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ABSTRACT 

Endogenous Spatial Differentiation with Vertical Contracting* 

    We set-up a linear city model with duopoly upstream and downstream. 
Consumers have a transportation cost when buying from a retailer, and 
retailers have a transportation cost when buying from a wholesaler. We 
characterize the equilibria in a five-stage game where location and pricing 
decisions (wholesale and retail) by all four firms are endogenous. The usual 
demand and price competition effects are modified and an additional strategic 
effect emerges, since the retailers' marginal costs become endogenous. Firms 
tend to locate farther away from the market center relative to the vertically 
integration case. When the wholesalers choose locations before the retailers, 
each wholesaler locates closer to the market center relative to the retailer 
locations, and relative to when the wholesalers cannot move first. Each 
wholesaler does this to strengthen the strategic position of its retailer by 
credibly pulling him towards the market center. As a result, the intensity of 
competition is higher and industry profit is lower when upstream locations are 
chosen before downstream locations. Variations of the model and welfare 
analysis are provided. 
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1 Introduction

A large number of studies has examined various important aspects of how oligopolistic �rms choose

their locations (or horizontal di¤erentiation) and then compete in prices. Maximal, minimal or

intermediate di¤erentiation may emerge in the market depending on the balance between a direct

demand e¤ect that pulls �rms towards the centre of the market and a strategic price e¤ect that

pushes them away from one another. This literature typically focuses on the direct market relation

between the oligopolists and the �nal consumers. In contrast, the nature of vertical relations are

important in the great majority of the oligopolistic markets, that is, how upstream �rms (whole-

salers) trade with downstream �rms (retailers) is interrelated with how downstream �rms trade with

�nal consumers. In this paper, we study endogenously the horizontal product di¤erentiation (or

locations) and pricing decisions in vertically linked duopolies, or, more simply put, we endogenize

the locations and pricing decisions of wholesalers and retailers on a Hotelling line.

We study a two-tier horizontally di¤erentiated duopoly model. We assume exclusive vertical

contracting with each downstream �rm able to turn one unit it gets from its upstream �rm into one

unit in the �nal market. Upstream and downstream �rms are di¤erentiated with respect to their

horizontal locations - as usual, these can be interpreted either geographically or in the space of

product characteristics.1 Choices are made sequentially. We study two versions of the model, �rst

when any location on the real line can be chosen and, second, when location can only be chosen

within the interval within which consumers are uniformly distributed. Allowing upstream �rms and

downstream �rms to locate anywhere on the real line allows a clearer and richer characterization

of the equilibrium location incentives.

The main questions that can be answered in a framework that combines vertical and product

di¤erentiation elements refer to the implications of vertical pricing rules for the location choices and

the role that upstream and/or downstream di¤erentiation plays for vertical trade and �nal prices.

The strategic incentives are quite rich, as each �rm�s choice a¤ects the subsequent choices of both

�rms and of the �nal consumers. For instance, upstream locations a¤ect downstream locations,

then wholesale prices and then the �nal prices. In addition, the quantity that each upstream �rm

will sell is equal to the quantity that the corresponding retailer will sell to the �nal consumers and

this quantity depends (directly or indirectly) on all the choices made by the �rms.

In models of horizontal di¤erentiation without upstream �rms, there are two opposite forces,

one pushing �rms close to each other, the "demand" e¤ect, and one to the opposite direction,

the "price competition" e¤ect. In our model there is a third force a¤ecting the wholesale prices

and the transportation cost that the downstream �rms pay when moving to the centre of the line.

1So, we may be thinking about retailers and wholesalers with their point of sale at di¤erent geographical locations

or choosing di¤erent varieties of a horizontal product characteristic: milk sold by wholesalers may di¤er with respect

to its fat content and retailers have a cost when using that to produce daily products, also di¤erentiated with respect

to their fat content.
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The interaction of these forces give the equilibrium result. We obtain a number of results. In our

basic model (with locations anywhere on the real line) we �nd that there is a unique subgame

perfect equilibrium. In this, all �rms locate outside the unit interval but wholesalers always locate

closer to the city center than retailers. Relative to the vertical integration benchmark, all locations

are farther away from the center (and therefore the social cost is also higher, including both the

intermediate and the �nal transportation cost). Double marginalization emerges, with all �rms

making positive pro�ts and �nal prices higher than under vertical integration. When locations are

restricted within the unit interval, maximum di¤erentiation is obtained, with each chain choosing

an endpoint location.

Important insights are obtained when we modify the order of location choices. When wholesalers

chose their locations �rst, they choose to locate closer to the center relative to when location choices

are simultaneous or when retailers move �rst. They do this to credibly pull their retailers towards

the center and o¤er them a stronger strategic position in the �nal market. In equilibrium, this

strategic behavior leads to more intense competition and lower pro�ts when wholesalers choose

their locations �rst. The industry would, thus, prefer retailers to choose locations �rst (or at the

same time as the wholesalers).

The remainder of the paper is as follows. Related literature is brie�y discussed in Section 2.

Section 3 sets up the basic model. Section 4 derives the equilibrium and studies its properties.

Extensions of the basic model are examined in Section 5. Section 6 modi�es the basic model with

�rms allowed to locate only in the unit interval. For �xed upstream locations in Section 7, we

explore the possibility that downstream �rms may "reverse" their locations on the line. Section 8

concludes.

