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ABSTRACT 

Modelling Time and Macroeconomic Dynamics* 

In this paper, we analyze the importance of the frequency of decision making 
for macroeconomic dynamics. We explain how the frequency of decision 
making (period length) and the unit of time measurement (calibration 
frequency) differ and study the implications of this difference for 
macroeconomic modelling. We construct a generic dynamic general 
equilibrium model that nests a wide range of macroeconomic models and 
which leaves the period length as an undetermined parameter. We provide a 
series of examples (variations of the Cass-Koopmans and the New Keynesian 
models) that fit into this framework and use these to do comparative dynamics 
with respect to the period length. In particular, we analyze local stability and 
how this is affected by changes in the period length. We find that in models 
with endogenous capital accumulation, as the period gets longer, 
indeterminacy occurs less often. Moreover, as economic agents become less 
patient and as capital depreciates more, indeterminacy also occurs less often. 
We also show that, in the case of the New Keynesian model, standard 
continuous and discrete time versions have entirely different local stability 
properties due to a discontinuity at zero period length. 
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�The element of Time, which is the centre of the chief di¢ culty of almost every economic problem, is

itself absolutely continuous: Nature knows no absolute partition of time into long periods and short; but

the two shade into one another by imperceptible gradations, and what is a short period for one problem,

is a long period for another.��Marshall (1920)

1. Introduction

Modern macroeconomic theory relies on the construction, parametrization and solution of dynamic op-

timization problems. The interest in dynamic optimization problems is due to their close relation to

dynamic general equilibrium models. In economies where the fundamental welfare theorems hold, one

can �nd the equilibrium of an economy by focusing on the corresponding planner�s optimization problem;

but even when the welfare theorems fail to apply, the various agents in the model may have to solve dy-

namic optimization problems. As a result, the equilibrium conditions of the model are typically described

by a set of di¤erential or di¤erence equations. To construct, parametrize, solve and intuitively interpret

the results of such settings one needs to make an assumption on the frequency with which economic

decisions are made, i.e. the period length. In this paper we explore and analyze the issues arising from

this assumption. With our analysis, we hope to shed as much light as possible on the implications of this

assumption and thus help researchers choose a sensible period length when modelling macroeconomic

dynamics.

The main insights of our work are the following. First, the choice of whether to model the economy

as a dynamic system in continuous or discrete time is not innocuous. Speci�cally, this cannot be chosen

solely on the basis of technical/computational convenience, because it implies that agents live in economic

environments that are di¤erent, not only quantitatively, but often also qualitatively. We explain that

simply distinguishing between discrete and continuous time is only part of the story, since the actual

issue is the period length; it clearly di¤ers between a continuous and a discrete time model, but can

also di¤er between two discrete time models. The latter point is relevant when one makes the seemingly

innocuous choice of a frequency of calibration. Whereas in continuous time, the period length (zero!)

and the unit of time measurement (i.e. the calibration frequency) are clearly two separate concepts, in

discrete time the two can easily be confused. This can lead to the erroneous belief that the period length

can be a choice of no real economic signi�cance, just like the frequency of calibration.

Second, the paper provides a modelling framework that can be used to conduct explicit comparative

dynamics analysis with respect to the period length. In particular, we set up a generic dynamic general

equilibrium model where we let the period length be an undetermined parameter. This model nests as

special cases the standard discrete and standard continuous time models. Subsequently, we provide a

series of examples of models that can �t into this general framework and demonstrate the usefulness of

the framework by analyzing the (local) dynamics of each model as the parameter of interest changes.

The examples we provide are the textbook Cass-Koopmans model, the model of increasing returns of

Benhabib and Farmer (1994) and Farmer and Guo (1994), the model of balanced budget rules of Schmitt-

Grohé and Uribe (1997), and the New Keynesian model with endogenous capital as in Dupor (2001) and

Huang and Meng (2007). The latter is the only case were we �nd a discontinuity in the dynamics of the

equilibrium as the period length goes to zero, i.e. when moving to a continuous time setup.

Third, the examples we focus on provide a good platform for analyzing how local, real indeterminacies

can arise; we show that standard discrete and continuous versions of the �same�model can lead to di¤erent

conclusions regarding local determinacy. We focus on examples that may exhibit local indeterminacies

because in such models the change in the dynamics as the period length changes is not only quantitative,

but may also be qualitative.1 Our framework allows us to consider a whole range of intermediate cases

1We choose examples with indeterminate local dynamics because we believe they provide a neat illustration of the
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and pinpoint the exact period length at which the switch from determinacy to indeterminacy occurs

and whether or not there is a discontinuity between a discrete time and a continuous time version of

the same model. Across di¤erent models with endogenous capital accumulation we �nd an interesting

regularity: the smaller the period length is (i.e. the more frequently decisions are made), the larger the

ranges of indeterminacy are. We believe that this pattern follows from a simple intuitive explanation:

indeterminacy arises when expectations about the future a¤ect current investment decisions in such a

way as to render the expectations self-ful�lling. Speci�cally, the indeterminacy arises if the e¤ect on

current decisions is strong enough. The closer the future is (i.e. the shorter the period length and the

sooner agents are allowed to make decisions again), the stronger the e¤ect on today and therefore, the

easier it is for expectations to be self-ful�lling. This point has previously been noted by Guo (2004) in

the context of a real business cycle model with increasing returns and variable capital utilization. We

provide additional examples where this is true. We conjecture that this is a quite general result in models

with endogenous capital, but we have not yet been able to provide a formal proof. However this result

does not necessarily hold in models with no or exogenous capital (for example, it can be shown that this

is not the case in the New Keynesian model with an exogenous endowment of capital).

Fourth, we �nd that the sensitivity of the indeterminacy region to the period length crucially depends

on two parameters: the rate of time preference and the capital depreciation rate. In particular, we

�nd that as the rate of time preference increases (i.e. as agents become less patient), the ranges of

indeterminacy decrease, i.e. indeterminacy occurs less often. This is because as agents become less

patient, they value the future less; therefore expectations about the future have a smaller impact on

today�s decisions and are thus less likely to be self-ful�lling. Similarly, as the capital depreciation

rate increases (i.e. accumulation of future capital becomes less important since capital depreciates a

lot), future expectations have a smaller e¤ect on decisions taken currently and therefore indeterminacy

occurs less often. The importance of the rate of time preference and the capital depreciation rate for

indeterminacy has been implicitly or explicitly pointed out by various authors in the literature (see

Schmitt-Grohé, 1997, Baierl, Nishimura and Yano, 1998, Mitra, 1998, Guo 2004); here we provide a

more detailed exploration of this point, in a broad context that includes many examples.

It is important to clarify what we do not do in this paper. First, although our paper is broadly

related to the work of Mercenier and Michel (1994), our approach is fundamentally di¤erent from theirs.

Mercenier and Michel (1994) show that one can construct a discrete time model that approximates the

continuous counterpart fairly well by making sure that steady states in the two problems coincide. This

approach presupposes that a continuous time formulation is better than a discrete time formulation of

an economic problem. We, on the other hand, feel that there is no clear reason why a discrete time

formulation is more natural or preferable to a continuous one or vice versa.2 Following this view, we

simply explore how economic dynamics may vary when the frequency of decision making changes. Second,

our hybrid model is based on assumptions that are fundamentally di¤erent from the concept of time-to-

build, famously studied in discrete time by Kydland and Prescott (1982) and more recently in the context

of continuous time models with delays (e.g. Licandro and Puch, 2006). In these models, the basic premise

is that decisions and actions taken today a¤ect the economy with a delay. Our formulation captures the

main ingredient of a standard discrete model without any such delay: savings are accumulated in every

potential pitfalls of taking the choice of the period length lightly. However, it should be clear that the dynamic adjustment
in the same model when calibrated to, say, quarterly versus annual data, will di¤er even when saddle path stability is not
a¤ected. In perfect foresight models, the speed of convergence to steady state will be di¤erent across the two calibrations
even after properly aggregating across time. (This is by no means an easy task. See, for example, Aadland and Huang
(2004) for the issues arising in consistent time aggregation.) In stochastic economies, second moments of the variables of
interest will also be di¤erent across the two calibrations. Whether these di¤erences are important is a quantitative question
that has to be addressed in any speci�c context.

2Hood (1948) provides an extended discussion of continuous versus discrete time modelling.
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period and they are suddenly invested and produce capital only at the beginning of the next period. We

show that this di¤erent arrangement is an implicit assumption of a standard discrete model and also

provide a market (equilibrium) interpretation of this assumption.

The idea that discrete and continuous versions of the same model can lead to substantially di¤erent

conclusions is not novel. In a variety of di¤erent contexts, this point has been made among others, by

Telser and Graves (1968), Foley (1975), Turnovsky and Burmeister (1977), Karni (1979), Leung (1995),

Li (2003), Mino, Nishimura, Shimomura and Wang (2005) and Carlstrom and Fuerst (2005).3 We di¤er

from those in analyzing the importance of period length as opposed to two extreme cases of discrete

versus continuous time. This allows us to further re�ne some of the statements made in the discrete

versus continuous time literature. In particular, we can distinguish cases in which di¤erences arise due

to a discontinuity from cases where the di¤erences are simply an implication of di¤erent period lengths.

The rest of the paper is organized as follows. In Section 2 we present a generic equilibrium model that

mixes discrete and continuous elements and that nests the two standard formulations as speci�c cases.

Sections 3, 4, 5 and 6 present four examples that �t into this framework: the textbook Cass-Koopmans

model, the model of increasing returns by Benhabib and Farmer (1994) and Farmer and Guo (1994),

the model of balanced budget rules by Schmitt-Grohé and Uribe (1997) and the New Keynesian model

by Dupor (2001) and Huang and Meng (2007). Section 7 discusses the importance of discounting and

capital depreciation for our results. A �nal short section concludes.

2. A General Continuous Time Model with Discrete Decision Making

We begin by setting up a dynamic model that allows for di¤erent period lengths and nests discrete

and continuous time models as special cases. This setup is intended to cover a wide range of standard

dynamic macroeconomic models, including variants of the neoclassical growth model and of the New

Keynesian model. We maintain the assumption that time evolves continuously. A discrete time model

can be thought of as a continuous time model where the time line [0;1) has been partitioned in intervals
of length h: [0; h), [h; 2h), etc. These intervals are called periods and can be indexed by t

h 2 f0; 1; 2; :::g
where t is the time instant at the beginning of each period, so that t 2 I = f0; h; 2h; :::g.4 This

continuous time interpretation of discrete time models also requires the following assumptions: First,

stock (state) variables can only be adjusted at the beginning of a period (at t 2 I) and second, �ow

(control) variables are constant within a period, but can be changed at the beginning of each period.

Generally, these assumptions have no particular economic content. There is no a priori economic intuition

for why they should hold. Our formulation is intended to allow an analysis of the conditions under which

such assumptions might make sense as well as an analysis of their implications. Nevertheless, we �nd

the following interpretation of these assumptions useful and intuitive: certain markets only open up for

trade at discrete points in time but some other markets open continuously. This interpretation will prove

useful especially when looking at variations of a standard growth model. In our general formulation we

will justify the �rst of these assumptions by assuming that the markets for stock variables open discretely.

On the other hand, we will allow �ow variables to change continuously and study under what conditions

the optimal choice is to have �ows constant within a period.

Our main focus is on the role of h, i.e. the period length. By explicitly writing up our general model

we aim to analyze as crisply as possible the importance of the period length for dynamic behavior in

standard macroeconomic models. We proceed by describing such a general model which we view as an

appropriate analogue of the standard discrete time model.

3Other broadly related work includes Turnovsky (1977), Jovanovic (1982), McGill and Benhabib (1983), Romer (1986),
Benhabib (2004) and Hintermaier (2005).

