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ABSTRACT 

Solow Residuals without Capital Stocks 

Using synthetic data generated by a prototypical stochastic growth model, we 
explore the quantitative extent of measurement error of the Solow residual 
(Solow 1957) as a measure of total factor productivity (TFP) growth when the 
capital stock is measured with error and when capacity utilization and 
depreciation are endogenous. We propose two alternative measurements of 
TFP growth which do not require capital stocks: one measure eliminates the 
capital stock by direct substitution, while the other is based on generalized 
differences of detrended data and the Malmquist index. The root mean 
squared errors of these alternatives are as low as one third of those for the 
Solow-Törnqvist residual. Our comparative evaluations on artificial data 
indicate that measurement problems are severe, in particular for economies 
still far from their steady state. This drawback of the Solow residual is thus 
most acute in applications in which its accuracy is most highly valued. As an 
application, we compute and compare TFP growth estimates using data from 
the new and old German federal states. 
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1 Introduction

For more than fifty years, the Solow decomposition has served as the standard measurement of total factor productivity

(TFP) growth in economics and management.1 Among its central attractions are its freedom - as a first approximation

- from assumptions regarding the production function, statistical model or econometric specification.2 In his seminal

paper, Robert Solow (1957) first employed the decomposition to demonstrate the bounds of accounting for economic

growth using changes in observable inputs. In macroeconomics, the Solow residual has motivated research not only on

the sources of long-run growth, but also on the sources of business cycle fluctuations.3 According to the Social Sciences

Citation Index, the Solow paper has been referenced more than 1,300 times since its publication.4

Despite this considerable prominence, the goodness or robustness of the Solow residual as a measurement tool has

yet to be systematically evaluated. This is because the ”true” evolution of total factor productivity is fundamen-

tally unknown. Yet there are several reasons to suspect the quality of both microeconomic and macroeconomic TFP

measurements. First, the capital stock is fundamentally unobservable; in practice, it is estimated more or less as a

perpetual-inventory function of past investment expenditures plus an estimate of a unknown initial condition. Uncer-

tainty surrounding that initial condition as well as the depreciation, obsolescence and decommissioning of subsequent

investment can imply significant measurement error. Second, as many scholars of productivity analysis have stressed,

the Solow residual assumes full efficiency, and thus really represents a mix of changes in total factor productivity and

efficiency of factor utilization.5 Intertemporal variation of the utilization of capital will bias an unadjusted calculation

of the Solow residual as a measure of total factor productivity (Burnside, Eichenbaum, and Rebelo (1993, 1995)).

Because the perpetual inventory method (PIM) is the backbone of capital measurement for the OECD and national

accounting agencies in practice (Pritchett (2000), Schreyer (2009), O’Mahony and Timmer (2009), McGrattan and

Prescott (2009)), capital mismeasurement continues to pose a potential problem for growth accounting, especially

for developing and transition countries and when ”new” types of capital are studied (e.g. research and development

(R&D), information and communication technology (ICT), intangibles and public capital).

In this paper, we evaluate the extent of measurement error of the Solow decomposition using quantitative macroe-

conomic theory. We employ a prototypical stochastic growth model as a laboratory for studying the robustness of

the Solow residual computed using capital stocks constructed, as in practice, from relatively short series of observed

investment expenditures and an initial guess of an unobservable capital stock. To generate the synthetic data, we

consider a version of the model with endogenous depreciation or obsolescence for all capital in place. Our comparative

evaluations on artificial data indicate that measurement problems are severe, in particular for economies still far from

1 See, for example, Jorgenson and Griliches (1967), Kuznets (1971), Denison (1972), Maddison (1992), Hulten (1992), O’Mahony
and van Ark (2003).

2 See Griliches (1996).
3 See the references in Hulten, Dean, and Harper (2001).
4 Source: Social Sciences Citation Index, July 2010.
5 For a representation of the Solow residual as difference between TFP growth and efficiency, see Mohnen and ten Raa (2002).

Macroeconomists have raised this issue as well; see e.g. Summers (1986), Burnside, et al. (1993), and King and Rebelo (1999).
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their steady state. This drawback of the Solow residual is thus most acute in applications in which its accuracy is most

highly valued.

To deal with capital stock measurement error, we propose two alternative measurements of TFP growth. Both

involve the elimination of capital stocks from the Solow calculation, while introducing their own, different sources of

error. The first measurement, based on direct substitution, requires an estimate of the user cost of capital. The second,

based on generalized first differences of national accounts data, requires an estimate of an initial condition for TFP

growth (as opposed to an initial condition for the capital stock). To implement the latter approach, we improve on

the choice of starting value of TFP growth by exploiting the properties of the Malmquist index. We then evaluate

the extent of these competing errors in a horse race using the synthetic data described above. In almost all cases, our

measures outperform the traditional Solow residual and reduce the root mean squared error, in some cases by as much

as two-thirds.

The rest of paper is organized as follows. In Section 2, we review the Solow residual and the relationship between

the Solow decomposition and the capital measurement problem. Section 3 proposes a prototypical stochastic dynamic

general equilibrium model - the stochastic growth model with variable capacity utilization - as a laboratory for eval-

uating the quality of the Solow residual as a measure of TFP growth. In Section 4, we propose two alternative TFP

growth measurements and present the results of a comparative quantitative evaluation of these measurements under

varying assumptions concerning data available to the analyst. Section 5 applies the new methods to the federal states

of post-reunification Germany as an unusual case of TFP growth measurement for regional economies which, while

sharing a common economic environment, are presumably both close to and far from their respective steady-state

paths, and for which the potential for capital mismeasurement is particularly large. Section 6 concludes.

2 The Solow Residual and the Capital Measurement Problem

2.1 The Solow Residual after a Half-Century: A Brief Review

Solow (1957)6 considered a standard neoclassical production function Yt = F (At,Kt, Nt) expressing output (Yt) in

period t as a constant returns function of a homogeneous physical capital stock (Kt) and employment (Nt), while At

represents the level of total factor productivity. Solow approximated TFP growth as Ẏt
Yt
− αt K̇tKt − (1− αt) ṄtNt , the

difference of the observable growth rate of output and a weighted average of the growth of the two inputs, where αt and

1−αt are local output elasticities of capital and labor; a dot denotes the time derivative (e.g. Ȧ = dA/dt). In practice,

the Solow decomposition is generally implemented in discrete time as (see Barro (1999) and Barro and Sala-I-Martin

(2003)):

TFPGt =
∆Yt
Yt−1

− α ∆Kt
Kt−1

− (1− α)
∆Nt
Nt−1

(1)

6 Because it is so widely used in economics and management, we offer only a cursory survey of the growth accounting methods
anticipated by Tinbergen (1942) and pioneered by Solow (1957) and Denison (1962), focusing on the capital stock as a source of
measurement error in this framework. For more detailed reviews of the Solow decomposition, see Diewert and Nakamura (2003,
2007) and ten Raa and Shestalova (2006).



where Kt denotes capital available at the beginning of period t. In competitive factor markets, output elasticities of

capital and labor equal aggregate factor income shares, which are constant in the case of the Cobb-Douglas production

function; for other technologies which allow for factor substitution, equation (1) gives a reasonable first order approxi-

mation. A central reason for the Solow residual’s enduring popularity as a measure of TFP growth is its robustness; it

measures the contribution of observable factor inputs to output growth solely on the basis of theoretical assumptions

(constant returns to scale, perfect competition in factor markets) and external information (factor income shares), and

without recourse to statistical techniques.

