

One should take note that the expression for equilibrium profits (20) is very similar
to the one in (10). Indeed, this similarity is no coincidence:

Corollary 2 At the respective on-net prices, the expressions for equilibrium profits (10)
under linear tariffs and (20) under multi-part tariffs are formally identical.

Proof. With pii =
cii
1+γ

, we have 1−ηLii
1+γη

= 1. Thus (20) can we written as (10).

The same argument holds for expression (14), since at the off-net prices (17) the
average Lerner index has value L̄ij = γ αi

1−αi , which again makes the additional term
disappear in (14). These observations imply that the fundamental difference between
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competition in linear and multi-part tariffs lies in how usage prices are set, rather than
in the existence or not of a fixed fee. Maybe surprisingly, the expression for equilibrium
profits under linear tariffs turns out to be more general than the one under multi-part-
tariffs, rather than less, as it applies to both cases (with different levels of retail prices,
sure enough).

Note that an alternative expression for equilibrium profits under multi-part tariffs is
π∗i = α

′J iiR̂α, which leads to the handy expression for joint equilibrium profits of

n∑

i=1

πi = α
′R̂α.

The right-hand side of (21) depends indirectly on α through h+R− R̂ and off-net prices.
Contrary to the two-network case, this is true even if there are no call externalities, since
in this case the off-net prices are equal to off-net costs weighted by market shares. Only
if off-net costs (including mobile termination rates) are symmetric will the dependence
on α disappear. In the latter case (21) gives an explicit solution for market shares, but
otherwise numerical methods need to be employed.

Uniform prices. Here we again derive equilibrium outcomes under uniform pricing,
this time under multi-part tariffs.

Proposition 7 If networks set uniform prices then the Nash equilibrium in multi-part
tariffs has the following properties:

1. Equilibrium uniform prices are

pi =
n∑

j=1

αjcij.

2. Equilibrium fixed fees and profits are

F = f −Q+
(
R̂−R

)
α,

πi = α2i R̂ii,

where

R̂ii =
1

σ (n− 1)
+ (ai − ā−i) qi + (ai − cti) (q̄−i − qi) . (22)

Proof. With uniform prices, the call externality terms in (19) cancel, and network i
maximizes over pi:

n∑

j=1

αj ((pi − cij)qi + vi) = (pi −
n∑

j=1

αjcij)qi + vi.
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The equilibrium prices follow immediately.
As concerns fixed fees and profits, (18) and (20) still apply, but we can simplify the

expression for R̂ii. Remember from above that under uniform pricing Hii = n − 1 and
Hij = −1. Thus

R̂ii =
1

σ (n− 1)
−Rii +

1

n− 1

∑

j �=i
Rij

=
1

σ (n− 1)
+ (ai − ā−i) qi + (ai − cti) (q̄−i − qi)

where ā−i =
1
n−1

∑
j �=i aj, q̄−i =

1
n−1

∑
j �=i qj as defined above.

Thus as with linear tariffs, under uniform pricing call externalities do not influence
equilibrium outcomes. In this case call prices are set equal to average perceived marginal
cost. Expression (22) now is the generalization as much of the equilibrium profits πi =
1/4σ in LRT98a (p. 21) to many asymmetric networks as of (6) in Andersson and Hansen
(2009) to elastic demand and multi-part tariffs. See Section 6 for a discussion the effect
MTRs under uniform pricing.

4 Theory: More Results for Symmetric Networks

4.1 Preliminaries

In this section we will revisit the equilibrium outcomes under the assumption of symmetry
and present the new results that arise. First of all, though, we will consider how the size
of the preference space S(n) affects equilibrium outcomes as the number of networks
becomes large.