4 In what follows we will use t to index variables even though, strictly speaking, the index is t
h
.
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The economy is described by an m � 1 vector of state variables xt =
�
x1t ; :::; x

m
t

�T
, where changes

in the state variables accrue at the end of each period and several control variables. We distinguish

between two types of control variables; an m � 1 vector !t =
�
!1t ; :::; !

m
t

�T
of control variables that do

not appear in the objective and an n� 1 vector of other control variables yt =
�
y1t ; :::; y

n
t

�T
. The model

might also contain other variables, summarized in an l� 1 vector zt, that are not choice variables for the
representative household. These can be exogenously or endogenously determined. The household faces

the following dynamic maximization problem

max
fyt(s);!t(s);xt+hg

X
t=0;h;2h;:::

�
1

1 + �h

� t
h
Z h

0

e��su(yt(s); xt+h; zt(s))ds (1)

s:t: xit+h � xit =
Z h

0

Qi(!it (s) ; xt; zt(s))ds for t = 0; h; 2h; ::: and i = 1; :::;m (2)

Hj(yt(s); !t (s) ; xt; zt(s)) = 0 for s 2 [0; h), t = 0; h; 2h; ::: and j = 1; :::; p (3)

x0 given

In the above setting, fyt(s)gt=0;h;2h;::: , f!t(s)gt=0;h;2h;::: and fzt(s)gt=0;h;2h;::: are sequences of functions.
Each element yt(s) of the �rst sequence is a function mapping the interval [0; h) to Rn and each element
wt(s) of the second sequence is a function mapping the interval [0; h) to Rm. Note that the sizes of
! and x are the same, capturing the idea that changes in each state variable xit are governed by the

accumulation of a corresponding �ow variable !it as in (2); e.g. net savings are the �ow variable that

dictates how the state variable capital accumulates in a standard growth model. Each element zt(s) of

the second sequence is a function mapping the interval [0; h) to Rl. On the other hand, fxtgt=0;h;2h;:::
is a sequence of vectors in Rm. We use xt to denote the level of the state variable that prevails at the
end of period t

h � 1 (i.e. at the end of the interval [t � h; t)). There are two types of constraints: m

dynamic constraints governing the evolution of each state variable from period to period given by (2) and

p static constraints that must hold at every instant, given by (3). The functions Qi : R� Rm �Rl ! R,
Hj : Rn �Rm� Rm �Rl ! R and u : Rn �Rm �Rl ! R will be determined by the particular problem
at hand.5

To close the model we also need to append l other equilibrium conditions

G�(yt(s); !t (s) ; xt; zt(s)) = 0 for all s 2 [0; h); t = 0; h; 2h; ::: and � = 1; :::; l; (4)

that will determine zt(s): These could include optimality conditions for other agents in the model (e.g.

�rms, government), market clearing and equilibrium consistency or symmetry conditions. Again, the

functions G� : Rn � Rm� Rm � Rl ! R will be determined by the particular problem considered. The

crucial aspect of these additional conditions is that they are assumed to be static.

Some explanations for our choice of discounting are in order. Given that time is assumed to be

continuous, we allow for continuous discounting. The presence of both discrete and continuous elements

in our setup implies that there are alternative forms of discounting which we can consider. Using the

standard continuous time discount term we could write the objective as

X
t=0;h;2h;:::

Z h

0

e��(t+s)u(yt(s); xt+h; zt(s))ds =
X

t=0;h;2h;:::

e��t
Z h

0

e��su(yt(s); xt+h; zt(s))ds: (5)

5Standard monotonicity and convexity assumptions are maintained throughout for the return and constraint functions.
We also assume standard Inada conditions for utility and production and thus ignore any non-negativity constraints.
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Alternatively, using the standard discrete time discount term we could write

X
t=0;h;2h;:::

Z h

0

�
1

1 + �h

� t+s
h

u(yt(s); xt+h; zt(s))ds

=
X

t=0;h;2h;:::

�
1

1 + �h

� t
h
Z h

0

�
1

1 + �h

� s
h

u(yt(s); xt+h; zt(s))ds: (6)

We follow a middle road and choose discrete style discounting across periods and continuous time dis-

counting within periods. This seems to us to be a reasonable compromise, since it ensures that standard

discrete and continuous time models are both nested in this speci�cation (we derive the limiting cases

in section 2.1). In the objective (1), we also allow for di¤erent discount rates for �within�and �across�

period discounting. There is, of course, no substantial economic argument to support such an asymmetry

so we are essentially interested only in the case � = �. However, maintaining this general assumption

will allow us to illustrate more clearly the fundamental assumptions underlying a standard discrete time

model by shutting down within-period discounting, i.e. setting � = 0.

We let [1= (1 + �h)]
t
h �it, i = 1; :::;m be multipliers corresponding to the m dynamic constraints at

instant t 2 I and [1= (1 + �h)]
t
h e��s�jt (s) ; j = 1; :::; p be multipliers corresponding to the p static

constraints at instant t+ s. The Lagrangian of the household�s problem is de�ned as

L �
X

t=0;h;2h;:::

�
1

1 + �h

� t
h

"Z h

0

e��su(yt(s); xt+h; zt(s))ds

+
mX
i=1

�it

 Z h

0

Qi(!it (s) ; xt; zt(s))ds � xit+h + xit

!
(7)

+

pX
j=1

Z h

0

e��s�jt (s)H
j(yt(s); !t (s) ; xt; zt(s))ds

35 :
The �rst order conditions for the control variables are given by6

@ut (s)

@y�t (s)
= �

pX
j=1

�jt (s)
@Hj

t (s)

@y�t (s)
; (8)

�it
@Qi(s)

@!it(s)
= �e��s

pX
j=1

�jt (s)
@Hj

t (s)

@!it(s)
; (9)

for all � = 1; :::; n, i = 1; :::;m, s 2 [0; h); t 2 I. The m �rst order conditions for the state variables are

�
Z h

0

e��s
@ut (s)

@xit+h
ds+ �it

=
1

1 + �h
�it+h

24 Z h

0

@Qit+h(s)

@xit+h
ds+ 1

!
+

pX
j=1

Z h

0

e��s�jt+h(s)
@Hj

t+h(s)

@xit+h

35 (10)

for all t = 0; h; 2h; ::: . The latter conditions are the standard Euler equations. As usual, these in-

tertemporal marginal conditions equate the current utility cost �it of increasing the variable x
i
t+h with

6To save on notation, we supress the arguments of functions and instead index functions by the initial instant t of a
period to indicate if they are evaluated at their arguments in the current ( t

h
) or future ( t

h
+ 1) period.
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the (current and) future utility bene�ts. The �rst term on the left hand side is the direct current utility

bene�t and the terms on the right hand side are discounted future returns valued at marginal utility. An

equilibrium in this economy will be fully characterized by equations (2)-(4) and (8)-(10).7

We can obtain a more familiar version of the Euler equations by making the further assumption that

Hj((yt(s); !t (s) ; xt; zt(s))) depends on ! only for j = 1 and
@Qi(s)
@!it(s)

=
@H1

t (s)

@!it(s)
. This is true in all of the

variations of the growth model that we consider.8 This additional structure allows us to use (9) to obtain

�it = e��s�1t (s). Using this and rearranging the Euler equation, we derive

�it �
Z h

0

e��s
@ut(s)

@xit+h
ds =

1

1 + �h
�it+h

"
1 +

Z h

0

 
@Qit+h(s)

@xit+h
+
@H1

t+h(s)

@xit+h

!
ds

#
: (11)

We can also rewrite the Euler as

�it+h � �it
h

=
� (1 + �h) 1h

R h
0
e��s @ut(s)

@xit+h
ds+ �it

h
�� 1

h

R h
0

�
@Qi

t+h(s)

@xit+h
+

@H1
t+h(s)

@xit+h

�
ds
i

1 +
R h
0

�
@Qi

t+h(s)

@xit+h
+

@H1
t+h(s)

@xit+h

�
ds:

: (12)

This formulation of the Euler equation is useful for deriving the limiting case h! 0.

2.1. Limiting Cases. Standard discrete time Euler equations can be obtained by setting h = 1,

� = 0 and assuming that all �ows are constant within a period, i.e. yt(s) = yt, wt(s) = wt and zt(s) = zt

for all s 2 [0; 1):

�it �
@ut(s)

@xit+1
=

�it+1
1 + �

�
1 +

@Qit+1(s)

@xit+1
+
@H1

t+1(s)

@xit+1

�
: (13)

In some contexts, for example in the growth model of the following section, we can show that letting

� = 0 implies optimally constant �ow variables. That is, the extra assumption of constant within-period

�ows is not needed. In those cases, we can think of standard discrete time models as implicitly assuming

a zero within period discount rate. Note, however, that this is a model-speci�c result and, in general,

the standard discrete time model assumption of constant within period �ows is even harder to justify.

It is straightforward to obtain the continuous time version by letting h! 0 :9

_�t = �
@ut
@xit

+ �it

�
��

�
@Qit
@xit

+
@H1

t

@xit

��
: (14)

These limiting cases also illustrate more clearly the asset pricing interpretation of the Euler equations,

i.e. that the return on the asset xt has to equal the rate of time preference �. Using the continuous time

version as an example, the asset return consists of capital gains captured by the rate of change in the

shadow price of the asset and dividends captured by the utility bene�ts arising from holding the asset.

2.2. Period length and calibration frequency. Before we proceed with the analysis of the dy-

namics for each example, we �rst make some important clari�cations regarding the interpretation of the

period length h. In any dynamic model, there are two important concepts that have to do with modelling

time: the unit of measurement of time and the frequency with which activities take place or decisions

are made. The �rst one relates to the calibration frequency and the second relates to the period length.

Given a continuous time line, the unit of measurement of time gives meaning to the quantity
R 1
0
yt(s)ds

where yt(s) is a �ow. For example, if the measurement unit is years, this quantity measures the total

7Plus a transversality condition omitted here.
8For the New Keynesian model only a slight modi�cation is required, see section 6.
9Stricty speaking, we should be using the notation x(t), y(t), z(t) instead of xt, yt, zt when writing the standard

continuous time model. We stick to the latter to maintain conformity with the rest of the paper.
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�ow of y in one year, starting at t. Moreover, the choice of units (e.g. years) dictates the values for

parameters such as the discount rate and the depreciation rate (e.g. � and � will denote yearly rates).

The frequency with which decisions (on stock variables) are made determines the period length h.

For example, if decisions are to be updated four times a year in a yearly calibrated model, then h = 1=4

and the corresponding parameters �h and �h now denote quarterly rates. If decisions are made once a

year in a yearly calibrated model, then h = 1 and the corresponding parameters �h and �h now denote

yearly rates. As the frequency of decision making increases, we retrieve the standard continuous time

model in the limit. In short, the measurement unit of time and the period length are not necessarily the

same, but in order to obtain the standard discrete time model we have to set h = 1. This is because in

the standard discrete time framework, choosing a calibration frequency also implicitly leads to the choice

of the frequency of decision making. In our general setup, we disentangle the two concepts as explained

above.

We proceed with the four examples that �t into our general framework. We start by analyzing

the model of Cass-Koopmans in detail and then we continue with the models of Benhabib and Farmer

(1994) and Schmitt-Grohé and Uribe (1997) which are simple extensions of the former. Last, we consider

a variation of the standard New Keynesian model, with endogenous capital, as in Dupor (2001) and Huang

and Meng (2007). Each of the examples we present has been chosen because it has some particular feature

that helps us make a speci�c point: The �rst example (Cass-Koopmans model) provides a good platform

for understanding the intuition of why discrete and continuous dynamics may di¤er and how our general

model captures these di¤erences; the second model (i.e. the RBC model with increasing returns) is

an example where for a reasonable parametrization, the discrete time model has a determinate steady

state, while it has an indeterminate one in continuous time; the third example (the model of balanced

budgets) illustrates that the assumption of within period discounting can make a di¤erence; �nally, the

fourth example (New Keynesian model with capital accumulation) shows that there can actually be a

discontinuity when taking the limit of the discrete time model as the period length becomes zero, i.e.

the limiting dynamics of the discrete time model do not correspond to the dynamics of the standard

continuous time model.

3. The Cass-Koopmans Model

Our �rst example is the Cass-Koopmans textbook model. We focus on an equilibrium interpretation of

the model where all markets are perfectly competitive. Households decide on capital and labor supply as

well as demand for the single good produced. Firms decide on capital and labor demand and use these

inputs to produce the single good and supply it in the goods market. Thus, there are three markets in

this economy, namely the goods, capital and labor markets. It is assumed that a representative household

works, receives income, saves and consumes continuously over the period, at rates that are allowed to

vary over time.

To capture the essence of a discrete time model, we assume that the capital market opens only at

discrete points in time t 2 I so that within a period, no capital markets operate. Within a period,

savings accrue continuously, but they are only turned into investment when the market opens and the

accumulated savings can be supplied in the capital market.10 This model �ts the general formulation

proposed in the previous section by making the following choices: The state variable is the capital

stock, i.e. xt = kt. Control variables include consumption ct(s), labor nt(s) and net savings Skt (s)

10We �nd this interpretation of the standard discrete time model useful, but it is certainly not unique. One could also
just outright assume that capital can be changed only at discrete points in time.
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(net of depreciation) and yt(s) = [ct(s); nt(s)]
T , !t (s) = Skt (s).

