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1. Introduction

Networks represent connections existing among individuals, firms, and
institutions. Connections may comprise friendship ties, financial exchanges,
risk sharing, collaboration between economic agents in technological areas,
exchange of information, trade agreements, conversation, familial relations,
co-membership in associations, joint presence at events, etc. Network anal-
ysis examines the implications of these patterns for social, political, and
technological processes. In all these settings, the outcome of agents depends
on the structure of the network.

Key characteristics of real-world social and economic networks are:

(i) A small average shortest path length between any pair of agents [Albert and Barabási,
2002].

(ii) A high clustering, which means that the neighbors of an agent are
likely to be connected [Watts and Strogatz, 1998].

(iii) An inverse relationship between the clustering coefficient of an agent
and her degree [Goyal et al., 2006; Pastor-Satorras et al., 2001]. The
neighbors of a high degree agent are less likely to be connected among
each other than the neighbors of an agent with low degree. This means
that empirical networks are characterized by a negative clustering-
degree correlation.

(iv) A highly skewed degree distribution. While some authors [e.g. Barabási and Albert,
1999] find power law degree distributions, others find either deviations
from power-laws, like e.g., Newman [2004], or exponential distributions
[Guimera et al., 2006].

(v) Degree-degree correlations for economic networks. Newman [2002,
2003] has shown that many social networks tend to be positively corre-
lated. In that case, the network is said to be assortative. On the other
hand, technological networks such as the internet [Pastor-Satorras et al.,
2001] display negative correlations. In that case, the network is said
to be dissortative. Others, however, find negative correlations in so-
cial networks such as the Ham radio network consisting of interac-
tions between amateur radio operators [Killworth and Bernard, 1976]
or the affiliation network in a Karate club [Zachary, 1977]. Networks in
economic contexts may have features of both technological and social
relationships [Jackson, 2008]. Indeed, there exist networks with posi-
tive degree correlations such as the venture capitalist one [Mas et al.,
2007] as well as negative degree correlations as in the world trade web
[Serrano and Boguñá, 2003], online social communities [Hu and Wang,
2009] and bank networks [De Masi and Gallegati, 2007; May et al.,
2008].

To fathom these different aspects and to match the observed structure
of real-life networks, one has to analyse how and why networks form, and
what are the mechanisms that describe their evolution over time.
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We are interested in two different approaches describing the emergence
of networks. On the one hand, there are models describing network forma-
tion in a purely stochastic way (mostly developed by mathematicians and
physicists): networks are either grown through the sampling of a stochastic
process, and links appear at random according to some distribution, or built
according to some algorithm. In the other approach (mostly developed by
economists), the reason for the formation of a link lays on strategic interac-
tions. Individuals carefully decide with whom to interact and this decision
entails some consent by both parts in a given relationship (see [Jackson,
2007, 2008] for a complete overview of these two approaches). There is also
another literature, which we will refer to as “games on networks”, which
takes the network as given and studies how the network structure impacts
on outcomes and individual decisions. A prominent paper of this literature
is Ballester et al. [2006]. Their main finding is that if agents’ pay-offs are
linear-quadratic, and embedded in a network, then the unique interior Nash
equilibrium of the corresponding n−player game, is such that each individ-
ual effort is proportional to the Bonacich centrality measure, a well-known
measure in sociology introduced by Bonacich [1987].1

In a previous paper [König et al., 2009], we have combined all these three
different approaches (i.e. random and strategic network formation as well
as games on networks) to characterize the stationary distribution of emerg-
ing networks. In this model, agents form and severe links by basing their
decisions on the centrality of their potential partners. We have considered
different types of centrality measures and have shown that the dynamics
of network formation as well as the stationary distribution do not depend
on the type of centrality measure considered. One of the main results of
König et al. [2009] is to show that the networks that emerge at any moment
of time (and of course at the steady state) are nested-split graphs. These
networks have properties which can also be found in many real-world net-
works. In particular, the stationary networks (which are nested split graphs)
are characterised by short path length, high clustering, a power-law tail in
the degree distribution, and dissortativity.