2 Related literature

Our paper contributes to two dinstict literatures, on product di¤erentiation and on vertical con-

tracting. Each of these contains a number of in�uential papers and is too vast to survey here.2 We

only refer to work that is more closely related to the speci�c setting of our model. The strand of

the product di¤erentiation literature we are building on, starts with the classic linear-city model

of Hotelling (1929), modi�ed by D�Aspremont et al. (1979) in a way that the strategic price

incentives can also be more easily characterized.3 Nevertheless, only very few papers have exam-

2For a review and some key results on product di¤erentiation see e.g. Anderson et al. (1992), Gabszewicz and

Thisse (1992) and for vertical relations Rey and Tirole (2007) and Rey and Verge (2008).

3Many variants of the linear city model has been studied. Among other, Anderson and Neven (1991) solve the

location-pricing game when oligopolists compete in quantities. Ziss (1993) examines the D�Aspremont et al. model

with heterogeneous production costs. If the marginal cost di¤erence is su¢ cient small, a price and location equilibrium

exists in which both �rms enter and maximum di¤erentiation emerges. Anderson and Engers (1994) study a price-

taking equilibrium in the spatial setting. In Vettas (2003) and Vettas and Christou (2005), �rms are horizontally as
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ined the vertical chain interactions in a horizontal di¤erentiation framework. This creates a gap

in the literature since in reality many market structures have an important vertical element with

upstream �rms supplying the downstream �rms. Marginal production costs of the downstream

�rms are therefore endogenously determined in the vertical chain. Thus, location choices by the

upstream and/or downstream �rms are a¤ected by the transactions in a vertical environment.4

Gupta et al. (1994) assume that an upstream monopolist sets the wholesale price based on its

observation of the locations chosen by the downstream �rms and that the downstream �rms can

price discriminate. Beladi et al. (2008) study an upstream monopoly and a downstream duopoly

where two-part tari¤s are signed and the downstream �rms cannot produce all varieties demanded.

Aiura and Sato (2008) examine an upstream monopolist at the center of the city and supplying

two retailers. Retailers do not pay wholesale prices but only a transportation cost and choose

their locations and �nal prices. Here, we consider in contrast a model with two upstream and two

downstream �rms that pay linear wholesale prices. A location-price equilibrium is also analyzed

by Brekke and Straume (2004) where each downstream �rm has its own supplier, upstream �rms

bargain about the input prices with the downstream �rms, but upstream �rms are not product

di¤erentiated. Allain (2002) and Laussel (2006) examine the situation where two upstream �rms are

exogenously brand di¤erentiated and two downstream �rms are exogenously spatially di¤erentiated,

thus, consumers face four di¤erent products (and are distributed on a rectangle). In our paper,

in contrast, consumers care directly only about the �nal spatial di¤erentiation and we further

endogenize the location choices in both levels assuming input prices are set by the wholesalers.

Previous work by Matsushima (2004) has also studied the two upstream and two downstream

�rm structure on the line and �nds equilibrium locations that depend on the transportation cost

parameters. Our model di¤ers in that upstream �rms do not restrict wholesale prices to be equal

to the rival �rm�s transportation cost, the upstream �rms supply their own downstream �rms

and �rms can locate outside the unit interval. Further, we assume that it is the downstream

�rms that pay the transportation costs when supplied by the upstream �rms. We also present a

sequential location choice by the upstream �rms �rst and the downstream �rms after, as opposed

to simultaneous symmetric location choices by Matsushima (2004).5

well as vertically di¤erentiated. Tabuchi and Thisse (1995) and Lambertini (1997) allow �rms to locate along the

entire real line, while consumers are concentrated around the market center.

4Dobson and Waterson (1996) study the exclusivity in an exogenously non-horizontal di¤erentiated successive

duopoly in upstream and downstream level with consumers facing four varieties. Inderst and Sha¤er (2007) analyse

the impact of retail mergers on product variety in a non-Hotelling type di¤erentiated model.

5Matsushima (2009) also studies the incentives for vertical mergers in a location model and Matsumura and

Matsushima (2009) examines the mixed strategy equilibria under large cost di¤erentials.
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3 The basic model

We set up a model where upstream and downstream duopolies locate on a line as follows. Consumers

are uniformly distributed on a [0,1] interval and have unit demands. There are two upstream �rms,

A and B, and two downstream �rms, X and Y, each choosing a unique location on the entire

real line. There is exclusive dealing and the downstream �rms have a simple �xed-proportions

technology: �rm X turns each unit it purchases from �rm A into one unit that it can sell to the

�nal consumers; likewise, for �rms Y and B.

The locations of �rms A and B are denoted by a and 1� b, respectively. The locations of �rms
X and Y are denoted by x and 1� y, respectively. Thus, for the A and X chain, a and x measure
how much to the right of endpoint 0 each �rm is located, while for the B and Y chain, b and y

measure how much to the left of endpoint 1 each �rm is located. Without loss of generality, we

consider 1� a� b > 0, so that A is located to the left of B. In the main body of the paper we will
also focus on the case where 1 � x � y > 0 so that X is also to the left of Y; in Section 7 we also
discuss the possibility that the downstream locations switch to the "wrong" side of the line relative

to their upstream suppliers.

