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does not give rise to pooling equilibria. 

We contrast the minimal disclosure setting with the case in which all bids are 
public, and the case in which only the winner's bids are public. In these 
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a sufficiently large number of bidders. 

JEL Classification: D44, D82 and D83 
Keywords: first price auction, information revelation, private bids and repeated 
auctions 

Dirk Bergemann 
Department of Economics  
Yale University  
28, Hillhouse Avenue  
PO Box 208268  
New Haven, CT 06520-8268  
USA  
Email: dirk.bergemann@yale.edu  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=125361 

Johannes Hörner 
Department of Economics  
Yale University  
30, Hillhouse Ave.  
New Haven, CT06520-8281  
USA  
  
Email: johannes.horner@yale.edu  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=161005 

 



* This research is supported financially by NSF Grant SES 0851200 and NSF 
Grant SES 0920985. We would like to thank Vitor Farinha Luz for research 
assistance and seminar participants at the University of Mannheim and 
University of Munich, as well as at the GDR Jeux at Luminy for their 
constructive comments. 

Submitted 19 August 2010 

 



1 Introduction

Information revelation policies vary wildly across auction formats. In the U.S. procurement

context, as a consequence of the “Freedom of Information Act,” the public sector is generally

subject to strict transparency requirements that require full disclosure of the identity of the bidders

and the terms of each bid. In auctions of mineral rights to U.S. government-owned land, however,

only the winner’s identity is revealed. In many markets, only the winner’s bid and identity are

disclosed. This is the case, for instance, in the mussels sealed-bid auction documented by Kleijnen

and Schaik (2007), and also happens in some European procurement auctions (for instance, in

the London bus routes auctions, see Cantillon and Pesendorfer (2006)). This is also, by the very

design of the auction, the bidders’ feedback in Dutch or English auctions. In some markets,

even less information is disclosed. Over the last two years, the online auction site eBay has

progressively moved toward a less transparent auction format. Bidders’ identities are no longer

disclosed, although it remains possible to determine the list of items won in the last month by any

of the (anonymous) user identities. Auction houses like Christie’s or Sotheby’s often preserve the

anonymity of the winning bidder, and sometimes of the transaction amount. But the pinnacle of

opaqueness surely belongs to Google for its sponsored search auction, in which even the algorithm

based on which the winner is determined is unknown. To add to this confusion, some B2B auction

platforms (for instance, FreeMarkets, or Covisint) offer their clients the possibility to choose how

transparent, or opaque, they wish the auction format to be.

Undoubtedly, the choice of such feedback policies reflects a variety of considerations, such as

security, privacy, risk of corruption, etc. This paper focuses on the impact of these policies on

bidders’ strategies, efficiency and revenue. We consider infinitely repeated first-price auctions,

with persistent, independent private values, and multi-unit demand. We shall consider three

information policies. With unobservable bids, bidders are only privately informed at the end of

each round whether they have won the auction or not. With observable bids, all bids are disclosed

at the end of each round. Finally, with winner-only observable bids, only the winner’s bid (and,

although it plays no role, his identity) are publicly disclosed at the end of each round.

Of course, as in any infinitely repeated game, collusive equilibria exist if bidders are sufficiently
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patient, even under the most restrictive feedback policy.1 Bid rotation, for instance, is always a

possibility. To evaluate the intrinsic performance of each policy absent any tacit but explicit

collusion, we focus on Markov equilibria, in which strategies only depend on bidders’ beliefs.

Providing more information to the bidders about the competing bids has conflicting effects. If

more information about bids is disclosed, bidders have an incentive to submit low bids to mimic

bidders with low valuations, and induce high valuation bidders to lower their bid so as to win more

easily in later periods. This is the familiar ratchet effect which suggests that more information

is bad for revenue. On the other hand, if less information is provided, a winning bidder has an

incentive to lower his bid to learn more about his opponents’ bids. If these bids were observable,

such a discovery process would be futile, but when the bids of the losers’ remain undisclosed, it

becomes valuable: to determine how low he can bid and still win, a past winner has an incentive

to depress his bids. This learning effect suggests that less information is bad for revenue. While

both effects are present in our model, we shall see that the first one clearly dominates the second

as the discount factor tends to one.

Of the three policies, the policy of unobservable bids is the most challenging to analyze, but

it is also probably the most interesting one. Because bidding histories are private, higher-order

beliefs arise naturally. A past winner’s belief about his opponents’ value naturally depends on the

bid with which he has won (winning with a very high bid, for instance, is not very informative).

But losers have not observed the winning bid, and so, based on their losing bid, they must form

beliefs not only about the winner’s private value, but also about the winner’s beliefs about the

other bidders’ values. In turn, because the losing bids are not observed, the winner must therefore

form beliefs about the losers’ beliefs about his belief, etc. Therefore, the relevant state space is

the rather formidable universal belief space introduced by Mertens and Zamir (1985). To have

any hope at making some progress, we restrict attention throughout to binary valuations. Even

then, establishing equilibrium existence, let alone uniqueness, is rather difficult.

Fortunately, it is possible to explicitly construct a Markov equilibrium. In this equilibrium,

high-valuation bidders always bid strictly more than low-valuation bidders, so that the allocation

is efficient. The high-valuation bidder who wins in the initial period cautiously decreases his bids

1At least as long as feasible allocations exist that guarantee each player his minmax payoff, see Section 4.
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over time, trading-off the opportunity of winning with a slightly lower bid with the risk of losing

and, more importantly, of generating mutual knowledge that he is not the only high-valuation

bidder, which leads to higher future bids. As we show, a high-valuation bidder who loses in the

initial period does not need to increase his later bids. In equilibrium, such a bidder can expect

the winner to come down with his bids over time. In fact, it turns out that submitting bids that

are constant over time is optimal for such a bidder. We provide closed-form expressions for the

equilibrium strategies, which allows us to study expected revenue and perform comparative statics.

In particular, we show that, as the discount factor goes to one, or equivalently, if auctions are

repeated frequently enough, this revenue approaches the revenue of the optimal auction (without

reserve price).

In contrast, when bidders have more feedback, a low-revenue pooling equilibrium might exist,

which is impossible under unobservable bids. With winner-only observable bids, this pooling

equilibrium is not unique. Indeed, there always exists a separating equilibrium whose revenue also

tends to the maximal revenue as the discount factor goes to one. In contrast, with observable

bids, the existence of a pooling equilibrium rules out the possibility of a separating equilibrium.

We interpret these findings as consistent with the common wisdom that more transparency is

likely to hurt revenue. For instance, OECD guidelines for public procurement state that “disclos-

ing information such as the identity of the bidders and the terms and conditions of each bid allow

competitors to detect deviations from a collusive agreement, punish those firms and better coor-

dinate future tenders” (see Organisation for Economic Co-Operation and Development (2008)).

Note, however, that, as mentioned, our findings do not rely on explicit collusion. The observable

bids format is inherently more collusive than the unobservable bids format. Our analysis thus

supports empirical findings, such as those of Albaek, Mollgard, and Overgaard (1997), and exper-

imental findings, such as those of Cason, Kannan, and Siebert (2009), showing how finer public

feedback may lead to lower revenues (and in experiments, pooling behavior). But our analysis

also indicates that such findings must be interpreted with care, as the lower revenues need not be

evidence of explicit collusion, but rather, of necessary adjustments in light of a new environment.

In the words of Dave McCormick, Senior Vice President of FreeMarkets Inc., “suppliers are finding

that, in a transparent environment where competitors can see each others’ bids, the price for goods
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is being driven down.” (Wilson (2000)). A second caveat is that it is not necessary to suppress

all information to obtain efficiency. With winner-only observable bids, an efficient, high-revenue

equilibrium exists as well. Simply, this equilibrium is not unique, and given this multiplicity, it

should then come as no surprise that the impact of feedback might be limited in some settings, as,

for instance, in Cramton and Schwartz (2002). Our bidding dynamics under unobservable bids are

also consistent with the experimental results of Selten and Buchta (1999), who find that winner’s

bids tend to be lowered or not to be increased, while losers’ bids tend to increase or not to be

lowered over time.

There are a number of recent contributions in auction theory that consider similar information

environments. Landsberger, Rubinstein, Wolfstetter, and Zamir (2001) analyze the first-price

auction in a static environment when only the ranking of the valuations is common knowledge.

Their analysis is motivated by the information revealed through the interaction in repeated bidding

environments. The main focus of their paper is the analysis of the specific asymmetric auction

environment that results when two bidders, possibly starting with the same common prior over

the valuation, receive additional information about their ranking with respect to their competitor.

In a model with a continuum of valuations, they establish the existence and uniqueness of a

pure strategy Bayes-Nash equilibrium. They also show, by example, that the equilibrium bidding

strategies can typically not be expressed as an analytic function, due to a singularity in the bidding

function at the lower end of the valuations.

Fevrier (2003) extends the analysis of Landsberger, Rubinstein, Wolfstetter, and Zamir (2001)

from 2 to n bidders. He then compares the revenue generated by the sale of two identical units

of an object in the sequential auction over two periods to the revenue when the units are sold as

a bundle in a single auction. Fevrier (2003) establishes that the revenue in the static auction of

the bundle yields a higher revenue than the sequential auction with or without the announcement

of the winner in the first period. Yao (2007) analyzes the equilibrium in a two-period model

when the winning bidder and the winning bid is revealed after the first period. In particular, he

finds that the initial bids in the two-period model are uniformly lower than the bids in the static

first-price auction. Tu (2007) compares the revenue properties of a number of auction formats

and disclosure policies in a two-period setting. In particular, he establishes revenue comparisons
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when the valuation of the buyers are uniformly distributed. Notably, he finds that with respect

to a number of possible disclosure policies in the first-price auction, announcing the winning bid

yields a higher revenue than announcing the winning and the losing bid. In turn, the revenue

from the public announcement of the bids yields a higher revenue than the announcement of the

determination of winner and loser in the past auction.

The remainder of the paper is organized as follows. Section 2 presents the model and the rules

of information disclosure. Section 3 considers the equilibrium bidding strategies with unobservable

bids. It explicitly constructs an equilibrium in separating strategies and establishes comparative

statics. Section 4 considers the environment with observable bids. Section 5 analyzes the equilib-

rium when only the bid of the winner is observable. Section 6 compares the results and Section 7

concludes. The appendix, Section 8, collects the remaining proofs.

2 The Model

2.1 Three Variations on a Theme

There are n+1 ≥ 2 bidders, or players, competing in an infinite sequence of auctions. In every

period t = 0, 1, . . ., a single unit is sold via a first-price sealed bid auction. There is no reserve price,

and ties are broken randomly. Bidders have quasilinear preferences that are additively separable

across periods. A player’s valuation V i, or type, is constant across time and private information.

Valuations are binary: bidder i’s type is either high and equal to ū or low, equal to u. Types are

drawn independently across bidders, and the probability that bidder i’s valuation is ū is q ∈ (0, 1).

The same n+1 bidders participate in all these auctions, and both the number of bidders, and the

type distribution, are common knowledge among bidders. These assumptions, discussed in the

conclusion, are quite restrictive (in particular, the binary valuations of the bidders), but it will

become clear that relaxing them would considerably complicate the analysis of the case in which

bids are not observable.

Thus, the reward ri
t in period t of player i with valuation V i is equal to V i− bit if he bids bit and

he wins the object, or is equal to 0 if he does not win the object. Bidders discount future periods

with a common discount factor δ < 1. The realized payoff of a bidder is the average discounted

6



sum of his rewards:
∞
∑

t=0

(1 − δ)δtri
t.

Our purpose is to compare different information policies available to the auctioneer. In all

cases, every individual bidder is privately informed, at the end of any given period, whether he

has won the unit in that period or not. We compare three scenarios:

1. In the unobservable case, bids are not disclosed. The identity of the winner is not disclosed

either. Of course, if n+1 = 2, a bidder can infer who won from his own information (whether

he won or lost), but this is no longer the case with more bidders.

2. In the observable case, the auctioneer discloses who bid how much. This is the case of perfect

information about actions, and bidders accordingly update their beliefs about the valuations

of others.

3. In the winner-only observable case, the bid of the winning bidder is announced. Although

this turns out to be irrelevant for our analysis, we also assume that the winner’s identity is

disclosed. Nothing else is disclosed.

In a repeated game such as ours, even with incomplete information, there is a myriad of

equilibria. For instance, there are collusive equilibria that involve bid rotation, and a winning bid

of zero in every period, which are easy to support if u > 0, independently of the structure of the

uncertainty. Because we are not interested in collusion per se, we focus on Markov equilibria, in

which players’ strategies only depend on payoff-relevant information.

What information is payoff-relevant in our environment is a little bit tricky. In the observable

case, players’ beliefs (about others’ values) are public after every history, and we can then take

these beliefs as the state variable. A similar definition is possible in the winner-only observable

case. This, however, is difficult in the unobservable case. For instance, a winner infers from his bid

how high his opponents’ bids might have been, and this affects his beliefs about their valuations.

His beliefs, however, are no longer common knowledge, because his bid is not. Because a loser

can only deduce a lower bound on the winner’s bid from his own losing bid, the loser has beliefs

about the winner’s beliefs, and they are certainly payoff-relevant from his point of view. We are
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therefore led to consider the universal type space (see Mertens and Zamir (1985)) as the natural

state space for our definition of Markov strategies.

But this is getting ahead of ourselves. First, let us define more precisely the information and

the strategies available to the bidders in each scenario.

2.2 Histories and Strategies

Even under complete information, it is often convenient to introduce infinitesimal bids in order

to avoid complications linked to real numbers: if bidder 1 is known to be of value u, and bidder 2

is known to be of value ū, it is natural, in the one-shot game, to focus on the equilibrium in which

bidder 1 bids u and bidder 2 bids “as little as possible” above u. Of course, there is no such bid in

the field of real numbers. To avoid this difficulty, one can resort to richer strategies, as in Blume

(2003), to endogenous tie-breaking rules, as in Jackson, Swinkels, Simon, and Zame (2002), or to

arbitrarily fine but discrete bid grids, as in Chwe (1989). As a convention, we shall follow here

Engelbrecht-Wiggans (1983) and Hörner and Jamison (2008) and assume that there is such a bid

u+, which costs just as much as u, but that is strictly larger, while being strictly smaller than any

real number b > u.

A private history of player i up to period t is a sequence (bi0, k
i
0, . . . , b

i
t−1, k

i
t−1), consisting of

the bids bit′ ∈ R+ ∪ {u+} that he made in period t′, and of his personal outcome in that period:

ki
t′ = 0 if bidder i did not win the object in period t′, and ki

t′ = 1 if he won the object. A private

history of player i up to period t is denoted hi
t ∈ H i

t := ((R+ ∪ {u+}) × {0, 1})t.

In the unobservable case, this is the only information available to player i, and a (behavior)

strategy σi is then simply a countable sequence of transition probabilities

σi
t : {u, u} ×H i

t → △(R+ ∪ {u+}),

mapping bidder i’s valuation, along with each private history into a distribution over bids.