The aim of the present paper is to extend König et al. [2009] by intro-
ducing a new mechanism that may explain the emergence of assortativity in

1
In fact, centrality is a fundamental measure of the importance of actors in social net-

works and its importance was already stressed in early works such as Bavelas [1948]. See

Wasserman and Faust [1994] for a complete introduction and survey of this literature. In

many situations, it is the centrality of an agent in a network that explains her outcome

and decisions. In the empirical literature, it has been shown that centrality is important

in explaining exchange networks [Cook et al., 1983], peer effects [Calvó-Armengol et al.,

2009; Durlauf, 2004; Haynie, 2001], creativity of workers [Perry-Smith and Shalley, 2003],

the flow of information [Borgatti, 2005], the formation and performance of R&D collab-

orating firms and inter-organisational networks [Boje and Whetten, 1981; Uzzi, 1997] as

well as the success of open-source projects [Grewal et al., 2006].

3



social networks. We demonstrate that the existence of capacity constrains in
the amount of links an agent can maintain leads to assortative networks. We
show that if agents still decide their link formation and deletion in a strate-
gic way, i.e. based on the centrality of the possible partners, but are con-
strained in the number of links they can maintain, then emerging stationary
networks are characterised by positive degree-degree correlations and thus
assortativity. This effect may shed some light on the distinction between
technological and social networks suggested by Newman [2002, 2003]. Fol-
lowing our findings, technological networks are facing capacity constraints
to a much lower extent than social networks. Indeed, consider the internet,
a prominent example of a technological network and the e-mail network in
an organisation, a prototype of a social network. The number of hyper-links
a website can contain may not be limited as much as the number of social
contacts (measured e.g. by mutual email exchange) an individual in an or-
ganisation may keep. Thus, the distinction between technological and social
networks and the degree of assortativity and degree-degree correlations can
be derived from the severity of capacity constraints imposed on the number
of links an agent can maintain.

We note however, that there may exist exceptions to the above distinc-
tion between social and technological networks in terms of capacity con-
straints. The neighborhood size might be larger in a social network than in
a technological network, depending on the application and how one classifies
a network according to these categories. However, we restrict our argument
to cases in which nodes in a social networks indeed have smaller neighbor-
hood size (e.g. in mutual email communication networks [Guimera et al.,
2006], networks of social acquaintances [Zachary, 1977] or coauthorship net-
works [Goyal et al., 2006]) than nodes in a technological network (e.g. the
internet [Pastor-Satorras et al., 2001]).

We also note that there have been a number of alternative explanations
for the presence of degree-degree correlations. Johnson et al. [2010] show
that dissortativity (prevalent in technological networks) is the result of a
maximum entropy principle. Similarly Catanzaro et al. [2004] propose a
network growth model which is able to generate assortative networks. Their
model is a variant of the preferential attachment model [Barabási and Albert,
1999], where a network grows over time by successively adding links origi-
nating from new nodes added to the network, with the characteristic that
links are also formed between already existing nodes. The authors show
that this mechanism is able to generate assortative networks. Differently
to these authors, we show that assortativity can be the result of capacity
constraints in the number of links an agent can maintain.

This paper is organised as follows. In Section 2, we review the original
model of König et al. [2009] and its main results. Section 3 introduces
the model of capacity constrains and the results are discussed in Section 4.
Finally, Section 5 concludes.
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2. The model of König et al. [2009]

In König et al. [2009], we consider a network G = (V, E) composed of a
set V of n agents and a set E of m links. We assume that initially, at time t =
0, the network is empty. Then, at time t = 1, an agent is chosen at random
and with probability α ∈ [0, 1] she can form a link. Because she is indifferent,
this agent creates a link with any other agent in the network. At time t = 2,
again, an agent is chosen at random and with probability α decides with
whom she wants to form a link while with probability 1-α this agent has to
delete a link if she has already one. And so forth. In this framework, the
randomly chosen agent does not create or delete a link randomly. On the
contrary, she calculates all the possible network configurations and chooses
to form (delete) a link with the agent that gives her the highest utility
(reduces the least her utility). It turns out that connecting to the agent with
the highest Bonacich centrality (deleting the link with the agent that has
the lowest Bonacich centrality) is a best-response function for this agent. In
König et al. [2009], there is a game in efforts that rationalizes this behavior.
This is exactly the game developed by Ballester et al. [2006].

To summarize, the dynamics of network formation is as follows: At time
t, an agent i is chosen at random. With probability α agent i creates a link
to the most central agent while with complementary probability 1−α agent
i removes a link to the least central agent in her neighbourhood. Then, time
is increased by t → t + 1/n.

Importantly, the dynamics of this network formation is not tied to a par-
ticular prescription of the centrality. Indeed, the network formation process
remains the same if instead of forming links to agents with highest Bonacich
centrality, they create links with agents that have the highest degree, close-
ness, eigenvector or betweenness2 centralities.