A transportation cost has to be paid both in the wholesale and retail market. So that our

results are easily comparable to the literature, we follow the often used assumption that this cost

is quadratic in distance. A consumer located at point z pays transportation cost t(x � z)2 when
purchasing a product from �rm X and t(1 � y � z)2 when purchasing a product from �rm Y. In

turn, �rm X pays transportation cost �(x � a)2 when purchasing a unit from �rm A and �rm Y

pays transportation cost �(y � b)2 when purchasing a unit from �rm B. These costs, t > 0 and

� > 0, may be real transportation costs (for example depending on the weight or the volume of the

product) or may be product characteristic transformation costs necessary to convert one unit of

the upstream �rm�s input to one unit of �nal good. We consider linear pricing at the wholesale and

retail level. A �nal consumer who purchases a unit from downstream �rm X or Y pays the price

set by this �rm (pX or pY ) plus the transportation cost between the chosen �rm�s location and his

own location. We also assume that the basic reservation value of each consumer is high enough

so that each consumer purchases one unit of the product. A downstream �rm who purchases a

unit from upstream �rm A or B pays the price set by this �rm (wA or wB) plus the transportation

cost between the two trading �rms. Apart from locations, the products are homogeneous and

production costs are assumed zero for simplicity. Note that the �nal consumers care about the

upstream locations and prices indirectly, that is, only to the extent they a¤ect the downstream

locations and prices.

Each of the four �rms seeks to maximize its own pro�t and each consumer his own net surplus.

We assume there are no information asymmetries and proceed to analyze a sequential game where

all locations and prices are endogenous. We view locations as longer-run (and more di¢ cult to

change) variables than prices. Therefore, the main model we analyze is a �ve stage game as
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follows:

(1) Upstream �rms A and B simultaneously choose their locations, a; b.

(2) Downstream �rms X and Y simultaneously choose their locations, x; y.

(3) Upstream �rms simultaneously set linear wholesale prices, wA; wB: �rm A charges wA to

�rm X and �rm B charges wB to �rm Y.

(4) Having observed both wholesale prices, downstream �rms simultaneously set their (�nal)

product prices, pX ; pY .

(5) Having observed the �rms�locations and �nal prices, each consumer purchases one unit of

the product from one of the downstream �rms X and Y.

We proceed backwards, solving for the subgame perfect Nash equilibria of the game.

0 1X Y

A B

x

α b

y

Figure 1: Upstream and downstream locations (example)

In subsequent Sections of the paper and following the analysis of our main case, we also consider

alternative assumptions about the timing of location choices, when downstream locations can be

chosen before the upstream locations and also when all locations (upstream and downstream) are

chosen simultaneously. We also examine other extensions of the analysis: when �rm locations

cannot be on the entire real line but are restricted within the unit interval; and when downstream

locations can be at the opposite side on the line relative to their upstream suppliers. But �rst we

proceed to the analysis of our main case.

4 Equilibrium analysis

To obtain a subgame perfect equilibrium, we proceed backwards. First, we consider trade in the

downstream market to �nd equilibrium retail prices and consumer choices given the wholesale prices

and the locations of all �rms. Second, we derive the equilibrium wholesale prices given all �rms�

locations and anticipating equilibrium behavior in the retail market. Third, we derive the down-

stream �rms�equilibrium locations given the upstream locations and anticipating pricing, wholesale

and then retail. Finally, we derive upstream equilibrium locations anticipating equilibrium in all the

subsequent stages. Once we derive the equilibrium, we study its properties. As should be expected

when dealing with such a �ve-stage game, the analysis is tedious at times and some formal details

are in the Appendix, or are presented in brevity to facilitate the continuity of the arguments and

the intuition.
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4.1 Consumers choice and retail prices

This part of analysis corresponds to duopoly competition in the �nal (retail) market with �xed

locations and potentially di¤erent unit costs.6 For some locations and costs, both retailers sell in

the market, while for locations and costs that signi�cantly favor one of the retailers, we obtain a

corner solution where the rival makes no sales. The costs faced by the retailers are equal to the

wholesale price plus the transportation cost they have to pay per unit.

Given the �rms�locations and the wholesale prices, we calculate the demand functions for the

downstream �rms X and Y. Let z be the demand of �rm X and 1� z the demand of �rm Y. The

�rms�pro�t functions are

�X = (pX � fX)z;

�Y = (pY � fY ) (1� z);

where fX (respectively fY ) is the aggregate marginal cost, that is, the wholesale price plus the

transportation cost of �rm X (respectively Y) with fX � wA+ �(x� a)2 and fY � wB + �(y� b)2.
When both �rms sell positive quantities, demand for each �rm is characterized by the presence of

an indi¤erent consumer located at z, as follows:

pX + t(x� z)2 = pY + t(1� y � z)2: (1)

Of course, the location of the indi¤erent consumer depends on the downstream �rms�locations,

product prices and the transportation cost parameter t, that is, z = z(pX ; pY ; x; y; t); to simplify

the exposition we suppress the arguments of this function and solve (1) to obtain

z =
1 + x� y

2
+

pY � pX
2t(1� x� y) : (2)

Further, taking into account the possibility that all consumers may choose to purchase from one