In the observable case, bidder i knows the entire (ordered) sequence of bids in each period up
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to t. That is, in that case, the public history up to period t is a sequence

((b10, . . . , b
n
0 ), j0, . . . , (b

1
t , . . . , b

n
t ), jt),

with (b1t′ , . . . , b
n
t′) ∈ (R+∪{u+})

n, and jt′ ∈ {1, . . . , n}, where b
jt′

t′ := maxi b
i
t′ . Of course, the identity

jt′ of the winner in period t′ can be inferred from the ordered bid tuple (unless there is a tie). The

public history up to period t is denoted ht ∈ Ht and it is equal to ((R+ ∪ {u+})
n × {1, . . . , n})t.

(We set H i
0 := {∅}, H0 := {∅}.)

In the winner-only observable case, the public history up to period t is a sequence

(bw0 , j0, . . . , b
w
t−1, jt−1)

of winning bids bwt′ in period t′, and of the identity of the winning bidder in that period: jt′ ∈

{1, . . . , n} refers to the winning bidder in that period. The set of public histories Ht in this case is

equal to ((R+ ∪{u+})×{1, . . . , n})t. For consistency, we set Ht := {∅}, all t, in the unobservable

case, so that we may talk about the three scenarios in a unified way.

A behavior strategy σi for player i in the observable case or the winner-only observable case is

again a countable sequence of transition probabilities

σi
t : {u, u} ×H i

t ×Ht → △(R+ ∪ {u+}),

mapping bidder i’s valuation, along with the private and public history up to period t, into a

distribution over bids.

2.3 Solution Concept

A strategy profile σ = (σi)i defines a probability distribution Pσ over infinite histories in the

obvious way, and we can therefore define player i’s payoff under the strategy profile σ as the

expectation of his realized payoff relative to this distribution

V i(σ) = Eσ[
∞
∑

t=0

(1 − δ)δtri
t].
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Fix some strategy profile σ. Given the common prior on bidders’ valuations, and given any pair

of private and public histories (hi
t, ht) that are in the support of the distribution Pσ, Bayes’ rule

determines bidder i’s beliefs about the other bidders’ valuations and their private histories hj
t ,

j 6= i. This in turn defines a conditional distribution Pσ|(hi
t,ht) over the sequence of future rewards,

and we can define the continuation payoff of player i after (hi
t, ht) as

V i(σ|(hi
t, ht)) = Eσ|(hi

t,ht)[

∞
∑

t′=t

(1 − δ)δt′−tri
t′ ].

We may then define a perfect Bayesian equilibrium (or PBE, for short) as a strategy profile σ in

which players’ strategies σi are sequentially rational after every pair (hi
t, h

t) given their beliefs,

and these beliefs are consistent with Bayes’ rule if this pair is in the support of Pσ.

As mentioned, we are not interested in characterizing all PBE. It is natural to focus on Markov

equilibria, in which players’ strategies are measurable with respect to their beliefs. However, we

have seen that, at least in the unobservable case, attention cannot be restricted to first-order

beliefs; even if player i conditions on j being of the high type, he cannot infer player j’s first-order

beliefs from his own private history hi
t, because player j’s high type might randomize over bids,

and what determines j’ first-order beliefs is the realization of these bids, i.e. player j’s private

history. We are thus led to adopt as state space for player i the universal belief space Θi (see

Mertens and Zamir (1985)), which is compact and metric. Given the strategy profile σ, a pair

of histories (hi
t, ht) in the support of Pσ determines a belief θi ∈ Θi via Bayes’ rule. Player i’s

strategy is Markov if it is measurable with respect to these beliefs. It is natural to further impose

that player i’s strategy is also measurable with respect to his belief θi off-path as well, even if these

beliefs are no longer determined by Bayes’ rule. A Markov strategy, then, is then summarized by a

measurable map σi : Θi → △(R+ ∪ {u+}), and a Markov sequential equilibrium (hereafter, MSE)

is a PBE in Markov strategies. In the observable case, these hierarchies of beliefs are trivial. As

we shall see, they are equally simple in the case of winner-only observable bids. They are, however,

more complicated in the unobservable case.

Because of the arbitrariness of the specification of beliefs off-path, these beliefs can be used to

threaten players, so that the Markov restriction does not reduce the set of equilibria as much as
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one would like to. Consider for instance the observable case with two bidders. Fix some history

after which it is commonly believed that the two bidders have low valuations. It would be natural,

then, to conjecture that in a Markov equilibrium, after such a history, both bidders set their bid

equal to u in every period. But any lower common bid would do as well, as long as the equilibrium

specifies that any higher bid will lead to a belief revision. For instance, if bidder i observes j

bidding more, we could specify that i now believes that j has a high valuation after all, and then

bids u thereafter. This deters any deviation. To prune such artificial equilibria, we impose the

following refinement.

Refinement A:

1. After any history ((hi
t)i, ht), low-type bidders bid u in every period.

2. After any history ((hi
t)i, ht) such that it is common knowledge among at least two high-type

bidders that they are both high-type bidders, those two high-type bidders bid ū thereafter.

The first restriction is a combination of two assumptions. First, a low-type bidder does not use

a weakly dominated strategy, such as bidding strictly more than u. Second, all bids are at least as

high as the lowest commonly known value (while (1.) does not impose that the high-type bidder

bids at least u, it is easy to see that it will imply it). Note that the second part of the refinement

does not require that the two high-type bidders know their respective identities. Rather, it suffices

that it be common knowledge among them that they exist. Still, Refinement A will not ensure

uniqueness, but it will help narrow down the set of candidate equilibria considerably.

Note that we have now pinned down, by assumption, the equilibrium behavior of the low-type

bidder. Therefore, the difficulty lies in identifying the behavior of the high-type bidder.

2.4 The Static Auction

We conclude this section with a brief review of the static first-price auction. The auction

consists of n+ 1 bidders, i = 1, . . . , n+ 1, with two possible valuations, V i ∈ {u, u}, and identical

and independent priors given by 1−q and q, respectively. With discrete, here binary, valuations, the

unique equilibrium of the first-price auction involves randomization by the high-valuation bidder
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(see Maskin and Riley (2003)). His bid has to balance the probability of a winning bid against the

price paid conditional on winning. The distribution of bids from each of his competitors, either

with low or high valuation, is denoted by F (b). Now, every bid in the support of the random

bidding strategy must maximize the expected payoff

max
b

{F (b)n (u− b)} .

The indifference of the high-valuation bidder requires that the right-hand side be independent of

b on its support, i.e.

F (b) = (1 − q)

(

u− u

u− b

)1/n

, (1)

where the support of the distribution is given by [u, ū− (1 − q)n(ū− u)]. The distribution displays

a mass point at the lower extremity of the support, where F (u) = (1 − q)n reflects the fact that

the low-valuation bidder makes a deterministic bid equal to his valuation. In contrast, the high-

valuation bidder continuously randomizes over (u, ū−(1−q)n(ū−u)]. Note that the low-valuation

bidder receives zero net utility, while the high-valuation bidder receives a positive expected net

utility given by (1 − q)n (u− u). In the first-price auction, each type’s payoff is equal to his

payoff from the second-price auction. It is worth pointing out that, with discrete types, the

revenue equivalence theorem fails, and revenue might differ across mechanisms that are efficient

and yield no surplus to the low-type bidder. We shall encounter such mechanisms. It is easy to

show, however, that the allocation from the first-price auction maximizes revenue among efficient

mechanisms.2

3 Unobservable Bids

We begin our analysis with the case of unobservable bids. We shall first argue that the equi-

librium cannot be pooling.

2Unlike other allocations that will come up, this allocation has the property that the incentive constraints are
not uniformly strict.
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3.1 On the Impossibility of Pooling

An equilibrium is pooling if, on the equilibrium path, bidders of different valuations use the

same bidding strategy, so that, equivalently, beliefs do not change.

Note that, if the strategies of the bidders act to separate types, then a high-valuation bidder will

(eventually) win against a low-valuation bidder. But in the process of separation from a possible

low-valuation bidder, the high-valuation bidder also reveals his true valuation and consequently

might be forced into an eventual competition with another high-valuation competitor that will

leave both of them with no surplus. From this point of view, a pooling equilibrium might seem

desirable for the bidders, especially when the probability that a bidder has a high valuation is

high, and when bidders are patient. Indeed, such equilibria will arise under other information

structures, as we shall see. Pooling would naturally mean that the surplus would have to be

shared, in particular with low-valuation bidders. But the benefit would be that the price would

remain low.

Consider then such a candidate pooling equilibrium. As the bids are not observable, any loss

can be attributed to pure chance (given the random tie-breaking) and does not lead to a revision

of the prior. But this opens the possibility for a high-valuation bidder to bid slightly more than

the pooling bid u, at a negligible cost, and to win the current auction for sure, leaving him with

an increase in the current rent. As beliefs of the agents do not change, the current benefit comes

without a future cost, and this represents a profitable deviation.

Proposition 1 (Impossibility of Pooling).

For all q, n, δ, a pooling Markov sequential equilibrium does not exist with unobservable bids.

We should point out that Refinement A is not necessary for Proposition (1). To see this, note

first that a pooling equilibrium must involve pure strategies, because it is not possible, given single-

crossing, that both the low- and high-type bidders are simultaneously indifferent over two different

bids (i.e., over two different probabilities of winning: recall that the probability of winning in the

continuation equilibrium must be independent of this bid, by the Markov assumption, and by the

fact that the observed bid does not affect beliefs in a pooling equilibrium). Second, note that this

pooling bid must (at least in some period) be no larger than u, for otherwise the low-type bidder

would make negative profits. Consider any such period, and apply the argument given above.
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Having established the impossibility of pooling in a Markov sequential equilibrium, we now

proceed to construct a specific separating equilibrium.

3.2 The Separating Equilibrium: Preview

In a separating equilibrium, low- and high-valuation bidders’ strategies have disjoint supports,

which allows some learning to take place. Of course, with unobservable bids, this learning might

be incomplete. For instance, a high-valuation bidder that wins in the initial period only infers that

his opponents have bid less than he did, but that does not allow him to ascertain his opponents’

valuation for sure. He simply updates his beliefs given his winning bid. So do the losing bidders,

given their losing bids. Further, the losing bidders revise their beliefs about the winner’s beliefs,

but because they do not know the winning bid, this leads to a subtle updating process.

We shall circumvent these difficulties as follows. Recall that low-valuation bidders bid u

throughout, so the focus is on the high-valuation bidders. The separating equilibrium we shall

construct has the following properties:

1. In the initial period, high-valuation bidders continuously randomize over the support [u+, b0],

for some b̄0 > u+. This partitions the set of bidders according to their status after the initial

period, as “winner” and “losers.” We shall refer to a bidder as the winner entering period t

if he won in all periods up to t, and as a loser if he lost in all those periods.

2. In subsequent periods, as long as the (initial) winner has never lost, as a function of their

initial bid, (high-valuation) bidders submit bids that decrease over time.3 Both the (high-

valuation) winner and the loser always bid strictly more than u, but, depending on his initial

bid, the winner might bid u+. More precisely, for every period, there exists a range of bids in

[u+, b0], that includes u+, such that, if the winner has won in the initial period with a bid in

this range, then his bid in period t (and beyond) is u+. The support of the bid distribution

of the winner and (high-valuation) losers is common, in the sense that the highest bid that

a loser could conceivably make in a given period, i.e., the bid a loser would make if he lost

3We insist that, although for convenience we describe later bids as functions of earlier bids, they are truly
functions of the bidders’ beliefs, which on the equilibrium path happen to be pinned down by their initial bid.
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in the initial period with a bid of b0 coincides with the bid the winner would make if he had

initially won with the bid b0.

We note that such an equilibrium would have the desirable feature that, as soon as a high-

valuation bidder who always won so far loses in some period t > 0, it would become common

knowledge among two bidders that there are two high-valuation bidders.4 To see this, note that

the high-valuation loser who then wins knows that there exists another high-valuation bidder,

because he lost in the initial period with a bid strictly above u. But as the winner eventually loses

with a bid strictly above u, this winner learns that there is another high-valuation bidder, and

thus, that there is another bidder who knows that there are two high-valuation bidders. Because

they both know that the winner has lost in period t, this establishes common knowledge (among

them) that there are two high-valuation bidders. By Refinement A, bids then jump up to ū,

which ends the game for all practical purposes. We may then focus on the histories in which

the “winner” of the initial auction has never lost afterwards (for as soon as he does, it becomes

common knowledge that two bidders’ valuations are high.)

Note also that, in such an equilibrium, the process of belief updating remains relatively simple.

To fix ideas, consider the case of two bidders. Consider the high-valuation winner’s inference

problem. Given that the loser is using a monotone strategy, the winner’s belief can be summa-

rized by a cut-off bid. Namely, the winner can derive an upper bound on the bid that the loser

might submit in the current period, which is the highest bid consistent with the loser’s equilibrium

strategy, given that all his bids were below the winner’s bids until then. While the winner knows

that the loser will not bid above this cut-off, his private information gives him no further infor-

mation regarding the relative likelihood of lower bids. Therefore, a belief revision for the winner

amounts to truncating (from above) the corresponding distribution. Updating proceeds similarly

for the high-valuation loser. His private history provides him with a lower bound on the bids

that the high-valuation winner might submit. Therefore, a belief revision for the loser amounts to

truncating (from below) the corresponding distribution.

The next subsection shows how to explicitly solve for the equilibrium strategies. The reader

4Note, however, that with more than two bidders all but two bidders will never learn for sure whether the initial
winner has already lost, in which case there is no longer any scope for them to win.
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mostly interested in the qualitative findings might elect to skip it.

3.3 Deriving the Equilibrium Strategies

Fix the separating Markov sequential equilibrium to be described. Let Ft denotes the cumu-

lative and unconditional distribution function (c.d.f.) summarizing the equilibrium strategy in

period t of a player who always lost up to period t− 1, and Gt the unconditional c.d.f. summariz-

ing the equilibrium strategy in period t of a player who always won up to period t−1. That is, Ft

captures the winner’s belief about the bid distribution of any given loser that he faces in period

t, if he had submitted in all previous periods bids with which he was sure to win, and were thus

uninformative. Similarly, Gt describes the belief about the winner’s bid distribution of a loser who

would have bid less than u throughout.

The distinction between winner and loser is immaterial in the initial period, and thus G0 =

F0. Given the aforementioned properties of the separating equilibrium we seek, it must be that

Ft (u) = 1−q, where we recall that 1−q is the prior probability that the valuation of the bidder is

u. By contrast the high-valuation bidder who won until t might bid u+ with discrete probability,

i.e. Gt (u) = 1 − q but Gt

(

u+

)

≥ 1 − q.5

In general, a player’s beliefs are pinned down by his entire private history. It turns out that,

in the equilibrium we describe, the last bid (along with the bidder’s status as winner or loser) is

a sufficient statistic for this belief, at least on the equilibrium path, on which we focus for now.

Thus, we denote by Vt(b) the continuation value of the winner with a high valuation ū, given

that his last bid was b. Similarly, we denote by Wt(b) the continuation value of a loser with a high

valuation ū, given that his last bid was b. We emphasize that this is just a convenient short-hand

for the player’s beliefs.

The derivation below is performed for the case of two bidders. This makes the exposition

somewhat easier. Results, however, are stated for the general case of n + 1 bidders, and their

proofs can be found in the Appendix.