Yet the Solow residual itself is hardly free of measurement error.7 Jorgenson and Griliches (1967, 1972) argued that

the Solow residual is only a ”measure of our ignorance”. Denison (1972) and others extended the TFP measurement

paradigm to a larger set of production factors, and confirmed that the unexplained residual is the most important

factor driving output growth. Ever since Christensen, Jorgenson, and Lau (1973) raised concerns about the choice of

weights α and 1 − α, it has become commonplace to employ the so-called Törnqvist index specification of the Solow

residual, presented here as a logarithmic approximation:

TFPGt (ST ) = ∆ lnYt − ᾱt−1∆ lnKt − (1− ᾱt−1)∆ lnNt (2)

where ᾱt−1 =
αt−1+αt

2 (see Törnqvist (1936)). This formulation reduces measurement error and is exact if the

production function is translog (Diewert (1976)). Denison (1962) and Hall and Jones (1999) have employed the Solow

approximation across space as opposed to time to assess the state of technical progress relative to a benchmark economy.

Measurement error can arise for other reasons besides the initial condition of the capital stock. While output

and employment are directly observable and readily quantifiable, capital must be estimated relying on a number of

controversial assumptions. In this context it is worth recalling the famous capital controversy between Cambridge

University, led by Joan Robinson, and the Massachusetts Institute of Technology and in particular, Paul Samuelson.

Essentially our paper lends more credence to the position taken by Robinson, for reasons somewhat different from

those she adduced (see Robinson (1953)).

2.2 The Capital Measurement Problem

The capital stock poses a particular problem in growth accounting because it is not measured or observed directly, but

is constructed by statistical agencies using time series of investment expenditures and ancillary information. At some

level, capital stocks are constructed by integrating the ”Goldsmith equation” (Goldsmith (1955))

Kt+1 = (1− δt)Kt + It, t = 0, 1, . . . (3)

7 Solow himself wrote:
”[L]et me be explicit that I would not try to justify what follow by calling on fancy theorems on aggregation and index numbers.
Either this kind of aggregate economics appeals or it doesn’t.[...] If it does, one can draw some useful conclusions from the
results.” Solow (1957: 312).
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forward from some initial condition K0, given sequences of investment expenditures {It} and depreciation rates {δt}.

Formally, (3) can be solved from period 0 to period t+ 1 to yield

Kt+1 =

[
t∏
i=0

(1− δt−i)

]
K0 +

t∑
j=0

[
j∏
i=0

(1− δt−i)

]
It−j (4)

The current capital stock is the weighted sum of an initial capital value, K0, and subsequent investment expenditures,

with weights corresponding to their underpreciated components. If the depreciation rate is constant and equal to δ,

(4) collapses to

Kt+1 = (1− δ)t+1K0 +

t∑
j=0

(1− δ)j It−j . (5)

which is identical to an expression found in Hulten (1990).

From the perspective of measurement theory, four general problems arise with using capital stock data estimated by

statistical agencies.8 First, the construction of capital stocks presumes an accurate measurement of the initial condition

K0. The shorter the series under consideration, the more likely such measurement error will affect the construction of

the Solow residual. Second, it is difficult to distinguish truly utilized capital at any point in time from that which is idle.

Solow (1957) also anticipated this issue, arguing that the appropriate measurement should be of ”capital in use, not

capital in place”. Third, depreciation is also fundamentally unobservable. For some sectors and some types of capital,

it is difficult if not impossible to apply an appropriate depreciation rate; this is especially true of the retail sector.

Fourth, many intangible input stocks such as cumulated research and development effort and advertising goodwill are

not included in measured capital.

The Goldsmith equation (3) implies that mismeasurement of the initial capital stock casts a long shadow on the

construction of the Solow residual. The problem can only be solved by pushing the initial condition sufficiently far back

into the past; yet with the exception of a few countries,9 sufficiently long time series for investment are unavailable.

The perpetual inventory approach to constructing capital series was thus criticized by Ward (1976) and Mayes and

Young (1994), who proposed alternative approaches grounded in estimation methods.10

Even today, capital stock estimation relies heavily on PIM and the implied error remains a widely-recognized

problem in growth accounting as well as productivity measurement.11 Employing long time series for the US, Gollop

and Jorgenson (1980) equate capital at time t = 0 to investment in that period. Jacob, Sharma, and Grabowski

8 See Diewert and Nakamura (2007) for more a detailed discussion of these issues.
9 For example, Denmark and the US Statistical Office have data on investment from 1832 and 1947 respectively; most indus-

trialized economies only report data since the 1960s or afterwards.
10 Schreyer (2001) suggests comparing initial capital estimates with five different benchmarks: 1) population census data, which

take into account different types of dwellings; 2) fire insurance records; 3) company accounts; 4) administrative property records,
which provides residential and commercial buildings valued at current market prices; and 5) company share valuation. Because
these data are generally unavailable on a regular basis, they are normally used to check the plausibility of capital stocks estimates
constructed from investment time series.
11 See, for example, the recent OECD manual on measuring capital (Schreyer (2009)), the US Bureau of Economic Anal-

ysis (http://www.bea.gov/national/pdf/NIPAhandbookch1-4.pdf) and the methodological appendix contained therein, which
observe that initial conditions can affect capital measurement if time series are short.

http://www.bea.gov/national/pdf/NIPAhandbookch1-4.pdf


(1997) estimated the initial capital stock using artificial investment series for the previous century and assume that

the investment grows at the average same rate of output. The US Bureau of Economic Analysis (Reinsdorf and Cover

(2005) and Sliker (2007)) set capital equal to investment in the initial period I0, reflecting a steady state in which

expenditures grow at rate g and are depreciated at rate δ, so a natural estimate of K0 is
(
1+g
δ+g

)
I0. Griliches (1980)

used an initial condition K0 = ρ I0Y0
for measuring R&D capital stocks, where ρ is a parameter to be estimated. Caselli

(2005) assessed the quantitative importance of capital measurement and found that measurement error induced by

the initial guess is most severe for the poorest countries. Rather than employing the standard steady-state condition

K0 = I0
(g+δ)

(see e.g., Kohli (1982)), he estimates capital stocks of the poorest countries using:12

K0 = K∗0

(
Y0
Y ∗0

) 1
α
(
N∗0
N0

) 1−α
α

(6)

where the star refers to data from the benchmark economy presumed to be in the steady state (here, the United States).