�rm, demand for �rm X will be equal to

z =

8>>><>>>:
1 if 1+x�y

2 + pY �pX
2t(1�x�y) � 1

1+x�y
2 + pY �pX

2t(1�x�y) if 0 < 1+x�y
2 + pY �pX

2t(1�x�y) < 1

0 if 1+x�y
2 + pY �pX

2t(1�x�y) � 0:

(3)

We note that the demand and pro�t functions for the downstream �rms are continuous in both

�rms�prices. For intermediate values of the prices, the market is shared, z 2 (0; 1), and as �rm
X reduces pX , the indi¤erent consumer moves to the right on the line (thus, z increases). When

pX decreases below the threshold stated in expression (3), �rm X captures all the demand (z = 1)

and its pro�ts is simply equal to its pro�t margin pX � fX . Likewise, for high values of pX , �rm X

makes no sales and its pro�t is driven to zero. Figure 2 presents two examples of the demand and

pro�t functions for di¤erent values of the parameters.

6Ziss (1993) studies the linear city model with di¤erent unit costs. The analysis in this part parallels his.

7



z z

0 1 2 3 4 5 6
0.0

0.5

1.0

pX

0 1 2 3 4 5 6
0.0

0.5

1.0

pX

�X �X

0 1 2 3 4 5 6
0

1

2

pX
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0

1

2

pX

x=0; y=0; t=1; fX=0:2; pY =3 x=0:2; y=0:3; t=1; fX=0:2; pY =3

Figure 2: Downstream demand and pro�ts

Given the pro�t functions for the downstream �rms, we now proceed to the characterization

of equilibrium retail prices. The analysis is standard but special care should be taken for the

characterization of the corner cases:

Lemma 1 The equilibrium price and pro�t for �rm X are:

pX =

8>><>>:
fY � t(1� x� y)(1 + y � x) if fX � fX

1
3 (t(1� x� y)(3 + x� y) + fY + 2fX) if fX < fX < cfX

fX if fX � cfX
(4)

and

�X =

8>><>>:
fY � t(1� x� y)(1 + y � x)� fX if fX � fX

(t(1�x�y)(3+x�y)+fY �fX)2
18t(1�x�y) if fX < fX < cfX

0 if fX � cfX ;
(5)

where

cfX � fY + t(1� x� y)(3� y + x);

fX � fY � t(1� x� y)(3� x+ y):

Prices and pro�ts for �rm Y are derived in a symmetric way.
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When �rm X has low enough aggregate marginal cost (lower than the critical value fX) it is the

only one that sells in the market, while Y has zero demand. The opposite is true when X has a

high aggregate marginal cost (higher than cfX). When the di¤erence in the marginal costs of the
two �rms is not too large, fX < fX < cfX , then both downstream �rms make sales in the �nal

goods�market.

Two properties of the downstream market equilibrium should be noted. The �rst derivative of

the �nal prices and the pro�ts with respect to the transportation cost parameter t of the consumers

is positive: the more di¤erentiated the �nal goods are, the higher are the prices set by the retailers

and the pro�ts they obtain. Also, we observe that dpidfi =
2
3 < 1. Thus, following an increase in his

aggregate marginal cost, a retailer passes part of this to the �nal consumers but absorbs the rest.

4.2 Wholesale prices

In this stage, the two upstream �rms compete by setting their wholesale prices. Each upstream �rm

exclusively supplies its retailer, �rm A supplies �rm X and �rm B supplies �rm Y. Even though

each upstream �rm cannot supply the rival retailer, competition takes place: the wholesale prices

shape competition in the subsequent stage where retail prices and �nal demand is determined. If

the wholesale price charged to retailer X by the upstream �rm A is high, retailer X has a relative

cost disadvantage compared with the rival retailer and, thus, the demand obtained by �rm X (and,

in turn, by �rm A) is low.

Since a downstream �rm turns one unit of the good it purchases in the wholesale market into

one unit it sells in the retail market, the demand function of �rms A and B are DA = z and

DB = 1� z and their pro�t functions are �A = wAz and �B = wB(1� z). Assuming equilibrium
will follow when setting retail prices, as characterized in the previous Subsection, the upstream

pro�t functions can be expressed as:

�A = wA

if wA � wB + �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 3) (x+ y � 1)

= wA

�
2t(1�x�y)(y�x)+wB�wA+�((y�b)2�(x�a)2)

6t(1�x�y) + 1
2(1 + x� y)

�
if

8<: wA > wB + �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 3) (x+ y � 1)

wA < wB + �
�
(y � b)2 � (x� a)2

�
� t (x� y + 3) (x+ y � 1)

9=;
= 0

if wA � wB + �
�
(y � b)2 � (x� a)2

�
� t (x� y + 3) (x+ y � 1)

(6)

and
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�B = 0

if wA � wB + �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 3) (x+ y � 1)

= wB

�
1�

�
2t(1�x�y)(y�x)+wB�wA+�((y�b)2�(x�a)2)

6t(1�x�y) + 1
2(1 + x� y)

��
if

8<: wA > wB + �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 3) (x+ y � 1)

wA < wB + �
�
(y � b)2 � (x� a)2

�
� t (x� y + 3) (x+ y � 1)

9=;
= wB

if wA � wB + �
�
(y � b)2 � (x� a)2

�
� t (x� y + 3) (x+ y � 1) :

(7)