In König et al. [2009], it is shown that, at every period, the emerging net-
work is a nested split graph [Aouchiche et al., 2008] or a threshold network

[Hagberg et al., 2006; Mahadev and Peled, 1995], whose matrix representa-
tion is stepwise. This means that agents can be rearranged by their degree
rank and agents with degree d are connected to all agents with degrees larger
than d. Moreover, if two agents i, j have degrees such that di < dj , this im-
plies that their neighbourhoods satisfy Ni ⊂ Nj . An illustration of this is
given in Fig. 1. The nested neighbourhood structure indicates that our
networks are strongly hierarchical. An important property of nested split
graph is that the diameter is two, i.e. the maximum distance between two
agents in a nested split graph is at most two. This is because all agents are
connected to the one that has the largest number of links. For our network
formation process, this implies that, in a nested split graph, agents can only

2
Assuming that agents with the same betweenness centrality are ranked according to

another centrality measure, for example their degree.
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form links to second-order neighbours, i.e. neighbours of neighbours.
The stepwise property of the adjacency matrix A, with elements aij ∈

{0, 1}, during the network evolution can be easily found by induction: At
time t = 0, the first link addition generates a (trivial) stepwise matrix.
Next, assume that this is true at time t. We now consider the creation of a
link ij. In case of using the eigenvector centrality3, let λPF be the largest
(Perron-Frobenius) eigenvalue [Horn and Johnson, 1990; Seneta, 2006], and
v = {vi}1≤i≤n the associated non-negative eigenvector of A. Then

vi =
1

λPF

n
∑

j=1

aijvj =
1

λPF

∑

j∈Ni

vj . (1)

It follows that the larger is the neighbourhood Ni (degree) of agent i, the
higher is its eigenvector component vi. This means that the eigenvector
centrality of the agents is ranked in the same way as their degree (centrality).
The same property can be trivially shown for closeness centrality: agents
with the largest degree in a step-wise matrix are closer to the rest; and
betweenness centrality: agents with the largest degree are part of a larger
amount of geodesic paths connecting two other agents. Therefore, a link is
created to the agent with the highest degree not already connected to agent
i. This preserves the stepwise property of A. Similarly, agent agent i will
severe the link to the agent with the lowest degree in agent i’s neighbourhood
and, therefore, the stepwise property of A is maintained.

Given the symmetry in the adjacency matrix A, in order to solve the
dynamic evolution of the network, it is enough to solve the dynamics for the
agents with degree smaller or equal than K/2, when there are K distinct
degrees in the network. Denote by N(d, t) the number of agents with degree
d ≤ K/2 at time t. Starting from an empty network, it can be shown that
the dynamic evolution is given by 4

N(d, t′ + 1) − N(d, t′) =
1 − α

n
N(d + 1, t′) +

α

n
N(d − 1, t′) −

1

n
N(d, t′),(2)

N(0, t′ + 1) − N(0, t) =
1 − 2α

n
−

α

n
N(0, t) +

1 − α

n
N(1, t). (3)

These equations mean that the probability to add nodes to the class with
degree d is proportional to the number of nodes with degree d−1 (resp. d+1)
when selected for node addition (deletion). The dynamics of the adjacency
matrix (and from this the complete structure of the network) can be directly

3
Since the dynamic network formation process is invariant to any centrality measure,

this is only to facilitate the presentation. In König et al. [2009], the proof is performed

for the Bonacich centrality game.
4
We have assumed that for all agents with degree d < K/2 the difference in the degree

of an agent and the agent with the next higher degree is one.
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D1

D2

D3D4

D5

D6 D1 d = 2

D2 d = 3

D3 d = 4D4d = 5

D5d = 7

D6d = 9

Figure 1: Representation of a connected nested split graph G (left) and the associated

adjacency matrix A (right) with n = 10 agents and K = 6 distinct degrees. Di, 1 ≤ i ≤ 6

denotes the set of nodes in G with the i-th smallest degree. A line between Di and Dj

indicates that every node in Di is linked to every node in Dj . Next to the set Di the

degree of the nodes in the set is indicated. In the corresponding adjacency matrix A to

the right the zero-entries can be separated from the one-entries by a stepfunction.

recovered from the solution of these equations.
For this purpose, we analyse here the continuous limit for large networks.