The precision of Caselli’s innovative approach will depend, among other things, on the distance of the benchmark

economy from its steady state. In addition, the key assumption in (6) that total factor productivity levels are identical

to those in the US in the base year are inconsistent with the findings of Hall and Jones (1999). Most important, the

US capital stock estimate for 1950 is likely subject to large measurement error.

2.3 Measurement Error, Depreciation and Capital Utilization

The initial condition problem noted by Caselli (2005) applies a fortiori to a more general setting in which the initial

value of capital is measured with error, if depreciation is stochastic, or is unobservable. Suppose that the elements of

the sequence of depreciation rates δt move around some constant value δ. It is possible to rewrite (4) as:

Kt+1 = (1− δ)t+1K0 +
t∑

j=0
(1− δ)j+1 It−j

+

[
t∏
i=0

(1−δt−i)
(1−δ) − 1

]
(1− δ)j+1K0

+

t∑
j=0

[
j∏
i=0

(1− δt−i)
(1− δ) − 1

]
(1− δ)t+j It−j (7)

Equation (7) expresses the true capital stock as the sum of three components: 1) an initial capital stock, net of assumed

depreciation at some constant rate δ, plus the contribution of investment {Is}ts=0, also expressed net of depreciation at

rate δ; 2) mismeasurement of the initial condition’s contribution due to fluctuation of depreciation about the assumed

constant value; and 3) mismeasurement of the contribution of all investment expenditures from period 0 to t. Each

of these three components represents a potential source of measurement error. The first component contains errors

involving the initial valuation of the capital stock. For the most part, the second and third components are unobservable.

12 In his original formulation Caselli (2005) considers an extended production function with human capital.
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Ignored in most estimates of capital, they represent a potentially significant source of mismeasurement which would

contaminate a Solow residual calculation.

The interaction between the depreciation of capital and capacity utilization is also important for macroeconomic

modeling. From a growth accounting perspective, Hulten (1986) criticized the assumption that all factors are fully

utilized. Time-varying depreciation rates imply changing relative weights of old and new investment in the construc-

tion of the capital stock. In dynamic stochastic general equilibrium models, the depreciation rate is generally assumed

constant, despite empirical evidence to the contrary.13 In addition, as argued by Corrado and Mattey (1997) and Burn-

side, Eichenbaum, and Rebelo (1995), capacity utilization is highly procyclical. A positive link between depreciation

and capacity utilization is a central feature of the artificial economy used to generate the artificial data used in the

next two sections.

3 Capital Measurement and the Solow Residual: A Quantitative Assessment

3.1 The Stochastic Growth Model as a Laboratory

The central innovation of this paper is its assessment of alternative TFP growth measurement methods using synthetic

data generated by a known, prototypical model of economic growth and fluctuations. We extend the standard, neo-

classical framework (King and Rebelo (1999)), in which the first and second welfare theorems hold and markets are

complete, to allow for variable capacity utilization, following Greenwood, Hercowitz, and Huffman (1988), Burnside,

Eichenbaum, and Rebelo (1995), and Wen (1998). By using this well-understood model as a laboratory, we are able

to assess quantitatively the limitations of the Solow residual measurement. In this section we first briefly describe this

standard model and the data which it generates. Details can be found in Appendix A.

3.1.1 Technology

Productive opportunities in this one-good economy evolve as a trend-stationary stochastic process. Total factor pro-

ductivity {At} is embedded in a standard constant returns production function in capital services and labor inputs

and evolves for t = 1, 2, . . . according to

At = ψt(1−ρ)Aρt−1e
εt (8)

where ψ > 1, |ρ| < 1, A0 is given and εt is white noise. Output is given by the Cobb-Douglas production technology

Yt = At (UtKt)
αN1−α

t (9)

where Ut ∈ (0, 1) denotes the utilization rate of capital (”capacity utilization”).

13 See the OECD manual (Schreyer (2009)) on capital stock estimation.



In this version of the model, output can either be consumed or invested in productive capacity (”capital”). Starting

from a given initial K0, capital evolves according to (3), where the rate of depreciation is an increasing, convex function

of capacity utilization

δt =
B

χ
Uχt (10)

where B > 0 and χ > 1. We depart from Wen (1998) and Harrison and Weder (2002) by adding a scale parameter B,

which allows us to match both the mean and variance of the model’s simulated capacity utilization to the data.

3.1.2 Households

Households own capital and labor and sell factor services to firms in competitive factor markets. Facing sequences of

wages {ωt}∞t=0 and user cost of capital {κt}∞t=0, the representative household chooses paths of consumption {Ct}∞t=0 ,

labor supply {Nt}∞t=0 , capital in the next period {Kt+1}∞t=0 , and capital utilization {Ut}∞t=0 to maximize the

expected present value of lifetime utility (see e.g. Prescott (1986), Greenwood, Hercowitz, and Huffman (1988), Cooley

and Prescott (1995), King and Rebelo (1999)):

max
{Ct},{Nt},{Kt+1},{Ut}

E0

∞∑
t=0

βt
{

lnCt +
θ

1− η

[
(1−Nt)1−η − 1

]}
(11)

subject to an initial condition for the capital stock held by household K0, the periodic budget restriction for t = 0, 1, ...

Ct +Kt+1 − (1− δt)Kt = ωtNt + κtUtKt, (12)

and the dependence of capital depreciation on utilization given by (10). The period-by-period budget constraint restricts

consumption and investment to be no greater than gross household income from labor ωtNt and capital κtUtKt.

3.1.3 Firms

Firms in this perfectly competitive economy are owned by the representative household. The representative firm employs

labor Nt and hires capital services UtKt to maximize profits subject to the constant returns production function given

by (9). Note that for the firm, capital service input is the product of the capital stock and its utilization rate; the firm

is indifferent to whether these originate from extensive or intensive use of the capital stock.