Note that these pro�ts are functions of the wholesale prices and all four locations. When the

aggregate marginal cost wA+ �(a�x)2 faced by �rm X is low enough compared to its rival, �rm A

captures the whole demand via its retailer X (z = 1). When the aggregate marginal cost faced by

�rm X is high enough, its demand (and by implication also the demand of �rm A) becomes zero

(z = 0). For intermediate values of wA + �(a� x)2 we obtain z 2 (0; 1), both retailers make sales
in the �nal market, and therefore, both wholesalers make sales in the upstream market. We should

stress the role that upstream and downstream locations play in our model since they crucially a¤ect

the marginal costs of the retailers. For some locations, even if an upstream �rm charges a zero

wholesale price to its retailer, it cannot obtain positive demand and the aggregate marginal cost of

one retailer is always lower than the rival�s.7 This happens when the distance of one retailer from

its supplier is very large compared to the rival�s distance from its own supplier. Clearly, these cases

will tend to emerge when the transportation cost parameter � is high.

Maximization of the pro�t functions (6) and (7) with respect to the wholesale prices (note that

the pro�t functions are quasi-concave) implies the reaction functions of the upstream �rms:

wA = RA(wB) = wB + �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 3) (x+ y � 1)

if wB � �
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y)

= 1
2wB +

t(x�y+3)(1�x�y)��((x�a)2�(y�b)2)
2

if

8<: wB > �
�
(x� a)2 � (y � b)2

�
� t (x� y + 3) (1� x� y)

wB < �
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y)

9=;
= 0

if wB � �
�
(x� a)2 � (y � b)2

�
� t (x� y + 3) (1� x� y)

7To illustrate, take for example t = � = 1; a = b = 0:2; x = 0:06; y = 0:9. Then even if wB = 0 �rm A takes the

whole demand.
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and

wB = RB(wA) = 0

if wA � �
�
(y � b)2 � (x� a)2

�
� t (y � x+ 3) (1� x� y)

= 1
2wA +

t(y�x+3)(1�x�y)��((y�b)2�(x�a)2)
2

if

8<: wA > �
�
(y � b)2 � (x� a)2

�
� t (y � x+ 3) (1� x� y)

wA < �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y)

9=;
= wA � �

�
(y � b)2 � (x� a)2

�
+ t (x� y + 3) (x+ y � 1)

if wA � �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y) :

In Figure 3 (I) we present these reaction functions for some parameters values t; � and locations

a; b; x; y for which both �rms sell. In Figure 3 (II) we show a case where �rm B faces a strong cost

disadvantage as it is located far away from its supplier, and this implies a high aggregate marginal

cost wB + �(y � b)2 for its retailer. Even if the wholesale price it sets is reduced to zero, �rm B

cannot obtain positive demand. In equilibrium, �rm A serves the whole market via its retailer X.

We also note that the wholesale prices are strategic complements, an increase in wB leads to an

increase to wA and vice versa.

wA wA

0 5 10 15
0

5

10

15

wB

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

wB

x=0:1; y=0:2; a=0:3; b=0:4 x=00:6; y=0:9; a=b=0:2

t=2; �=1 t=�=1

(I) (II)

Figure 3: RA(wB): solid line, RB(wA): dash line

From the reaction functions we obtain:

Lemma 2 The equilibrium wholesale prices (as functions of the upstream and downstream lo-

cations) are:
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wA = �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 3) (x+ y � 1)

if �
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) � 0

=
�((y�b)2�(x�a)2)+t(x�y+9)(1�x�y)

3

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) > 0

9=;
= 0

if �
�
(x� a)2 � (y � b)2

�
� t (x� y + 9) (1� x� y) � 0

(8)

and

wB = 0

if �
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) � 0

=
�((x�a)2�(y�b)2)+t(y�x+9)(1�x�y)

3

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) > 0

9=;
= �

�
(x� a)2 � (y � b)2

�
+ t (x� y + 3) (x+ y � 1)

if �
�
(x� a)2 � (y � b)2

�
� t (x� y + 9) (1� x� y) � 0:

(9)

In equilibrium, when the upstream locations are asymmetric enough relative to the downstream

locations, the disadvantaged upstream �rm sets a zero price and there are no sales for itself (and

its retailer) while the rival upstream �rm sets the highest price that allows it to capture the

whole demand. Otherwise, the market is shared (upstream and downstream). In either case, by

substituting the equilibrium wholesale prices (8) and (9) into expressions (6) and (7), we obtain

the equilibrium upstream pro�ts in this stage.

4.3 Downstream locations

Taking as given the locations of the upstream �rms and assuming that the retail and wholesale

prices will be subsequently chosen in equilibrium, the downstream �rms simultaneously choose their

locations to maximize their pro�ts,
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�X = 2t(1� x� y)
if �

�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) � 0

= (�((y�b)2�(x�a)2)+t(x�y+9)(1�x�y))
2

162t(1�x�y)

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) > 0

9=;
= 0

if �
�
(x� a)2 � (y � b)2

�
� t (x� y + 9) (1� x� y) � 0

(10)

and

�Y = 0

if �
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) � 0

= (�((x�a)2�(y�b)2)+t(y�x+9)(1�x�y))
2

162t(1�x�y)

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) > 0

9=;
= 2t(1� x� y)

if �
�
(x� a)2 � (y � b)2

�
� t (x� y + 9) (1� x� y) � 0:

(11)

In our main model �rms are allowed to locate anywhere on the real line, that is, also outside

the unit interval where consumers live. Like in the previous steps of analysis, special care should

be taken about the corner cases. Is it possible that in equilibrium one retailer captures the whole

demand and the other gets nothing? In other words, is it possible that for certain wholesale

locations, a retailer cannot avoid obtaining zero demand no matter what location it would choose?