We perform the following change of variables: t′/n → t; d/n → k, and
then, k is defined in the interval [0, 1]; δt = 1/n, δk = 1/n, and z(k, t) =
N(d, t′)/n. In this limit, Eqs. (2–3) read

∂tz(k, t) = (1 − 2α) ∂kz(k, t) + δk ∂2
kkz(k, t) + O(δk2), (4)

∂tz(0, t) = (1 − 2α) (δk + ∂kz(0, t) − α δk z(0, t)) + O(δk2),

z(1, t) = 0 + O(δk2). (5)

The initial condition corresponds to an empty graph with z(k, 0) = δ(0).
We have included the terms of order δk and higher orders (which vanish for
infinite networks), because they will play a central role in the dynamics of
the system.

First, when such terms can be neglected, Eq. (4) becomes a usual de-
terministic drift equation whose stationary solution is a complete network,
z(d) = 1 if α > 1/2; or z(k) = 0 if α < 1/2, i.e. an empty network. This
result explains that, when the link decay is low (α > 1/2), the agents can
keep the connections, and the overall density of the network is high. On
the other hand, as we will show below, when the decay is high, the network
rapidly converges to a hierarchical structure where only a few agents rapidly
become central, and without major exogenous disturbances, they remain in
this central position forever. Initial stochastic influences and path depen-
dency are the deciding factors that determine who will be central. Similar
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to Anghel et al. [2004] the competition driven network dynamics leads to
the spontaneous emergence of hubs.

The first order transition in the network density gives rise to non-trivial
effects around the critical point α = 1/2. At this point define 1−2α = β δk.
If β ∼ O(1) the diffusion term in Eq. (4) is not negligible any more, and
the boundary conditions, become a simple reflecting boundary. Time scales
must be reduced once more, so by now rescaling it into τ ≡ t δk, we get the
following Fokker-Planck equation [Gardiner, 2004]

∂τz(k, τ) = β∂kz(k, τ) + ∂2
kz(k, τ), (6)

∂τz(0, τ) = β∂kz(0, τ),

with the same reflecting boundary conditions as in the complete problem.
This prescription allows to relate the width of the transition from sparse to
dense networks: β ∼ O(1), i.e. it must be of the order of one; this implies
that ∆α/δk = (1 − 2α)/δk ∼ O(1), and it follows that the width of the
transition scales as ∆α ∼ n−1.

Let us now determine the stationary solutions for all values of α ∈ [0, 1].
First, notice that the network G obtained for a value of α > 1/2 is the
complement of the network obtained for 1 − α. Thus, in the following we
consider only values of α ≤ 1/2. Let h(x) be the continuous limit of the
step function in the adjacency matrix A (see Fig. 1), rescaled such that
x = 1−k ∈ [0, 1]. h(x) can be decomposed in a part hu(x) below the diagonal
and a part hl(x) above the diagonal of A. The point x∗ is implicitly defined
by hu(x∗) = hl(x

∗), where the step function intersects with the diagonal.
Let z(k) = limτ→∞ z(k, τ) be the stationary degree distribution. We have
that hu(x) =

∫ 1−x
0 z(k)dk. From the stationary solution of (6), we find

hu(x) = N e−2(1−2α)x, (7)

with the constant

N =
2(1 − 2α)

1 − e−2(1−2α)n
, (8)

and limα→1/2 N = 1/n.
This result for the functional form of the step-function is valid for the

elements below the diagonal, i.e. for the agents with low degree. We now
turn our attention to the high degree, central agents. From the symmetry
of the adjacency matrix, it is easily seen that hl(x) for these agents satisfies
the following equation

x = N e−2(1−2α)hl(x). (9)

Thus, inverting this expression we get

hl(x) =
ln(N ) − ln(x)

2(1 − 2α)
(10)
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Conversely, the degree distribution is given by z(k) = −h′(1 − k) and we
obtain in the stationary state

z(k) =

{

N e−2(1−2α)k, if k < 1 − x∗,
1

2n(1−2α)k
−1, if k > 1 − x∗.

(11)

For α = 1/2 we obtain a uniform distribution z(k) = 1/n. Note that we gen-
erate power-law tails in the degree distribution with an exponent -1. Thus
we are able to produce power law degree distributions in a model without
network growth, differently to e.g. the preferential attachment model by
Barabási and Albert [1999].