5To avoid clutter, we shall just omit the distinction between Gt(u) and Gt(u+), with the convention that
Gt(u) − (1 − q) is the probability assigned to the bid u+, as the probability assigned to u is 1 − q throughout.
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3.3.1 The Loser’s Bidding Strategy

We start by determining the equilibrium bid distribution Ft of the loser for all periods t ≥ 1.

The bid distribution Ft of the loser is determined by the indifference condition of the winner. His

continuation value is given by the optimality equation

Vt (b) = max
β

{

Ft (β)

Ft−1 (b)
[(1 − δ)(ū− β) + δVt+1 (β)]

}

, t ≥ 1. (2)

The winner receives the object in period t with a bid β > u if and only if the loser makes a

bid below β.6 The ratio Ft(β)/Ft−1(b) is the conditional belief of the winner, and is obtained by

truncation of his original, unconditional belief, as explained above. The unconditional probability

of a bid below β is given by Ft (β). Now, the winner received the object in the preceding period

with a bid b, and hence he can condition his bid β today on the information that the loser made

a bid below b yesterday (this, as it turns out, is finer information than the one contained in his

earlier bids). If, for instance, he makes the bid βt(b) that the loser would submit after bidding b

in period t−1, he would win with probability Ft(βt(b))/Ft−1(b) = 1, because, given monotonicity,

Ft(βt(b)) = Ft−1(b), by definition of βt(b). Clearly, the winner has no incentive to bid more than

βt(b), since this bid suffices to win for sure.

In the case of a winning bid β, the winner receives the object today at the price β and maintains

his status as winner for at least one more period. By contrast, if he loses the auction today, then

it is common knowledge among the bidders that they both have a high valuation for the object,

and hence, by Refinement A, all future bids will have to be equal to the high value ū and exhaust

all the surplus from the bidders’ point of view.

We define Yt (b) to be the expected future utility from a bid b in the preceding period, so

Yt (b) := Ft−1 (b)Vt (b) . (3)

6Implicitly, here and in the winner’s problem, we restrict the domain of the choice variable β to the range of
values that will preserve the feature that the last bid is a sufficient statistic for the entire past, and for which the
ratio Ft(β)/Ft−1(b) is less than one, i.e. such that β ≤ β

t
(b). We will then verify that the strategy profile obtained

in this manner is an equilibrium.
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This allows to rewrite the value function of the winner as

Yt (b) /(1 − δ) = max
β

{Ft (β) (ū− β) + δYt+1 (β) /(1 − δ)} , t ≥ 1, (4)

which has the advantage that the unconditional distribution Ft−1 of the preceding period t− 1 no

longer appears. Note also that the right-hand side no longer depends on b, so that Yt (b) does not

either. That is, Yt (b) is constant, and the last term on the right-hand side, Yt+1(β), must be as

well. It follows that the first term of the right-hand side must be constant over the support of Ft,

which means that the equilibrium bid distribution of the loser is given by

Ft (b) =
ϕt

ū− b
, t ≥ 1,

for some constant ϕt. Since the equilibrium we seek to identify satisfies Ft (u) = 1−q for all t ≥ 1,

the constant ϕt is given by

ϕt = ϕ := (1 − q) (ū− u) ,

independently of t for t ≥ 1. We have thus solved for the unconditional bid distribution of the

loser, for all t ≥ 1, as

Ft (b) = (1 − q)
ū− u

ū− b
. (5)

Recall that we are looking for an equilibrium in which bids in periods t ≥ 1 are deterministic

functions of the initial bid (as long as the bidder’s status as loser or winner persists). Since Ft (b)

is independent of t, this means that, from time t ≥ 1, a high-valuation loser makes a constant bid

(until he wins, if ever). The unconditional bid distribution of the loser is in fact identical to the

equilibrium bid distribution (1) in the static auction derived earlier.

Let b̄ denote the highest bid in the support of a bidder’s distribution.7 Then the bid b̄ must

satisfy

(1 − q) (ū− u) /
(

ū− b̄
)

= 1,

7To be clear, the expression “support” refers to the support of the unconditional distribution. That is, it is
the union over all bids that are made by the loser (resp. the winner) in the relevant period, over all histories of
equilibrium bids that this player might have made so far.
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and thus the net flow value of the winner is given by

ū− b̄ = (1 − q) (ū− u) . (6)

This residual surplus is equal to the expected surplus that a bidder with a high valuation would

receive in the first- or second-price static auction. Moreover, as the highest bid b̄ guarantees the

winner to win the object in all future auctions with probability one, we have an early indication that

the revenue of the repeated auction with unobservable bids may satisfy a flow revenue equivalence

with a single static auction.

We record here the equilibrium strategy for the loser in case that there are n+1 bidders, which

is an immediate generalization of the formula above (see (38) in the Appendix). We insist here

that this is a description of the equilibrium strategies on the equilibrium path. See section 3.4.2

for details about play off the equilibrium path.

Lemma 1 (The Loser’s Bid Distribution).

The loser’s bid distribution is given by, for all t ≥ 1,

Ft(b) = F (b) := (1 − q)

(

ū− u

ū− b

)1/n

, (7)

on the support [u, ū− (1 − q)n(ū− u)]. Thus, the loser makes a constant bid from t ≥ 1 onward.

Finally, note that (4) provides a simple difference equation for the sequence {Yt}t of uncondi-

tional payoffs, namely,

Yt/(1 − δ) = ϕ + δYt+1/(1 − δ),

whose unique bounded solution is

Yt = ϕ = (1 − q)(ū− u), (8)

which is a constant value, independent of time and of the past bid b. With the solution to the loser’s

bid distribution and the unconditional payoffs, given by (7) and (8), we obtain the conditional
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value of the winner, Vt (b), by using the equation (3) as:

Vt (b) = ū− b. (9)

The flow continuation value of the winner in period t is therefore equal to his value minus his

successful bid in the past period. This simple representation of the continuation value follows

directly from the constant bid distribution of the losers. Given that the bid b succeeded in the past

period, the winner knows that by continuing to bid b forever, he can indeed win forever. Moreover,

given the bidding strategy by the losers, the winner is indifferent between continuing to bid b or

lowering his bid to β. As we will show next, the winner’s bid will have to be decreasing, rather

than constant, to maintain the indifference of the losers. Nonetheless, using the same intuition,

or formally the recursion of the value function given by (2), it follows that the continuation value

of the winner is a martingale, i.e.

E [Vt+1] = Vt (b) = ū− b. (10)

We shall come back to the martingale property of the continuation value shortly to obtain a

complete characterization of the intertemporal properties of the equilibrium bids and equilibrium

values.

3.3.2 The Winner’s Bidding Strategy

Next, we derive the unconditional equilibrium bid distribution Gt of the winner, which in turn

is determined by the optimization problem of the loser. The value function of the loser, as a

function of his last bid, which here as well encapsulates his belief (on the equilibrium path), is

denoted by Wt and satisfies the optimality equation

Wt (b) = max
β

{

Gt (β) −Gt−1 (b)

1 −Gt−1 (b)
(1 − δ)(ū− β) + δ

1 −Gt (β)

1 −Gt−1 (b)
Wt+1 (β)

}

, t ≥ 1. (11)

To understand the loser’s payoff, we must distinguish between two events. The contemporaneous

bid β > u can either win the current auction, and hence yield a flow payoff of ū− β (after which
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bids jump to ū) or it can be insufficiently low, in which case the loser remains in his loser’s status,

at least until the subsequent period t+ 1 when he can expect a continuation value Wt+1 (β). The

unconditional probability of winning (or losing) with a bid β becomes a conditional probability

by conditioning on the event of the past period, in which, by construction, the loser lost with a

bid b, so that the winner’s bid must have been at least as high. As before in the analysis of the

winner’s problem, it is useful to restate this equation with the help of an auxiliary function. We

denote by Xt (b) the expected continuation value from losing with a bid b in period t− 1, or

Xt (b) := (1 −Gt−1 (b))Wt (b) . (12)

With this definition, we rewrite (11) to get

Xt (b) /(1 − δ) = max
β

{(Gt (β) −Gt−1 (b)) (ū− β) + δXt+1 (β) /(1 − δ)} , t ≥ 1. (13)

The value function, described in terms of the unconditional expected values, is again more acces-

sible than the conditional values. But we observe that the past bid b of the loser continues to

appear on the right-hand side of the equation. First-order conditions are then

G′
t (β) (ū− β) − (Gt (β) −Gt−1 (b)) +

δ

1 − δ
X ′

t+1 (β) = 0, t ≥ 1. (14)

Note also that, from the envelope theorem applied to (13),

X ′
t(b)/(1 − δ) = −G′

t−1(b)(ū− β). (15)

To make further progress, some calculations will be required, and they will necessitate to distin-

guish according to whether t is equal to, or larger than 1.

As we learned earlier (see (5)), the equilibrium bid of the loser is constant across periods for

t ≥ 1, or bt = bt+1, so that the first-order condition must hold for the choice β = b. It follows

that we can describe the bidding behavior in terms of contemporaneous bid b alone for all periods
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t > 1, i.e., from (14),

G′
t (b) (ū− b) − (Gt (b) −Gt−1 (b)) +

δ

1 − δ
X ′

t+1 (b) = 0. (16)

The property of constant bids across periods only arose in the continuation game after an initial

winner and initial loser had been determined. The relationship between the initial bid b and the

bid β after the determination of the “winner” and “loser” position respectively has yet to be

established, which is why we assume first that t ≥ 2.

After forwarding the time index from t to t+ 1 in (15), and using the fact that β = b, we can

eliminate X ′
t+1(β) from (14), to obtain

(1 − δ)G′
t(b)(ū− b) = Gt(b) −Gt−1(b), t ≥ 2. (17)

Because the support of Ft and Gt must coincide, we also have that Gt(ū) = 1. Thus, we have an

ordinary differential equation and a boundary condition that allow us to solve for Gt, provided

that Gt−1 is given.

Let us turn to G1. We have already observed that the relationship between the contempora-

neous bid β in period t = 1 and the preceding bid b in period t = 0 is more intricate than in later

periods. Recall that the optimality equation in t = 1, derived earlier in (14), is given by

G′
1 (β) (ū− β) − (G1 (β) −G0 (b)) +

δ

1 − δ
X ′

2 (β) = 0. (18)

Now, while we cannot assert anymore that β = b in t = 1, we can appeal to the hypothesis of

monotone bidding strategies to relate the bid b in t = 0 to the bid β in t = 1 by observing that

G0 (b) = F0 (b) = F1 (β) = (1 − q) (ū− u) / (ū− β) , (19)

where the final equality had been established in (5). Thus, we can write (18) as

G′
1 (β) (ū− β) −G1 (β) +

(1 − q) (ū− u)

ū− β
+

δ

1 − δ
X ′

2 (β) = 0.
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Equation (15) for t = 2 can be used here as well to eliminate X ′
2(β). We obtain that the differential

distribution G1 must satisfy the differential equation

(1 − δ)G′
1(b)(ū− b) = G1(b) −

(1 − q)(ū− u)

ū− b
, (20)

along with the boundary condition G1(ū) = 1.

Thus, the equations (17) and (20), along with Gt(u) = 1, all t ≥ 1, allow us to solve recursively

for the distributions Gt, t ≥ 1. The solution of (17) and (20) is the special case for two bidders

of the formula given in the following lemma, where as mentioned, by convention, we interpret

Gt(u) − (1 − q) as the probability assigned by the high-valuation winner to the bid u+.

Lemma 2 (The Winner’s Bid Distribution).

The winner’s bid distribution is given by, for all t ≥ 1,

Gt(b) =
1

δtF (b) + F (b)
1

1−δ

t
∑

τ=0

1 − δτ−t

τ !

(

lnF (b)−
1

1−δ

)τ

, (21)

on the support
[

u+, ū− (1 − q)n(ū− u)
]

.

It follows from this formula that the bids of the winner are decreasing over time from t ≥ 1

onward. A closed-form expression for the distribution can be derived from (21), which involves

the incomplete gamma function. As it yields no further insight, we omit it here.

3.3.3 The Bidding Strategy in the Initial Period

We are left to determine the bidding strategy in the initial period t = 0 (at this stage, the

distinction between winner and loser does not yet appear). Each high-valuation bidder maximizes

max
b

{

F0 (b) (ū− b) +
δ

1 − δ
Y1 (b) +

δ

1 − δ
X1 (b)

}

. (22)

The bid b in the initial period determines the flow payoff (ū− b) and the likelihood of receiving

it. In addition, it determines the continuation value conditional on being the winner Y1 (b) or

the loser X1 (b), where we maintain the notation that we introduced in (3) and (12) that already
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accounts for the likelihood of each event. We also recall that the continuation value from winning

Y1 (b) is independent of b, and equal to (1 − q)(ū− u).

It remains to determine the continuation value X1 (b) from losing in the initial period t = 0.

From the envelope theorem (15), we know that X ′
1(b) = −G′

0(b)(ū − β), and from (19), we have

that (ū− β) = (1 − q)(ū− u)/G0(b). Combining, we get that

X ′
1(b)/(1 − δ) = −(1 − q)(ū− u)

G′
0(b)

G0(b)
.

Note that X ′
1 < 0, i.e., X1 is decreasing in b. Using that F0 = G0, and taking the indefinite

integral gives

X1(b)/(1 − δ) = −(1 − q)(ū− u) lnF0(b) + C0,

for some constant C0. If in the initial period bidders are indifferent over all bids in some interval,

the profit computed in (22) must be independent of b over this interval. Thus, inserting our

formulas for X1, Y1 into (22), it must be the case that

F0(b)(ū− b) − δ(1 − q)(ū− u) lnF0(b) = K0, (23)

for some constant K0. This implicitly defines F0. Because F0(u) = 1 − q, it follows that

K0 = (1 − q)(ū− u)(1 − δ ln(1 − q)).

Note, in particular, that the highest bid in the support is given by ū −K0 (plug F0(b) = 1 into

(23)). The defining equation of the initial bid distribution can now be solved using the Lambert

function.8 Formally, we have the following lemma.

Lemma 3 (The Initial Bid Distribution).

8The Lambert W function is the inverse function of f(x) = xex. The function f is not injective. For x ∈ R the
function is defined only for x ≥ −1/e, and is double-valued on (−1/e, 0). The alternate branch on [−1/e, 0) with
x ≤ −1 is denoted W−1(x) and decreases from W−1(−1/e) = −1 to W−1(0−) = −∞.
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The bid distribution at t = 0 is given by

F0(b) = (1 − q)

(

−δ
ū− u

ū− b
W−1

(

−
e−

1
δ

δ

ū− b

ū− u

))1/n

,

where W−1 is the branch -1 of the Lambert function. The support of this distribution is given by

[u, ū− (1 − q)n(ū− u)(1 − nδ ln(1 − q))].

In particular, as δ → 0, the bid distribution in the initial period converges to the static auction.

More generally, the bid distribution of the static auction first-order stochastically dominates this

initial distribution (cf. (23)). Bids jump up from the initial to the second period, for the (high-

valuation) winner and the losers’ alike.