If so, for what values of the upstream locations this may occur? We �nd that, if the upstream

locations are asymmetric enough, we may obtain a corner solution in the continuation of the

game, that is, one retailer has no way to avoid making zero sales. Upstream �rms are located

asymmetrically enough and this leads a retailer to take the whole demand. Take, for example, �rm

B that supplies �rm Y to be located far away from the unit interval and �rm A that supplies �rm

X to be located in the centre of the unit interval. Then, the transportation cost that retailer Y

pays when supplied by �rm B is high compared to the rival�s transportation cost. Based on its

cost advantage, �rm X maximizes its pro�ts by choosing a location x that allows it to capture

the whole market. The alternative, choosing a location far away from the unit interval would lead

to zero demand or, on any event, to demand lower than unity and �rm X�s pro�ts would not be

maximized. Figure 4 (I) presents the pro�t function of �rm X when it captures the whole demand.
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In contrast, in Figure 4 (II) �rm X maximizes its pro�t when it shares the market with �rm Y, as

its cost advantage is not high enough to allow it take all the demand.

�X �X

­60 ­40 ­20 0 20 40
0

100

200

x

­15 ­10 ­5 0 5 10 15
0

5

10

15

x

a=0:5; b=�100; y=�52; t=�=1 a=0:5; b=�10; y=�7; t=�=1

(I) (II)

Figure 4: Downstream pro�ts

We have to determine exactly when a corner solution will emerge. From the pro�t functions

above, we calculate that �rm X serves the whole demand if �
�
(x� a)2 � (y � b)2

�
+t (y � x+ 9) (1� x� y) �

0. When �rm B is located far away from the unit interval, its retailer Y has to decide where to

locate in order not to pay a high transportation cost but also get some positive demand. If Y

locates at its supplier�s location, it minimizes its own transportation cost but it is then located far

away from the consumers. In contrast, when it locates in or near the unit interval it is close to the

�nal consumers but faces a high transportation cost. In equilibrium, Y chooses a location y that

maximizes the expression �
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y), that is, it minimizes

the area where its demand is zero. By direct calculations it follows that y = b��4t
t+� . Given this

location y, �rm X maximizes its own pro�ts. This argument holds symmetrically when �rm A is

located far away from the unit interval and �rm X has a cost disadvantage. Of course, when neither

�rm has a high cost disadvantage in equilibrium the �rms share the demand. From this analysis

we obtain:8

Lemma 3 The equilibrium downstream locations (as functions of the upstream locations) are:

8The second order conditions of the downstream �rms are satis�ed at the equilibrium locations. Pro�t margins are

positive at the equilibrium point x,y if a� b+ 45 > 9(�9t+16�(1�a�b))
4�(1�a�b) and a� b� 45 < 9(9t�16�(1�a�b))

4�(1�a�b) . The second

order conditions for �rms X and Y are satis�ed for a�b�45 < 243t2+32�2(a+b�1)2
4t�(1�a�b) and a�b+45 > �243t2�32�2(a+b�1)2

4t�(1�a�b)

respectively. This holds as 9(9t+16�(a+b�1))
4�(1�a�b) < 243t2+32�2(a+b�1)2

4t�(1�a�b) and 9(�9t+16�(1�a�b))
4�(1�a�b) > �243t2�32�2(a+b�1)2

4t�(1�a�b) .
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(x; y) =

 �
5t+a��

p
t�(a�b�9)(1�a�b)

�
t+� ; b��4tt+�

!
if 81t+ 4� (a� b� 9) (a+ b� 1) � 0

=
�
(16a�2(1�a�b)+4t�(17a+6b�a2+b2�7)�63t2)

4(t+�)(4�(1�a�b)+9t) ;
(16b�2(1�a�b)+4t�(17b+6a�b2+a2�7)�63t2)

4(t+�)(4�(1�a�b)+9t)

�
if

8<: 81t� 4� (a� b+ 9) (a+ b� 1) > 0
81t+ 4� (a� b� 9) (a+ b� 1) > 0

9=;
=

 
a��4t
t+� ;

�
5t+b��

p
t�(a�b+9)(a+b�1)

�
t+�

!
if 81t� 4� (a� b+ 9) (a+ b� 1) � 0:

(12)

The equilibrium downstream pro�ts in this stage can be obtained by substituting the equilibrium

downstream locations (12) into the pro�ts (10) and (11).