Under symmetry, market shares are αi = 1/n. Denote perceived marginal costs as con
and cof for on- and off-net calls, respectively. The equilibrium surplus from on- and off-net
calls is hon and hof , withHon = Hii andHof = Hij. Let R (p) = (p− con) q, Ron = R(pon),
Rof = R(pof),

14 and F0, Q0 and f0 be equilibrium fixed fees, FTM termination profits
and fixed cost per subscriber, respectively. Monopoly call prices are pmon = ηcon/(η − 1)
and pmof = ηcof/(η − 1). Thus profits from (6) become

π =
1

n

(
1

n
Ron +

n− 1

n
Rof + F0 +Q0 − f0

)
. (23)

Our first result is of technical nature and applies to both linear and multi-part tariffs:

Lemma 5 With n symmetric networks, we have

Hon =
n− 1

1− nσ (hon − hof )
, Hof = −

1

1− nσ (hon − hof)
. (24)

14The occurrence of con in Rof is not a typo – it is due the cancelling-out of mobile-to-mobile inter-
connection payments under symmetry.
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Proof. Remember that BB = nB and that with symmetric networks and prices Bh =
(hon − hof )B. Then

B = (I − σBh)−1 (I − σBh)B = (I − σBh)−1 [B − σ (hon − hof )BB]

= [1− σn (hon − hof)] (I − σBh)
−1B = [1− σn (hon − hof)]H.

Thus H = B/ [1− σn (hon − hof)].

It now follows from both Lemma (2) and Proposition (1) that if the symmetric equi-
librium is stable in customer expectations then Hon > 0 and Hof < 0.

4.2 The Size of the Preference Space

An important characteristic of any model involving many firms is the limiting behaviour
of equilibrium outcomes as the number of firms becomes large. In models with a fixed
mass of consumers, such as ours, clearly each firm’s market share and profits converge to
zero as long as profits per consumer remain bounded. A wholly different and more inter-
esting question is whether networks maintain some local market power, or put differently,
whether industry profits are positive in the limit. As Chen and Riordan (2007, p. 898)
have pointed out, for example in the Salop circular city model (1979) each firm’s demand
elasticity converges to infinity as the number of networks grows, and as a result industry
profits converge to zero. Chen and Riordan’s model, on the other hand, is constructed
with the explicit intention of keeping a degree of local market power. It converges to mo-
nopolistic competition as the number of firms becomes large, and industry profits remain
bounded away from zero.

We will now show that whether one or the other happens in our modelling framework
depends on the distance between networks l(n) in preference space. For simplicity, con-
sider multi-part tariffs. From (5), in our model demand elasticity with symmetric tariffs
is

εH = −
dαi
dFi

Fi
αi
= nσHonF0 =

1

tl(n)− (hon − hof) /(n− 1)
F0.

First of all, as indicated in Proposition 1, if there are tariff-mediated network externalities,
i.e. hon > hof , then the symmetric equilibrium becomes unstable for large n if S(n)/n
converges to zero.15 On the other hand, if the same expression is assumed to increase
then stability is not only maintained by strengthened. In the limiting case S(n)/n → k
for some positive constant k stability is maintained if k > (hon − hof) /2t.

Abstracting now from the issue of stability by assuming hon ≤ hof or limn→∞
(n−1)l(n)
hon−hof >

1
2t
, we can now look at the demand elasticity itself. Clearly it becomes infinite if l(n)

converges to zero, which is the case in particular if S(n) grows linearly with n as in
Armstrong and Wright (2009) or if the size of the preference space is constant. Thus
under the latter assumptions industry profits will converge to zero.

15This argument applies both to given tariffs and when hon > hof in the limit for a sequence of
equilibrium tariffs for each n.
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On the other hand, if l(n) converges to a positive constant then the size of the prefer-
ence space is of the order of n2, as in von Ungern-Sternberg (1991) and Chen and Riordan
(2007). In this case the demand elasticity remains finite and industry profits are positive
in the limit.

These considerations also allow us to draw an interesting parallel with the logit model,
as for example employed by Calzada and Valletti (2008). Assuming for simplicity hon =
hoff , and denoting the differentiation parameter µ(n), market shares are given by

αi =
exp (−µ(n)Fi)∑n

j=1 exp (−µ(n)Fj)
, (25)

with demand elasticity

εL = µ(n)αi (1− αi)
F0
αi
=
(n− 1)µ(n)

n
F0 ∼ µ(n)F0.