11 The dynamic equation describing

the evolution of the state variable dictates that increases in the capital stock should equal the total

accumulated �ow of net savings over a period

kt+h � kt =
Z h

0

Skt (s)ds; (15)

so that the correspondence with the general model is Q(!t (s) ; xt; zt(s)) = Skt (s). The household is

subject to a budget constraint

ct(s) + S
k
t (s) + �kt = rt(s)kt + wt(s)nt(s) + �t(s); (16)

which ensures that consumption and savings must equal capital income, labor income and income from

�rm pro�ts. Here rt(s) and wt(s) are the rental price of capital and the wage rate respectively and �t(s)

are the �rm�s instantaneous pro�ts at time t + s. All three of these variables are taken as given by the

household so they correspond to the variables zt(s) = [�t(s); wt(s); rt(s)]
T . This extra constraint is what

is captured by the function H(:) in the general setup of section 2, that is,

H(yt(s); !t (s) ; xt; zt(s)) = rt(s)kt + wt(s)nt(s) + �t(s)� ct(s)� Skt (s)� �kt: (17)

Note that we assume a constant rate of depreciation of the capital stock and that depreciation a¤ects the

capital stock being used in production, whereas savings not yet put into production do not depreciate.

Finally, here the return function is assumed to depend on consumption and labor and it is given by12

u(ct(s); nt(s)) = log ct(s)�A
nt(s)

1+�

1 + �
; � � 0: (18)

This provides a complete description of the household�s problem as in section 2. Before presenting the

�rst order conditions for household utility maximization, we introduce �rms and market clearing, i.e. we

de�ne the function G(:).

The �rm�s production inputs at an instant t+ s are the (operative) capital stock kt and labor nt(s).

The production function is Cobb-Douglas:

kskt nt(s)
sn ; (19)

with sk + sn = 1 and sk; sn > 0: When the capital market is open, the �rm and the household make

the following agreements. They decide on the amount of the capital stock that the household rents out

to the �rm. They agree that after the capital market closes, the �rm will provide a continuous �ow of

capital income to the household at a (possibly variable) rate, consistent with capital market clearing,

until the market opens again.13

The �rm maximizes lifetime discounted pro�ts

X
t2I

�
1

1 + �h

� t
h
Z h

0

e��s
uc;t(s)

uc;0(0)
�t(s)ds; (20)

11One can think of net savings as the analogue of it � �kt in a standard growth model, where it is investment �ow and
0 < � < 1 the depreciation rate.
12Many of the results here can be derived under more general utility speci�cations. Separability between consumption

and labor is needed to obtain analytical expressions for within period dynamics.
13We assume a competitive market for inputs to production. Thus the rate of return will be determined in equilibrium

by the demand and supply for capital and, in particular, is taken as given by both �rms and households.
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where �t(s) stands for instantaneous pro�ts, i.e.

�t(s) = kskt nt(s)
sn � rt(s)kt � wt(s)nt(s): (21)

Households are assumed to be identical, which allows us to focus on the representative household and

ensures that the �rm�s objective is well de�ned. In particular, the �rm is owned by the representative

household, which has a unique valuation of instantaneous pro�ts at any point in time t + s. From the

point of view of time 0, the value of one unit of pro�ts at time t+ s is simply the price of a contingent

claim in terms of time 0 consumption, given by

�
1

1 + �h

� t
h

e��s
uc;t(s)

uc;0(0)
. (22)

The �rst order conditions for the �rm�s problem are

wt(s) = snkt
sknt(s)

�sk , for all s 2 [0; h) and t 2 I, (23)Z h

0

e��suc;t(s)rt(s)ds =

Z h

0

e��suc;t(s)skkt
sk�1nt(s)

snds; for all t 2 I. (24)

The �rst condition is the standard condition determining labor demand as a function of the wage rate.

It speci�es that the �rm will demand labor so that it equates the marginal product of labor to the wage

rate.

The second condition is less standard; given that capital markets are closed within the period, there

are potentially many di¤erent within-period rental rate functions that bring the capital market in equilib-

rium. It is su¢ cient that the overall demand for capital is met, i.e. the beginning-of-period arrangement

is such that the total discounted return equals the total discounted marginal product of capital, appro-

priately valued. In equilibrium, the weighing factors will be constant within a period and this condition

can be further simpli�ed (as shown below). It then states that the average rental rate of capital must

equal the average marginal product of capital over a period. The reason that the capital rental rate

is not equated to the marginal product of capital at every instant is the absence of capital markets.

As long as capital markets remain closed, the marginal product of capital can �uctuate above or below

the agreed-upon rental price without the market forces rectifying this. But it must be that, when the

markets open, and the rental rate for the next interval is set, the average price of capital is equal to the

average marginal product. Generically, there could be many rt(s) pro�les that deliver the same average

real rental rate.

Finally, all markets have to clear. We have implicitly imposed capital and labor market clearing by

not distinguishing between capital (and labor) demand and supply. Goods market clearing dictates

ct(s) + S
k
t (s) + �kt = (kt)

sk (nt(s))
1�sn for all s 2 [0; h) and all t 2 I, (25)

and is automatically satis�ed by Walras�Law. To complete the correspondence with the model of section

2, the functions G� are given by (21), (23) and (24).

We �nd it convenient to de�ne the average rental rate of capital over a period as

~rt �
1

h

Z h

0

rt(s)ds: (26)
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Using this de�nition, the �rst order conditions for the household�s problem corresponding to (8) are

�t(s) =
1

ct(s)
; (27)

Ant(s)
� = �t(s)wt(s); (28)

for all s 2 [0; h); t 2 I, the one corresponding to (9) is

e��s�t(s) = �t; (29)

for all s 2 [0; h); t 2 I and the dynamic �rst order condition corresponding to (10) is

�t+h � �t
h

=
�� ~rt+h + �
1 + ~rt+hh� �h

�t; (30)

for all t 2 I. In addition, a transversality condition must hold

lim
T!1

�
1

1 + �h

�T
h 1

cT (0)
kT+h = 0: (31)

Condition (27) is the standard �rst order condition for consumption ensuring that, at an optimum, the

marginal value of income equals the marginal utility of consumption. Condition (28) is the standard �rst

order condition for labor supply, ensuring that the marginal utility of leisure is equalized to the marginal

value of income times the wage rate. Finally, condition (29) describes optimal savings, equating marginal

cost and bene�t of savings. The marginal cost of savings at instant t + s arises from reduced resources

available for consumption. This cost depends on the speci�c instant t+s because consumption at di¤erent

points in time is valued di¤erently. The marginal bene�t comes from the fact that these savings will

eventually become investment and be added to the capital stock, kt+h. This will only happen the next

time the capital market opens, so the speci�c instant within period t is irrelevant. Equations (26)-(31)

together with capital accumulation (15), �rm optimality conditions (23)-(24) and goods market clearing

(25) fully characterize the equilibrium of this economy.14

Substituting the factor prices from (23) and (24), one obtains restrictions on allocations that are

equivalent to those that would arise from a social planner formulation. Thus, the competitive equilibrium

implements the �rst best and existence of an optimum implies existence of an equilibrium. Note however

that, even though the wage rate that implements the equilibrium is unique, the rental rate of capital

rt(s) is only restricted to satisfy (26) and is generally not unique. Nevertheless, this does not a¤ect the

uniqueness of the real allocations because the average rental rate ~rt is unique and the average is all that

matters in this equilibrium. Put di¤erently, there can potentially be many within period pro�les for

the rental rate, all of which are consistent with a particular value for ~rt as well as particular values for

allocations.

3.1. Within-period dynamics. We �rst look at the behavior of �ow variables within a period.

That is, given a period t
h , we can describe the evolution of ct(s), nt(s) and S

k
t (s) for all s 2 (0; h) given

their values at s = 0. We use the �rst order condition for savings (29) and notice that it holds for all

s 2 [0; h) so that
e��s�t(s) = �t = �t(0): (32)

14A precise de�nition of equilibrium is given in Appendix A.
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From (27), we obtain the evolution of consumption as

ct(s) = e��sct(0): (33)

Therefore, within the period [t; t + h), consumption starts at ct(0) and declines exponentially until

lims!h ct(s) = e��hct(0). The rate of decline is naturally increasing in the discount rate �.15 We can

derive a similar expression for labor:

nt(s) = e
�

�+1�sn snt(0): (34)

Labor is increasing exponentially within the period [t; t + h), i.e. leisure is decreasing. The rate of

increase is increasing in � and in the elasticities of labor supply 1=� and labor demand sn � 1. Output,
net savings and the wage rate can be easily derived given the above expressions:

yt(s) = e
�sn
�+sk

s
yt(0); (35)

Skt (s) = e
�sn
�+sk

s
yt(0)� e��sct(0)� �kt; (36)

wt(s) = e
� �sk
�+sk

s
wt(0): (37)

Output and savings are increasing in s and the wage rate is decreasing in s. Finally, the capital labor

ratio is determined by

�t(s) = �t(0)e
� �
�+sk

s
; (38)

and is decreasing since labor is increasing.

To summarize, because the operative capital cannot be changed during the period [t; t + h), the

household consumes more and enjoys more leisure early in the period and postpones savings for later in

the period. If we were to assume no discounting within the period, i.e. � = 0, all the above �ows would

be constant.

3.2. The long run and between-period dynamics. In the long run, capital stock reaches a steady

state as usual. However, when that steady state is reached, �ow variables still exhibit the within-period

dynamics described above, so that they are characterized by a steady state function, rather than the

usual steady state value of the standard discrete or continuous time models. It can be shown that the

steady state function for the capital labor ratio is given by16

�(s) = ��q(h; �)e
� �s
�+sk ; for all s 2 [0; h); (39)

where

�� =

�
sk
�+ �

� 1
sn

; (40)

q(h; �) =

 
e

sn
�+sk

�h � 1
sn

�+sk
�h

! 1
sn

: (41)

The steady state of standard continuous (and discrete) time models is �� and the steady state function

here has the capital labor ratio starting above that level at the beginning of the period and �nishing

15 If a power utility for consumption were used, the trade-o¤ between the preference for early consumption and the
preference for consumption smoothing would be more explicit. Overall, the consumption pro�le would still be decreasing
but at a rate that is a function of the elasticity of intertemporal substitution.
16See Appendix A.
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Figure 1: The steady state of the capital labor ratio, �. The capital labor ratio in the standard discrete
and continuous time model is ��:

below, as illustrated in Figure 1. Convergence to this long run behavior can be analyzed as usual by

considering the Jacobian of the dynamic system. As shown in Appendix A, the Jacobian depends on the

period length h and therefore the dynamics of the model will depend on h.

Here, saddle path stability obtains for any h so the e¤ect of h will be quantitative, e.g. on the speed

of convergence. Given that this model does not exhibit local indeterminacy, we �nd it more instructive

to use this example to discuss the intuitive, qualitative e¤ects of h. We embark on a detailed quantitative

analysis in later sections, where we present variations of this model that can exhibit local indeterminacies.

3.3. Discussion. Our general model nests discrete and continuous time models as special cases. The

important condition is the Euler equation

�t+h � �t
h

=
�� ~rt+h + �
1 + ~rt+hh� �h

�t: (42)

In Appendix A, we show that taking limits as h! 0 gives the standard continuous time Euler equation

and choosing h = 1 as well as � = 0 leads to the standard discrete time Euler equation.

To understand the importance of h we rewrite the Euler equation to exploit its asset pricing inter-

pretation

� =

�t+h��t
h + �t+h(~rt+h � �)

�t
: (43)

The right hand side is the total return on the asset, which in this case is physical capital. The multiplier

� corresponds to the shadow price of capital. The �rst term in the numerator represents capital gains.

The second term is simply the dividend received, comprising of the average rental rate ~r minus the

depreciation rate adjusted by the price of capital �. At an optimum, the total rate of return on capital

must equal the time preference rate �. One way to see the importance of h is by noticing that the

dividend component is dated t + h. As h decreases, investment decisions depend on dividends received
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sooner. In the limit, investment decisions depend on current dividends.

Here, capital kt is rented out once at the beginning of the period; whatever is saved throughout

the period remains inoperative in the possession of consumers. At the end of the period, the rented

(depreciated) capital returns to the possession of the households and is added to the newly accumulated

capital. This new capital stock kt+h remains in the possession of the households until the beginning of

next period, when it is rented out again. For this reason, the households are interested in the return

they will get for their capital once all of it becomes operative. Therefore, when optimizing in the current

period, they choose how much to invest so that their subjective discount rate � is balanced out by capital

gains, plus the average rental rate over the following period. This model has an inherent delay (just like

any discrete time model), since at any point in time within the period there exists capital that is not

used for production. This type of delay is not the same as what is commonly known as time-to-build

delay. The classic example of time-to-build is given in Kydland and Prescott (1982). In that model, an

h-period delay implies that investment at t will only produce capital at t+h, where h is an integer. This

still allows for new investment to take place at t+ 1, that will yield capital at t+ h+ 1 and so on. The

continuous time counterpart of this, studied in Licandro and Puch (2006), is one where investment can

take place continuously but productive capital is only created after an interval h, where now h is a real

number. In our model, savings take place continuously within a period at every instant t+ s, s 2 [0; h)
but the accumulated savings are suddenly invested and produce capital at t + h, regardless of whether

they were saved at the beginning of the period or right before the end. Put di¤erently, in our case the

delay in putting capital into production varies and depends on the instant within the period at which

this capital is put aside. We have shown that this di¤erent arrangement is an implicit assumption of any

standard discrete model, even in the absence of a time-to-build delay. We have also provided a market

(equilibrium) interpretation of this assumption.