Since we are able to compute the adjacency matrix, all network statistics
of interest can be readily computed. In particular, one can show that the
stationary networks emerging from our link formation process are charac-
terised by short path length (at most two) with high clustering (so called
“small worlds”), exponential degree distributions with power law tails and
negative degree-clustering correlations. Moreover, we find that stationary
networks are dissortative. Also, there exists a phase transition at α = 1/2
from highly centralised to highly decentralised networks. This means that
for low arrival rates of linking opportunities α (and a strong link decay), the
stationary network is strongly polarised, composed mainly of a star, while
for high arrival rates of linking opportunities (and a weak link decay) sta-
tionary networks are dense and largely homogeneous. We also find that the
transition between these states is sharp and becomes sharper with increasing
system size.

3. Capacity constraints and global search

A natural generalisation of the model discussed so far is to allow for the
possibility that agents do not accept to establish a link with another agent
that wants to connect to them. The underlying assumption is that agents
face capacity constraints in the number of links they can maintain. Such
constraints can arise from a possible information overload and congestion
[Arenas et al., 2010; Fagiolo, 2005; Guimerà et al., 2002]. Compared to the
model of König et al. [2009], if they are capacity constrained, agents can
now refuse a link-creation proposal whereas before it was always beneficial
to accept it. If a link-creation proposal has been refused, then the selected
agent will not only search among her neighbours’ neighbours but also among
all agents in the network (random search). However, agents preferably con-
nect to their neighbours’ neighbours and, only if this fails, they search for
new contacts at random. This means that, if capacity constraints prevent an
agent from forming a link locally, we assume that she tries to link to an agent
out of the whole population at random. This mechanism introduces a global

search mechanism in the link formation process [see Marsili et al., 2004;
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Vega-Redondo, 2006, for a similar approach]. One of the main consequences
of introducing capacity constraints and random search in König et al. [2009]
is that networks are not anymore nested split graphs. This is mainly due
to the random search aspect of the process, which eliminates the very hier-
archical structure of nested split graphs since now agents with low degrees
can be asked to form a link.

By introducing capacity constraints and random search in König et al.
[2009], we find that stationary networks become now assortative, a feature
that was not possible in the original model. As a result, the emergence of
assortativity and positive degree-correlations, respectively, can be explained
by considering limitations in the number of links an agent can maintain.
This may be of particular relevance for social networks and give an explana-
tion for the distinction between assortative social networks and dissortative
technological networks, as suggested by Newman [2002].

We assume that capacity constraints arise from the fact that an agent
can only interact with one other agent at a time. Each neighbour requests
information with probability β. Assuming that information requests are
independent, the probability that an agent i ∈ N with di links does not
receive any information requests from her neighbours is given by (1 − β)di .
If an agent does not receive such an information request, then she can accept
an additional link; otherwise she won’t.

Moreover, we allow for the formation of links between agents that are
not connected through a common neighbour. This means that agents search
globally for new contacts [see also Vega-Redondo, 2007] if they cannot con-
nect to the agent with the highest centrality among their neighbours’ neigh-
bours. When an agent i is selected, she tries to connect to the agent j with

the highest degree in her neighbourhood. However, agent j ∈ N
(1)
i only ac-

cepts the link formation with probability (1−β)dj , otherwise agent i selects

another agent k ∈ N\{N
(1)
i ∪ i ∪ j} out of the whole population of agents

(excluding agents i and j) uniformly at random, and this link also have the
same acceptance probability (1 − β)dk based on the degree of agent k.5

With probability α, a randomly selected agent i creates a link with the
agent j who has the highest centrality among her second order neighbours.
This occurs with probability (1 − β)dj . With probability

(

1 − (1 − β)dj

)

∑

k∈N\{N
(1)
i

∪i∪j}

(1 − β)dk ,

5
Let Ni = {k ∈ N : ik ∈ L(t)} be the set of neighbors of agent i ∈ N and N (2)

i =
S

j∈Ni
Nj\ (Ni ∪ {i}) denote the second-order neighbors of agent i in the current network

G(t). Note that the connectivity relation is symmetric such that j is a second-order

neighbor of i if i is a second-order neighbor of j, i.e. i ∈ N (2)
j if and only if j ∈ N (2)

i for

all i, j ∈ N .
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agent i forms a link at random to another agent out of the whole population.
As before, with probability 1 − α, agent i deletes a link to the agent with
the lowest centrality.