3.1.4 First Order Conditions, Decentralized Equilibrium and Steady State

In Appendix A, we summarize the first order conditions for optimal behavior of households and firms and characterize

the decentralized market equilibrium, in which this regular economy is unique. Dynamic behavior can be approximated

by log-linearized versions of these equilibrium conditions around the model’s unique steady state growth path. Along

that path, output, consumption, investment and capital stock all grow at a constant rate g = ψ
1

1−α − 1, while total

factor productivity grows at rate ψ − 1. Employment, capital utilization and interest rates are trendless.
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3.2 Construction of the Data Sets

The model was simulated as a quarterly calibration to the US economy with standard parameter values described in Ap-

pendix A. Each realization of the artificial economy is a set of time series {Yt} , {At} , {Kt} , {Nt} , {Ct} , {It} , {Ut} , {κt},

{ωt} of 1,200 observations. The initial condition for TFP (A0) was drawn from a normal distribution with mean zero

and standard deviation one and the capital stock in period zero (K0) is set to its steady-state value; the model is

allowed to run 100 periods before samples were drawn. For each realization, samples were drawn for both ”mature”

and for ”transition” economies. A mature economy corresponds to data after period 700, while a transition economy

consists of the same realization as a mature economy until period 699, when the capital stock is reset to half its original

value. The economy’s equilibrium is then re-computed with this lower initial capital stock from period 700 to 1200. In

Figure 1 we display a representative time series realization of the mature economy in original and H-P detrended form

with detrending parameter set at 1600.
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The model’s properties are summarized in Table 1 and compared with moments of the Hansen (1985) stochastic

growth model as well as of the data as reported by Stock and Watson (1999) and Dejong and Dave (2007). Our

benchmark model thus generates data which roughly replicates key features of the US economy required for the

evaluation of the Solow residual.

Table 1 Comparative statistical properties of the model economy

Series Benchmark Hansen (1985) US DATA US DATA
model Divisible Indivisible 1953Q1-1996Q4 1948Q1-2004Q4

economy labor labor (Stock & (Dejong &
(200 Quarters) model model Watson (1999)) Dave (2007))

Cross-correlations with output
Consumption 0.99 0.89 0.87 0.90 -
Investment 1.00 0.99 0.99 0.89 -
Employment 0.48 0.98 0.98 0.89 -
Productivity 1.00 0.98 0.87 0.77 -

Std. dev. normalized by std. dev. of output
Consumption 0.52 0.46 0.29 0.76 0.46
Investment 2.08 2.38 3.24 2.99 4.23
Employment 0.62 0.34 0.77 1.56 1.05

3.3 Evaluating Measurement Error of the Solow Residual

We now use the data from the artificial economy to evaluate the precision of the Solow residual. The basis of comparison

is the average root mean squared error (RMSE) computed for samples of either 50 or 200 observations, from 100

independent realizations starting at period 700, for both the mature and the transition economy. The Solow residual

measure is calculated as a Törnqvist index described in equation (2).14 As in reality, our central assumption is that

the true capital stock data are always unobservable to the analyst, who estimates them by applying PIM to investment

data and an initial capital stock, which is estimated using methods described above. In the baseline scenario A, the

analyst is unable to observe either the rate of capacity utilization or the depreciation rate. Alternatively, we assume

that the analyst can observe the utilization rate only (B) or both the utilization and the depreciation rate (C). In (B)

and (C) a modified Solow residual calculation is used.15 Caselli’s measure is computed using a BEA estimate of capital

K∗0 in the simulated benchmark economy assumed to be in the steady state.

The results of this evaluation are presented in Table 2 as the average RMSE (in percent) for each estimate. Standard

errors are computed across 100 realizations and are presented in parentheses. The results show that the initial condition

of the capital stock is an important source of error. Of the different methods, the BEA and Caselli approaches perform

best, yet are still characterized by significant measurement error. As expected, average RMSE declines with sample

size. Yet even at a sample length of 50 years (200 quarters), the annualized root mean squared error remains high at

about 2%.

14 Note that for the Cobb-Douglas production and competitive factor markets, factor shares and output elasticities are constant,
so the Törnqvist Index and lagged factor share versions are equivalent.
15 That is, TFPGt (ST ) = ∆Yt

Yt−1
− α

(
∆Kt
Kt−1

+ ∆Ut
Ut−1

)
− (1 − α) ∆Nt

Nt−1
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4 TFP Growth Measurement without Capital Stocks: Two Alternatives

We have shown that the Solow residual can be subject to considerable measurement error. In scenario A, about 40%

of this error in the short dataset is due to the estimated initial condition of the capital stock, while the rest is due to

unobservable depreciation and capacity utilization. Measurement error in K0 will bias TFPG computations when 1)

depreciation is low and 2) the time series under consideration is short. For conventional rates of depreciation, errors

in estimating the initial condition can have long-lasting effects on estimated capital stocks. In simulated data, it takes

more than 100 periods to reach convergence within 10% of the steady state. In the following two sections, we propose

two capital stock-free alternatives to the Solow residual. The first, the DS measure, is appropriate when the economy

is far from its steady-state. The second, the GD measure, relies on the economy‘s proximity to a steady-state path.

4.1 Direct Substitution (DS)

The first strategy for estimating TFP relies on direct substitution to eliminate the capital stock from the equation

generally used to construct the Solow residual. Differentiation of the production function Yt = F (At, UtKt, Nt) with

respect to time yields

Ẏt = FA
.
At + FK

(
K̇t + U̇t

)
+ FN Ṅt. (13)

Substitution of the capital transition equation K̇t = It − δtKt and rearrangement yields:

TFPGt (DS) =
Ẏt
Yt
− FK

It
Yt

+ αt

(
δt −

U̇t
Ut

)
− (1− αt)

Ṅt
N t

. (14)

In an economy with competitive conditions in factor markets, the marginal product of capital FK is equated to κt,

the user cost of capital in t. This equation is adapted to a discrete time context as

TFPGt (DS) =
∆Yt
Yt−1

− κt−1
It−1
Yt−1

+ αt−1

(
δt−1 −

∆Ut
Ut−1

)
− (1− αt−1)

∆Nt
Nt−1

. (15)

The substitution eliminates the capital stock from the TFP calculation. The DS approach will be a better measurement

of TFP growth to the extent that 1) the capital stock is unobservable or poorly measured; 2) capital depreciation varies

from period to period and is better measured from other sources; 3) the last gross increment to the capital stock is more

likely to be completely utilized than older capital. Once TFP growth is estimated, the total contribution of capital to

growth can be calculated as ∆Yt
Yt−1

− TFPGt (DS)− (1− αt−1) ∆Nt
Nt−1

− αt−1 ∆UtUt−1
.