3.4 The Separating Equilibrium: Summary

3.4.1 Main Features of the Equilibrium

Lemmata (1)–(3) provide explicit solutions for the equilibrium strategies. It is time to sum-

marize the main qualitative findings that were either mentioned in passing, or that immediately

follow from these solutions.

We begin with the observation that the bids in the initial period are lower than in the static

first-price auction, as established by Lemma 3. This is puzzling at first glance. After all, for every

possible bid b, the winner of the initial bidding game, has a higher continuation payoff than the

loser. This would suggest that winning the initial auction is liking winning the static auction, but

with an additional prize provided by a more favorable continuation value. Now, if the continuation

value of winning or losing would be independent of the current bid, then clearly each bidder would

bid more aggressively initially as it would look like the static auction, but with a prize strictly

larger than the flow payoff ū. But the analysis of the bidding problem in the initial period, given

by (22), demonstrates that continuation value depend on the information provided by the initial

bid in an important way. In fact, we showed that the payoff contribution from winning, Y1 (b),

is constant in the initial bid b. Now, since the probability of winning is increasing with a larger
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bid, this implies immediately that the continuation value V1 (b), conditional on winning with b,

is actually decreasing in b. By contrast, the payoff contribution X1 (b) from losing is decreasing

in b. Here, the continuation value W1 (b) from losing at higher b is not increasing sufficiently

fast to offset the lower probability of losing with a higher bid. Thus the initial bidding is less

aggressive than in the corresponding first price auction as the incentives to make high initial bids

are depressed.

The winner’s bid decreases over time, except at the very top, where it is constant. Figure 1

shows how bids decrease over time with two bidders. Bids b are on the abscissa, the probability

Gt(b) is on the ordinate. Higher curves correspond to later periods. That is, the probability

assigned to the bid not exceeding a given value goes up over time, which means that over time

bids go down.
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Figure 1: Bid distribution for n = 2 in periods t = 1, . . . , 6, q = 1/3, δ = 9/10, ū = 1 = 1 − u
(bottom t = 1, top t = 6)

The reason why the winner decreases his bid over time is obvious: he cautiously explores how

low he can get while still winning. At some point (except again, if his bid was at the very top,

a zero probability event), he is sufficiently confident that his opponents have low valuations to

submit a bid u+, which conclusively establishes whether or not this is the case. Formally, for fixed

δ, the distribution Gt converges pointwise to δu+
, the Dirac distribution that assigns probability

one to u+, as t→ ∞.

Given that the winner lowers his bid over time, the loser has no particular reason to raise his.
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Although he has lost so far in every period, which should push him towards higher bids, he also

knows that the winner is coming down with his bids, so that by not raising his bid, he will win

his unit perhaps later, but at a lower cost than if he increased his bid. The equilibrium exactly

balances these forces, so that a constant bid is optimal.

The total discounted revenue of this dynamic auction is close to, but strictly below, the theo-

retical maximum (in the absence of reserve prices) given by the static auction. To see this, note

that the outcome is efficient (a low-valuation bidder never gets the unit if there is a high valuation

present), and that the payoff of a high-valuation bidder can be computed by considering what

happens if he always makes the highest bid. In that case, he will win all units, and the price

he will pay for this is equal to ū − (1 − q)n(ū − u), as in the static auction, except in the initial

period, where it is lower. How much lower depends on the discount factor: if the bidders are very

impatient (δ near zero), then the initial bid distribution is close to the distribution in the static

auction. This is not the case if they are very patient (δ near one), but in that case, the relative

importance of the first period in the auctioneer’s revenue is negligible (assuming that he shares

the same discount factor).

We just observed that the price of the winner (conditionally on continued winning) is decreasing

over time. But as the current winner may eventually lose against a competitor, subsequent bids

may either go up or down, and hence we are also interested in the evolution of the winning bid,

independent of the identity of the bidder. The martingale property of the value function of the

winner, established earlier in (10), yields the critical insight, and establishes that the winning bid

is a supermartingale. We recall that in equilibrium, the current winner loses at most once, and

thereafter, the winning bids jumps upward to ū, and the object is allocated randomly among the

highest bidders. Now, in the random event of the first loss, the realized utility for the past winner

is zero. We now observe that the realized utility would also be zero if we were to replace the

actual bid with the higher (fictional) bid ū and now reassign the object to the past winner, and

thereafter would assign the object with probability one to the past winner at price (and bid) ū.

Under this modified bid process, the value function of the winner is unchanged and the flow of

realized utilities is also exactly as in the equilibrium. But under this modified bid process, the

past winner receives the object with probability one forever, and as his value is constant, and the
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value function is a martingale, so must be the modified bid process. But as the true winning bid is

always below the modified bid process, it follows that the winning bid process is a supermartingale.

Now, the revenue of the seller is exactly the stream of winning bids, and hence his value function is

a supermartingale as well, i.e. it is decreasing in expectation. As the social value of the allocation

is constant following the initial period, hence a martingale, it follows that the value function of the

loser must pick up the residual movement, and hence that it is a submartingale, i.e. the prospects

of the losers are increasing over time in expectation.

Let us mention a few comparative statics here, formally established in the Appendix. Regarding

the discount factor, it is immediate to check that, for fixed, t,

lim
δ→1

Gt(b) = F (b),

which is equal to the distribution of the losers’ bid, and is independent of t. More generally, for

fixed t, the distribution Gt is decreasing in δ. That is, as is intuitive, the higher the discount

factor, the slower the pace at which the winner lowers his bid over time. This is illustrated

in Figure 2, which graphs the same functions as Figure 1, but for a much higher discount factor

(δ = 99/100). As is clear, bid functions look very similar to each other (and to the static first-price

bid distribution). The horizontal line corresponds to the bid distribution in period 54; therefore,

it is still the case that bids eventually go to u, and they do so quite fast.

0.0 0.2 0.4 0.6 0.8
b0.0

0.2

0.4

0.6

0.8

1.0
Gt
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G54

Figure 2: Bid distribution for n = 4 in periods t = 1, . . . , 6 and 54, q = 1/3, δ = 99/100,
ū = 1 = 1 − u (bottom t = 1, top t = 54)
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Figure 3 shows the same bidding curves of the winner with 4 rather than 2 bidders (the dashed

lines are the corresponding curves for n = 2 from Figure 2). We see that the bids are higher

(bidding is more aggressive) with more bidders, and that this persists over time, as the winner is

more careful, here as well, in his bid discovery process.
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b0.2
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Gt
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G4
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G6

Figure 3: Bid distribution for n = 4 in periods t = 1, . . . , 6, q = 1/3, δ = 9/10, ū = 1 = 1 − u
(bottom t = 1, top t = 6)

We summarize these observations in the following lemma.

Lemma 4. For every q, n, δ :

1. The bids (of high valuation bidders) jump up from t = 0 to t = 1. Thereafter, they are

constant for losers, and decreasing over time for the winner.

2. For a fixed t, the losers’ bids are independent of δ and the winner’s bid is increasing in δ.

3. For a fixed t, bids increase with n, and tend to ū as n→ ∞.

4. Expected revenue tends to the revenue of the static auction as δ → 1.

What if δ models frequency, rather than patience? If we set δ equal to e−r∆, so that the

discount factor corresponds to the discounting over an interval of time ∆, given some constant

interest rate r > 0, then, for fixed t, as ∆ → 0, the distribution Gt tends to a well-defined limit.
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Define T := 1
r
ln 1

1−q
. It is shown in Appendix (see section 8.1.1) that

lim
∆→0

Gt(b) =







ert(1 − q)
(

ū−u
ū−b

)
1
n if b ∈ (u, ū− (ū− u)(1 − q)nenrt) and t < T,

1 if b > u otherwise.

3.4.2 Completing the Equilibrium Specification

As mentioned, the equilibrium strategies have only been described on path so far. What

happens after histories that are off the equilibrium path?

Note that there are no non-trivial deviations in the initial period: the high-valuation bidder

has nothing to gain from bidding more than the highest bid in the support of his opponents’

distribution, nor from bidding less.9 Therefore, we may focus on later deviations.

Consider the winner first. Given that the losers make constant bids, the most informative bid

b that the winner has made from period 1 to period t, given some arbitrary private history of his,

is the lowest bid that he has made so far. Therefore, his beliefs are as if he had made this bid b in

period t, and since the winner’s equilibrium strategy is onto (i.e. for every bid b in the support,

there is a history for which this bid b is the equilibrium bid in period t), we may specify that he

then behaves as if he had followed all along the equilibrium strategy that leads to bid b in period

t (in fact, this specification is implied by the Markov assumption).

The situation for a high-valuation loser i is similar: because the winner’s bids follow some

decreasing trajectory, what matters is, given the private history of bidder i, what is the highest

lower bound b that he assigns to the winner’s bid in period t? Then bidder i’s problem is identical

to the one he would face had he followed the equilibrium strategy leading to a bid of b in period t,

and the Markov assumption then implies that, whatever private history he actually has, he behaves

from that period onward according to this equilibrium strategy (i.e., he submits the constant bid

b from then on).

Finally, as the reader might recall, the optimality equations for the winner and loser implicitly

assumed that bids were chosen in a range ensuring that this bid would be more informative than

9For the latter, observe that bidding u+ strictly dominates bidding u: high-valuation opponents bid more
anyway; so it only makes a difference in the event that they all have low valuations, but in that event, it is better
for him to break the tie in his favor.
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the previous ones. For the winner, this means that the new bid β is no higher than the previous bid

b that he submitted; plainly, given that the losers make constant bids, higher bids are suboptimal

(because any bid β ≥ b is a winning bid anyway). For the loser, this means that the new bid β is

not strictly lower than the maximal bid that ensures that, given the previous bid b he submitted,

and the winner’s equilibrium strategy, the loser is guaranteed to lose again. Plainly again, making

any lower bid cannot constitute a profitable deviation.

By construction then, there are no profitable deviations. This completes the description of the

separating equilibrium.

We conclude this section by commenting on uniqueness. As mentioned above, the limited

monitoring gives each high-valuation bidder a strong incentive to bid more than u. However, ruling

out equilibria in which this is not the case appears daunting, because any candidate equilibrium in

which high-valuation bidders bid u in some periods loses the property that uncertainty is resolved

once the initial winner loses. Consequently, we would no longer be able to elude considering

continuation games characterized by less tractable belief hierarchies. At the most we were able to

show that the high-valuation bidder cannot be willing to bid u indefinitely.

Furthermore, it is not clear either that, within the class of strategy profiles in which the high-

valuation bidders always bid at least u+, our equilibrium is unique. This requires monotonicity in

the strategies: if the winner’s second-period bid is decreasing in the initial bid, then it might make

sense for the loser’s second-period bid to be decreasing in his initial bid as well, and conversely.

At least, we were not able to rule out such strategy profiles. What is clear, however, is that the

current separating Markov equilibrium could be used as a punishment scheme to support strategy

profiles that are not Markov, such as bid rotation.

4 Observable Bids

We shall now turn to the case in which all bids are observable. As soon as a high-valuation

bidder submits an equilibrium bid that is not in the low-valuation bidder’s distribution support,

the game simplifies. In this continuation game, if it is commonly known that two bidders have high

valuations, then play is trivial by virtue of Refinement A. This occurs immediately, in particular, if
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the equilibrium is separating, that is, if bidders with different valuations use bidding distributions

with different supports. We shall see, however, that such equilibria do not exist, unless players are

sufficiently few, or high valuations sufficiently unlikely, as we establish in the next subsection. This

provides a counterpoint to the non-existence of pooling equilibria when bids are unobservable.

4.1 On the Difficulty of Separating

An equilibrium is separating if the bid u (which is the equilibrium bid of the low-valuation

bidder) is not an equilibrium bid for the high-valuation bidders, so that, on the equilibrium path,

all information is disclosed immediately. Note that this is a prerequisite for efficiency and revenue

maximization.

Suppose then that a high-valuation bidder does not assign positive probability to the bid u in

the initial period. Obviously then, he will bid more. By bidding u+, he gets (1 − q)n(ū− u). By

deviating and bidding u in this period, followed by u+, a high-valuation bidder gets

(1 − δ)(1 − q)n(ū− u)/(n+ 1) + δ((1 − q)n + (1 − δ)nq(1 − q)n−1)(ū− u). (24)

To understand (24), note that, by bidding u in the current period, he gets a (flow) reward only

if all his opponents have low valuations as well, and even then, he wins only with probability

1/(n + 1) an object that is worth ū − u to him. This is the first term. In the following period,

however, he will be believed to be a low-valuation bidder, and this will allow him to win one unit

at a price arbitrarily close to u provided that there are not two or more high-valuation bidders,

hence the second term.

On the other hand, separation yields the same payoff as the static auction, (1 − q)n(ū − u).

This is because the continuation payoff of a high-valuation bidder is independent of the specific

bid above u that he submits, so that he has the same incentives as in the static auction, which

gives him a payoff (1− δ)(1− q)n(ū− u). He further gets δ(1− q)n(ū− u) from the second period

onward if it turns out that all other bidders have low valuations. We obtain the following result.

Proposition 2 (Difficulty of Separating).

For all positive q and δ, there exists n such that for all n > n, a separating Markov sequential
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equilibrium does not exist with observable bids.

In fact, comparing the two payoffs, we find that separation is not an equilibrium if, and only if

q ≥ qo :=
1

1 + (n + 1)δ
.

Clearly, this condition, expressed in terms of the prior probability of a high valuation is satisfied

if there are sufficiently many bidders and/or if the discount factor is sufficiently high. Proposition

2 then has to be contrasted with Proposition 1, where we showed that with unobservable bids

pooling is never an equilibrium, and subsequently constructed a separating equilibrium for all

possible values of q, δ and n.

What then is the equilibrium of the game? As will be the case, it might occur that only one

bidder reveals himself to have a high valuation, while all the other n bidders submit a bid u, pooling

thereby with the low-valuation type. As always, we must first understand this continuation game

of one-sided incomplete information before we can solve the original game. We turn now to the

game of one-sided incomplete information, as a preamble to the general analysis.

4.2 The Game of One-Sided Incomplete Information

We consider here the game in which one bidder, say bidder 1, is commonly known to have

a high valuation, while each of the other n bidders is believed to have a high valuation with

probability q. Accordingly, bidder 1 is uninformed, while all other bidders are informed.

Let FU
t denote the bid distribution of the uninformed player, and F I

t the common bid (uncondi-

tional) distribution of the other players. This represents a slight abuse of notation, as in a Markov

sequential equilibrium, the state variable, i.e. the beliefs, determine the distributions, not the

period. But as there is a one-to-one correspondence between time and beliefs on the equilibrium

path, using time as an index facilitates the exposition.10 Because any equilibrium bid different

from u by an informed bidder establishes common knowledge that there is a second high-valuation

bidder, after which the game becomes trivial, we must only understand how play proceed along

histories in which all informed bidders have bid u in every period so far. Let qt denote the prob-

10To prevent any confusion, we avoid the notation F, G introduced in the unobservable case.
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ability that (any of) the informed bidder’s valuation is high at the beginning of period t, given

any history on the equilibrium path in which all informed bidders bid u in all periods up to (and

including) t − 1, and set q0 := q. Note that the past bids of the uninformed bidder do not affect

this belief, so that this is really a function of time only. Let T ∈ N0 ∪ {+∞} denote the length

of the longest such history when at least one informed bidder has a high value; i.e., there exists

no history on the equilibrium path in which all high-value informed bidders submit bids equal

to u for t > T periods.11 Finally, let b̄t denote the highest bid in the bidders’ support in period

t ≤ T (conditional on a history in which all informed bidders bid u throughout, a statement we

shall omit from now on). We observe that while this is a private-values setting, this game and

its solution bear some similarities with the common-values game analyzed in Hörner and Jamison

(2008). Therefore, our analysis will be complete, but concise.