One could also think of this model in relation to the work of Turnovsky (1977). Turnovsky interprets

the discrete time model as a setting where time is continuous, but due to adjustment costs, �rms can

alter their capital only in a discrete manner. He then shows that the standard limiting continuous time

relation between capital and investment, i = _k, is true only under the restrictive assumption of no

adjustment costs. In a continuous time model with adjustment costs, this would not be true in general:

the demand for investment i cannot be matched with a change in capital, since capital is not perfectly

malleable. Thus, in our setting we can interpret the fact that the capital market is closed within a period

as an in�nite adjustment cost. When the model is viewed in this way, a natural question that arises is

what would happen if labor was also costly to adjust within a period. It can be shown that imposing

in�nite within-period adjustment costs to labor as well as capital would lead to a situation where both

capital and labor are constant within a period. However, in the presence of within-period discounting,

consumption and savings would still exhibit within-period dynamics of the type discussed above.

4. A Model with Increasing Returns

We consider the model of Benhabib and Farmer (1994) and Farmer and Guo (1994), a straightforward

variation of the Cass-Koopmans model. The household sector is identical to the model of section 3. The

production side di¤ers by including increasing returns through externalities. The production function is

now:

yt(s) = kskt nt(s)
sn�k

1��
� sk

t �nt(s)
1��
� sn ; (44)

with sk + sn = 1 and sk; sn > 0. Here �k and �n indicate aggregate capital and labor, variables that the

individual �rm does not realize it can a¤ect.17 The correspondence with our general framework is very

17As discussed by Benhabib and Farmer (1994), the model can equivalently be interpreted as a model of monopolistically
competitive �rms with the parameter � 2 (0; 1) representing the degree of monopoly power. This alternative interpretation
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similar to the one described in section 3. In particular, states xt and controls yt(s); !t (s) are the same as

before and the functions Q(:), H(:) and u(:) are identical. The only di¤erence comes in the vector zt(s),

which now includes also aggregate capital �k and labor �n, and in the functions G�(:), � = 1; :::5. The

functions G�(:) di¤er because the �rm�s �rst order conditions have to take into account the increasing

returns to scale of the production function and, in addition, equilibrium symmetry amounting to kt = �kt
and nt = �nt has to be imposed. Thus we have the functions G� compactly arranged in a vector:

G(yt(s); !t (s) ; xt; zt(s)) =

266666664

snk
sk
�
t (nt(s))

sn
� �1 � wt(s)R h

0
e��suc;t(s)

h
rt(s)� skk

sk
� �1
t (nt(s))

sn
�

i
ds

k
sk
�
t (nt(s))

sn
� � rt(s)kt � wt(s)nt(s)� �t(s)

kt � �kt
nt � �nt

377777775
: (45)

It can be shown (proof omitted) that taking limits as h! 0 gives the continuous time model of Benhabib

and Farmer (1994) and setting h = 1 and � = 0 gives the discrete time model of Farmer and Guo (1994).

Analyses of within-period dynamics and long run behavior of the economy can be carried out in

a manner entirely analogous to the Cass-Koopmans model. We focus our attention on the dynamic

adjustment in this model and speci�cally on the issue of local indeterminacy. The clearest intuition

for why indeterminacy arises in the presence of increasing returns to scale is provided by Schmitt-Grohé

(1997). If households expect higher than average production in the future, their expected future marginal

utility is lower and, by the capital Euler equation, their current marginal utility has to decrease. This

perception of wealth leads households to consume more and supply less labor. The crucial question

is what happens to equilibrium employment as a result of this. Increasing returns implies that the

demand for labor can be upward sloping. If in fact, labor demand slopes upward and more steeply

than labor supply, then a reduction in labor supply implies an increase in equilibrium employment.

Higher employment means more production and so, the original expectations of the households may

become self-ful�lling. In particular, given that on an equilibrium trajectory output will have to decrease

monotonically towards the steady state, the only way in which an expectation of an increase in future

output can be self-ful�lling, is if it leads to an even larger increase in current output.

The above intuition arises from the following analytical result of Benhabib and Farmer (1994). They

show in their continuous time model that a necessary condition for local indeterminacy is that sn� �1 > �,

i.e. that the labor demand slope is higher than the labor supply slope.18 Here we use our hybrid model

to analyze the dependence of the model�s dynamics on h, the period length. Let

�1 =
(� + 1)( sk� � 1) +

sn
�

� + 1� sn
�

and �2 = �
sn
�

� + 1� sn
�

: (46)

Then, log-linearizing the equilibrium conditions at the beginning of period steady state we obtain the

following 2x2 system for the dynamics of this economy:19 
�̂t+h��̂t

h
k̂t+h�k̂t

h

!
= C (�; h; �)

 
�̂t

k̂t

!
; (47)

will guide the calibration.

18This is true because we assume diminishing marginal returns to capital (sk=�) < 1, i.e. that the demand for capital is
downward sloping.
19See Appendix B.
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where

C (�; h; �) =

 
c11+hc12c21
1+�h�hc11

c12(1+hc22)
1+�h�hc11

c21 c22

!
; (48)

and

 
c11 c12

c21 c22

!
=

 
(�+ �) �2 � (�+ �) �1

(�+�)
sk

(��2) +
(�+�(1�sk))

sk

(�+�)
sk

�1 +
�+�(1�sk)

sk

!
: (49)

Note that the parameter of within-period discounting � does not enter the matrix that characterizes

the dynamics so within-period dynamics here have no e¤ect on between-period dynamics.20 We examine

how the indeterminacy regions vary with the period length h and the key parameter �, i.e. the degree

of monopoly power. Clearly, the indeterminacy regions will depend on the parameterization of the

model. Consider, for example, the benchmark parameterization used by Benhabib and Farmer (1994).

The parameters re�ect the yearly calibration for the US, � = 0:065; sk = 0:42, � = 0:1, � = 0:25 and

sn = 0:58. Studying determinacy as � and h change we �nd that, for h = 0; there is indeterminacy

whenever � 2 [0:42; 0:46]. This is a very small range of indeterminacy, which in fact disappears for h
larger than approximately 0:4 (graph omitted). In other words, indeterminacy may occur for some �s in

the continuous time model, but as h increases the range of �s shrinks and for h = 1 the model always has

a determinate steady state. Small changes in the parameterization can lead to very di¤erent conclusions.

We next consider the case where sn = 0:7 instead of 0:58, and � = 0 instead of 0:25 (this set

of parameters is used in one of the experiments by Benhabib and Farmer, table IV). The regions of

indeterminacy are shown in Figure 2. White regions show indeterminacy and gray areas show determinate

steady states. The parameter � on the horizontal axis varies from sk = 0:3 to 1. For this parametrization,

when � is calibrated to US data so that � = 0:66 , the continuous time model yields an indeterminate

steady state, while the discrete time model has a locally saddle path stable steady state. In fact, there is

a very wide range of values for � between 0:55 and 0:7, for which the discrete time model and continuous

time model give di¤erent predictions.

The numerical experiments con�rm our intuition that the shorter the period length h, the more

possibilities for indeterminacy arise. The crucial aspect of the intuition for indeterminacy which brings

into play the period length is the capital Euler equation. The expected future increase in output translates

into lower current marginal utility through this intertemporal condition. The strength of the current

response is what determines whether expectations are self-ful�lling. But the strength of the current

response to future events depends on how far away in the future these events are. Thus, the intertemporal

links are strong when h is small and are weakened as h increases. This explains why indeterminacy is

more likely for smaller h, at least in setups where the capital Euler equation is central to self-ful�lling

beliefs.

5. A Model with Balanced Budget Rules

Another variation of the Cass-Koopmans model comes through the addition of a government which

uses distortionary labor taxation to �nance exogenous government spending, as in Schmitt-Grohé and

Uribe (1997). The authors show how endogenous �uctuations can arise due to local indeterminacy if the

government is restricted to balance its budget every period. Here, we show how the model can �t into

our general framework and how this general framework can be used to analyze the importance of time

modelling. The model is found to lead to substantially di¤erent (contradictory from a policy perspective)

predictions when one moves from a continuous time setup to a yearly calibrated discrete time model. It

also serves as an illustration of how ignoring within period discounting can mask some important e¤ects.
20This is speci�c to this example. Other examples, such as the model of balanced budget rules examined in Section 5,

do exhibit a feedback from within period dynamics and between period dynamics.
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Figure 2: Stability in the model with increasing returns (Benhabib and Farmer, 1994). sn = 0:7 and
� = 0. White areas show indeterminacy. Gray areas show determinate steady states.

The correspondence with our general model is again a straightforward extension of the correspondence

in the Cass-Koopmans model. The function Q(:) describing the dynamic adjustment of the capital stock

is identical. The household�s budget constraint is modi�ed to take into account the e¤ect of taxation on

labor income, so the function H(:) is now given by

H(yt(s); !t (s) ; xt; zt(s)) = rt(s)kt + (1� � t(s))wt(s)nt(s) + �t(s)� ct(s)� Skt (s)� �kt; (50)

where � t(s) is the labor tax rate at t+s and is included in the vector zt(s) of variables exogenous from the

point of view of the household. With regard to G(:), in addition to identical �rm �rst order conditions

and pro�t de�nition, one has to include the government�s budget constraint, which stipulates a balanced

budget

g = � t (s)wt (s)nt (s) ; (51)

where g is the constant �ow of government expenditures. Period utility is further simpli�ed to be linear

in labor as proposed by Hansen (1985), so

u(ct(s); nt(s)) = log ct(s)�Ant(s): (52)

Compared to the model without a government, the crucial di¤erence in the equilibrium conditions arises

from the e¤ect of labor income taxes on labor supply

A = �t(s)(1� � t (s))wt (s) ; (53)

where �t(s) is the marginal utility of income. An increase in taxes now shifts labor supply downward

and, given a downward sloping labor demand curve, leads to a reduction in equilibrium employment.

The dependence of labor supply on taxes together with the requirement for balanced budgets create

the possibility of self-ful�lling expectations. In particular, if households expect high future labor taxes,

they reduce future labor supply. As explained, this leads to a reduction in future equilibrium labor.
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The resulting fall in the marginal product of capital implies, through the Euler equation, that current

marginal utility has to fall. This, in turn, leads to a combination of increased consumption and leisure.

The expectation of high future taxes thus leads to less work today which, in turn, forces the government

to increase current labor income taxes to maintain a balanced budget. If the resulting increase in current

taxes is large enough, such a situation can be an equilibrium and expectations become self-ful�lling.

Schmitt-Grohé and Uribe consider the possibility of such indeterminacy as a function of steady state tax

rates.21 We perform a similar analysis in our context and look for the dependence of indeterminacy on

period length h.

The long run behavior, as well as within-period dynamics, are straightforward extensions of those

in the Cass-Koopmans model. We focus instead on the dynamic adjustment. Let lower case letters

with bars denote the beginning-of-period steady state levels of variables and de�ne si = ��k=F (�k; �n) and

sc = �c=F (�k; �n). The local dynamics around the initial point of a steady state function are derived in

Appendix C:  
�̂t+h��̂t

h
k̂t+h�k̂t

h

!
=

 
� c11+hc12c21
1+�h+hc11

� c12(1+hc22)
1+�h+hc11

c21 c22

! 
�̂t

k̂t

!
; (54)

where 
c11 c12

c21 c22

!
�
 

c11(�) c12(�)

c21(�; h; �) c22(�)

!
=

 
� (�+�)sn(1��)

sk�� � (�+�)sn�
sk��

(�+�)
sk

[ sn(1��)sk�� + �c
�y
sc]

(�+�)(1��)
sk�� � �

!
: (55)

The term �c=�y is de�ned in Appendix C and depends on both h and �. We �x parameters using the

yearly calibration of Schmitt-Grohé and Uribe, i.e. sk = 0:3, sn = 0:7, � = 0:1 and � = 0:04. With

regard to within period discounting, we examine two cases, namely � = 0 and � = �. The �rst serves

as a benchmark where steady state functions are constant, while the second makes the more plausible

assumption that utility is discounted at the same rate within and across periods.