4.2 Generalized Differences of Deviations from the Steady State (GD)

If an economy or sector is close to its steady state, it may be more appropriate to measure growth in total factor

productivity as deviations from a long-term deterministic trend path estimated using the entire available data set,

e.g. trend regression estimates, moving averages or Hodrick-Prescott filtered series. If X̃t denotes the deviation of Xt

around a steady state value Xt, then the production function (1) and the Goldsmith equation (3) can be approximated



as

Ỹ t = Ãt + sK
(
K̃t + Ũt

)
+ (1− sK ) Ñt (16)

and

K̃t =
(1− δ)
(1 + g)

K̃t−1 + ιĨt−1, (17)

respectively where ι =
(I/K)
(1+g)

, g is the deterministic steady state growth rate, and the capital elasticity sK ≡
FK(At,Kt,Nt)K

Yt
is assumed constant, following the steady state restrictions on grand ratios emphasized by King,

Plosser, and Rebelo (1988). Multiplying both sides of (16) by
(

1− (1−δ)
(1+g)

L
)

and substituting (17) yields the following

estimate of a generalized difference of TFP growth:

(
1− (1− δ)

(1 + g)
L

)
Ât =

(
1− (1− δ)

(1 + g)
L

)
Ỹ t − ιsK Ĩt−1 (18)

−
(

1− (1−δ)
(1+g)

L
)
sK Ũt −

(
1− (1−δ)

(1+g)
L
)

(1− sK) Ñt

In (18) the capital stock has been eliminated completely from the computation. Given an initial condition, TFP growth

estimates may be recovered recursively for the logarithmic approximation of TFP growth t = 2, ..., T :

TFPGt (GD) = ∆θt +

(
1− δ
1 + g

)
TFPGt−1 (GD) (19)

where ∆θt =
(

1− (1−δ)
(1+g)

L
)
Ỹ t − sK

[
ιĨt−1 +

(
1− (1−δ)

(1+g)
L
)
Ũt

]
−
(

1− (1−δ)
(1+g)

L
)

(1− sK) Ñt.

The computation of productivity growth estimates using the GD procedure will thus require an estimate of the

initial condition, TFPG0 (GD) = ln
(
A1
A0

)
. Our estimate, which is based on the Malmquist index, is described in detail

in Appendix B and equals the geometric mean of labor productivity growth and output growth in the first period.

4.3 The Need for Numerical Evaluation

The central difference between the two alternatives to the Solow residual is the point around which the approximation

is taken. In the DS approach, the point of approximation is the levels of factor inputs in the previous period. In the

GD approach, the point of approximation is a balanced growth path for which the capital elasticity, sK , the growth

rate g, and the grand ratio I/K are constant. The advantages and disadvantages of each measurement will depend on

the application at hand. If the economy is far from the steady state, the GD is likely to yield a poor approximation.

On the other hand, it is likely to be more appropriate for business cycle applications involving OECD countries.

While both measurements eliminate capital from the TFP measurement, they introduce other forms of measurement

error. The DS method replaces the capital stock with a relatively accurately measured gross investment flow plus a

depreciation rate which is likely to be time-varying. The capital rental price κt can be obtained from independent
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sources or economic theory, but is likely to be measured with error.16 Similarly, the GD procedure measures the

marginal contribution of new capital but substitutes another form of measurement error (the growth of TFP in the

first period). Given that the GD method necessarily assumes a constant rate of depreciation, it will tend to do worse

when the depreciation rate is in fact endogenous and procyclical. It should perform poorly for economies or sector

which are far from their steady states. In the end, it is impossible to see which type of measurement error is lower

without resorting to simulation methods.

4.4 Assessing Alternative Measures of TFP Growth: A Horse Race

We now employ the same artificial data produced by the stochastic growth model in Section 3.1 to compare our

alternative measurements with the most precise versions of the Solow-Törnqvist calculation, which estimate initial

capital stocks along the lines of the BEA (Reinsdorf and Cover (2005), Sliker (2007)) and Caselli (2005). It is important

to state carefully the assumptions behind the construction of the TFP growth measures. As before, the analyst is

assumed never to observe the true capital stock, but does observe gross investment, employment, GDP, and real

wages in each period. Under alternative scenarios, the analyst can or cannot observe the rate of capacity utilization

or the depreciation rate in each period. When not observable, a constant quarterly value of the depreciation rate was

assumed, equal to 0.015. For the DS method, we assume that the analyst cannot observe the user cost of capital (κt)

in each period, but rather uses a constant κ̄, its average value over the entire sample realization. For the GD estimates

computed using equation (19), values of the constants δ and ι are set equal to 0.015 and 0.0112. respectively. We

employed the Malmquist index described in Section 4.2 to estimate the initial condition of TFP growth as described

in Appendix B.

As in the previous section, the basis of comparison is the root mean squared error (RMSE) for sample time series

of 50 or 200 observations taken from 100 independent realizations of the stochastic growth model described in Section

3. The RMSE of this horse race along with standard errors are presented in Table 3 for both the ”mature” economy

(first panel) as well as the ”transition economy” (second panel).

The horse race suggests that elimination of the capital stock is associated with substantial improvement of TFP

growth measurement over the conventional Solow-Törnqvist residual. This improvement is significant for samples of

both 50 and 200 observations, and for both mature and traditional economies. The DS outperforms both alternatives

under all assumptions, and by as much as 63% (BEA versus DS, T=50). For the GD approach, the estimate of initial

TFP growth based on of the Malmquist index makes a substantial contribution to RSME compared with assuming

ln
(
A1
A0

)
= 0.17

16 The user cost of capital pkt can be expressed as a function of the depreciation rate δ, of the nominal rate of return i and the
unit capital at investment price pi:

pkt = pit−1it + δpit−1 − [pit−1 − pit]

As Balk (2009) has noted, user cost is more difficult to compute once the usual neoclassical assumptions are relaxed.
17 We also considered the Malmquist index (41) itself as an alternative measure of TFP in each period. We obtained very

similar, but inferior, results compared with the GD measure.



Table 3 A horse race: Stock-less versus traditional Solow-Törnquist estimates of TFP growth.

Mature economy (100 realizations, standard errors in parentheses)

A B C

TFP growth estimates T=50 T=200 T=50 T=200 T=50 T=200

TFPG(DS) 0.90 0.89 0.64 0.64 0.65 0.64

(0.10) (0.06) (0.09) (0.04) (0.09) (0.04)

TFPG(GD) 2.62 2.57 2.21 2.14 2.19 2.12

(0.19) (0.11) (0.14) (0.08) (0.20) (0.07)

TFPG(ST)/BEA estimate of K0 3.56 1.96 3.50 1.85 3.50 1.85

(0.03) (0.03) (0.03) (0.03) (0.03) (0.02)

TFPG(ST)/Caselli (2005)/BEA 3.55 1.95 3.49 1.84 3.49 1.85

estimate of K0 (0.26) (0.13) (0.27) (0.13) (0.28) (0.13)

Transition economy (100 realizations, standard errors in parentheses)

A B C

TFP growth estimates T=50 T=200 T=50 T=200 T=50 T=200

TFPG(DS) 3.22 1.78 1.50 1.33 2.34 1.31

(0.22) (0.10) (0.67) (0.18) (0.11) (0.08)