We make the following technical assumption. In the model exposed in
Section 2, the eigenvector centrality of an agent increases the most if she
forms a link to the agent with the highest degree. For the current model,
we assume that this property is still approximately true. In most cases, this
approximation can be made but there exist exceptions in which the degree
and Bonacich centrality ranking do not coincide [Grassi et al., 2007].

More formally, we define the network formation process (G(t))∞t=0, G(t) =
(N, L(t)), as a sequence of networks G(0), G(1), G(2), ... in which at every
step t = 0, 1, 2, ..., an agent i ∈ N is uniformly selected at random. Then
one of the following two events can occur:

1. With probability α ∈ (0, 1) agent i receives the opportunity to create

an additional link. Let j be the agent in N
(2)
i with the highest degree,

that is dj ≥ dk for all j, k ∈ N
(2)
i . Then with probability (1− β)dj the

link ij is formed. Otherwise agent i connects to a randomly selected
agent k ∈ N\ (Ni ∪ {i, j}) with probability

(

1 − (1 − β)dj
)

(1−β)dk . If
agent i is already connected to all other agents then nothing happens.

2. With probability 1−α , the link to the agent j in Ni with the smallest
degree dj ≤ dk for all j, k ∈ Ni, decays. If agent i does not have any
links then nothing happens.

link decay
1 − α

α

local link
creation

(1 − β)dj

global link
creation

(

1 − (1 − β)dj
)
∑

k∈N\(Ni∪{i,j})(1 − β)dk

Figure 2: Probabilities with which a randomly selected agent i creates a link and a link of

agent i decays, respectively, when capacity constraints are taken into account (assuming

that the agent is neither isolated nor fully connected).

An illustration of the above link formation process (G(t))∞t=0 is shown in
Figure 2. An agent i is selected at random either creates a link or the link to
the neighbor with lowest degree decays with probability 1−α. However, with
probability α agent i is selected to create a link. In this case, agent i forms
the link to agent j with highest degree among her second-order neighbors
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Figure 3: In the left panel we show the clustering coefficient obtained by recourse of

numerical results of the extended model with capacity constrains for different values of α

and β in a system with n = 1000 agents. In the right panel we show the corresponding

network assortativity. Each different curve corresponds to a different value of α. Only

agents that are not isolated are considered.

with probability (1−β)dj and to another agent out of the whole population of
agents at random with probability

(

1 − (1 − β)dj
)
∑

k∈N\(Ni∪{i,j})
(1−β)dk .

4. Results

Having introduced the extended network formation process, we now
investigate its properties by means of computer simulations for values of
α ∈ [0.2, 0.5] and β ∈ [0.01, 1]. We consider a set of n = 1000 agents and use
a sample of 30 to 40 simulation runs from which we compute the average as
an approximation to the stationary network.

Figure 3 shows the clustering and assortativity of stationary networks
for different values of α and β. We find that for values of β around 0.1
and in α ∈ [0.45, 0.5] stationary networks are assortative while displaying
a high clustering (albeit lower than in the basic model without capacity
constraints). It is relatively easy to understand why networks become as-
sortative. Indeed, if α is high but not too high (links are formed at a
relative high rate) while β is quite low (meaning that 1 − β is high so that
agents do accept link proposals), then low-degree agents will be connected
to low-degree agents, a feature not possible in the model without capacity
constraints (in a nested split graph, low-degree agents cannot be connected
to low-degree agents).

The characteristic path length L is defined as the number of links in
the shortest path between two agents, averaged over all pairs of agents
[Watts and Strogatz, 1998]. This can be written as

L =
1

n(n − 1)

∑

u 6=v

d(u, v), (12)
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Figure 4: We show the measures for the network topology obtained by recourse of nu-

merical results of the model with capacity constrains for different values of α and β in a

system comprised of n = 1000 agents.. The left panel shows the characteristic path length

L of the network G
∗

and the right panel shows the results for the network efficiency E .

where d(u, v) is the geodesic (shortest path) between agent u and agent
v. Taking the inverse of the shortest path length, one can introduce a
related measurement, the network efficiency, E , that is also applicable to
disconnected networks [Latora and Marchiori, 2001]

E =
1

n(n − 1)

∑

u 6=v

1

d(u, v)
, (13)

In Figure 4, we show the characteristic path length L and the efficiency
E measuring shortest paths in the network. The plots indicate that station-
ary networks in the extended model exhibit short path lengths between the
agents.6 However, we find that the stationary network may not just consist
of one connected component and possibly isolated nodes but it may have
multiple components. However, there exists a giant component encompass-
ing at least 90% of the nodes in all the simulations we studied.