Because the informed bidder will always bid at least u+ (he has nothing to lose from doing so,

given the Markov assumption), a high-valuation informed bidder will not submit the bid u forever

(as he would then lose forever). Hence T < ∞. Hence, by standard arguments, the informed

bidders must randomize in period t between the bid u (at least as long as t < T ) and mixing over

the interval (u, b̄t), for some b̄t > u. Further, the uninformed bidder must bid u+ with positive

probability, for otherwise the low-valuation bidder would be unwilling to submit bids arbitrarily

close to, but above u. Because the low-valuation bidder bids u for sure, Bayes’ rule tells us that

the probability that an informed bidder is of the low type in period t+ 1, given such a history, is

given by

1 − qt+1 =
1 − qt
F I

t (u)
, (25)

and so

1 − q0 =
∏

t=0,...,T

F I
t (u).

Because the reward from every bid in the interval b ∈ (u, b̄t] must be the same (for the informed

bidder, this is because the continuation payoff is then 0; for the uninformed bidder, this follows

11If T = +∞, there exists arbitrarily long such histories. If T < +∞, then we must have F I

T
(u) = 1 − qT , since

the high-valuation bidder must bid strictly more than u in that period. Hence, qT+1 = 0.
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from the Markov assumption), we have, for all t ≤ T ,

FU
t (b)F I

t (b)n−1(ū− b) = ū− b̄t = F I
t (b)n(ū− b), (26)

and so

FU
t (b) = F I

t (b) =: Ft(b) for all b and all t, (27)

with the convention that FU
t (u) is the probability assigned by the uninformed bidder to u+.

Finally, because an informed bidder is indifferent between bidding just above u in period t and

bidding u followed (if no informed bidder bid more than u in period t) by a bid just above u in

period t+ 1, we have, for all t < T ,

F n
t (u) = δF n−1

t (u)F n
t+1(u), or Ft(u) = δF n

t+1(u). (28)

The equality must be replaced by an inequality in period T , i.e., since FT+1(u) = 1, we must have

FT (u) ≥ δ.

Equations (25), (26) and (28) allow us to solve for the equilibrium. In particular, (25) and

(28) yield

1 − q0 =
∏

t=0,...,T

Ft(u) = δ
nT+1

−(n−1)T−n

(n−1)2 FT (u)
nT+1

−1
n−1 ∈ IT (29)

where the intervals IT , subsets of the unit interval, are defined as

IT := [δ
nT+2

−(n−1)(T+1)−n

(n−1)2 , δ
nT+1

−(n−1)T−n

(n−1)2 ).12

Because the intervals {IT}T∈N0 form a partition of the unit interval [0, 1), there exists a unique

solution T (q0) to (29). Thus the game of one-sided incomplete information ends in finite time with

the discovery or not of a second high-valuation bidder. Given T = T (q0), we obtain FT (u) from

(29). From (28), we then get Ft(u) for all t ≤ T , and (26), applied to an arbitrary b and to b = u

then gives the distribution Ft (and the value of b̄t) for all t.

12For n = 1 (two bidders), Equation (29) uses the convention (nT+1 − 1)/(n− 1) = T +1 and (nT+1 +T −n(T +
1))/(n − 1)2 = T (T + 1)/2.
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Given a prior belief q < 1, it is easy to see that, as δ → 1, T → ∞ and δT → 1 for T = T (q).

That is, uncertainty is resolved arbitrarily fast relative to δ, although the time it might take (in

fact, the expected time it takes) grows without bound. We can summarize our findings as follows.

Lemma 5 (Bidding with One-Sided Information and Observable Bids).

1. The equilibrium bid distribution Ft (b) is increasing in t for all b (i.e., the uninformed bidder’s

bids decrease on average).

2. (At least) one informed high-valuation bidder reveals his type by period T < ∞, where

limδ→1 T = ∞, yet limδ→1 δ
T = 1.

While this equilibrium exhibits interesting features, only the resulting payoffs matter for the

analysis of the original game, in which all players are symmetrically informed. The payoff of

a high-valuation informed bidder can be computed from the strategy of always bidding u until

period T − 1, and u+ in period T (assuming no informed bidder bid more than u until then). The

payoff of this is then

V I(q) := (1 − δ)δTFT (u)nT+1

(ū− u) → 0

as δ → 1. Writing out the payoff V U of the uninformed player is a little messier, and so is omitted

here (see Appendix for more details). For our purposes, note that, from period T onward, in case

no informed bidder separated so far, his continuation payoff is FT (u)n(ū − u). Since δT → 1 as

δ → 1, it follows that V U(q) → (1−q)n(ū−u): asymptotically, the payoff to the uninformed agent

only comes from the possibility that all his opponents have low valuations. This is good news for

the auctioneer in this game, who thus gets (asymptotically) a maximal revenue.

4.3 The Game of Symmetric Information

Building on these findings, we may now return to the game with symmetric information.

In particular, when is pooling an equilibrium outcome when all bidders’ valuations are equally

unknown?

A pooling equilibrium must involve all bidders submitting the bid u (given Refinement A). The

payoff to a high-valuation bidder is then (ū− u)/(n+ 1). The best deviation for a high-valuation
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bidder involves bidding u+, which garners

(1 − δ)(ū− u) + δV U(q)(ū− u),

assuming that such a deviation is ascribed to a high-valuation player, so that the game with

one-sided incomplete information ensues.

Therefore, pooling is an equilibrium if and only if

1

n + 1
≥ 1 − δ + δV U(q)/(ū− u). (30)

Because V U is monotonically decreasing in q, and bounded above by ū − u, this gives a lower

bound q̄o to the values of q for which such an equilibrium exists, and it is easy to see that q̄o > qo.

We can then establish the next result.

Proposition 3 (Possibility of Pooling).

For all positive q, there exists
(

δ, n
)

such that for all δ > δ and n > n, a pooling Markov sequential

equilibrium does exist with observable bids.

Let us now focus on δ → 1. Because V U → (1 − q)n(ū− u), we then get

q ≥ q̄o → 1 − (n+ 1)−1/n.

Note that the left-hand side of (30) tends to the lowest payoff that a high-valuation bidder can

guarantee, provided low-valuation bidders do not bid more than u. Indeed, a high-valuation bidder

can always secure (1− q)n(ū− u) by always bidding u+. Therefore, the pooling equilibrium exists

whenever it yields an individually rational payoff to the high-valuation bidder. As we shall see,

the same observation holds when only the winner’s bid is observed.

Recall that a separating equilibrium exists whenever q ≤ qo. This leaves us with the (non-

empty) interval q ∈ (qo, q̄o). In that case, the equilibrium must involve semi-pooling (when

δ → 1). That is, the high-valuation bidder puts positive probability on u, but he also continuously

randomizes over some interval of higher bids. In the event that all realized bids are u, bidders

assign a growing probability to the event that their opponents have a low valuation, so that, at
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Pooling (and semi-pooling?)
equilibria

Figure 4: Markov equilibria in the observable case, as a function of q.

some point, beliefs are such that a separating equilibrium exists. In Appendix, we show that such

(not necessarily unique) semi-pooling equilibria exist in this intermediate range of values for q, that

a semi-pooling equilibrium cannot end up in pooling in finite time, and that no such equilibrium

can exist if q ≤ qo, i.e., it cannot exist when a separating equilibrium exists. On the other hand,

we have been unable to rule out the existence of such equilibria in the region in which pooling

equilibria exist (and we suspect such equilibria might exist). We summarize this discussion in the

following theorem. See also Figure 4.

Theorem 1. A (Markov sequential) equilibrium always exists. Furthermore,

1. If q ∈ [0, qo], the unique equilibrium is separating.

2. If q > qo, no separating equilibrium exists. Furthermore, if

(a) q ∈ (qo, q̄o], all equilibria are semi-pooling;

(b) If q > q̄o, a pooling equilibrium exists.

To summarize, as δ → 1, the revenue converges to the optimal revenue (without reserve price)

if and only if q < 1 − (n + 1)−1/n , a decreasing function of n (that tends to 0 as n → ∞).

Otherwise, because bidders all use the same low bid, the auctioneer’s revenue is equal to u.
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5 Winner-Only Observable Bids

Finally, we consider the case in which the bid and the identity of the winner are disclosed after

each auction.13 Again, in order to solve the game in which bidders have symmetric information,

we must start with the case in which exactly one bidder is known to have a high valuation, while

the others are not, because such informational structures arise in continuation games of the game

with symmetric information.

5.1 The Game of One-Sided Incomplete Information

We already analyzed the game with one-sided incomplete information in the environment with

observable bids. There, every bid by the informed bidder strictly above u revealed that the bidder

has a high valuation. In consequence, the evolution of the posterior belief had a simple binary

structure. Either the bids of the informed agent were all equal to u, and then the posterior

declined from qt to qt+1, or at least one of the informed bids was above u, and then the incomplete

information was resolved. In the current environment where only the winning bid is observable,

the updating process actually depends on the realized bid of the uninformed bidder. His bid, as

long as it is the winning bid, provides an upper bound for losing bids. In consequence, the level of

his bid will determine the rate at which the updating occurs. In contrast to the observable case,

it is therefore convenient to describe the strategies in terms of the uninformed bidder’s posterior

belief about the informed bidder’s valuation, which all bidders can derive from the observable bids

of this bidder.

So suppose that a player, bidder 1, say, is known to have valuation ū. His opponents, on

the other hand, have privately known, and independently drawn valuations. The probability with

which each of these bidders has a high valuation is denoted q, as before. Bidder 1 is the uninformed

bidder, while the other bidders are informed. We begin with a few observations.

Because bidder 1’s valuation is known, he has nothing to lose from breaking any tie in his favor.

13While we assume so, it is not necessary that the winner’s identity be disclosed: if it is not disclosed, then a
bidder who has not won might not know whether the winning bids were submitted by the same, or different bidders;
but if two different bidders won with bids above u, it would still be the case that the two of them would commonly
know that there are two high-valuation bidders, and bids would then be ū from that point on.
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By winning, he not only gets the reward in that period, but he also increases the probability that

the game “goes on” (if another bidder ever outbids him, then it will be known that there are two

high-valuation bidders, and so their bids will be ū from then on). It follows that the uninformed

bidder bids at least u+.

Any informed bidder with a high valuation has no incentive to bid u either. Such a bidder will

never be able to win more than one unit, because, by the previous observation, he needs to bid at

least u+ to win, and winning with such a bid would reveal that he has a high valuation as well.

So the best he can hope for is winning at a price arbitrarily close to, but above u. So bidding,

say, u + ε, for ε > 0 small enough, does strictly better than bidding u. That is, denoting by F I
q

the common informed bidder’s distribution, given that each of them is believed to have a high

valuation with probability q, it holds that F I
q (u) = 1 − q.

The bids of the uninformed bidder affect how much he learns about the informed bidders: he is

more likely to win with a higher bid, but such a bid is less informative about the probability that

at least one of the informed bidders has a high valuation. His bidding distribution is therefore

also indexed by the belief q. Write FU
q for this distribution.

The uninformed bidder must randomize over some interval [u+, bq], for some bid bq, given the

common belief q. If he did play a pure strategy, the informed bidders would outbid him by a very

small amount, so that this pure strategy could not be optimal. Clearly, he cannot be the only

player submitting bids in this range, and the high-valuation informed bidder must randomize over

this interval as well.

We are now ready to solve for the equilibrium. Observe that by bidding bq, the uninformed

bidder prevents any learning, since he wins for sure and only his own bid is observed. While in

equilibrium he randomizes in every period, one optimal strategy consists in making this same bid

forever. At the opposite end, by bidding u+, he ensures that he learns perfectly his opponent’s

type, since any informed bidder with a high valuation bids strictly more. Hence, denoting by

V U(q) the uninformed bidder’s payoff given belief q, we have, for all q,

V U(q) = (1 − q)n(ū− u) = ū− bq. (31)

Note that, by Bayes’ rule, the probability that the uninformed bidder assigns to any of his op-
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ponents having a low valuation, conditional on winning with a bid b, is given by (1 − q)/F I
q (b),

where q is his prior belief. Therefore, we must have, more generally,

(1 − q)n(ū− u) = F I
q (b)n

(

(1 − δ)(ū− b) + δV U

(

1 −
1 − q

F I
q (b)

))

= F I
q (b)n(1 − δ)(ū− b) + δ(1 − q)n(ū− u),

where the second equality uses the first equality of (31) to eliminate V U . It follows that

F I
q (b) = (1 − q)

(

ū− u

ū− b

)1/n

. (32)

Therefore, any informed bidder must bid as in the static auction (and as the losers in the repeated

auction with unobservable bids). Let us turn now to the informed bidders’ problem. By bidding

bq, such a bidder wins once, and “ends” the game. So his payoff V I(q) must satisfy

V I(q) = (1 − δ)(ū− b̄q) = (1 − δ)(1 − q)n(ū− u), (33)

where we have used (31) to obtain the second equality. More generally, his payoff from bidding

b consists of two terms. With probability FU
q (b)F I

q (b)n−1, he is the highest bidder and wins the

object. If he loses, then he only gets a positive continuation payoff if the informed bidder wins.

That is, the informed bidder must bid some β > b, and all other informed bidders must bid less

than β. Therefore,

V I(q) = (1 − δ)F q
U (b)F I

q (b)n−1(ū− b) + δ

∫ b
q

b

F I
q (β)n−1V I

(

1 −
1 − q

F I
q (β)

)

dFU
q (β)

= (1 − δ)(1 − q)n−1 (ū− u)
n−1

n

(

FU
q (b)(ū− b)

1
n + δ

∫ bq

b

(ū− β)
1
ndFU

q (β)

)

,

where the second equality uses (32) and (33). Plugging into (33) gives, for all b in the support of

F I
q ,

(1 − q)(ū− u)
1
n = FU

q (b)(ū− b)
1
n + δ

∫ bq

b

(ū− β)
1
ndFU

q (β).
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Because this is an identity with respect to b, and because the first and last terms are differentiable

in b, the second term must be as well. Taking derivatives yields

dFU
q (b)/db

FU
q (b)

=
1

n(1 − δ)

1

ū− b
.

We can integrate, and use that FU
q (bq) = 1 (where b̄q is determined by (31)), to get

FU
q (b) =

(

(1 − q)

(

ū− u

ū− b

) 1
n

)
1

1−δ

, (34)

where as usual FU
q (u) = (1 − q)

1
1−δ is the probability attached to the bid u+. The uninformed

bidder bids more aggressively than the informed bidders, since winning carries the additional

benefit of prolonging the game. This additional benefit becomes all the more important as the

discount factor increases, and as δ → 1, the uninformed bidder is very likely to make a bid that is

near the upper end of the bid support.