Thus in the logit model, as the number of networks becomes large, demand elasticity
remains finite and the model becomes one of monopolistic competition, if and only if it
is assumed that µ(n) → µ̄ <∞. In particular, for a large number of networks, the logit
model with a constant differentiation parameter µ should lead to similar predictions as
our model with l(n) constant, or, equivalently, if σ(n)n2 converges to µ.

4.3 Symmetric Equilibrium with Linear Tariffs

We will now consider how equilibrium outcomes change under linear and multi-part tar-
iffs, respectively. With linear tariffs, the condition describing symmetric off-net prices
becomes, with Lon = Lii and Lof = Lij = L̄ij ,

Lof =
1

η
+
n (1 + γη)−1 − 1

n− 1

(
Lon −

1

η

)
. (26)

As for the case with two networks (see Hoernig 2007), this relation between off-net and
on-net Lerner indices is given by a straight line that passes through the monopoly point(
1
η
, 1
η

)
. With γ = 0 both Lerner indices are equal, while Lof > Lon for γ > 0 as long

as the on-net price is smaller than the monopoly price. As a result, we have pof > pon
whenever either γ > 0 and cof ≥ con. Actually, we have Lof > 1/η, i.e. the off-net price
is above the monopoly price based on the perceived off-net cost, whenever γη > n − 1
(generalizing Berger (2004) where n = 2).

We can now state how the number of networks influences the equilibrium prices. Since
it makes performing comparative statics significantly easier we assume a constant demand
elasticity.

Proposition 8 Assume that demand elasticity is constant at η > 1 and consider stable
Nash equilibria in linear tariffs.

1. If t is large enough and R
(
pmof
)
+ Q0 > f0, or if γ ≈ 0 and a ≈ ct, both on- and

off-net prices decrease in n if l(n) decreases.
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2. If γ ≈ 0, and either τ large enough or a ≈ ct, then the on/off-net differential de-
creases in n if mobile-to-mobile termination rates are above cost and l(n) decreases.
If γ > 0 or a > ct, the off-net price remains bounded away from the on-net price.

3. As the number of networks becomes large, the off-net price converges to the (Ramsey)
break-even price, and industry profits converge to zero, if and only if l(n) converges
to zero.

Proof. In the following assume that the stability condition holds for the n considered,
i.e. that (hon − hof ) < 2tS(n)/n.

1. With symmetric networks and constant-elasticity demand, the Nash equilibrium is
defined by the two conditions (8) and (26), or with τ ≡ 1/t,

τ [2Ron + (n− 2)Rof + n (Q0 − f0)] +
nτ (hon − hof)− 2S(n)

n− 1

1− ηLon
1 + γη

= 0, (27)

pof − cof
pof

−
1

η
−
n (1 + γη)−1 − 1

n− 1

(
pon − con
pon

−
1

η

)
= 0. (28)

We will now determine how pon and pof look like close to τ = 0, i.e. we will express
them as functions of τ for small τ . From the above first-order conditions it follows that,
for given n, in the limit τ = 0 networks set monopoly prices pmon = ηcon/(η − 1) and
pmof = ηcof/(η − 1), with corresponding call profits Rmon = R (pmon) and R

m
of = R

(
pmof
)
.

Letting pon = p
m
on − δτ and expanding (27) around τ = 0 results in

φn − δ
2S(n) (η − 1)

(n− 1) (1 + γη) pmon
+O (τ ) = 0,

where φn = 2
(
Rmon −R

m
of

)
+ n

(
Rmof +Q0 − f0

)
is positive by Rmon ≥ Rmof > Q0 − f0.