TFPG(GD) 4.85 3.40 1.75 1.72 3.08 2.55

(0.35) (0.15) (1.31) (1.21) (0.21) (0.09)

TFPG(ST)/BEA estimate of K0 4.64 2.87 3.16 1.89 3.97 2.08

(0.24) (0.15) (1.14) (0.40) (0.03) (0.02)

TFPG(ST)/Caselli (2005)/BEA 5.26 2.76 5.27 2.78 5.28 2.79

estimate of K0 (0.27) (0.13) (0.27) (0.13) (0.27) (0.13)

A: Analyst observes {Yt, Nt, It, κ̄, ωt} only

B: Analyst observes {Yt, Nt, It, κ̄, ωt, Ut}
C: Analyst observes {Yt, Nt, It, κ̄, ωt, Ut, δt}

As would be expected, the RMSE improvement of the stock-less measures over the conventional Solow-Törnqvist

residual estimates is inversely related to the relative importance of the initial condition and thus to the length of

the sample time series. This relationship in our synthetic data set of 100 realizations of the artificial economy is

displayed in Figure 2, which presents four graphical comparisons of average RMSE for the mature economy case,

along with two standard-deviation confidence bands, as a function of sample size. The graphs demonstrate how the

stock-less measurements perform significantly better in a root mean squared error sense for a small sample, and that

this advantage tends to die out at a slow rate. Only with samples sizes of 400 or more observations - a century of data

- are the ST, DS and GD measures equally accurate.

5 Application: TFP Growth in the German Federal States

We now apply the two new measures to study the source of economic growth in the federal states of Germany

(”Bundesländer”) after reunification. Income and product account data are available beginning with 1991 for 16

states: 11 ”old” Western states (Bavaria, Baden-Württemberg, Bremen, Hamburg, Hesse, Lower Saxony, North Rhine-

Westphalia, Rhineland-Palatinate, Saarland, Schleswig-Holstein), 6 ”new” Eastern states (Berlin, Brandenburg, Mecklenburg-
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Fig. 2 Dependence of RMSE (%) on sample size (with two standard error bands)
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West Pommerania, Saxony-Anhalt, Saxony, and Thuringia).18 We employ the income and product accounts and capital

stock estimates at the level of the federal states published by the Working Group for State Income and Product Ac-

counts (Arbeitsgemeinschaft Volkswirtschaftliche Gesamtrechnung der Länder).19 This dataset allows us to revisit the

findings of Burda and Hunt (2001), who studied labor productivity and total factor productivity growth using the

conventional Solow residual measure and their own estimates of the states‘ capital stocks. Given the poor measure-

ment of the capital stock in the new states, especially for structures, the alternative DS and GD methods offer an

opportunity to investigate TFP growth measurements with a ”treatment” group (East Germany) as well as a ”control”

group (West Germany), where the treatment is an unusually bad measurement of initial capital stocks. Reunification

- due to both market competition and the revaluation of the east German mark - rendered about 80% of East Ger-

man production noncompetitive (Akerlof, Rose, Yellen, and Hessenius (1991)), implying a large loss of value of existing

equipment and structures. At the same time, many structures measured initially at minimal book value have since been

18 Berlin is counted as a new state consisting of the union of East and West Berlin, because the western half of Berlin, while
under the protection and economic aegis of Western Germany until 1989, never enjoyed full status as a Bundesland.
19 The data can be downloaded at the website http://www.vgrdl.de/Arbeitskreis_VGR/ergebnisse.asp. Capital stocks for

the new states in the period 1991-1993 were computed by backcasting the perpetual inventory method from the 1994 estimates.

http://www.vgrdl.de/Arbeitskreis_VGR/ergebnisse.asp


re-employed by businesses, implying higher capital stock value than conventionally measured. Depreciation rates and

capacity utilization data do not exist at the state level, further compounding already severe measurement problems.

In Table 4, we present Solow-Törnqvist residuals and our stock-free TFP measurements for both new and old

German states averaged over two sub-periods 1994-1999 and 2000-2006. We also present the same calculations based

on macroeconomic aggregates constituted by the Eastern states, the Western and all of Germany. The Solow residual

estimates utilize an estimate of capital stocks provided by the state (Bundesland) statistical agencies and the working

group involved in collecting and standardizing the state income and product accounts. A constant capital share (0.33)

was assumed. For the DS method, the annual rental price of capital (κ) was set to a constant value over the entire

period (0.11). For the GD approach, a simple two-sided moving average of three years was used to estimate the trend.

For both approaches, a constant rate of capital depreciation δ equal to 7.52% per annum was employed. Capacity

utilization and depreciation at the Bundesland level is not available, so the equivalent of scenario A was adopted

throughout. Lacking data on hours worked, we used total employment as a measure of labor input.



T
a
b
le

4
T

F
P

M
ea

su
re

m
en

t
in

G
er

m
a
n

F
ed

er
a
l

S
ta

te
s:

A
C

o
m

p
a
ri

so
n

T
F
P
G

(S
T

)
T
F
P
G

(D
S

)
T
F
P
G

(G
D

)

1
9
9
4
-1

9
9
9

2
0
0
0
-2

0
0
6

1
9
9
4
-1

9
9
9

2
0
0
0
-2

0
0
6

1
9
9
4
-1

9
9
9

2
0
0
0
-2

0
0
6

B
er

li
n

0
.1

-0
.2

0
.4

0
.7

1
.9

1
.0

B
ra

n
d

en
bu

rg
0
.7

1
.0

1
.8

1
.7

4
.4

2
.1

M
ec

kl
en

bu
rg

-W
es

te
rn

P
o

m
er

a
n

ia
-0

.4
0
.7

0
.1

1
.2

4
.9

2
.1

S
a

xo
n

y
-0

.3
1
.7

1
.3

2
.4

4
.6

2
.0

S
a

xo
n

y-
A

n
h

a
lt

-1
.0

1
.4

0
.1

2
.1

3
.8

1
.8

T
h

u
ri

n
gi

a
0
.2

1
.5

1
.0

2
.2

4
.0

1
.8

A
ll

E
a
st

G
e
rm

a
n

st
a
te

s
0
.4

1
.0

0
.8

1
.7

3
.4

1
.6

B
a

d
en

-W
ü
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We first turn to TFP growth estimates for the aggregated regions East, West and all Germany. The qualitative

predictions of the DS measure is broadly consistent with those of the Solow residual, which indicate a pick-up of

TFP growth over the period in the East and a decline in the West. Evidently, the GD measure is inappropriate for

the new states, given their initial condition at the start of reunification. Both DS and GD estimates are considerably

less volatile than the Solow residual; the coefficient of variation for the period 1994-2006 were 0.42 and 0.48 for the

former, respectively, compared with 0.78 for the latter. To the extent that all three measures are estimating the same

phenomenon, the alternative we propose appear to provide a tighter estimate of the temporal evolution of TFP in the

two regions.