Equations (32) and (34) fully characterize the equilibrium of the game with one-sided incom-

plete information, with payoffs given by (31) and (33). Note that, after bidding b, the uninformed

bidder updates his beliefs to q′ = 1− (1− q)/F I
q (b) = 1− ((ū− b)/(ū− u))1/n, so that the highest

bid he makes in the following period is

b̄q′ = ū− (1 − q′n(ū− u) = b.

That is, the uninformed bidder’s bids are non-increasing over time: while he bids more aggressively

than the informed bidders, the uninformed bidder cautiously decreases his bids over time never-

theless, as he becomes more optimistic that his opponents have low valuations. We summarize

this discussion in the following lemma.

Lemma 6 (Bidding with One-Sided Information and Winner-Only Observable Bids).

1. The informed bidders bid as in the static game, while the uninformed bidder bids more

aggressively.
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2. The uninformed bidder’s bids decrease (weakly) over time. The time until the uninformed

bidder loses is finite (a.s.), but admits no finite bound.

The bidding game with one-sided information in the winner-only observable bid environment

shares a number of features with the bidding game after the initial period in the unobservable

bid environment. The similarities in the strategies clearly can be traced back to the similarities

in the information held by the participating agents. In either game form, the winning seller does

not know whether his competitors have low or high valuation, and he does not know their past

bidding behavior either. The losing bidders in either game form know that they face a bidder

with a high valuation. In addition, in the winner-only observable environment they know the past

bids of the winning bidder. In either game form, the losing bidders have the same opportunities,

namely to win exactly once against the current winning bidder. In consequence, the equilibrium

bid distribution of the losing bidders as a function of the posterior belief q, is identical, as expressed

by (7) and (32), respectively. By contrast, the behavior of the winning bidder is stationary (in

the posterior q) in the winner-only observable environment. As the winning bid is observable, the

level of the winning bid carries no additional information, and thus the winner is not concerned

about the informational content of his bid.

At this point, it is also informative to contrast the bidding behavior in the observable and

the winner-only observable environment. Intuitively, in the observable bid regime, the informed

bidders should bid more cautiously as any bid above u will reveal that the bidder has a high

valuation. The informed bidder is therefore concerned that a bid higher than u would reveal

his valuation without necessarily winning the object in the current period. Indeed, the bidding

strategy of an informed bidder in the observable environment is less aggressive. In particular, from

(25), we see that with observable bids, the probability of a low bid is

F I
t (u) =

1 − qt
1 − qt+1

> 1 − qt,

which is larger than in the winner-only observable bid environment, in which it is given by

F I
t (u) = 1 − qt.
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In fact, given the characterization of the bidding distribution given by (26) and (32), it follows

that the upper bound of the bids is lower, and more generally that the bid distribution with

observable bids is first-order stochastically dominated by the bid distribution with winner-only

observable bids. Given the more defensive posture of the informed bidders in the observable

environment, it then follows that the uninformed bidder is also bidding less aggressively. In

fact, the bid distribution of the uninformed bidder in the observable environment is also first-

order stochastically dominated by the bid distribution with winner-only observable bids, as can

be directly inferred by comparing (27) with (34). The defensive posture of the bidders in the

observable environment also translates into lower revenues for the seller and higher net values for

the bidders.

Proposition 4 (Revenue Comparison with One-Sided Incomplete Information).

1. The equilibrium values of the informed and uninformed bidders are larger in the observable

environment than in the winner observable environment.

2. The equilibrium revenues of the seller are smaller in the observable environment than in the

winner observable environment.

We emphasize that the differential distribution of the surplus in these two environments occurs

even as the equilibrium allocation is efficient in both environments. In the observable environment,

the informed bidder faces a larger exposure risk and hence bids less aggressively. It is the very

possibility of exposure that also supports a pooling equilibrium for a larger set of parameters in

the observable than in the winner-observable environment, as we will see in the next result.

5.2 The Game of Symmetric Information

We start with the necessary and sufficient conditions for a pooling equilibrium to exist. Assume

all bidders submit the bid u with probability one. By doing so, a high-valuation bidder gets

(ū− u)/(n+ 1). By bidding u+ instead, which is the best alternative, he gets

(1 − δ)(ū− u) + δV U(q) = (1 − δ)(ū− u) + δ(1 − q)n(ū− u), (35)
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where the equality uses (31). We can then establish the following result.

Proposition 5 (Possibility of Pooling).

For all positive q, there exists
(

δ, n
)

such that for all δ > δ and n > n, a pooling Markov sequential

equilibrium does exist with winner-only observable bids.

In fact, by comparing the two possible payoff streams above, we can assert that pooling is an

equilibrium whenever
1

n+ 1
≥ 1 − δ + δ(1 − q)n, (36)

i.e. the belief q should exceed some threshold qw. Note that, as δ → 1,

qw → 1 − (n+ 1)−1/n,

which yields the same condition as in the case of observable bids.

Let us now examine a candidate separating equilibrium. This is an equilibrium in which, in

the initial period, all high-valuation bidders submit bids that are at least u+. The distribution Fq

on [u, b̄q] that characterizes this equilibrium must satisfy

Fq(b)
n

(

(1 − δ)(ū− b) + δV U

(

1 −
1 − q

Fq(b)

))

+ δ

∫ b

b

V I

(

1 −
1 − q

Fq(β)

)

nF (β)n−1dFq(β) =

(1 − δ)(ū− b̄) + δV U(q),

where the two terms of the left-hand side correspond to the respective payoffs from winning and

losing with a bid b > u, and the right-hand side is this payoff computed for the bid b = b̄.

Simplifying (using (31) and (33)) gives

Fq(b)
n(ū− b) + δn(1 − q)n(ū− u)

∫ b

b

dFq(β)

Fq(β)
= ū− b.

Since dFq(β)/Fq(β) = d lnFq(β), we obtain

ū− b

ū− u

(

Fq(b)

1 − q

)n

= 1 + δ ln

(

Fq(b)

1 − q

)n

, (37)
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using the boundary condition Fq(u) = 1− q that characterizes a separating equilibrium. Equation

(37) uniquely characterizes the distribution F . An explicit formula can be given in terms of the

(branch -1 of the) Lambert function W , namely

Fq(b) = (1 − q)

(

−
δ(ū− u)

ū− b
W−1

(

−
e−1/δ(ū− b)

δ(ū− u)

))1/n

,

From (37), we can also solve for the upper extremity of the support of the bid distribution,

bq = ū− (1 − q)n(1 − δn ln(1 − q))(ū− u).

Note that this initial bid distribution is the same as in the unobservable case! In fact, the contin-

uation payoffs from winning and from losing are identical as well. In particular, the continuation

payoff from winning is independent of the level of the winning bid in the winner-observable envi-

ronment as it is the unobservable environment. It also means that a high-valuation bidder makes

the same overall payment for winning in all periods by submitting the highest bid in the bidding

support in all periods. We also observe that the bidding supports coincide for t ≥ 1 as well.

Therefore, his payoff is the same in both cases, and given that the equilibrium is efficient, the

revenue is the same in both separating equilibria.

In fact, a stronger equivalence holds: the unconditional distribution of bids is the same in

the unobservable case as in the separating equilibrium of the winner-only observable case.14 We

should however emphasize that the equilibrium play across the two environments is quite distinct.

In the unobservable environment, the bidders randomize only in the initial period and then pursue

a deterministic policy as a function of their initial randomized choice, whereas in the winner-only

observable environment, the bidders continue to randomize in all periods until the uncertainty has

been completely resolved.

Explicitly, the payoff V (q) of the high-valuation bidder, given belief q, is given by

V (q) = (1 − δ)(ū− b̄) + δ(1 − q)n(ū− u) = (1 − δ(1 − δ) ln(1 − q)n)(1 − q)n(ū− u).

14This follows by direct computation. The unconditional distribution in the winner-only observable case in a
given period is a convolution over those distributions in previous periods, because earlier bids affect the belief q,
and so it is the later distribution that is used. The details are omitted and available upon request.
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q0 qw 1

Separating equilibria

Pooling (and semi-
pooling) equilibria

Figure 5: Markov equilibria in the winner-only observable case, as a function of q.

Note that the separating equilibrium exists for all parameter values. Indeed, if the other high-

valuation bidders separate, it is strictly better for a high-valuation bidder to submit the bid u+

rather than u. In either case, the bidder will only win if all the opponents have low valuation. If

they do not, both bids are equivalent. If they all do, then bidding u+ is strictly better than u, for

by making the former bid, the bidder will learn that all other bidders have low valuation, and so

he will always win at the price u+.

If the prior belief is high enough for pooling equilibria to exist, semi-pooling equilibria also

exist, in which high-valuation bidders assign positive probability to u, but also continuously ran-

domize over some interval (u, b̄q). The details are provided in Appendix. Such equilibria must

necessarily converge (in finite time or not) to pooling, which means that the belief must be above

the threshold guaranteeing existence of pooling equilibria (characterized by (36)). The following

theorem summarizes these findings, as does Figure 5.

Theorem 2. A (Markov sequential) equilibrium always exists. Furthermore,

1. A unique separating equilibrium always exists. If q < qw, this is the unique equilibrium;

2. If q > qw, a (unique) pooling equilibrium exists, as well as semi-pooling equilibria.

The informational environment of the winner-only observable bids leads to qualitative char-

acteristics of the equilibria between the unobservable and the observable environment. As in the

unobservable environment, a separating equilibrium is guaranteed to exist for all values of q, δ,

47



and n. But as in the observable environment, a pooling equilibrium also exists for every prior

probability q as long as δ and n are sufficiently large.

6 Information Disclosure and Equilibrium

We are now in a position to compare the properties of the bidding equilibria across the dif-

ferent disclosure regimes. The structure of the equilibria in the distinct disclosure regimes are

determined by the conflicting forces of ratcheting versus information revelation and learning. The

private information of each bidder is completely persistent and hence each bidder attempts to

use (and hence reveal) his private information optimally over the course of the bidding game.

In particular, as part of the equilibrium strategy, the bidder may try to hide and disguise his

private information for some time in form of a pooling (or semi-pooling) strategy; this is the logic

of the “ratchet effect.”In the canonical analysis of the ratchet effect, the strategic environment

is described by the relationship between the agent (with private information) and the principal

(without commitment power). In the current auction environment, the seller is the principal, and

is actually committed to the first price auction format. By contrast to the canonical model, there

are many competing agents, the bidders, which lack in commitment in the sense that each bidder

optimally adapts his present bid to the past bidding data. Thus, the ratchet effect appears as

each bidder seeks to optimally use his private information against his competitors. The pooling

strategy, and the resulting pooling equilibrium, is then the result of the ratchet effect in the com-

petitive bidding environment. Yet, in the competitive environment, the ratchet effect is weakened

by the competition among the bidders. Each bidder can increase his probability of winning only

by increasing his bid and hence reveal additional information about his valuation.

Importantly, the strength of each effect is affected by the disclosure regime. If the disclosure

regime does not reveal all the past bidding data, the inference and hence the effectiveness of each

strategy is impacted. For example, if pooling were to be a candidate strategy for the bidders,

but the bids are unobservable, then the coarse information provided through the allocation de-

cision would only give probabilistic information about the actual bidding strategy employed by

the bidders. In fact, in the unobservable bid environment, the information is so coarse that a
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pooling equilibrium cannot be supported at all. On the other hand, we saw that as the value of

private information becomes more important, both in the sense of a larger discount factor and

more competition, then the ratchet effect is eventually going to be strong enough to support a

pooling equilibrium with either observable or winner-observable bids. The following corollary then

summarizes the impact of the disclosure regime for the emergence of the ratchet effect, based on

the earlier analysis.

Corollary (Observable vs. Unobservable Bid Environment).

1. There does not exist a pooling equilibrium in the unobservable bid environment.

2. There exists a pooling equilibrium in the observable and the winner-observable environment

for sufficiently large δ and n.

In other words, the ratchet effect in the bidding environment is weakened by the gains offered

by more aggressive strategy. If the bids are unobservable, then the more aggressive strategy, in

the form of higher bids cannot even be distinguished from a more defensive strategy and hence

undermines the very existence of a pooling equilibrium. The ratchet effect is also weakened if the

immediate gains from revealing the private information become relatively more important, i.e. as

there is more discounting and/or less competition. In this case, a bidder with a high valuation

intends to convey his information through an aggressive bid, and similarly seeks to benefit from

the information conveyed through low bids. An environment with less information now suppresses

the informational efficiency and hence the competitiveness associated with aggressive bids. In fact,

as we compare the revenues from separating equilibria across the different disclosure regimes, we

find that additional bid information increases the revenues accruing to the seller.

Corollary (Separating Equilibria).

1. The revenues in the separating equilibria across the three environments compares as follows;

it is largest in the observable case and lower and equal in the other two cases.

2. As δ → 1, the average revenue in the separating equilibrium in every environment converges

from below to the revenue of the static first price auction.
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However, the informational advantage provided by the observable bid environment vanishes as

the discount factor becomes large. In other words, the revenue in the unobservable environment

also converges against the theoretic optimum provided by the static first price auction under the

initial prior distribution of the valuations. The revenue gap between the theoretical optimum and

the equilibrium in the environments with restricted bidding information can be attributed to the

limited information transmission in these environments. To see this, consider the position of a

high valuation bidder who considers an aggressive bid and associated continuation payoffs. In

either the unobservable or the winner-observable bid environment, even a winning bid today will

not offer him a complete insight into the strength of his competitors. After all, he will not observe

their realized bid. More importantly, as he deliberates on the strength of his own bid, he realizes

that winning with a lower bid, besides reducing the current bidding cost, provides him with more

information about the true valuation of his competitors in the subsequent periods. This naturally

depresses his bid relative to the static considerations. In consequence, a high valuation buyer

bids distinctly from a low valuation buyer, but not as aggressively as he would in the absence of

intertemporal considerations. In abstract terms, this implies that the incentive constraints which

separates high from low type is satisfied, but as strict rather than weak inequality, and this gap

in turn creates the revenue gap in restricted information environments.

We are thus lead to compare the different disclosure regimes in terms of their impact on the

equilibrium strategies. In terms of the efficiency of the allocation, we find that the unobservable

environment does unambiguously better in that it does not permit the possibility of a pooling

equilibrium with the associated inefficiency in the allocation. In terms of revenues, we found that

the revenues in the separating equilibrium are increasing with more available bidding information.

But the gains arising from additional information are limited with respect to the possible losses

which arise with the pooling equilibrium.

Corollary (Separating vs. Pooling Equilibria).

In every environment, a separating equilibrium achieves a strictly higher revenue than the pooling

equilibrium (if it exists).

We should emphasize that the above result explicitly allows the comparison of a separating

equilibrium in a given disclosure regime with a pooling equilibrium in a different disclosure regime,
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for a constant payoff environment across the regimes. We also observe that the above result

can be strengthened in the observable and the winner-observable environment to state that the

separating equilibrium achieves a higher revenue than all equilibria subject to Refinement A. In

the unobservable environment, we do not have a complete characterization of the equilibrium

set, although we suspect that the separating equilibrium is the unique equilibrium subject to

Refinement A.