Solving for δ implies that for small τ we have

pon = p
m
on −

φn
nl(n)

pmon (1 + γη)

(η − 1)
τ + O

(
τ 2
)
. (29)

Clearly, φn/nl(n) increases in n if l(n) decreases.
Solving (28) for pof and expanding pof about τ = 0 leads to

pof = pmof −
n− 1− γη

(1 + γη) (n− 1)

pmof
pmon
δτ +O

(
τ 2
)

= pmof −
(n− 1− γη)φn
n(n− 1)l(n)

pmof
η − 1

τ +O
(
τ 2
)

(30)

Now (n− 1− γη)φn/n(n− 1)l(n) increases with n if l(n) decreases while n− 1 ≥ γη.
On the other hand, at γ = 0 and a = ct condition (28) implies pof = pon. Applying

the implicit function theorem to (27)

Ron +Q0 − f0 − tl(n) (1− ηLon) = 0
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we obtain

dpon
dn

=
dpof
dn

=
1− ηLon

τR′on + l(n)η
con
p2on

l′(n).

Since the leading factor is positive, both derivatives are negative if l(n) decreases.
In both cases, the result then follows by continuity.
2. If γ = 0 then pof = poncof/con, and we have pof − pon = (cof/con − 1) pon. This

decreases with pon but remains positive in the limit because pof will not go below the
break-even price.

If γ > 0, note that
(
n (1 + γη)−1 − 1

)
/(n − 1) increases with n towards the limiting

value 1/(1 + γη). Thus as n increases the difference in Lerner indices becomes smaller
and converges to a limit value. Even if termination is priced at cost the off-net price will
remain above the on-net price by the factor δ given by

ponδ − con
ponδ

−
1

η
=

1

1 + γη

(
pon − con
pon

−
1

η

)
,

or δ = (1+γη)con
(η−1)γpon+con > 1 since pon is below the monopoly price ηcon/(η − 1).

3. As n→∞, (27) becomes

Rof +Q0 − f0 =
t (1− ηLon)

1 + γη
lim
n→∞

l(n).

While it is not surprising that call prices decrease as the number of networks increases
and the preference space does not extend too fast, it is not obvious that the off-net price
decreases faster than the on-net price. The latter does occur because off-net calls come to
make up a larger and larger portion of calls on each network, increasing the cost of setting
high off-net prices for strategic reasons. As we have seen, this strategic incentive does
not disappear in the limit in the sense that the on-net price will remain below the off-net
price, but is weakened since in the limit all call revenue is brought in through off-net calls.

Finally, competition drives the price for these off-net calls towards the break-even
level if the preference space does not expand fast enough. Indeed, the last point of the
Preposition confirms our findings about call elasticities: Industry profits are positive (and
finite) in the limit if l(n) converges to a constant. If l(n) decreases to zero then industry
profits converge to zero.

4.4 Symmetric Equilibrium with Multi-Part Tariffs

Since Nash equilibria with multi-part tariffs are more amenable to analysis than under
linear tariffs, the case of symmetric equilibria with many networks has already been
considered by several authors, such as Calzada and Valletti (2008) under logit demand
and Armstrong and Wright (2007). The latter also considered call externalities, but of a
different functional form. Thus our results complement both previous papers.

With multi-part tariffs and symmetric networks, the on-net price remains equal to
pon = con/(1 + γ). The off-net price becomes

piu = piK = pij =
n− 1

n− 1− γ
cof . (31)
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This off-net price decreases with n and converges to perceived marginal cost cof as the
number of networks becomes large. As with linear tariffs (at least under certain conditions
on model parameters), the on/off-net differential decreases if more networks are present
since the on-net price remains constant at the efficient level.

Fixed fees are

F0 = f0 −Q0 + tl(n)−
hon − hof
n− 1

−
2

n
Ron −

n− 2

n
Rof ,

and equilibrium network profits can be written as

π =
1

n

(
tl(n)−

hon − hof
n− 1

+
1

n
(Rof −Ron)

)
. (32)

Clearly, industry profits converge to t limn→∞ l(n), which as under linear tariffs converge
to zero if and only if l(n) converges to zero.

Armstrong and Wright (2007), assuming call externalities of the form bqof , rather than
γu (qof ), obtain equilibrium call prices of (in our notation):

pon = con − b, pof = cof +
b

n− 1
.

They do not state the equilibrium value of fixed fees, while individual networks’ profits
are (their Π/K from (21), in our notation)

π =
1

n2

(
2t−

n

n− 1
(hon − hof)−Ron +Rof

)
.