Figures 3 and 4 show the stability properties of the two models, for � 2 [0; 1) and h 2 [0; 4]. Gray areas
indicate saddle path stability and white areas indicate indeterminate dynamics. Figure 3 corresponds

to the case where � = 0. As h increases, the indeterminacy regions become smaller overall, despite the

fact that the upper bound remains constant and equal to 0:75. For h = 0, the range of indeterminacy is

� 2 (0:3; 0:75), just as in Schmitt-Grohé and Uribe (1997), whereas for h = 1 the range of indeterminacy
is � 2 (0:38; 0:75). In other words, for a labor tax rate between 30% and 38%, the result of Schmitt-

Grohé and Uribe is reversed when we move to a discrete time setup. The range of taxes where this

contradiction arises is both wide and empirically relevant. The result of Schmitt-Grohé and Uribe is

particularly important and relevant because many OECD countries�tax rates fall within or very close to

the range of indeterminacy they computed. Looking at the estimated, e¤ective labor income tax rates

in Mendoza, Razin and Tesar (1994), in 1988 the U.S., the U.K., Canada and Japan had rates only just

below 30%. Italy, Germany and France on the other hand, fell within the range of indeterminacy with

rates at 40% or more. Of course, these rates vary over time and one can �nd years where the UK rate

was above 30% and European rates were less than 40%. De Haan and Volkerink (2001) provide updated

estimates for 18 OECD countries in 1992. The labor income tax rates reported vary between 25% and

45%. Roughly speaking, this is the range of cross-sectional variation across developed countries. The

range of taxes for which a standard discrete and a standard continuous time model produce opposite

results (30%� 38%) lies exactly in the middle of this and covers almost half of the interval width.

21Strictly speaking the labor tax rate in this model is an endogenous variable and g is an exogenous constant parameter.
Due to the existence of a La¤er curve there are two steady state labor taxes for a given g. However, like Schmitt-Grohe
and Uribe (1997), we choose to take the steady state labor tax rate (at the begining of the period) as a parameter and
work out what the corresponding g is.
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Figure 3: Stability properties for the general model with labor taxes, � = 0: Gray areas show saddle-path
stability and white areas show indeterminacy.

To understand why period length h matters for local determinacy, consider the intuition for indeter-

minacy explained earlier. This relies on the assumption that an increase in the labor tax will increase

government revenues. This is true as long as tax rates are to the left of the peak of the La¤er curve.

With the current calibration, the peak of the La¤er curve is at �� = 0:75 so indeterminacy can only arise

for � < 0:75. This upper bound does not depend on h because the steady state is invariant to changes

in h (as long as � = 0). For the lower bound, period length actually does matter. The intuition is as

follows: for the intuitive argument for indeterminacy to work, it must be that an increase in expected

future labor tax rates leads to a large enough increase in current labor tax rates. This is due to the fact

that, on an equilibrium path, tax rates must converge monotonically to their steady state. The question

is, therefore, how strongly current choices are a¤ected by changed expectations about the future. Not

surprisingly, since agents discount the future, if the future is one year ahead it has less of an impact

on today�s choices than if it is one quarter (or an instant) away. Put di¤erently, as the frequency of

decision making decreases (i.e. as h becomes larger), the response of current employment to higher

expected future tax rates is milder. This is a direct result of the e¤ects of the period length on optimal

intertemporal decisions as described by the Euler equation.

Figure 4 shows the indeterminacies for the case � = �, i.e. the case where we allow for within-

period discounting. Once again, the case h = 0 is equivalent to the standard continuous time model,

as in Schmitt-Grohé and Uribe (1997), where indeterminacies occur for � 2 (0:3; 0:75). As in Figure
3, the intervals of tax rates for which indeterminacy occurs shrink as the period length becomes larger.

However, compared to Figure 3, the upper bound of the interval is not a vertical line any longer. This is

because when we allow for within period discounting, the steady state function for the tax rate depends

on h. It can be shown that the tax rate ��(h) corresponding to the peak of the La¤er curve decreases

in h. Thus, the upper bound of the indeterminacy region in Figure 4 traces exactly this dependence of

the peak of the La¤er curve on the frequency of decision making. Regarding the lower bound of the

indeterminacy area, the intuition is the same as for the case of no within-period discounting.
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Figure 4: Stability properties for the general model with labor taxes, � = �. Gray areas show saddle-path
stability and white areas show indeterminacy.

6. The New Keynesian Model

Our last example is a simple version of the New Keynesian model with endogenous capital accumulation.

It is a production economy with monopolistic competition, quadratic price adjustment costs and a forward

looking monetary policy rule whereby the interest rate responds to deviations of in�ation from a target.

This example has been analyzed both in continuous time (Dupor, 2001) and discrete time (Huang and

Meng, 2007). Moreover, Li (2003) and Carlstrom and Fuerst (2005) study variations of this model with

Calvo instead of Rotemberg pricing.

We assume that time is continuous and that stock variables such as bond holdings B, money holdings

M and capital k vary discretely, while �ow/control variables may vary continuously. We also assume

that the prices of goods P (and thus the aggregate price index �P ) vary discretely and de�ne the in�ation

rate22

��t =
�Pt+h � �Pt
h �Pt

:

This model can be mapped into our general framework of section 2 by making the following de�ni-

tions23

xt = [Pt; Bt�h; kt;Mt; ]
T
; (56)

yt(s) =
h
ct(s); nt(s); �t(s); ~nt(s); ~kt(s)

iT
; (57)

!t (s) =
�
SMt (s); S

B
t (s); S

k
t (s); �t(s)

�T
; (58)

zt(s) =
�
wt(s); rt(s); � t(s); Rt�h(s); �Pt; ��t

�T
; (59)

where nt(s) and ~nt(s) are labor supply and labor demand respectively and kt and ~kt(s) are capital

supply and capital demand respectively. SB and SM are the rates at which bond and money holdings

accumulate notionally within a period (in the form of "non-operative" bonds and cash). Lump-sum taxes

22We do not attempt to argue here whether this is the best way of modelling how prices change or not; the assumption
of discretely varying prices is made in order to capture the underlying assumption of a discrete time model.
23The model is presented in detail in Appendix D.



Modelling Time 21

(or transfers) are denoted by � t(s) and Rt�h(s) is the net nominal interest rate earned when holding a

bond from t� h to t. Finally, �t is the rate of change of the price Pt de�ned as

�t =
Pt+h � Pt

hPt
: (60)

We assume �t(s) does not vary within a period and write it as �t. One could allow this �own price

in�ation�rate to vary within a period with no signi�cant alterations in the result that follows. The rest

of the variables are the same as in previous sections.24

Utility is given by

u(yt(s); xt+h; zt(s)) = log ct(s) +  log
Mt+h

�Pt
� �nt(s)�




2
(�t � ��)2 ; (61)

where the parameter 
 > 0 measures the size of the price adjustment cost. The household/�rm faces a

budget constraint

�Pt (ct(s) + � t(s)) + S
B
t (s) + S

M
t (s)

= Rt�h(s)Bt�h + Pt~k
sk
t ~n

sn
t (s)� �Pt

�
rt(s)~kt + wt(s)~nt(s)

�
+ �Pt (rt(s)kt + wt(s)nt(s)) ; (62)

and has to meet demand with its (Cobb-Douglas) production

~kskt ~n
sn
t (s) = Y dt (s)

�
Pt
�Pt

��
; (63)

where Y dt (s) is aggregate demand and � < �1. These two constraints give the functionsH1(yt(s); !t (s) ; xt; zt(s))

and H2(yt(s); !t (s) ; xt; zt(s)) respectively. Stock accumulation constraints are given as usual by de�ning

the functions Qi(:) in a compact vector form:

Q(yt(s); !t (s) ; xt; zt(s)) =
�
SMt (s); S

B
t (s); S

k
t (s); hPt�t

�T
: (64)

Finally, the functions G�(:), � = 1; :::; 7, are given by seven other conditions which we present in what

follows. In equilibrium, factor markets have to clear, ~kt(s) = kt and ~nt(s) = nt(s) and so does the goods

market

ct(s) + �kt + S
k
t (s) = k�t nt(s)

� : (65)

We look for a symmetric equilibrium where Pt = �Pt, and thus �t = ��t. In addition, the government

budget constraint has to hold, so

SBt (s)�Rt�h(s)Bt�h + SMt (s) + � t(s) = 0; (66)

and we assume a monetary policy rule

Rt =  (��t) ; (67)

where  is strictly positive, di¤erentiable and non-decreasing in ��t. The derivative  
0 (���) measures

the degree of activeness or passiveness of monetary policy. In what follows, the monetary rule will be a

response of nominal interest rates to deviations of in�ation from steady state.

24Note that in the correspondence with Section 2, �t is both in y and in !. This could easily be recti�ed by introducing
a dummy variable so that this element of ! does not appear in the objective. We avoid introducing such notation for the
purpose of clarity of exposition.
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6.1. Dynamics. This example is particularly interesting and di¤erent from the rest for two reasons.

First, because in this context assuming no within-period discounting (i.e. � = 0) and taking h = 1 does

not necessarily imply that all variables are constant within a period. In particular, labor and the rental

rate of capital are both time varying, and satisfy the relationshipZ 1

0

rt (s) ds =
sk
sn

wt
~kt

Z 1

0

nt (s) ds: (68)

In order to revert to the standard discrete time version of the model, we need to assume that variables

such as the rental rate rt(s) and nt(s) are constant within the period.

Second, for this example there is a discontinuity when we take the limit as h ! 0: the limiting

system of dynamics does not correspond to the usual continuous time model. This is because the no

arbitrage condition in the general discrete time model introduces an additional dynamic equation that

is not present in continuous time.25 To make this second point clearer, we abstract from within period

discounting and consider a general discrete time model where all variables are assumed to be constant

within a period. With all this in place, we can reduce the linearized system of period-by-period dynamics

to the following26 0BBBB@
�̂t+h

ĉt+h

r̂t+h

k̂t+h

1CCCCA =

0BBBB@
f1 f2 0 0

g1 1 0 0

j1 0 0 0

0 l1 l2 l3

1CCCCA
0BBBB@

�̂t

ĉt

r̂t

k̂t

1CCCCA ; (69)

where

f1 = (1 + �h) +
h


 (1 + h��)

k�

c�

�
h

(1 + �h)

sn
sk
(�+ �) + 1

�
 0 (��)� (1 + �h)

(1 + h��)
�; (70)

f2 =
h�


 (1 + h��)

sn
sk
(�+ �)

k�

c�2
; g1 =

�
 0 (��)

1 + �h
� 1
�

hc�

1 + h��
; (71)

j1 =
 0 (��)� (1 + h�)

1 + h��
; l1 = �

�
sn

�
�k�

c�
+ 1

�
+ 1

�
h; (72)

l2 =
hsny

�

r�
=

hsny
�

(�+ �)
; l3 =

�
c�

k�
h+ 1

�
: (73)

We have three jump variables and one predetermined variable, thus a necessary and su¢ cient condition

for determinacy is that there are three eigenvalues strictly outside the unit circle. If the eigenvalues

outside of the unit circle are fewer than three, then we have indeterminacy and if they are more than

three, then we have explosive dynamics.

The two eigenvalues of the bottom two rows of the matrix are 0 and l3 > 1 (for any h > 0), so that

the necessary and su¢ cient condition for determinacy is that the two eigenvalues of

A0 =

 
f1 f2

g1 1

!
(74)

are strictly outside the unit circle. It is possible to show that these necessary and su¢ cient conditions

are equivalent to requiring that the following inequalities are satis�ed:

(1 + �h) <  0 (��) < (1 + �h)� 1

�h

c�

k�

 (1 + h��)

2
min

�
h�;

2 + 2 (1 + �h)

1 + �

�
; (75)

25A similar point is made in Carlstrom and Fuerst (2005) in the corresponding model with Calvo pricing.
26Detailed derivations of the linearized system as well as indeterminacy conditions subsequently presented are provided

in Appendix D.
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where

� =
h

(1 + �h)

sn
sk
(�+ �) + 1:

Note that the upper bound of inequality (75) is always strictly larger than the lower bound, so that

there is always some parameter region for which the steady state is determinate. While it is not possible

in general to determine min
h
h�; 2+2(1+�h)1+�

i
, we can con�rm numerically that for reasonable parameter

values, h� is smaller than [2 + 2 (1 + �h)] = (1 + �). Therefore for such parameters the necessary and

su¢ cient condition for determinacy reduces to

(1 + �h) <  0 (��) < (1 + �h)� �

�

c�

k�

 (1 + h��)

2
:

How this condition varies with h depends on the exact functional form of the monetary policy rule.