4.4 Upstream locations

In this stage, upstream �rms choose their locations to maximize their pro�ts,

�A =
6t
�
�(1�a�b)+

p
t�(a�b�9)(1�a�b)

�
t+�

if 81t+ 4� (a� b� 9) (a+ b� 1) � 0

= t(9t+2�(1�a�b))(81t+4�(a�b+9)(1�a�b))2

108(t+�)(9t+4�(1�a�b))2

if

8<: 81t� 4� (a� b+ 9) (a+ b� 1) > 0
81t+ 4� (a� b� 9) (a+ b� 1) > 0

9=;
= 0

if 81t� 4� (a� b+ 9) (a+ b� 1) � 0

and
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�B = 0

if 81t+ 4� (a� b� 9) (a+ b� 1) � 0

= t(9t+2�(1�a�b))(81t+4�(b�a+9)(1�a�b))2

108(t+�)(9t+4�(1�a�b))2

if

8<: 81t� 4� (a� b+ 9) (a+ b� 1) > 0
81t+ 4� (a� b� 9) (a+ b� 1) > 0

9=;
=

6t
�
�(1�a�b)+

p
t�(b�a�9)(1�a�b)

�
t+�

if 81t� 4� (a� b+ 9) (a+ b� 1) � 0:
An upstream �rm will not choose a location that will make its own retailer face so high aggregate

marginal cost that would make it obtain zero demand in the subsequent stage. Obviously, this is

because such an outcome would also lead to zero demand and pro�ts for this upstream �rm.

Therefore in equilibrium, both upstream �rms avoid receiving zero demand and they share the

market. The relevant pro�t functions reduce to:

�A =
t (9t+ 2� (1� a� b)) (81t+ 4� (a� b+ 9) (1� a� b))2

108 (t+ �) (9t+ 4� (1� a� b))2
;

�B =
t (9t+ 2� (1� a� b)) (81t+ 4� (b� a+ 9) (1� a� b))2

108 (t+ �) (9t+ 4� (1� a� b))2
:

From the �rst order conditions we obtain9 the equilibrium upstream locations, a = 9t�5��9
p
�2+t2

8� ; b =

9t�5��9
p
�2+t2

8� . Notice that a < 0 and b < 0, thus, upstream �rms are located outside the unit in-

terval for all values of the parameters t and � . Combining this result with Lemmas 1-3 we obtain:

Proposition 1 The unique subgame perfect equilibrium outcome in the �ve stage game is:

a� = b�=
9t� 5� � 9

p
�2 + t2

8�
;

x� = y�=
�
�
5 (t+ �) + 9

p
�2 + t2

�
8 (t+ �)

;

w�A = w�B=
27t
�
t+ � +

p
�2 + t2

�
4 (t+ �)

;

p�X = p�Y=
9t
�
9t3 + 41t2� + 73t�2 + 32�3 +

p
�2 + t2 (�9t+ 32�) (t+ �)

�
32� (t+ �)2

;

z� = 0:5;

��A = ��B=
27t
�
t+ � +

p
�2 + t2

�
8 (t+ �)

;

��X = ��Y=
9t
�
t+ � +

p
�2 + t2

�
8 (t+ �)

:

9The second order conditions are satis�ed in equilibrium.
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We note that, in equilibrium, the market is shared equally, all four �rms obtain positive pro�ts

and all locations are outside the unit interval. Further, upstream �rms locate closer to each other

(and to the market center) relative to the downstream �rms (a > x). We discuss the equilibrium

properties in detail in the next Subsection.

4.5 Equilibrium properties

Here we discuss the equilibrium we have obtained just above, and compare its properties to standard

D�Aspremont et al. (1979) model and to the social optimum. The vertical integration case and its

comparison to our basic model is examined in Section 6. We start by noting that:

Remark 1 Pro�ts for all �rms are strictly positive for all parameter values. As the downstream

transportation cost parameter t increases, all four prices and pro�t levels increase.

We obtain this result by directly di¤erentiating the relevant expressions in Proposition 1: whole-

sale and retail prices increase (dw
�
A
dt > 0;

dp�X
dt > 0) and this also implies higher pro�t levels

(d�
�
A

dt > 0;
d��X
dt > 0), with symmetric relations holding for �rms B and Y. As should be expected,

when �nal consumers view the products as less di¤erentiated, competition becomes less intense.

In the extreme case where t is zero, consumers buy from the cheapest retailer since there is no

product di¤erentiation at the downstream level, and this leads to zero wholesale and retail prices

and pro�ts for all �rms.

Remark 2 As the upstream transportation cost parameter � increases, the wholesale prices and

all four pro�t levels increase when � > t, and decrease otherwise. No general conclusion can be

derived regarding the retail prices.

By directly di¤erentiating the relevant expressions in Proposition 1, we obtain:

dw�A
d�

=
27t2 (� � t)

4
p
�2 + t2 (t+ �)2

;

dp�X
d�

=
9t2
�
(t+ �)

�
41�3 � 32t�2 + 18t2� + 9t3

�
� 9
p
�2 + t2

�
�
�
t� + �2 + 3t2

�
+ t3

��
32�2

p
�2 + t2 (t+ �)3

;

d��A
d�

=
27t2 (� � t)

8
p
�2 + t2 (t+ �)2

;
d��X
d�

=
9t2 (� � t)

8
p
�2 + t2 (t+ �)2

.