This is formally equal to (32) with S(t) = (n − 1), as mentioned before, and therefore
profits per subscriber converge to zero.

The corresponding expressions for equilibrium fixed fees and profits in Calzada and
Valletti (2008) are (using our notation of (25), with Ron = 0 and Rof = mqof due to the
absence of call externalities)

F0 = f0 −Q0 +
n− µ (von − vof )

µ (n− 1)
−
n− 2

n
mqof

π =
1

n

(
n− µ (von − vof )

µ (n− 1)
+mqof

)

These expressions are equal to ours for σ(n) = µ/n2. As we have pointed out above, when
the number of networks becomes large one should expect industry profits to converge to a
finite value in the logit model, and this is indeed what we find since n/(n−1)µ→ 1/µ > 0.

We have noted above that as the number of networks grows most calls become off-net
calls. Thus one should expect that consumers would benefit from lower off-net prices.
On the other hand, it has been shown in the duopoly models such as Gans and King
(2001) that tariff-mediated network externalities caused by high off-net prices more than
compensate consumers because they make networks compete harder through lower fixed
fees. We now show that this is no longer true with more networks, i.e. the direct effect
on consumers of higher off-net prices will outweigh the competition-enhancing network
effects.
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Proposition 9 In symmetric equilibrium in multi-part tariffs, consumer surplus decreases
in the off-net price if the number of networks is large enough, i.e. n > ñ where ñ > 2 and
is defined by

(ñ− 2) (ñ− 1) =
1 + γη

η (cof − con) /cof + γη
.

Proof. In symmetric equilibrium with multi-part tariffs, consumer surplus becomes

CS = A+
1

n
hon +

n− 1

n
hof − F0 −

t

4
l(n)

=
n− 2

n
(Rof + hof)−

1

n (n− 1)
hof + const, (33)

where the last constant does not depend on pof . Then

dCS

dpof
=

n− 2

n

(
pof − con
pof

+ γ

)
pofq

′
of +

1

n (n− 1)

(
qof − γpofq

′
of

)

=

[
−
n− 2

n
η

(
pof − con
pof

+ γ

)
+

1 + γη

n (n− 1)

]
qof

Since pof ≥ cof for all n ≥ 2 and γ ≥ 0, an upper bound ñ on the number of networks
that are necessary for consumer surplus to be decreasing in pof is given by

−
ñ− 2

ñ
η

(
cof − con
cof

+ γ

)
+

1 + γη

ñ (ñ− 1)
= 0

or

(ñ− 2) (ñ− 1) =
1 + γη

cof−con
cof

η + γη

Since the term on the left is increasing in n ≥ 2, for any n > ñ we have dCS/dpof < 0.

Note that the first term in (33), which translates total welfare created by one off-net
call, does not exist in duopoly models since there n = 2. Furthermore, as the number
of networks increases this term becomes rapidly much more important (by a factor of
n2) than the second one which indicates tariff-mediated network effects. Thus even for
markets with few more than two networks high off-net prices will lower consumer surplus
even if they make networks compete more fiercely at the same time. Indeed, Harbord
and Hoernig (2010) found exactly this effect in their calibration of the market for mobile
telephony in the United Kingdom.

5 Application 1: Fixed-To-Mobile Termination and

the Waterbed effect

In this section we will explore what our previous results imply for the fixed-to-mobile
“waterbed effect”, i.e. the statement according to which termination profits accruing
from interconnection to the fixed network lead to reductions in prices for mobile retail
customers. We will not consider the individual incentives of networks to set higher fixed-
to-mobile termination rates, as in Gans and King (2000) and by Wright (2002). Rather,
we are interested in the equilibrium effect of changes in the (regulated) termination rate.
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Linear Tariffs. With linear tariffs, by (11) and (13), ∂2πi/∂pii∂Qi and ∂
2πi/∂pij∂Qi

both have the sign of −Hii < 0. Thus higher fixed-to-mobile profits Qi on network i
lowers both pii and pij, and its market share increases. Thus each network on its own
prefers being able to charge a high termination charge for fixed-to-mobile calls. As long
as prices are strategic complements, all equilibrium prices will fall in response.