Suppose for example that we assume a non-linear rule

Rt = R�
�
�t
��

�q
; (76)

where Rt = 1 + hRt and �t = 1 + h�t are the gross nominal interest rate and gross in�ation rate

respectively. Then,

Rt =
R�

h

�
1 + h�t
��

�q
� 1

h
�  (�t) ; (77)

and

 0 (��) = q (1 + �h) : (78)

Therefore, the condition for determinacy becomes

1 < q < 1�� 1

�h

c�

k�


(1 + h��)

2

1 + �h
min

�
h�;

2 + 2 (1 + �h)

1 + �

�
: (79)

The lower bound on q for determinacy yields the familiar Taylor principle result: in order to have

a determinate steady state, monetary policy should be active, i.e. q > 1.27 The upper bound for

determinacy simply states that if monetary policy is "too" active, then the steady state may become

indeterminate again. To understand the intuition behind why indeterminacy may arise in this setting,

suppose that in�ation is expected to rise. If monetary policy is passive, then the real interest rate goes

down. This implies higher current demand for consumption goods. Moreover, from the no-arbitrage

condition, a lower real interest rate implies lower future returns on capital, i.e. lower demand for

investment goods. Whether overall demand for the single consumption/investment good increases or

not, depends on how large this e¤ect is on consumption and investment demand. If demand goes up,

then prices will increase; for su¢ ciently high price increases, in�ation will increase as well and the

expectations will be ful�lled. Similarly, if the monetary policy is too active (i.e. when  0 (��) exceeds

the upper bound in (75)), then the real interest rate and the expected return on capital will increase a

lot. Even though current consumption demand will go down, the large increase in the expected return

on capital may increase investment demand so much that the overall demand will go up, thereby pushing

prices upwards and con�rming the original expectations of higher in�ation.

27Note that, were we to assume a linear monetary policy rule, then the standard Taylor principle would have to be
modi�ed to require q > 1 + �h. That is, our model shows that the correct discrete time counterpart to a continuous time
linear monetary policy rule is to assume a log-linear rule.
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6.2. The limiting case. Suppose that we now want to examine the dynamics of the limiting case

h! 0. We then transform the system to0BBBB@
�̂t+h��̂t

h
ĉt+h�ĉt

h
r̂t+h�r̂t

h
k̂t+h�k̂t

h

1CCCCA =

0BBBB@
f1�1
h

f2
h 0 0

g1
h 0 0 0
j1
h 0 �1

h 0

0 l1
h

l2
h

l3�1
h

1CCCCA
0BBBB@

�̂t

ĉt

r̂t

k̂t

1CCCCA : (80)

Taking the limits as h ! 0; it becomes clear that the third row is not well-de�ned. This is because in

the continuous time version of the model the rate r is a static variable. Indeed, as Dupor (2001) shows,

the continuous time dynamics are given by0B@ _�t

_ct
_kt

1CA =

0B@ f 01 f 02 0

g01 0 0

l01 h02 l
0

3

1CA
0B@ �̂t

ĉt

k̂t

1CA ; (81)

where

f 01 = lim
h!0

f1 � 1
h

; f 02 = lim
h!0

f2
h
; g01 = lim

h!0

g1
h
; l03 = lim

h!0

l3 � 1
h

: (82)

Now we have two jump variables and one predetermined variable, so for determinacy we need two

eigenvalues to be positive. Since l03 =
c�

k� > 0, we need one of the eigenvalues of the upper left block

of the matrix to be positive and one to be negative (this is equivalent to requiring a passive monetary

policy, as shown in Dupor, 2001). If there was continuity when going from the discrete time model to

the continuous time one, then the necessary and su¢ cient condition for determinacy should be that both

these eigenvalues are positive.

It is important to clarify that the discontinuity occurs in the dynamics of the model and it is not just

a mere artefact of choosing the wrong continuous time model as a counterpart to the discrete model.

Dupor�s (2001) model is obtained as a result of taking limits as h! 0 of all the equilibrium conditions.

The discontinuity arises simply because the rental price of capital r is a dynamic variable in any discrete

time model but a static variable in a continuous time model.

7. Depreciation and Discounting

A common feature across our examples is the e¤ect on indeterminacy of two parameters: the capital

depreciation rate � and the time preference rate �. To analyze this, we concentrate on the last three

examples, i.e. the three models that exhibit local indeterminacy. To understand how � and � a¤ect

the dynamics in these three models, it is useful to reiterate on the role of h for indeterminacy. In all

our examples, we can show that as h increases, the indeterminacy regions become smaller. We argue

that this is due to the following reason: in models with capital accumulation, indeterminacy (i.e. self-

ful�lling expectations in an environment with uncertainty), is closely related to the investment decisions

of households as described by the Euler equation for capital. Whether agents� expectations are such

that today�s investment decisions are self-ful�lling or not, depends on how important the e¤ect of the

future is for decisions taken today. As h increases, the frequency of decision making in the dynamic

problem decreases and, due to discounting, the future becomes less important, thus reducing the impact

of expectations on today�s decisions.

We discuss each parameter in turn. Starting with the depreciation rate, it is possible to show that as

� increases, i.e. as capital depreciates more, the range of indeterminacy becomes smaller. To understand

the intuition behind why higher � implies less indeterminacy, recall that for any calibration frequency,
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� represents the depreciation of capital over one unit of time. As � increases, it means that capital

depreciates more overall, so when households make decisions today about future investment, future

capital is less attractive for them and therefore it has a smaller impact on current decisions. For all three

examples, we present �gures (5a-5f), that replicate the regions of indeterminacy for the extreme case of

complete depreciation of capital. From these �gures, it is quite clear that with � = 1, indeterminacy

becomes much less likely for the discrete time model with h = 1. Notice that for the model with balanced

budget rules (Example 3), a higher delta implies a wider range of indeterminacy for h = 0 compared

to the benchmark case, but the slope of the lower bound for indeterminacy is so small that the ranges

become very small very quickly. In that model, the reason that the indeterminacy range for h = 0 is

larger as � increases, is that the upper bound for indeterminacy is dictated by the peak of the La¤er

curve, �� which increases in �. This is because as capital depreciates more, households �nd it more

worthwhile to hold less capital and work more, and thus the distortion due to labor taxation is present

at higher labor tax rates.

A similar reasoning can be given for the role of the discount rate �. As � increases, i.e. as households

become less patient, the future becomes less important to them and thus their expectations about it have

a smaller e¤ect on decisions taken today. This implies a reduced possibility of indeterminacy, since it

is less likely that expectations will be self-ful�lling. Again, we present �gures for all the three examples

(Figures 6a-6f), where it is clearly seen that the regions of indeterminacy reduce as � increases. In

contrast to the case of �, for the model of balanced budget rules, we now see that a higher � implies a

lower upper bound of indeterminacy when h = 0. This is because as households become less patient,

current labor income is more important than future income from holding capital and therefore the labor

tax distortion is bigger, moving the peak of the La¤er curve to the left.

In some sense, it is not surprising that we observe these three results relating to h, � and � in all our

examples. All these three parameters re�ect how relevant the future is when making consumption/savings

decisions today. The more irrelevant the future becomes (i.e. the larger h, � and � are), the weaker is the

intertemporal link that renders expectations self-ful�lling. With this discussion in mind, we conjecture

that these results generally hold true in similar general equilibrium models with capital accumulation, to

the extent that the same reasoning may apply whenever the Euler equation that determines the dynamics

of consumption links current and future consumption through rates of return of future savings. However,

we are unable to generalize this statement for other settings.
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Figure 5a: Benhabib-Farmer, Benchmark Figure 5b: Benhabib-Farmer, � = 1

Figure 5c: Schmitt-Grohe and Uribe,

Benchmark

Figure 5d: Schmitt-Grohe and Uribe,

� = 1

Figure 5e: New Keynesian, Benchmark Figure 5e: New Keynesian, � = 1

Figures 5a-5f: Indeterminacy for larger �. The left column of the panel shows the benchmark cases. For
the New Keynesian model, the benchmark corresponds to the parametrization of Dupor (2001), i.e. sn = 0:7,


 = 350, � = �21, �� = 2%, � = 0:0045, � = 0:025. Note that black areas show explosive solutions.
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Figure 6a: Benhabib-Farmer, Benchmark Figure 6b: Benhabib-Farmer, � = 0:2

Figure 6c: Schmitt-Grohe and Uribe,

Benchmark

Figure 6d: Schmitt-Grohe and Uribe,

� = 0:2

Figure 6e: New Keynesian, Benchmark Figure 6f: New Keynesian, � = 0:2

Figures 6a-6f: Indeterminacy for larger �. The left column of the panel shows the benchmark cases. For
the New Keynesian model, the benchmark corresponds to the parametrization of Dupor (2001), i.e. sn = 0:7,


 = 350, � = �21, �� = 2%, � = 0:0045, � = 0:025. Note that black areas show explosive solutions.

8. Concluding Remarks

This paper has brought to the fore the underlying assumptions inherent in discrete time modelling

and explored the, often hidden, consequences of such assumptions. We have shown that the choice

of period length is a choice of economic signi�cance that is separate from, although related to, the

issue of calibration. We presented a general dynamic general equilibrium framework that can be used

with any speci�c macroeconomic model in order to properly address the robustness of the model�s
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predictions with respect to alternative choices for the period length parameter. We have used four

concrete examples to illustrate the usefulness of the framework by pointing out the e¤ects of period

length in these speci�c cases. The di¤erent examples served di¤erent purposes: the Cass-Koopmans

model allowed us to illustrate in detail how to apply our framework in the context of a widely known

textbook model. The other three models were chosen because they are well known examples where

indeterminacies arise. The models of Benhabib and Farmer (1994) and Schmitt-Grohé and Uribe (1997)

serve to illustrate how sensitive indeterminacy is to the choice of period length. The latter also provides

an example where within-period discounting does a¤ect local dynamics. Contrary to the other examples,

the model by Dupor (2001) provides an example where moving from a strictly positive period length to

a continuous time model leads to completely di¤erent results because of a discontinuity in the dynamics

at 0. We view our framework as a good platform within which such discontinuities can be brought to

the researcher�s attention. Finally, across all of our examples, we have been able to identify the e¤ects

of parameters such as the depreciation rate and the time preference rate on local dynamics.

A �nal comment is in order for our last example, the New Keynesian model with capital accumulation.

This is an unusual case, where taking the limit of the discrete time model as h ! 0 does not yield the

dynamics of the model with h = 0. Foley (1975), asserted that "No substantive prediction or explanation

in a well-de�ned macroeconomic [discrete time] model should depend on the real time length of the period.

[...] If the results of a [discrete time] model do not depend in any important way on the period, the model

can be formulated as a continuous model." We interpret Foley�s statement to mean that no qualitative

prediction in a well-de�ned macroeconomic discrete time model should depend on the real time length of

the period; in other words, we believe that it is not unreasonable to observe di¤erences in the dynamics

of discrete time models as h changes, as long as the qualitative structure remains the same. We have

provided examples where, depending on the calibration, the dynamics change qualitatively and which,

as a result, do not pass Foley�s test. Our last example is even more striking because this occurs for any

calibration. Moving from a discrete to a continuous time model, the qualitative features of the dynamics

change entirely. We believe that in future work, it would be interesting to explore this example further

and understand why these two models (discrete and continuous time versions of the New Keynesian

model) are so radically di¤erent, but also try to construct an appropriate continuous time model that

would yield the same dynamics as the limit of the discrete time model as the period length approaches

zero.

We wish to close the paper with a word of caution to researchers that employ dynamic general

equilibrium models for analysis of macroeconomic dynamics and policy design. Given our �ndings, that

is that the stability of such systems may be quite sensitive to the period length, quantitative results

based on such models should be interpreted with care. We hope that our work will aid researchers in

assessing the robustness of their results to di¤erent assumptions about the period length. Ultimately, we

believe that policy prescriptions arising from dynamic macroeconomic modelling would be signi�cantly

strengthened if we could carefully estimate (or at least calibrate) the period length, h, in actual economies.
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Appendix

A. Analysis of the Cass-Koopmans Model

We provide a formal de�nition of the equilibrium in the Cass-Koopmans economy with discretely opening

capital markets. Let us �rst describe the set of admissible paths. This will consist of sequences of contin-

uous functions fct (�)gt2I , fnt (�)gt2I ; fSkt (�)gt2I ; fwt (�)gt2I ; frt (�)gt2I and f�t (�)gt2I for consumption,
labor, net savings, wages, rental rates and pro�ts respectively, where each element of these sequences is

a continuous function with domain [0; h) and range R+. It will also contain fkt+hgt2I , i.e. a sequence
of real numbers for capital stock.