We can further analyse the degree distribution of stationary networks
and we find that it is highly skewed following an exponential function.

Moreover, we find that the results for different centralisation measures
show a similar behaviour as we have seen already in the original model.
There exists a sharp, albeit less pronounced, transition from highly cen-
tralised networks to homogeneous networks by increasing α above 1/2.

In Figure 5, we show the fraction of the largest real eigenvalue of the

6
The average path lengths generated by our model are at most six, as it is shown in Fig-

ure 4. Real-world networks have average path lengths that are typically larger than two.

However, there exist real world networks with very short average path lengths. Examples

are the network of entrepreneurs in Silicon Valley studied by Assimakopoulos and Kenney

[2005]; Carayiannis et al. [2008] or the network of banks analyzed by Soramäki et al.

[2007], which has an average path length of around 2.6.
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Figure 5: We show the largest eigenvalue of the adjacency matrix normalised to the largest

one in a complete graph (which is the efficient network [Ballester et al., 2006]), obtained

by recourse of numerical results for the model with capacity constrains for different values

of α and β in a system comprised of n = 1000 agents.

stationary network. The largest real eigenvalue is a measure of efficiency of
the network, i.e. the network that maximizes total welfare (see [König et al.,
2009]) For values of α < 1/2 stationary networks are highly inefficient with
respect to the complete network while the extent of inefficiency can be dras-
tically reduced if one takes the reduced network density into account.

Finally, Figure 6 shows centralization in the stationary network for dif-
ferent values of β. This figure reveals that stationary networks tend to be
highly centralized for low values of β. This indicates that, in this parame-
ter range, stationary networks are highly unequal and characterized by few
central agents.

In this section, we have studied different network statistics for different
values of α and β. We find that, by introducing capacity constraints and
global search, stationary networks become assortative while exhibiting an
exponential degree distribution, high clustering, short average path length and
negative clustering-degree correlation. These characteristics can be found in
social and economic networks as well. Thus, our model is able to reproduce
the main characteristics of real world networks to the whole extent, ranging
from assortative to dissortative networks.

5. Concluding remarks

In this paper, we have introduced a network formation process with
capacity constrains in which link creation and removal are based on the
position of the agents in the network as measured by their centrality.

In the original model of König et al. [2009], when agents have only lo-
cal information when forming links and their connections are exposed to a
volatile environment, the emergence of hierarchies depends on the level of
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Figure 6: Degree, closeness, betweenness and eigenvector centralization in the stationary

networks for different values of α, in the constrained model. For all centralization measures

we obtain a sharp transition between strongly centralised networks for lower values of α

and decentralised networks for higher values of α.
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volatility of the environment. Two different regimes appear: (i) When link-
ing opportunities are rare, the network rapidly converges to a hierarchical
structure where only a few agents rapidly become central, (ii) when linking
opportunities abound, flat structures arise. It is also found that there ex-
ists a sharp transition in the core-periphery structure of the network from a
highly centralised to a decentralised network.

In the present paper, we consider the role of capacity constraints and
global search in this network formation process. We find that stationary
networks become assortative while exhibiting an exponential degree distri-
bution, high clustering, short average path length and negative clustering-
degree correlation. These characteristics can be found in social and economic
networks as well. Thus, our model is able to reproduce characteristics of real
world networks, ranging from assortative to dissortative networks.

Our findings have an implication for the distinction between assortative
and dissortative networks. As discussed in the preceding sections, our net-
work formation process generates stationary networks that are characterised
by negative degree-degree correlation and dissortativity. On the other hand,
capacity constraints transform stationary networks to exhibiting positive
degree-degree correlations and assortativity. This effect may shed some light
on the origin of the distinction between technological and social networks
suggested by Newman [2002, 2003], where technological networks are charac-
terised by dissortativity and social networks by assortativity. Following our
findings, technological networks are facing capacity constraints to a much
lower extent than social networks. Consider for example the internet as a
technological network and the email network in an organization as a proto-
type of a social network. The number of hyper-links a website can contain
may not be limited as much as the number of social contacts (measured
e.g. by mutual email exchange) an individual in an organization may keep.
Thus, the distinction between technological and social networks and the de-
gree of assortativity and degree-degree correlations can be derived from the
severity of capacity constraints imposed on the number of links an agent can
maintain.
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