The same conclusion can be drawn from the cross-sectional dimension of our TFP measurements. The prior ex-

pectation is that measurement error should be most severe in the new states, given the limited statistical basis for

computing capital stocks. Yet there is little reason to expect wide variation across space within the East or West

during during these seven-year intervals. Indeed, the coefficients of variation for Solow residuals in the East are almost

an order of magnitude larger than the DS and GD estimates in the early period 1994-1999 (5.0 versus 0.9 and 0.3). In

the latter half of the sample, the coefficients of variation of the three measures are similar across the East-West divide

(0.7, 0.4, and 0.2 for Solow, DS, and GD in the East, versus 0.7, 0.4, 0.3 in the West, respectively). The consistently

lower coefficients of variation of our alternative measures in cross section is further evidence that they are subject to

less measurement error than the Solow-Törnqvist counterpart.

The DS and GD estimates can be used to back out an implied contribution of capital to real growth, or, given a

capital share, to growth in the ”true” (i.e. actually utilized) capital stock. These estimates are presented in Tables 5

and 6. They indicate indeed a larger degree of fluctuation than implied by official estimates of capital stock growth.

They support the findings of Burnside, Eichenbaum, and Rebelo (1995) and others, that the fluctuation of capital in

use is an important source of measurement error and should be taken seriously when computing the Solow residual.

The GD and DS measures reduce this source of mismeasurement to the extent that the utilization of recent capital

formation more closely tracks the ”true” utilization rate. It is striking that both alternative measurements imply little

or no contribution of growth in capital input to the evolution of East German GDP in the latter period, despite

impressive investment rates in the 1990s (Burda and Hunt (2001)).

6 Conclusion

Over the past half-century, the Solow residual has achieved widespread use in economics and management as a mea-

surement of total factor productivity. Its popularity can be attributed to its simplicity and independence of statistical

methods. Despite this acceptance, there has been no effort to evaluate systematically the quality of this measurement

tool. This complacency is remarkable in light of potentially severe measurement problems associated with capital stock

data. We have documented the significance of this error, as measured by the root mean squared error is in a synthetic
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data set. Application of our TFP growth measures to the federal German states after reunification yields estimates

which are more stable across time and in space.

While the measurement error of the Solow residual decreases with sample size, it is a serious problem for short data

sets or economies in transition. Thus, the Solow residual is least accurate in applications for which TFP measurements

are most valuable. Such applications include the transition to a market economy, the introduction of ICT capital

in the production process, and assessing the role of weightless assets such as advertising goodwill and research and

development knowledge (Corrado, Hulten, and Sichel (2006)).

Both of our proposed alternatives to the Solow-Törnqvist measures can be thought of as a ”marginalization” of

the error carried forward in the capital stock across time. Most recent investment is most likely to be properly valued

at acquisition cost and to be fully utilized. Our results suggest that these methods could be applied to a number of

investment context and types, thus widening the scope and appeal of applied TFP measurement.
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Appendix A: The Stochastic Growth Model

A1. First Order Conditions and Decentralized Market Equilibrium

Let λt denote the Lagrange multiplier corresponding to the periodic resource constraint (12). The first-order conditions

for the household are, for t ≥ 0 :

Ct : λt =
1

Ct
(20)

Kt+1 : λt = βEt [λt+1 ((1− δt+1) + κt+1Ut+1)] (21)

Nt : θ(1−Nt)−η = λtωt (22)

Ut : BUχ−1t = κt+1 (23)

First-order conditions for the firms

Nt : (1− α)At (UtKt)
αN−αt = ωt (24)

Kt : αAtU
α
t K

α−1
t N1−α

t = κtUt (25)

the production function

Yt = AtU
α
t K

α
t N

1−α
t (26)

and the aggregate resource constraint (since ωtNt + κtUtKt = Yt).

Kt+1 = (1− δt)Kt + Yt − Ct (27)

The equilibrium of this decentralized economy is defined as the sequences of wages {ωt}, rental prices for capital {κt},

output {Yt}, consumption {Ct}, employment {Nt}, capital stocks {Kt+1}, and the capacity utilization rate {Ut} such

that equations (21)-(27) hold for t ≥ 0 plus a suitable transversality condition to guarantee that the capital stock path

is indeed consistent with utility maximization. The equilibrium of the problem will be, due to the first and second

welfare theorems, unique and equivalent to the one chosen by a social planner with the objective of maximizing the

utility of the representative household.

A2. Detrended Version of Equilibrium

Steady state values of the model’s variables are denoted by an upper bar. In the steady state X̄t+1 = (1 + g) X̄t for

X ∈ {C, I, Y,K} and Āt+1 = ψĀt. We define detrended values of the variables of interest such that X̃t ≡ Xt/Xt. The



following equations characterize the equilibrium of this transformed economy:

θC̃t
(1−Nt)η

= (1− α) γtU
α
t K̃

α
t N
−α
t (28)

1 = Et

[
β

C̃t

ψC̃t+1

Rt+1

]
(29)

αγt

(
K̃t
Nt

)α−1
= BUχ−αt (30)

ψK̃t+1 = (1− δt) K̃t + Ỹt − C̃t

The first equation characterizes intratemporal optimality of time across alternative uses in production and leisure; the

second is the familiar Euler equation which arbitrages expected intertemporal rates of substitution and transformation

in expectation, where the latter is defined by Rt+1 = αγt

(
UtK̃t

)α−1
N1−α
t and represents the gross rate of return

on holding a unit of capital from period t to period t + 1. The last equation is the periodic resource constraint of

the economy, given the production function and competitive factor remuneration. Given that this economy fulfills the

conditions of the first welfare theorem, it would also characterize the optimal choice of a central planner maximizing

(11) subject to the resource constraints (12) and the initial condition K0.

A3. The Steady State

To solve for the non-stochastic steady state, let γt = 1 and K̃t+1 = K̃t = K̄. We obtain the following equations:

θC̄

(1− N̄)
η = (1− α) ŪαK̄α

t N̄
−α (31)

1 =
β

ψ
R̄ (32)

α

(
K̄

N̄

)α−1
= BŪχ−α (33)
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A4. Log Linearization

Using the convention that x̂ = (x− x) /x denote deviations from steady state values, the log-linearized first order

condition for labor supply can be written as

ĉt −
(
α+

N

1−N η

)
n̂t = γt + α

(
ût + k̂t

)
(34)

The resource constraint is:

C̄

K̄
ĉt + ψk̂t+1 = (1− δ) k̂t − χût + α

Ȳ

K̄
k̂t + (1− α)

Ȳ

K̄
N̄ n̂t +

Ȳ

K̄
γ̂t (35)

and the Euler equation becomes

0 = Et

[
ĉt − ĉt+1 + βr̄

[
γ̂t+1 − (1− α)

(
k̂t+1 − n̂t+1

)
− χût

]]
(36)

A5. Model Calibration and Generation of the Synthetic Dataset

We calibrate the model to a quarterly setting using values typically used for simulating the US time series in the

literature and discussed in Prescott (1986) or Rebelo and King (1999). The values chosen for the parameters are

presented in Table 7.