7 Concluding Remarks

The objective of the present paper was to investigate the role of disclosure policies in the

context of repeated auctions and procurements. We compared the minimal disclosure policy,

namely unobservable bids, with the maximal disclosure policy, namely observable bids. We also

considered an intermediate form of disclosure policy, in which only the winning bid was disclosed.

The later policy was shown to share equilibrium properties with both the minimal and the maximal

disclosure policy.

We established in Proposition 1 that the policy of minimal information disclosure eliminates

the possibility of a pooling equilibrium with low revenues. In contrast, under the more transparent

information policies, a low revenue pooling equilibrium always existed as long as the number of

bidders and the discount factor were not too low, as established in Proposition 3 and 5. In fact,

under the maximal disclosure policy, we established that with a sufficiently large number of com-

petitors an efficient, separating equilibrium ceased to exist, see Proposition 2. In contrast, under

minimal disclosure, we proved the existence of an efficient separating equilibrium by construction,

even though the bidders ceased to have common knowledge after the initial bidding period. The

combination of these results then lends support to minimal information disclosure, both from an

efficiency and from a revenue maximizing point of view.

We conclude by briefly commenting on the role of some of the restrictions of our model.

Private vs. Common Values: Throughout, we have assumed that bidders have private values.

If values had a common element, we suspect that some information disclosure might be desirable.

Recall that, from the literature on static auctions, revenue increases in the amount of information
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that is being disclosed, as it allows bidders to fine-tune their bids. The same should be true in

sequential auctions. As information about other bidders’ bids are disclosed, information percolates

that might help bidders refine their estimate of the value of the good, and this might mitigate

the detrimental effect of public information that has been discussed in this paper. Of course, the

latter effect might completely inhibit learning: if the equilibrium is pooling, no information about

other bidders’ information will ever be transmitted, and learning cannot take place.

Persistent vs. Changing Values: Throughout, we have assumed that values never change.

This is an obvious simplification. Its technical convenience is easy to grasp: if values could change

over time, in the unobservable case, a loser who eventually wins could no longer be sure that his

opponent has a high-valuation, and thus, that his opponent knows that he has a high-valuation as

well. Perhaps his eventual win came about because the previous winner’s valuation dropped. The

impossibility of a pooling equilibrium remains valid, however, as high-valuation bidders have the

same incentive to break ties in their favor. The impact of changing values on bidding dynamics

is intuitively ambiguous. On one hand, it makes the winner less cautious about lowering his bid,

because losing does not imply that the continuation payoff will be zero forever (values will not

remain persistently high). On the other hand, the probability that the losers have a low valuation

is bounded below (as their value might change from one period to the next), and this dampens

the winner’s incentive to lower his bid.

Similar technical difficulties arise if the number of bidders fluctuates over time, or, more impor-

tantly, if there were more than two valuations. As we already know from the two-period analysis of

Landsberger, Rubinstein, Wolfstetter, and Zamir (2001), there is no hope in finding a closed-form

expression for the strategies if values are drawn from an interval. Furthermore, because from one

period to the next, the winner decreases his bid by some finite amount, there would be no com-

mon knowledge of valuations once bid trajectories cross. We believe that ours is the first paper

to explicitly solve for a Markov equilibrium in a game in which higher-order beliefs matter, and

we hope that it will trigger further developments that will ultimately allow to study such richer

environments.
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Trust in the Auctioneer: As mentioned in the introduction, other considerations affect the

choice of transparency. Collusion and corruption do not only involve buyers, but also auctioneers.

It is intuitively clear that too much opaqueness facilitates corruption of the auctioneer by the

buyers. More generally, the auctioneer must be trusted to follow the auction rules that he adopts.

Yet it is not hard to see how, even in first-price auctions, an auctioneer could take advantage from

naive bidders by allocating the unit to the low bidder in a given period, in order to make the

high bidder more aggressive in his future bids. It is less clear whether such manipulation can be

profitable if bidders understand the auctioneer’s incentives. Google’s choice not to fully disclose

its rules for sponsored search auctions, mentioned in the introduction, raises then an interesting

puzzle.
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8 Appendix

8.1 Unobservable Bids

We generalize here the analysis given in the text to the case with n + 1 bidders. In the

equilibrium we construct, the loser’s bid distribution in period t ≥ 1 is denoted Ft. The distribution

of the highest losing bid is therefore given by (Ft)
n, and most of the analysis from the winner’s

point of view is identical to the case n = 1.

Proof of Lemma 1. The high-valuation winner’s value function must satisfy the optimality equa-

tion

Vt(b) = max
β

{

Ft(β)n

Ft−1(b)n
((1 − δ)(ū− β) + δVt+1(β))

}

,

where b is the bid the winner made in period t−1 (as before, we attempt to solve for an equilibrium

in which the equilibrium bid is a summary statistic for the entire information of a player). Define

Yt(b) := Ft−1(b)
nVt(b) for all t ≥ 1. Then

Yt(b) = max
β

{Ft(β)n(1 − δ)(ū− β) + δYt+1(β)} ,

from which it is clear that, since the right-hand side is independent of b, the winner is indifferent

over all bids in the relevant interval, and Yt is independent of b. It follows that, for all t ≥ 1, and

for some constant ϕt ≥ 0,

Ft(b)
n =

ϕt

ū− b
.

Since our purpose is to construct an equilibrium in which only the low type bidder bids u, we

further have

(1 − q)n = Ft(u)
n =

ϕt

ū− u
,

from which we can solve for the constant ϕt, so that

Ft(b) = (1 − q)

(

ū− u

ū− b

)1/n

. (38)
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This distribution being independent of t (and of δ), it follows that the loser makes a bid that is

independent of t, for all t ≥ 1.

Proof of Lemma 2. The analysis here departs somewhat from the case n = 1. Let us define Xt(b)

as the continuation payoff of a player with a high valuation ū who lost in the first period and

always bids b. Then

Xt(b) = max
β

{Pr[i wins in period t with β](1 − δ)(ū− β) + δXt+1(β)} .15

We do not condition on player i having always lost before, or the winner having always won (i.e.,

it could well be that the game is “over”and i might not know about it). Of course the choice only

matters if those two events obtain, but so maximizing the conditional or unconditional payoff is

equivalent. Let

pt(b, β) := Pr[i wins in period t with β and bid b in all previous periods],

given that he always bid b before, and lost in the initial period. First-order conditions give

d

dβ
pt(b, β)(ū− β) − pt(b, β) +

δ

1 − δ
X ′

t+1(β) = 0,

while the envelope theorem states that

X ′
t(b)

1 − δ
=

d

db
pt(b, β)(ū− β). (39)

Combining gives, for t ≥ 2 (remember that b = β then)

(

d

dβ
pt(b, b) + δ

d

db
pt+1(b, b)

)

(ū− b) − pt(b, b) = 0. (40)

15As in the case of two players, this is an abuse of notation, because the continuation payoff is a function of the
latest bid β only if this latest bid is the most informative one; however, this is necessarily the case if bidder i does
not submit a bid strictly lower than the lowest bid for which he knows he will lose for sure, and this is without loss
of generality. Note further that, for any higher bid β, his optimization problem is as if he had bid β throughout.

55



We must now solve for the probabilities pt(b, β). Fix some player i who lost in the initial period

with a bid b. Let Gt denote the unconditional bid distribution of the winner in period t (we do

not condition on the fact that player i lost in the initial period with a particular bid b). Also,

given t, define the function β by Gt(b) = Gt−1(β(b)). That is, if the initial winner bids b in period

t, he must have bid β(b) in the previous period.

Suppose now that player i bid b in all periods up to t − 1. What are his odds of winning for

the first time in t with a bid b− ε, where ε > 0 is small? First, the bid b− ε must be the highest

bid among the constant losing bids, which occurs with probability F (b)n−1. Second, the previous

bid by the winner must have been in the interval [b, β(b − ε)]: if it were lower, i would have won

before; if it were higher, i would not win in period t. So the probability he wins is

F (b− ε)n−1(Gt−1(β(b− ε)) −Gt−1(b)) = F (b− ε)n−1(Gt(b− ε) −Gt−1(b)). (41)

Let us now consider instead the case in which he increases his bid to b + ε in period t. What is

the probability that he then wins in that period? The probability is then

F (b+ ε)n−1

∫ β(b+ε)

b+ε

gt−1(x)dx+

∫ b+ε

b

F (x)n−1gt−1(x)dx.

Indeed, either the winner bid x in the range [b, b+ ε] in period t−1, and for i to win in t, he must

have won in t− 1 (i.e. the others bid below x, which imply that they are also outbid by i in t), or

he bid x in the range [b + ε, β(b + ε)], and all that is needed then is that the other initial losers

bid no more than b+ ε. This probability can be rewritten as

F (b+ ε)n−1(Gt(b+ ε) −Gt−1(b+ ε)) +

∫ b+ε

b

F (x)n−1gt−1(x)dx. (42)

Note that, as expected, these probabilities and their derivatives with respect to ε, coincide for

ε = 0, so that

pt(b, b) = F (b)n−1(Gt(b) −Gt−1(b)), (43)
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and
d

dβ
pt(b, b) = F (b)n−1gt(b) + (n− 1)f(b)F (b)n−2(Gt(b) −Gt−1(b)). (44)

We also get, from (41) or (42),

d

db
pt(b, b) = −F (b)n−1gt−1(b). (45)

We must now solve the resulting differential equation. We have

(

d

dβ
pt(b, b) + δ

d

db
pt+1(b, b)

)

(ū− b) − pt(b, b) = 0.

and plugging in the value for pt and its derivatives from (43)–(45) gives

(

F (b)n−1gt(b) + (n− 1)f(b)F (b)n−2(Gt(b) −Gt−1(b)) − δF (b)n−1gt(b))
)

(ū− b)

−F (b)n−1(Gt(b) −Gt−1(b)) = 0.

We can then eliminate the higher powers of F and obtain

(

(1 − δ) gt(b) + (n− 1)
f(b)

F (b)
(Gt(b) −Gt−1(b))

)

(ū− b) − (Gt(b) −Gt−1(b)) = 0. (46)

a difference-differential equation to be solved for Gt given Gt−1. We further eliminate f (b) /F (b)

by observing that from (38),

f(b) =
1

n
(1 − q)

(

ū− u

ū− b

)
1
n 1

ū− b
, (47)

and hence
f(b)

F (b)
=

1

n

1

u− b
.

Plugging into (46),

(

(1 − δ) gt(b) +
n− 1

n

1

u− b
(Gt(b) −Gt−1(b))

)

(ū− b) − (Gt(b) −Gt−1(b)) = 0, (48)
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or
(

(1 − δ) gt(b) (u− b) −
1

n
(Gt(b) −Gt−1(b))

)

= 0. (49)

The derivation of G1 follows then exactly the same steps as in the text, giving

(1 − δ)g1(b)(ū− b) =
1

n

(

G1(b) −

(

γ

ū− b

) 1
n

)

,

where γ := (1 − q)n(ū− u), g1 is the derivative of G1 and G1(ū− γ) = 1. For t ≥ 2,

(1 − δ)gt(b)(ū− b) =
1

n
(Gt(b) −Gt−1(b)) ,

with Gt(ū− γ) = 1. Let us define y := (ū− b)/γ, and for all t, Ht(y) = Gt(b), so that, for t ≥ 2,

(1 − δ)nyht(y) +Ht(y) −Ht−1(y) = 0,

and also

(1 − δ)nyh1(y) +H1(y) − y−
1
n = 0,

where Ht(1) = 1, for t ≥ 1.

The solution is

Ht(y) =
y−1/n

δt + y−1/(1−δ)n
t
∑

τ=0

1 − δτ−t

τ !

(

ln y

(1 − δ)n

)τ

, (50)

that is, in terms of the distribution Gt,

Gt(b) =
1

δt (1−q)

(

ū− u

ū− b

) 1
n

+

[

(1 − q)

(

ū− u

ū− b

) 1
n

]
1

1−δ t
∑

τ=0

1 − δτ−t

τ !



ln

(

(1 − q)

(

ū− u

ū− b

) 1
n

)− 1
1−δ





τ

,

which establishes the lemma.

Proof of Lemma 3. It remains to determine F0, the bid distribution used in the initial period. To

58



do so, observe that the payoff of bidding b for a player with a high-valuation is given by

F0(b)
n(ū− b) + δY1(b)/(1 − δ) + δX1(b)/(1 − δ),

where Y1(b) is the (unconditional) continuation payoff after winning with an initial bid of b,

evaluated from the second period onward, and X1(b) is the (unconditional) continuation payoff

from losing after an initial bid of b, evaluated from the second period onward.

As in the case n = 1, Y1(b)/(1− δ) = (1− q)n(ū−u) is a constant. Further, from the envelope

theorem,

X ′
1(b)/(1 − δ) =

d

db
p1(b, β)(ū− β) = −nF0(b)

n−1f0(b)(ū− β),

where f0 is the density of the distribution F0. From

F0(b) = F1(β) = (1 − q)

(

ū− u

ū− β

)n

,

we can solve for ū− β in terms of F0. Plugging this into the previous formula, we get

X ′
1(b)/(1 − δ) = −n

f0(b)

F0(b)
(1 − q)n(ū− u).

Integrating then yields

X1(b)/(1 − δ) = −n(1 − q)n(ū− u) lnF0(b) + C0,

for some constant C0. Because the payoff of bidding b must be independent of b over the support,

we thus obtain that (substituting for X1 and Y1)

F0(b)
n(ū− b) − nδ(1 − q)n(ū− u) lnF0(b) = K0, (51)

for some constant K0 that is independent of b. By using the fact that F0(u+) = 1 − q, we get K0

by plugging b = u+, and so

K0 = (ū− u)(1 − q)n(1 − nδ ln(1 − q)). (52)
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By plugging b = b̄, where b̄ denotes the upper extremity of the support of F0, we also get that

b̄ = ū−K0. Equations (52) and (51) uniquely characterize F0, and the closed-form solution follows

from standard properties of the Lambert function.

8.1.1 Comparative Statics of Subsection 3.4.1

Comparative statics of Gt are more easily computed in terms of the distribution Ht, given by

(50). In particular, the second term can be re-written as

Γ
(

t+ 1, ln y
1

(1−δ)n

)

− δ−ty−1/nΓ
(

t+ 1, ln y
δ

(1−δ)n

)

Γ(t+ 1)
,

where Γ(t) is the ordinary gamma function, and Γ(t, s) is the incomplete gamma function Γ(t, s) =
∫∞

s
ut−1e−udu.

All the comparative statics follow. Because Γ(t, s) → 0 as s → ∞, it follows that the second

term tends to zero as δ → 1. Therefore,

lim
δ→1

Gt(b) = F (b),

which is equal to the distribution of the losers. Comparative statics with respect to n follow since

n only affects Gt through the F (b) = y−1/n term.

Consider now the case in which we interpret δ → 1 as the result of an increase in the frequency

at which successive auctions take place, and fix some time t = k∆, where ∆ is the (small) delay

between two successive auctions, so that δ = e−r∆ ≃ 1 − r∆, where r > 0 is the fixed discount

rate. So we have
Γ( t

∆
+ 1, ln y

nr∆
) − y−1/n(1 − r∆)−

t
∆ Γ( t

∆
+ 1, 1−∆r

∆
ln y
rn

)

Γ( t
∆

+ 1)
.