A different issue is to what extent all mobile networks and their subscribers benefit
from higher fixed-to-mobile termination charges. The following proposition gives the
answer:

Proposition 10 (rewrite) Assume that demand elasticity η is constant. If networks
are sufficiently symmetric, and call externalities and mobile-to-mobile termination rates
are small, then under linear tariffs equilibrium call prices decrease and industry profits
increase in fixed-to-mobile termination profits, with networks keeping the share of

ω ≈
tl(n)

tl(n) +R′onp
2
on/ηcon

.

Proof. We show that the result holds for symmetric networks, zero call externalities and
cost-based mobile-to-mobile termination. The general case then follows by continuity.
Assume Qi = Q0 for all i, and consider a change in Q0. With n symmetric networks, we
have pof = pon and the on-net price is given by condition (27) through

Ron +Q0 − f0 − tl(n) (1− ηLon) = 0.

With R′on = dRon/dpon = qon (1− ηLon), we have

dpon
dQ0

= −
1

R′on + tηl(n)con/p
2
on

< 0,

and the effect on industry profits is given by

dnπ

dQ0
=

d

dQ0
(Ron +Q0 − f0) = R

′
on

dpon
dQ0

+ 1

=
tl(n)

tl(n) +R′onp
2
on/ηcon

> 0.

Thus of each additional cent of fixed-to-mobile termination profits the networks keep
the share ω and pass the rest 1 − ω on to subscribers through lower call prices. The
extent of the waterbed effect under linear tariffs depends on the size of tl(n), that is:
Lower transport cost t, or smaller distance between networks in preference space, leads
to more intense competition between networks and therefore networks retain a smaller
share ω of these termination profits. This waterbed effect is full, and even then only in
the limit, if and only if l(n) converges to zero.
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Multi-part tariffs. With multi-part tariffs the outcome is much easier to establish:
Remember from (18) that equilibrium fixed fees are given by

F = f −Q+
(
R̂−R

)
α,

where Q is the vector of per-customer profits from fixed-to-mobile termination, and that
call prices do not depend on Q. Thus with multi-part tariffs all termination profits are
handed over to mobile consumers through lower fixed fees, i.e. there is a full waterbed
effect on each individual network, even in the case of a Nash equilibrium with many asym-
metric networks. As a consequence, equilibrium profits do not depend on the common
level of fixed-to-mobile termination profits. On the other hand, profits do respond to
changes in one’s own Qi, as can be seen from (21).

While the result of a full waterbed is clear in this context, it is not robust to modelling
changes. As we have seen above, changing the type of tariff already leads to a less than
full waterbed effect. Wright (2002), who showed that the waterbed effect is full for n
symmetric networks, also made clear that this result is an artefact of the Hotelling model
where market-wide (fixed) cost increases do not feed through into lower profits. If costs
do feed through, for example because subscription demand is elastic, then networks retain
some termination revenue and the waterbed effect again is not full. Genakos and Valletti
(2009) show this directly for a model with a logit demand structure.

Finally, while in the present model the waterbed effect is full in aggregate and at
the level of each single network, Hoernig (2008) showed in a dynamic model of network
competition that, while the waterbed effect is still full on aggregate, networks with high
(low) fixed-to-mobile termination profits retain (overcompensate) a part of the latter.
Essentially, what is at work here is a dynamic version of the “fat cat effect”, while networks
with small Qi subsidize customer acquisition from other sources.

6 Application 2: Mobile-to-mobile termination

In this section we consider the effects of mobile-to-mobile termination on prices and profits.
For simplicity, we assume that networks are symmetric.

Linear tariffs. Under linear tariffs, we obtain the following results. Point 1 in particular
is new and surprising at first sight.

Proposition 11 Assume demand elasticity η > 1 is constant and that networks are
symmetric.