De�nition 1. A competitive equilibrium with sequential trade consists of sequences of price func-

tions fw�t (�)gt2I and fr�t (�)gt2I , sequences of quantity functions fc�t (�)gt2I ; fn�t (�)gt2I ; fSk�t (�)gt2I ,
f��t (�)gt2I and a sequence of capital stocks fk�t+hgt2I such that

(i) Given fw�t (�)gt2I , fr�t (�)gt2I and f��t (�)gt2I , the quantities fc�t (�)gt2I ; fn�t (�)gt2I ; fSk�t (�)gt2I and
fk�t+hgt2I are optimal for the households. That is

fc�t ; n�t ; i�t ; k�t+hgt2I = argmax
fct;nt;it;kt+hgt2I

X
t2I

�
1

1 + �h

� t
h
Z h

0

e��su(ct(s); nt(s))ds; (83)

s:t: ct(s) + S
k
t (s) + �kt = r�t (s)kt + w

�
t (s)nt(s) + �

�
t (s); (84)

kt+h � kt =

Z h

0

Skt (s)ds; (85)

ct(s) � 0; nt(s) � 0; kt+h � 0 (86)

k0 given, (87)

ii) Given fw�t (�)gt2I and fr�t (�)gt2I , the quantities fn�t (�)gt2I ; fk�t+hgt2I and f��t (�)gt2I are optimal
for the �rms. That is

�
n�t (s); �

�
t (s); k

�
t+h

	
t2I = argmax

fn�t ;k�t+hgt2I

X
t2I

�
1

1 + �h

� t
h
Z h

0

e��s
uc;t(s)

uc;0(0)
�t(s)ds; (88)

subject to

�t(s) = kskt nt(s)
sn � r�t (s)kt � w�t (s)nt(s) (89)

iii) All markets clear at every instant s. The market clearing condition for the goods market is

c�t (s) + S
k�
t (s) + �k

�
t = (k

�
t )
sk (n�t (s))

1�sn for all s 2 [0; h) and all t 2 I. (90)

The labor and capital markets clear by de�nition of the sequences fn�t (�)gt2Iand fk�t+hgt2I .

A.1. Long run and dynamic adjustment. Here we describe the long run behavior of our economy.

We argue that there is a period from which onwards the capital stock remains unchanged, since this

variable never varies within a period. However, the rest of the (�ow) variables will vary within each

period in the way described in the previous section (i.e. exponentially decreasing or increasing), so that

they are characterized by a steady state function, rather than the usual steady state value of the standard

discrete or continuous time models.
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The steady state for ~r is easily derived from the Euler equation � + � = ~r: Let the steady state

function for the capital labor ratio be �(s), s 2 [0; h) and

�h � �(0) and �l � lim
s!h

�(s): (91)

From the de�nition of ~r, we obtain that

�+ � = ~r =
e
�snh
�+sk � 1
�snh
�+sk

sk (�(0))
�sn : (92)

Therefore,

�h =
k

n(0)
= ��q(h; �); (93)

where

�� =

�
sk
�+ �

� 1
sn

; (94)

q(h; �) =

 
e

sn
�+sk

�h � 1
sn

�+sk
�h

! 1
sn

: (95)

In other words, at the beginning of the period the capital labor ratio is equal to the usual steady state

capital labor ratio ��, corrected by a term that depends on the length of the period h and the within-

period time preference rate �. From (34), we also get the steady state function for the capital labor

ratio

�(s) = ��q(h; �)e
� �s
�+sk ; for all s 2 [0; h): (96)

We can establish the following properties for the steady state function of the capital labor ratio:

1. �(s) is continuous, strictly decreasing and convex, and

2. �h > �� and �l = ��q(h; �)e
� �h
�+sk < ��.

The �rst property is obvious. To show the second, we �rst make some convenient changes of notation

and establish some properties of q. Let

x =
sn�h

� + sk
> 0: (97)

We know that

ex > 1 + x: (98)

Since x > 0, this implies that

q(�; h) � q(x) =

�
ex � 1
x

� 1
sn

> 1 (99)

and therefore

�h = ��q(x) > ��: (100)

Similarly,

�l = ��q(x)e
� �h
�+sk = ��

�
ex � 1
x

� 1
sn �

e�x
� 1
sn = ��

�
1� e�x

x

� 1
sn

< ��: (101)

Combining the two properties, we have that �(s) crosses the horizontal line �� once and we can graphically

summarize the behavior of capital labor ratio in steady state, in Figure 1. The Figure shows the steady
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state capital labor ratio for the standard discrete and continuous time model, as well as the capital

labor ratio for our general continuous time model. In standard continuous time models, the steady state

capital labor ratio is constant and equal to ��. In this case, for any interval of length h the total capital

labor ratio is given by h��, i.e. the rectangle composed by the dark and medium gray areas. If time is

discrete, since the �ow of labor is constant within a period and h = 1, the total capital labor ratio is

given by h�� = �� as in the standard continuous time case.

A.2. Dynamic Adjustment. We consider the dynamic adjustment of capital and the multiplier

and convergence to the long run steady state functions. The period-by-period dynamics are described

by the Euler equation (30) and the capital accumulation equation (15). For expositional clarity, from

now on utility is taken to be linear in labor, i.e. � = 0. We derive the Jacobian matrix describing

the local dynamics around the long run beginning-of-period variables. In order to study the dynamics,

we consider log-linear approximations of the variables around some point. In the standard discrete and

continuous time models, this is done around the (invariable) long-run steady state level of every variable.

Here, since the variables are described by steady state functions in the long run, we need to choose a

speci�c point of these functions around which we approximate. The most natural choice is to consider

the beginning-of-period steady state levels of variables. This is because the dynamics of capital (i.e. the

state variable) change only at the beginning of each period, rather than continuously.

We denote the beginning-of-period steady state levels of variables with upper bars and the log-

deviations of variables from these with hats. Also, let sc be the share of steady state consumption in

total income at the beginning of a period, which in general depends on h. Furthermore, let

�y � e
�sn
sk

h � 1
�sn
sk

; (102)

�c � e��h � 1
�� : (103)

We de�ne

C(�; h) =

 
c11 c12

c21(�; h) c22

!
=

 
� (�+�)sn

sk
0

(�+�)
sk

[ snsk +
�c
�y
sc]

(�+�)
sk

� �

!
: (104)

The dependence on the within-period discounting � and the period length h in the bottom left element

is through the factor �c=�y. The dynamics are then given by

� k̂t+h�k̂t
h

�̂t+h��̂t
h

�
= D(h; �)

�
k̂t
�̂t

�
; (105)

with

D(h; �) =

 
c11+hc12c21(�;h)
1+�h�hc11

c12(1+hc22)
1+�h�hc11

c21(�; h) c22

!
: (106)

The stability properties are determined by the eigenvalues of I2 + hD(h; �). Since c12 = 0, the relevant

eigenvalues m1;2 are

m1 = 1 +
hc11

1 + �h� hc11
= 1�

h (�+�)snsk

1 + h
�
�+ (�+�)sn

sk

� (107)

m2 = 1 + c22 = 1 + h

�
(�+ �)sn

sk
� �
�

(108)
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Given the parameter assumptions, i.e. 0 < � < 1, � > 0 and sn; sk 2 (0; 1), it can easily be shown that
0 < m1 < 1 and m2 > 0; and therefore the system is saddle-path stable.

A.3. The limiting cases. We have argued that our general formulation nests standard discrete

and continuous time models as special cases. The standard continuous time model can be retrieved by

considering the limit as h! 0. This is immediate for intratemporal conditions once we realize that �ow

functions become instantaneous rates. Dynamic conditions become

_kt = Skt (109)

_�t =
�
�� � � skksk�1t nsnt

�
�t; (110)

where Skt is the �ow of investment minus depreciation.28 Furthermore, limh!0 q(h; �) = 1 and thus

�h = �l = ��. Last, since limh!0 (�c=�y) = 1, by letting h ! 0, we get the standard continuous time

dynamics

lim
h!0

D(h; �) = C; (112)

where C � C(�; 0) is de�ned as in (104).

To retrieve the discrete time model, we assume that h = 1 and that there is no discounting within

periods, i.e. that � = 0. The latter assumption, when used in conjunction with (33), (34), (35), (36) and

(37), implies that all �ows are constant and that ~r is equal to the marginal product of capital. Thus, the

Euler equation becomes

�t+1 � �t =
�� skksk�1t+1 nsnt+1 � �
1 +

�
skk

sk�1
t+1 nsnt+1 � �

��t (113)

and �nally,

lim
�!0

q(1; �) = 1; (114)

so that

�h = �l = ��: (115)

Finally, for h = 1 and � = 0 the matrix D(h; �) reduces to the standard discrete time matrix.

B. Analysis of the Model of Increasing Returns

In this appendix, we show how to obtain (47)-(49) i.e. the log-linearization of the model in section 4.

De�ne

�y =
e

�
sn
�

�+1� sn
�
h
� 1

� sn�
�+1� sn

�

and �c =
e��h � 1
�� (116)

28Here we have used the fact that for any function f (yt(s)) of the variable yt(s),

lim
h!0

R h
0 [f (yt(s))] ds

h
= f (yt) (111)
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As with the �rst two examples, we linearize the equilibrium conditions around beginning-of-period steady

state levels of variables and we obtain the following

k̂t+h =
�y
�k

�
sk
�
�k
sk
� �n

sn
� k̂t +

sn
�
�k
sk
� �n

sn
� n̂t(0) +

�c
�y
���1�̂t +

(1� �h) �k
�y

k̂t

�
; (117)

(118)

�̂t = �̂t+h +
�sk
�
� 1
� �y
1 + �h

sk�k
sk
� �1�n

sn
� k̂t+h +

sn
�

�y
1 + �h

sk�k
sk
� �1�n

sn
� n̂t+h(0); (119)

n̂t(0) =
sk
�

(� + 1)� sn
�

k̂t +
1

(� + 1)� sn
�

�̂t; (120)

Next substitute out the labor variable to obtain the matrix that describes the dynamics of the system:

k̂t+h =
�y
�k

" 
sk
�
�k
sk
� �n

sn
� +

(1� �h) �k
�y

+
sk
�
sn
�
�k
sk
� �n

sn
�

(� + 1)� sn
�

!
k̂t +

 
sn
�
�k
sk
� �n

sn
�

(� + 1)� sn
�

+
�c
�y
���1

!
�̂t

#
;(121)

�̂t =

��sk
�
� 1
� �y
1 + �h

sk�k
sk
� �1�n

sn
� +

sn
�

�y
1 + �h

sk�k
sk
� �1�n

sn
�

sk
�

(� + 1)� sn
�

�
k̂t+h (122)

+

�
1 +

sn
�

�y
1 + �h

sk�k
sk
� �1�n

sn
�

1

(� + 1)� sn
�

�
�̂t+h; (123)

Following Benhabib and Farmer (1994), we de�ne

�1 =
(� + 1)( sk� � 1) +

sn
�

� + 1� sn
�

(124)

�2 = �
sn
�

� + 1� sn
�

(125)

Using the steady state conditions

(�+ �)h = �ysk�k
sk
� �1�n

sn
� (126)

and

0 = �y�k
sk
� �n

sn
� � �c

��
� �h�k ) �c

���k
= �y�k

sk
� �1�n

sn
� � �h = (�+ �(1� sk))h

sk
(127)

we can simplify the equations to the discrete time system

P

 
�̂t+h

k̂t+h

!
= S

 
�̂t

k̂t

!
(128)

where

P =

 
1 + h

1+�h (�+ �) (��2)
h

1+�h (�+ �) �1

0 1

!
(129)

and

S =

 
1 0

h
h
(�+�)
sk

(��2) +
(�+�(1�sk))

sk

i
1 + h

h
(�+�)
sk

�1 +
�+�(1�sk)

sk

i ! (130)

Let

C =

 
c11 c12

c21 c22

!
=

 
(�+ �) �2 � (�+ �) �1

(�+�)
sk

(��2) +
(�+�(1�sk))

sk

(�+�)
sk

�1 +
�+�(1�sk)

sk

!
(131)
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Which is the Jacobian of the Benhabib and Farmer model (the continuous version) if we substitute

�̂t = �ĉt and write their Jacobian with �̂ �rst. Then

P =

 
1� h

1+�hc11 � h
1+�hc12

0 1

!
(132)

S =

 
1 0

hc21 1 + hc22

!
(133)

Therefore  
�̂t+h��̂t

h
k̂t+h�k̂t

h

!
=

�
P�1S � I

�
h

 
�̂t

k̂t

!