Let us now define ψ := (ln y)/rnt. Because

lim
∆→0

(1 − r∆)−
t
∆ = ert,
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it follows that

Ht(y) → erty−1/n + lim
x→∞

Γ(x+ 1, ψx) − y−1/n
(

1 − tr
x

)−x
Γ(x+ 1, ψ(x− rt))

Γ(x+ 1)
,

where x := t/∆. It follows from standard expansions that the normalized incomplete gamma

function Q(x+ 1, ψx) := Γ(x+ 1, ψx)/Γ(x+ 1) satisfies

lim
x→∞

Q(x+ 1, ψx) =























1 if ψ < 1,

1/2 if ψ = 1,

0 if ψ > 1.

and the same holds for Q(x+ 1, ψ(x− κ)), for fixed κ, ψ. (see Tricomi (1950)). We thus obtain

lim
∆→0

Ht(y) =







1 if ψ < 1,

erty−
1
n if ψ > 1.

So we obtain that the limit distribution Gt is as follows. Define T := 1
r
ln 1

1−q
.

lim
∆→0

Gt(b) =







ert(1 − q)
(

ū−u
ū−b

)
1
n if b ∈ (u, ū− (ū− u)(1 − q)nenrt) and t < T,

1 if b > u otherwise.

8.2 Observable Bids

This subsection provides some details on semi-pooling equilibria in the environment with ob-

servable bids. This requires, first of all, a better understanding of the payoff V U of the uninformed

bidder in the game of one-sided incomplete information. Let throughout r := 1 − q. Recall that

Fs(u) = δFs+1(u) = · · · = FT (u)nT−s

δ
PT−s−1

j=0 nj

= FT (u)nT−s

δ
nT−s

−1
n−1 .

So

×T
t=s+1Ft(u) = FT (u)

PT
t=s+1 nT−t

δ
PT

t=s+1
nT−t

−1
n−1 = FT (u)

nT−s
−1

n−1 δ
nT−s

−1

(n−1)2
−T−s

n−1 .
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The payoff V U can be derived under the assumption that the uninformed bidder bids u+ in all

periods. In that case, he obtains

(1 − δ)
T
∑

s=0

δs ×s
j=0 Fj(u)

n(ū− u) + δT+1rn(ū− u).

Because ×s
j=0Fj(u) = r/×T

t=s+1 Ft(u), we get

V U = rn

[

1 + (1 − δ)
T−1
∑

s=0

(

FT (u)−
n

n−1
(nT−s−1)δ

s− n

(n−1)2
(nT−s−1)+ n

n−1
(T−s)

− 1
)

]

.

For future purposes, recall that, because ×T
t=0Ft(u) = r, FT (u) is increasing in r, and so V U/rn is

decreasing in r over each interval of values of r for which T is constant. But since V U is continuous

at values of r for which FT (u) = δ, it follows that V U/rn is decreasing in r (i.e. increasing in q)

for all values of r. Rather surprisingly, it can further be shown that (V U − rn)/(1− δ) is bounded

above, uniformly in δ, but we shall not need this in the sequel.

We may now turn to the analysis of semi-pooling equilibria in the game of symmetric infor-

mation. In such an equilibrium, at least in some initial phase, each high-valuation bidder mixes

between submitting the bid u, and continuously randomizing over some interval (u, b̄q).

In particular, each high-valuation bidder must be indifferent between submitting the bid u and

u+. Suppose that this is the case in period t, and that high-valuation bidders are willing to submit

a bid above u in period t+1 (assuming no player has done so in the past). Then it must hold that

Ft(u)
n

(

1 − δ

n + 1
(ū− u) + δFt+1(u)

n((1 − δ)(ū− u) + δV U(qt+2))

)

+δnFt(u)
n−1(1 − Ft(u))V

I(qt+1) = Ft(u)
n((1 − δ)(ū− u) + δV U(qt+1)). (53)

Here, qt+1 and qt+2 (and qt, used below) denote the beliefs of the players in the corresponding

period, given that information is still symmetric, i.e. all players have always bid u so far. To

understand this equality, consider the right-hand side first. This is the payoff from bidding u+. In

that case, the high-valuation bidder (say, player i) wins something only in the event that all other

bidders bid u (if even one other bidder bids more, bidder i will lose now and because there will
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be common knowledge that there are two high-valuation bidders, continuation payoffs are zero as

well in this event. If all other bidders bid u, which occurs with probability Ft(u)
n, he gets 1 − δ

in the current period, and the payoff V U(qt+1) as the uninformed player in a game of one-sided

incomplete information in which informed bidders have high valuations with probability qt+1. The

left-hand side is the payoff from bidding u in period t. If all other bidders do so as well (first term),

then player i wins in the current period with probability 1/(n + 1), and his continuation payoff

can be computed under the assumption that he bids u+ in the following period, in which case his

continuation payoff is given by the same formula as the right-hand side that we have just reviewed,

with a shift in the relevant period. In case exactly one bidder bids above u, player i also gets

some continuation payoff (second term), namely, he gets the payoff of an informed, high-valuation

bidder in the game with one-sided incomplete information.

We can use the fact that Ft(u) = (1− qt)/(1− qt+1) (and the corresponding formula for t+ 1)

to eliminate the distributions. Dividing through by (1− δ)/(δ(ū−u)) and re-arranging then gives

(

1 − qt+1

1 − qt+2

)n

(1 − vU(qt+2)) + n
qt − qt+1

1 − qt

vI(qt+1)

1 − δ
+

(1 − qt+1)
n

1 − δ

(

vU(qt+2)

(1 − qt+2)n
−

vU(qt+1)

(1 − qt+1)n

)

=
n

n+ 1

1

δ
, (54)

where vU(q) := V U(q)/(ū− u), vI(q) := V I(q)/(ū− u). Because, as we have seen, V U(q)/(1− q)n

is increasing in q, yet qt+2 ≤ qt+1, the last term of the left-hand side is negative, so that it must

be the case that

(

1 − qt+1

1 − qt+2

)n

(1 − vU(qt+2)) + n
qt − qt+1

1 − qt

vI(qt+1)

1 − δ
≥

n

n+ 1

1

δ
.

Further, we also know that vU(qt+2)/(1 − qt+2)
n ≥ 1, as well as vI(qt+1)/(1 − δ) ≤ (1 − qt+1)

n, so

a fortiori we must have

1 − (1 − qt+1)
n + n

qt − qt+1

1 − qt
(1 − qt+1)

n ≥
n

n+ 1

1

δ
.
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The left-hand side is decreasing in qt+1.
16 So it must be the case that, plugging in qt+1 = 0 in the

last inequality,

n
qt

1 − qt
≥

n

n+ 1

1

δ
, or qt ≥

1

1 + (n+ 1)δ
,

and so we need at the very least that q ≥ 1
1+(n+1)δ

, which is the boundary value for the existence

of separating equilibria. Obviously, if q ≤ 1
1+(n+1)δ

, it was without loss that we assumed that

bidding more than u+ was optimal for the high-valuation bidder, as we know that pooling is not

an equilibrium outcome for such values of the prior belief. This establishes that there cannot be

semi-pooling equilibria if (or once) q ≤ 1
1+(n+1)δ

.

Suppose now that semi-pooling ends in pooling, i.e., there exists a period t + 1 after which

pooling on the bid u is optimal, provided no bidder has submitted a higher bid ever. Then we

must have, in period t,

Ft(u)
n ū− u

n + 1
+ δnFt(u)

n−1(1 − Ft(u))V
I(qt+1) = Ft(u)

n((1 − δ)(ū− u) + δV U(qt+1)),

by the same logic as above. Re-arranging, this is equivalent to

Ft(u)

(

(1 − δ)
n

n + 1
+ δvU(qt+1) −

δ

n+ 1

)

= δn(1 − Ft(u))v
I(qt+1).

However, because pooling must be an equilibrium from period t + 1 onward, (30) provides an

upper bound on vU(qt+1). Substituting it into the left-hand side, we obtain that the left-hand side

is non-positive, and therefore the equality can only hold if Ft(u) = 1, contradicting the fact that

period t+ 1 was the first period in which there was pooling.

Therefore, semi-pooling can never end into pooling, and so high-valuation bidders must be

willing to separate in every period, as it was assumed, for period t+ 1, in (53).

16The derivative with respect to qt+1 is n(n + 1)(1 − qt+1)
n−1(qt+1 − qt)/(1 − qt) ≤ 0.
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Existence Recall that, from (54), a semi-poling equilibrium must satisfy

(

1 − qt+1

1 − qt+2

)n

(1 − vU(qt+2)) + n
qt − qt+1

1 − qt

vI(qt+1)

1 − δ
+

(1 − qt+1)
n

1 − δ

(

vU(qt+2)

(1 − qt+2)n
−

vU(qt+1)

(1 − qt+1)n

)

=
n

n+ 1

1

δ
,

Note that the left-hand side is increasing in qt. Also, the terms involving qt+2 are

(

1 − qt+1

1 − qt+2

)n(

1 − vU(qt+2) +
vU(qt+2)

1 − δ

)

= (1 − qt+1)
n

(

1

(1 − qt+2)n
+

δvU(qt+2)

(1 − δ)(1 − qt+2)n

)

,

and since both terms are increasing in qt+2, the left-hand side of (54) is also increasing in qt+2.

Note now that, when qt+1 = qt+2, the left-hand side reduces to

1 − vU(qt+2) + n
qt − qt+1

1 − qt

vI(qt+1)

1 − δ
.

Note that the first two terms are less than the right-hand side, n/(δ(n+1)), if and only if qt+2 ≤ q̄.

It is then clear that, if qt+1 = qt+2 < q̄, there exists a unique solution qt to (54), and this solution

is such that qt > qt+1 = qt+2; in fact, it is bounded above the common value qt+1 = qt+2. Consider

now any pair qt+2 < qt+1, with qt+1 ∈ (q, q̄). Fixing qt+1, since qt must increase as qt+2 decreases

(because the right-hand side of (54) is increasing in both of them), and since qt is already larger

than qt+1 for the choice qt+2 = qt+1, it follows that there always exists qt > qt+1 solving (54), and

that, proceeding inductively, such a sequence qt, qt−1, qt−2, . . . cannot converge to a value strictly

below q̄ (either it converges to q̄ or it eventually exceeds q̄). This, alongside with continuity of the

solution qt of (54), establishes existence of the semi-pooling equilibrium for initial values of q in

(q, q̄).
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8.3 Winner-Only Observable Bids

Proof of Proposition 4. (1.) We start with the informed bidder. In the winner-only observable

environment, the largest bid in the support is

bq0 = ū− (1 − q0)
n(ū− u). (55)

The informed bidder can therefore win with probability 1 with the bid (55) in a single period.

The net utility is therefore

ū− bq0 = (1 − q0)
n(ū− u).

In the observable environment, the largest bid in the support is

bq0 = ū−

(

1 − q0
1 − q1

)n

(ū− u). (56)

The informed bidder can therefore win with probability 1 with the bid (56) in a single period.

The net utility is therefore

ū− bq0 =

(

1 − q0
1 − q1

)n

(ū− u).

Since 1 − q1 < 1, it follows that 1−q0

1−q1
< (1 − q0).

We then consider the uninformed bidder. In the winner observable environment, the largest

bid in the support is

bq0 = ū− (1 − q0)
n(ū− u).

The uninformed bidder can therefore win with probability 1 with the bid (55) in every single

period. The net utility is therefore

ū− bq0 = (1 − q0)
n(ū− u). (57)

In the observable environment we can describe the equilibrium value of the uninformed agent

as follows:

(u− u)

(

T
∑

t=0

δt

(

t
∏

s=0

(Fs(u))
n

)

+
δT+1

1 − δ

T+1
∏

s=0

(Fs(u))
n

)

.
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The equilibrium value is obtained by the following strategy. The uninformed bidder bids u+ in

every period t. The uninformed bidder wins in period t with a positive net utility (u− u) if and

only if the informed bidders bid u to hide their value. Now using the updating rule

1 − qt+1 =
1 − qt
F I

t (u)
,

or

Ft(u) =
1 − qt

1 − qt+1

,

it follows that the ex ante winning probability in period t is

t
∏

s=0

(Fs(u))
n =

(

1 − q0
1 − qt+1

)n

, (58)

and from t ≥ T , this yields:

t
∏

s=0

(Fs(u))
n =

1 − q0
1 − qt+1

= (1 − q0)
n , (59)

since for t ≥ T , 1 − qt+1 = 1. But now we can compare (57) with (58) and (59) and find that

the ex-ante probability of receiving the net utility (ū − u) is everywhere (weakly) higher in the

observable environment than in the bidder-only observable environment, as

1 − q0
1 − qt+1

≥ 1 − q0,

and the weak inequality holds as equality for all t ≥ T .

(2.) The equilibrium allocation is efficient in both environments, and hence generate the same

social value. The revenue comparison across the two environments then follows directly from the

comparison of the residual values received by the informed and uninformed bidders.

Finally, we provide some details on semi-pooling equilibria with winner-only observable bids.

In the equilibrium the high-valuation bidders assign positive probability to u, but also continuously

randomize over some interval (u, b̄q). Clearly, if q is very low given δ, the high-valuation bidder
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is not willing to make the bid u (as he believes that bidding u+ guarantees him almost the upper

bound on his equilibrium payoff, namely ū − u). So either the candidate semi-pooling converges

to the pooling equilibrium, or there is a last period after which, if the winning bid is once again

u, the equilibrium played is the separating one.

However, semi-pooling cannot end up in separation. Suppose so for the sake of contradiction,

and consider the payoff from bidding u+, relative to u, in the last period in which the high-valuation

bidder assigns positive probability to the bid u. We might as well condition on the other bidders

bidding u, for otherwise the continuation payoff is the same in both cases. In such a candidate

equilibrium, indifference between these two bids requires

(1 − δ)
ū− u

n + 1
+ δV

(

1 −
1 − q

Fq(u)

)

= (1 − δ)(ū− u) + δV U

(

1 −
1 − q

Fq(u)

)

, (60)

where the left-hand side (respectively right-hand side) is the payoff from bidding u (respectively

u+). Rearranging gives

−δ2

(

1 − q

Fq(u)

)n

ln

(

1 − q

Fq(u)

)n

=
n

n+ 1
.

However, the left-hand side is at most δ2e−1 < 1/2 ≤ n/(n+1), which gives the desired contradic-

tion. A candidate semi-pooling equilibrium must thus converge to pooling, and the corresponding

belief must be such that a pooling equilibrium exists. It is easy to see that we can solve (60) for

Fq(u) if q is above this threshold. In that case, in the last period before pooling (if there is such

a period), (60) gives
1

n+ 1
= 1 − δ + δ

(1 − q)n

Fq(u))n
,

which admits a solution Fq(u) ∈ [1− q, 1] if and only if q is above the threshold that defines semi-

pooling equilibria, and characterized by (36). This shows that semi-pooling equilibria can then

be constructed in this range of parameters (obviously, more complicated semi-pooling equilibria

involving many periods of semi-pooling can be constructed as well).
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