1. For large t and a > ct both on- and off-net prices increase in a if n > 2.

2. If γ is small and a ≈ ct, then the on-net price decreases and the off-net price
increases in a.

3. If γ is small and t is large then profits are increasing in a at a = ct.
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Proof. 1. For large t, i.e. small τ = 1/t, we have from (29) and (30) that

dpon
da

= (n− 2)
[
−R′(pmof)

] pmon (1 + γη)
nl(n) (η − 1)

dpof
da
τ + o (τ)

dpof
da

=
η

η − 1
+ o (τ )

The off-net price increases with the MTR to first-order, while the on-net price increases
if n > 2 and a > ct because then R

′(pmof) < 0.
2. Assume now γ = 0, with pof =

con+a−ct
con

pon. The first-order condition for the on-net
price becomes

2

n
Ron +

n− 2

n
Rof +

(
von − vof
n− 1

− tl(n)

)
(1− ηLon) = n (f0 −Q0)

implying the effect on the on-net price at a = ct of

dpon
da

∣∣∣∣
a=ct

= −
n−2
n
R′on

pon
con
+ qon(1−ηLon)

n−1
pon
con

2
n
R′on +

n−2
n
R′on + tl(n)η

con
p2on

= −

(
(n− 1)2 + 1

)
R′onpon/con

n (n− 1)R′on + tS(n)ηcon/2p
2
on

< 0,

and on the off-net price of

dpof
da

∣∣∣∣
a=ct

=
1

con
pon +

dpon
da

∣∣∣∣
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=
(n− 2)R′on + tS(n)ηcon/2p

2
on

n (n− 1)R′on + tS(n)ηcon/2p
2
on

pon
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> 0.

The results for small but positive γ follow by continuity.
3. Symmetric equilibrium profits are

π =
1

n

(
1

n
Ron +

n− 1

n
Rof +Q0 − f0

)
,

and we have at γ = 0

d (nπ)
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2
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R′onpon
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.

The latter is positive if t is large enough.

Points 2 and 3 generalize corresponding results in the duopoly models of Laffont, Rey
and Tirole (1998b) and Berger (2004), the latter with call externalities, to an arbitrary
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number of symmetric networks. Off-net prices increase in a since it directly raises off-net
cost. Profits increase due to these higher off-net prices, even though at a = ct on-net
prices decrease.

Still, contrary to what was “visible” in the existing literature on duopoly models, point
1 shows that the decrease in on-net prices no longer occurs if a > ct and there are more
than two networks in the market. As the proof of the Proposition indicates, the fact that
for large transport cost and a > ct the off-net price is set above p

m
on implies that networks

make smaller profits from reciprocal off-net calls as compared to poff = p
m
on. These smaller

profits then lead to lessening of competition for subscribers and therefore higher on-net
prices. Note that the corresponding term in dpon/da disappears if n = 2.

Multi-part tariffs. As concerns multi-part tariffs, for simplicity we again consider the
symmetric equilibrium. We derive a generalization of the result of Gans and King (2001) to
n networks, and compare our results with those of Calzada and Valletti (2008) who made
a similar analysis for symmetric networks under a logit demand specification. Industry
profits are

nπ = tl(n) +
hof − hon
n− 1

+
Rof −Ron

n
. (34)

The effect of the mobile-to-mobile MTR a on profits is indirect, through the effect of the
off-net price pof on hof and Rof . As we have seen in the proof of point 1 of Proposition 5, if
both hof and Rof had the same relative weight in profits then pof would be set efficiently.
As it happens, though, with n networks hof has larger weight n/(n − 1) relative to Rof ,
which implies that networks want to set an off-net price that is lower than the socially
optimal value. This is what Gans and King (2001) have shown for n = 2. On the other
hand, our result implies that this effect becomes less strong as n becomes large since
n/(n − 1) → 1. Formally, when choosing their jointly profit-maximizing off-net price,
networks maximize

n

n− 1
(vof + γuof) + (pof − con) qof .

The maximum is obtained at

pof =
(n− 1) con

nγ + n− 1 + 1/η
<

con
1 + γ

= pon.