=

 
c11+hc12c21
1+�h�hc11

c12(1+hc22)
1+�h�hc11

c21 c22

! 
�̂t

k̂t

!
(134)

C. Analysis of the Model of Balanced Budget Rules

In this appendix we show how to obtain the log-linearization for the model of section 5 presented in

equations (54) - (55). Let

�y � e
�sn
sk

h � 1
�sn
sk

(135)

�c � e��h � 1
�� (136)

We start from the conditions describing equilibrium in the economy and reduce them to the following

three relations:

�t =
�t+h
1 + �h

�
1 + �yskk

�sn
t+h n(t+ h)

sn � �h
�
; (137)

Ant(0) = sn�tk
sk
t nt(0)

sn �G�t; (138)

�c�
�1
t + kt+h � (1� �h) kt = �yk

sk
t nt(0)

sn �Gh: (139)

Log-linearizing these around the beginning of period steady state values of the variables we get

�̂t = �̂t+h + (sk � 1)
�y

1 + �h
sk�k

sk�1�nsn k̂t+h + sn
�y

1 + �h
sk�k

sk�1�nsn n̂t+h(0); (140)

n̂t(0) =
sk

 (� + 1)� sn
k̂t +

 

 (� + 1)� sn
�̂t; (141)

k̂t+h =
�y
�k

�
sk�k

sk �nsn k̂t + sn�k
sk �nsn n̂t(0) +

�c
�y
���1�̂t +

(1� �h) �k
�y

k̂t

�
; (142)

where

 =
A�nsk

sn���ksk
: (143)



Modelling Time 35

We eliminate n̂(t) to end up with a dynamic system of equations in �̂t and k̂t given by

P

 
�̂t+h

k̂t+h

!
= S

 
�̂t

k̂t

!
(144)

where

P =

 
1 + sn

�y
1+�hsk

�ksk�1�nsn  
 (�+1)�sn sn

�y
1+�hsk

�ksk�1�nsn
h

sk
 (�+1)�sn � 1

i
0 1

!
; (145)

S =

 
1 0h

 (sn)�y�k
sk�1�nsn

 (�+1)�sn + �c
�k
1

 ��

� 1



i h
(1� �h) + �ysk�ksk�1�nsn + sn�ysk�k

sk�1�nsn

 (�+1)�sn

i ! : (146)
Using the steady state relations, the elements of these matrices simplify to

p11 = 1 +
sn (�+ �)h

1 + �h

1� �
sk � �

; (147)

p12 =
sn (�+ �)h

1 + �h

�

sk � �
; (148)

s21 = h
�+ �

sk

�
(1� �) sn
sk � �

+
�c
�y
sc

�
; (149)

s22 = h (�+ �)
1� �
sk � �

+ 1� �h: (150)

Next, let

C(�; h; �) =

 
c11 c12

c21(�; h) c22

!
=

 
sn (�+ �)

1��
sk�� sn (�+ �)

�
sk��

�+�
sk

h
(1��)sn
sk�� + �c

�y
sc

i
(�+ �) 1��

sk�� � �

!
; (151)

so that

P =

 
1 + h

1+�hc11
h

1+�hc12

0 1

!
; (152)

S =

 
1 0

hc21 1 + hc22

!
; (153)

and the dynamic system simpli�es to 
�̂t+h��̂t

h
k̂t+h�k̂t

h

!
=

 
� c11+hc12c21
1+�h+hc11

� c12(1+hc22)
1+�h+hc11

c21 c22

! 
�̂t

k̂t

!
: (154)

D. Analysis of New Keynesian Model

In parts D.1 to D.3 we explicitly present the model of section 6. In part D.4 we derive the log-linearization

resulting in (69) - (73). In part D.5 we provide a proof for the indeterminacy condition in (75).

D.1. Household/Firm Problem. The household/�rm maximizes

max
X
t2I

�
1

1 + �h

� t
h

(Z h

0

e��s
�
log ct(s) +  log

Mt+h

�Pt
� �nt(s)�




2
(�t � ��)2

�
ds

)
; (155)
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Subject to the following constraints

�Pt (ct(s) + � t(s)) + S
B
t (s) + S

M
t (s)

= Rt�h(s)Bt�h + Pt~k
sk
t ~n

sn
t (s)� �Pt

�
rt(s)~kt + wt(s)~nt(s)

�
+ �Pt (rt(s)kt + wt(s)nt(s)) ;(156)

for all t 2 I and s 2 [0; h)

Mt+h �Mt =

Z h

0

SMt (s)ds (157)

Bt �Bt�h =

Z h

0

SBt (s)ds (158)

kt+h � kt =

Z h

0

Skt (s)ds (159)

Pt+h � Pt = hPt�t (160)

~kskt ~n
sn
t (s) = Y dt (s)

�
Pt
�Pt

��
; sk 2 [0; 1); � < �1 (161)

We introduce multipliers (adjusted by the discount factor) for each of the constraints �t (s), �Mt,

�Bt, �kt, �Pt, �t(s). The �rst order conditions with respect to

ct (s) ; Mt+h; nt (s) ; �t; S
B
t (s) ; S

M
t (s) ; Skt (s) ; Bt; Pt+h; kt+h;

~kt; ~nt

are

1

ct (s)
= �Pt�t (s) (162)

 
1

Mt+h

Z h

0

e��sds = �Mt �
�

1

1 + �h

�
�M;t+h (163)

� = �Pt�t (s)wt (s) (164)


 (�t � ��)
Z h

0

e��sds = �PthPt (165)

e��s�t (s) = �Bt (166)

e��s�t (s) = �Mt (167)

e��s�t (s) �Pt = �kt (168)�
1

1 + �h

�Z h

0

e��s�t+h (s)Rt (s) ds = �Bt �
�

1

1 + �h

�
�Bt+h (169)�

1

1 + �h

�"Z h

0

e��s�t+h (s) ~k
sk
t+h~n

sn
t+h(s)ds+

Z h

0

e��s�t+h (s)Y
d
t+h(s)�

�
Pt+h
�Pt+h

���1
1
�Pt+h

ds

#
(170)

= �Pt �
�

1

1 + �h

�
�Pt+h (1 + h�t+h) (171)�

1

1 + �h

�
�Pt+h

Z h

0

e��s�t+h (s) (rt+h (s)� �) ds = �kt �
�

1

1 + �h

�
�kt+h (172)Z h

0

e��s�t (s)
h
skPt~k

sk�1
t ~nsnt (s)� �Ptrt (s)

i
ds =

Z h

0

e��s�t (s) sk
~ksk�1t ~nsnt (s)ds (173)

�t (s)
h
snPt~k

sk
t ~n

sn�1
t (s)� �Ptwt (s)

i
= �t (s) sn

~kskt ~n
sn�1
t (s) (174)
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D.2. Government. The government is assumed to transfer in a lump sum fashion the proceeds from

the issuance of new bonds and money

SBt (s)�Rt�h(s)Bt�h + SMt (s) + � t(s) = 0 (175)

Monetary policy follows a simple interest rate rule

Rt =  (��t) (176)

D.3. Remaining Equilibrium Conditions.

~kt(s) = kt (177)

~nt(s) = nt(s) (178)

ct(s) + �kt + S
k
t (s) = k�t nt(s)

� (179)

Pt = �Pt (180)

�t = ��t (181)

D.4. System of Dynamics. Within period dynamics are not central for making our main points.

Therefore, to keep things simple, we assume all �ow variables are constant within a period. Straight-

forward algebra allows us to reduce the equilibrium conditions to four dynamic conditions: the Phillips

curve, the relationship between the real interest rate and consumption growth, an arbitrage condition

and the resource constraint

1

h



�
(1 + h�t) (�t � ��)�

1

1 + �h
(1 + h�t+h) (�t+h � ��)

�
(182)

=
1

1 + �h

"
(1 + �)

�
sn
vsk

�sn kt+h

c1+snt+h

rsnt+h � �
kt+hrt+h
skct+h

#
(183)

1 + hRt
1 + h�t

= (1 + �h)
ct+h
ct

(184)

1 + hrt+h � h� =
1 + hRt
1 + h�t

(185)

kt+h � kt = hkskt n
sn
t � hct � �hkt (186)

where it is understood that the nominal interest rate is given by the monetary rule Rt =  (�t). We

denote the (now always constant) steady state values of the variables with a star. Linearizing these

conditions around their steady states, we obtain

�̂t+h =

�
(1 + �h) +

h


 (1 + h��)

�
h

(1 + �h)

sn
sk
(�+ �) + 1

�
k�

c�
 0 (��)� (1 + �h)

(1 + h��)
�

�
�̂t (187)

+
h�


 (1 + h��)

sn
sk
(�+ �)

k�

c�2
ĉt (188)

ĉt+h =

�
 0 (��)

1 + �h
� 1
�

hc�

1 + h��
�̂t + ĉt (189)

r̂t+h =
 0 (��)� (1 + h�)

1 + h��
�̂t (190)

k̂t+h = �
�
sny

�

c�
+ 1

�
hĉt +

hsny
�

r�
r̂t +

�
c�

k�
h+ 1

�
k̂t (191)
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D.5. Proof of (75). We start by calculating the determinant and the trace

detA0

= f1 � f2g1

= 1 + �h+
h�


 (1 + h��)

 0 (��)� (1 + �h)
(1 + h��)

k�

c�| {z }
=�

= 1 + �h+ � (192)

Note that � > 0 if  0 (��) < (1 + �h) and � < 0 if  0 (��) > (1 + �h)

tr (A0) = f1 + 1

= (1 + �h) +
h�


 (1 + h��)

 0 (��)� (1 + �h)
(1 + h��)

k�

c�

�
h

(1 + �h)

sn
sk
(�+ �) + 1

�
| {z }

={>1

+ 1

= 1 + �h+ ��+ 1 (193)

We also have

detA0 + trA0 + 1 = 1 + �h+ � + 1 + �h+ ��+ 2

= 2 + 2 (1 + �h) + (1 + �) � (194)

and

detA0 � trA+ 1 = (1� �) � < 0 if � > 0, i.e. if  0 (��) < (1 + �h)

= (1� �) � > 0 if � < 0, i.e. if  0 (��) > (1 + �h) (195)

The necessary and su¢ cient conditions for both roots to lie outside the unit circle are in general: if

detA0 > 1 then

det(A0)� tr(A0) + 1 > 0 (196)

det(A0) + tr(A0) + 1 > 0 (197)

and if detA0 < 1

det(A0)� tr(A0) + 1 < 0 (198)

det(A0) + tr(A0) + 1 < 0 (199)

We consider each case in turn.

1. If detA0 > 1 then

det(A0)� tr(A0) + 1 > 0 (200)

det(A0) + tr(A0) + 1 > 0 (201)

For this to be relevant, we check when the determinant is larger than one.

If  0 (��) < (1 + �h), because � < 0, then detA0 > 1 and the �rst necessary and su¢ cient condition
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for indeterminacy is

det(A0)� tr(A0) = f1 � f2g1 � f1 � 1 > �1()

�f2g1 > 0

� h�


 (1 + h��)

sn
sk
(�+ �)

k�

c�

�
 0 (��)

1 + �h
� 1
�

h

1 + h��
> 0 (202)

But this can never be true when  0 (��) < (1 + �h) because � < 0. Thus, for  0 (��) < (1 + �h)

(i.e. passive policy) there is never determinacy.

If  0 (��) > (1 + �h), we can still have that detA0 > 1, if

�h+
h�


 (1 + h��)

 0 (��)� (1 + �h)
(1 + h��)

k�

c�
> 0 (203)

h� > � �h


 (1 + h��)

 0 (��)� (1 + �h)
(1 + h��)

k�

c�
= �� (204)

If the above is true, then the conditions are

detA0 � trA+ 1 = (1� �) � > 0 (205)

which is true for  0 (��) > (1 + �h). The second condition is

detA0 + trA0 + 1 = 2 + 2 (1 + �h) + (1 + �) � > 0 (206)

because � < 0 this is true when

�� < 2 + 2 (1 + �h)

1 + �
(207)

2. If detA0 < 1 then

det(A0)� tr(A0) + 1 < 0; (208)

det(A0) + tr(A0) + 1 < 0: (209)

For this to be relevant, we need detA0 = 1 + �h+ � < 1, i.e. we need h� < ��; in which case the
�rst condition becomes

detA0 � trA+ 1 = (1� �) � < 0 if � > 0, (210)

but this cannot be true together with h� < �� since it would imply h� < 0. Since the �rst

condition cannot be satis�ed when detA0 < 1, it means there can never be determinacy in this

case. Collecting all this together, we have that there is determinacy whenever

 0 (��) > (1 + �h) ; (211)

h� > ��; (212)
2 + 2 (1 + �h)

1 + �
> ��; (213)
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i.e.

�� < min

�
h�;

2 + 2 (1 + �h)

1 + �

�
; (214)

� h�


 (1 + h��)

 0 (��)� (1 + �h)
(1 + h��)

k�

c�
< min

�
h�;

2 + 2 (1 + �h)

1 + �

�
; (215)

 0 (��) < (1 + �h)� 1

�h

c�

k�

 (1 + h��)

2
min

�
h�;

2 + 2 (1 + �h)

1 + �

�
:(216)
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