Table 7 Stochastic growth model: parameters and calibration values

Parameter Definition Value Source

β utility discount factor (quarterly) 0.985 Data

R̄ average real interest factor (quarterly) 1.015 Data

γ̄ technology 1 Theory

δ̄ depreciation rate of physical capital 0.015 Data

α capital elasticity in production 0.36 Data

η elasticity of periodic utility to leisure 0.85 Theory

θ utility weight for leisure/consumption 2.1 Theory

ψ = (1 + g)1−α constant growth factor of technology 1.0075 Data

B level parameter for capital depreciation rate 0.0255 Data

χ elasticity of depreciation to capacity utilization 1.9 Data

ρ autocorrelation of TFP term At 0.95 Theory



Appendix B: The Malmquist Index

B1. The Basics

The Malmquist index represents one of the most commonly used indices in data envelopment analysis and an alternative

way for computing productivity and efficiency changes in the production functions.20 Proposed by Caves, Christensen,

and Diewert (1982) reinterpreting an index introduced by Malmquist (1953), it is defined in the original version by

the ratio of two distance output functions DtO (x, y) (Shepard (1970)) at time t and t+ 1:

M t
CCD =

DtO
(
xt+1, yt+1

)
DtO (xt, yt)

(37)

where the numerator is represented by the maximal proportional change in outputs required to obtain the combination

(xt+1, yt+1) feasible in relation to the technology at time t. Färe, Grosskopf, Lindgren, and Ross (1989) consider an

alternative measure of (37), as

M t+1
FGLR =

Dt+1
O

(
xt+1, yt+1

)
Dt+1
O (xt, yt)

(38)

and propose a new version of the Malmquist index, defined as the geometric mean of (37) and (38):

M0

(
xt+1, yt+1, xt, yt

)
=

[(
DtO

(
xt+1, yt+1

)
DtO (xt, yt)

)(
Dt+1
O

(
xt+1, yt+1

)
Dt+1
O (xt, yt)

)] 1
2

. (39)

In addition, Färe, Grosskopf, Lindgren, and Ross (1992) rewrite (39) yielding an efficiency and a technological term:

M0

(
xt+1, yt+1, xt, yt

)
=

(
Dt+1
O

(
xt+1, yt+1

)
DtO (xt, yt)

)[(
DtO

(
xt, yt

)
Dt+1
O (xt, yt)

)(
DtO

(
xt+1, yt+1

)
Dt+1
O (xt+1, yt+1)

)] 1
2

(40)

where the term

[(
DtO(xt,yt)
Dt+1
O (xt,yt)

)(
DtO(xt+1,yt+1)
Dt+1
O (xt+1,yt+1)

)] 1
2

measures the contribution of technological change and it is

equivalent to the Törnqvist index.21

Assuming a case with one output and two inputs, it is possible to normalize by labor so as only one input in the

production function, so that yt = Yt
Nt

and kt = Kt
Nt

.

Figure 3 depicts a graphical representation of the Malmquist index for an economy in the presence of constant return

to scale and full efficiency: four data points provide a measure of technology change (from T0 to T1), which contributes

to move from point A, i.e., the amount of output produced at time 0 y00 ≡ f0(k0), to point C, i.e., the production in

the second period y11 ≡ f1(k1). To do so, TFP growth is decomposed into the input accumulation and the information

on the counterfactuals, point D, which represents the production using the technology at time 0 with the amount of

input used at time 1 (y01 ≡ f0(k1)), and point B, i.e., the amount produced with input at time 0 and technology used

20 For a review of the indices used in productivity analysis, see Thanassoulis, Portela, and Despic (2008).
21 Recently, Diewert and Fox (2010) shows that a relationship between the Malmquist and the Törnqvist under imperfect

returns to scale.
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Fig. 3 Construction of the Malmquist index in the full efficiency case
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at time 1 (y10 ≡ f1(k0)), where, for each yji is the amount produced with input at time j and technology at time k.

Assuming constant returns and full efficiency, the log of the Malmquist index equals the log of the geometric mean of

the average products in the first two periods, or

lnM1
0 =

1

2
ln

(
y11
y00

y01
y10

)
=

1

2
ln

(
y11
y00

)
︸ ︷︷ ︸
KNOWN

+
1

2
ln

(
y01
y10

)
︸ ︷︷ ︸
UNKNOWN

(41)

The Malmquist index puts a bound on possible evolution of TFP from period 0 to period 1, even when the capital

stock is poorly measured or unobservable. Consider first the extreme case in which there is no capital accumulation in

period 0, i.e. k0 = k1 and lnM1
0 = 1

2 ln
(
y11
y00

)
; in the other extreme, capital accumulation is identical to the growth of

labor productivity, i.e. lnM1
0 = ln

(
y11
y00

)
. We will employ the midpoint between these two values. We also consider the

construction of the index when of negative technological progress: in this case, the lower bound is represented by the

extreme case when capital accumulation is equal to the growth of labor productivity, i.e. lnM1
0 = ln

(
y11
y00

)
, while the

upper bound is represented by the case where there is no capital accumulation between the two periods.



B3. The Malmquist Index when Capacity Utilization is Observed

If data on capacity utilization are available, we can rewrite (41) for the first two periods in the case of full efficiency

extending De Borger and Kerstens (2000):

M1
0 =

CU0 (k0, U0k0, y0)

CU1 (k1, U1k1, y1)

√
D0 (k1, y1)

D0 (k0, y0)
(42)

where CUt (kt, Utkt, yt) =
Dt(Utkt,yt)
Dt(kt,yt)

≤ 1 is the output efficiency measure removing any existing technical inefficiency.

If production function is given by (9), we can rewrite CUt (kt, Utkt, yt) =
At[(UtKt)αN1−α

t ]/Nt
At[Kα

t N
1−α
t ]/Nt

= Uαt and recompute

(41) as

lnM1
0 =

1

2
ln

(
y11
y00

y01
y10

)
+ α ln

U0

U1
=

1

2
ln

(
y11
y00

)
+ α ln

U0

U1︸ ︷︷ ︸
KNOWN

+
1

2
ln

(
y01
y10

)
︸ ︷︷ ︸
UNKNOWN

(43)
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