The above expression for pof and (31) then imply

a = ct −
(n+ 1) γη + 1

nγη + (n− 1) η + 1
con. (35)

The above discussion is summed up in the following Proposition:

Proposition 12 If networks compete in multi-part tariffs, the jointly profit-maximizing
MTM termination rate is set below the efficient level. It decreases in γ and increases in
η and n.
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Thus a will be lower in the presence of call externalities. This is intuitive, as the aim
of setting a low MTR is to reduce network effects which make networks compete harder.
These network effects are stronger in the presence of call externalities.

As for related results in the literature, Armstrong andWright’s (2007) profit-maximizing
off-net price and MTR can be stated as

pof =
(n− 1) con − nb

n− 1 + 1/η

a = ct −
con

(n− 1) η + 1
−
(n2 − 1) η + 1

ηn− η + 1

b

n− 1
.

While the expressions differ somewhat from those in our model, the implied economic
effects are the same. For γ = b = 0, (35) and the latter result on MTRs can be rewritten
as

a− ct
con

= −
1

(n− 1) η + 1
, (36)

which is identical to Calzada and Valletti (2008, p. 1231). Thus this result seems fairly
robust to different specifications of demand which assume full coverage.

As the number of networks increases, the joint profit-maximizing MTR converges
towards a = ct −

γ

γ+1
con while pof converges to the efficient call prices con/(1 + γ) (in

Armstrong and Wright, similarly pof → con− b and a→ ct− b). The MTR remains below
cost because the jointly profit-maximizing off-net price converges to the efficient price.
Therefore the MTR converges to cost only in the absence of call externalities.

Together with our result from Proposition 9 this implies that for the case of multiple
networks there is no trade-off between increasing welfare and profits on the one hand, and
lower consumer surplus on the other, due to lower termination rates. Indeed, consumers
and networks will share the benefits from bringing termination rates down closer to their
efficient level.

Uniform tariffs. As a final point we consider termination rates under both linear and
multi-part uniform tariffs. Remember that profits under uniform tariffs are

πi = α
2
i

(
1− ηLi
σ (n− 1)

+ (ai − ā−i) qi + (ai − cti) (q̄−i − qi)

)
,

where Li = 0 with a uniform two-part tariff. In symmetric equilibrium, industry profits
become

nπ = tl(n) (1− ηL) ,

where L increases in a under linear tariffs and continues equal to zero under two-part
tariffs. Thus the result that profits increase in the MTR under linear tariffs holds true
even with many networks, and continues to be true if they are asymmetric.

On the other hand, it is clear that while industry profits are independent of the
MTR under symmetry if firms charge multi-part tariffs, departures from the symmetric
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setting immediately show that this “profit neutrality result” is not robust, as for example
mentioned in Andersson and Hansen (2009). In general, whether a higher or lower MTR
increases profits depends on networks’ relative size. Call prices are equal to average cost
and the latter will be lower on larger networks due to their larger share of on-net calls.
Thus if all networks set the same MTR a large networks set a lower call price and originate
longer calls. The above expression for profits shows that in this case larger networks would
prefer smaller MTRs than small networks, who would become net receivers of traffic.

7 Conclusions

In the preceding sections, we have presented an extension of network competition models
with tariff-mediated externalities to an arbitrary number of networks with asymmetric
costs and market shares, developing the equilibrium theory and presenting applications
to the effects of mobile termination rates. Apart from demonstrating that this extension
is tractable and generates new insights on the theory side, we have demonstrated that
in going beyond the duopoly case some acquired policy conclusions from duopoly models
must be reconsidered in the more realistic case of at least three competing networks.

We believe that our modelling work on the theory side opens the doors to more prac-
tical and policy-relevant exercises, such as Harbord and Hoernig (2010) which is based
on the present work, while the practical insights are immediately relevant for the ongoing
policy debate on mobile termination regulation.

Issues that we have not dealt with here are variable subscription demand and non-
uniform calling patterns.16 While their incorporation into the present modelling frame-
work is straightforward, for reasons of space they will be analyzed in separate papers.
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