To illustrate, take for example � = 2t. Then dw�A
d� = 0:335 4;

dp�X
d� = 0:410 7;

d��A
d� = 0:167 7;

d��X
d� =

0:05 59. When upstream transportation cost parameter � is double the downstream transportation

cost parameter t, an increase in the cost parameter � , can be partly passed to the �nal consumers

and the upstream �rms absorb the rest. In the limit case where � goes to zero, we obtain: lim
�!0+

w�A =

13: 5t, lim
�!0+

p�X = 18t , lim
�!0+

��A = 6: 75t, lim
�!0+

��X = 2: 25t

Now we contrast our results to the D�Aspremont et al. (1979) model, that is, the case where

there are no wholesalers and no vertical structure. We �nd that the introduction of the upstream

�rms a¤ects both the �nal prices and the equilibrium locations.
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Remark 3 At the D�Aspremont et al. (1979) model there is only one stage of competition and

�rms would locate at �1
4 from each endpoint of the unit interval and equilibrium prices will be equal

to 3t
2 .

The above result follows from an application of the D�Aspremont et al. (1979) model when

there is only one stage of competition and �rms are allowed to locate anywhere on the real line (see

e.g. Tabuchi and Thisse (1995) and Lambertini (1997)).

By direct comparison to Proposition 1, we �nd that:

Remark 4 In our model, �nal prices are higher than the D�Aspremont et al. (1979) model.

The introduction of the wholesalers increase the �nal prices. The D�Aspremont et al. (1979)

results are also obtained if we assume that �rms are vertically integrated and each pair of vertically

integrated �rms (�rm X with its supplier A, �rm Y with its supplier B) act as one �rm and choose

a unique location and �nal price. In Section 6, we study the vertical integration case when keeping

the timing of the game as in our basic model. The upstream �rms in the vertical integrated chains

charge zero wholesale prices to their retailers but are allowed to choose di¤erent locations compared

to their own retailers.

Now we turn to the locations. Again by Proposition 1 and direct calculations, we obtain:

Remark 5 As the downstream transportation cost parameter t increases, upstream �rms move

closer to the unit interval for all values of � , however, downstream �rms move closer to the unit

interval when � > t. For � < t, the downstream �rms move farther away from the unit interval.

We obtain this result by directly di¤erentiating the relevant expressions in Proposition 1: up-

stream location increases (da
�

dt > 0) for all values of � , but downstream location increases (dx
�

dt > 0)

when � > t. When �nal consumers view the products as more di¤erentiated, upstream �rms move

closer to the unit interval and retailers follow them when retail transportation costs are high. In

the extreme case when t = 0, all four �rms locate at a�=b�= x�=y�=� 1: 75.
Remark 6 As the upstream transportation cost parameter � increases, upstream �rms move

farther away from the unit interval for all values of t, however, downstream �rms move to the same

direction when � > t. For � < t, the downstream �rms move closer to the unit interval.

By directly calculations in Proposition 1, we obtain da�

d� < 0 for all t and dx�

d� < 0 for � > t.

Otherwise, for � < t, we obtain dx�

d� > 0. In the limit case where � goes to zero, we obtain:

lim
�!0+

a� = �0:625 , lim
�!0+

x� = �1: 75. The location incentives will be discussed in more detail later
in this Subsection.

Remark 7 Downstream locations are farther away from the unit interval compared to the up-

stream locations and the latter are farther away compared to the D�Aspremont et al. (1979) model

: x� = y� < a� = b� < �1
4 .

Subsequently in this Subsection, we will discuss in detail the forces that shape the equilibrium

locations, but it is useful to �rst brie�y turn to the welfare properties of the equilibrium. Final

consumers face unit demand, thus, the social cost (SC) simly equals the transportation cost paid
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by the retailers plus the transportation cost paid by the �nal consumers:

SC =

Z z

0
t(k � x)2dk +

Z 1

z
t(1� y � k)2dk + �(x� a)2z + �(y � b)2 (1� z) : (13)

By substituting the locations from Proposition 1, we calculate that in equilibrium total social cost

is:

SC =

Z 1
2

0
t(k � x)2dk +

Z 1

1
2

t(1� y � k)2dk +
�
�(x� a)2 + �(y � b)2

�
2

=
18t
�p
�2 + t2 (�9t+ 7�) + 7� (t+ �) + 9t2

�
64� (t+ �)

+
t

12
> 0:

A social planner in contrast, would minimize the total transportation cost (13). Standard

calculations imply:

Remark 8 The social optimum locations are a = b = x = y = 1
4 .

Firm X should be located together with its supplier A, and �rm Y together with its supplier B,

so as to eliminate the transportation costs of the retailers. Also, they are both located inside the

unit interval (and splitting the distances equally) to minimize the transportation cost paid by the

consumers. The optimum social cost is SC = t
48 . We �nd that:

Proposition 2 We have x� = y� < a� = b� < �1
4 <

1
4 .

In the equilibrium of our model, �rms locate outside the unit interval in contrast to the socially

optimum locations which are within the unit interval. Thus, the corresponding total social cost is

strictly higher than the optimal cost and also strictly higher than the cost at the D�Aspremont et

al. (1979) model.

Now let us discuss the equilibrium locations in more detail. In models of horizontal di¤erentiation

with duopolists selling directly to �nal consumers, there are two opposite forces, one pushing �rms

close to each other to directly obtain higher demand and one in the opposite direction to reduce

the intensity of price competition. In our model, these forces are modi�ed and a third force also

emerges. Given the locations of the other three �rms, if the downstream �rm moves closer to the

centre of the unit interval this a¤ects its aggregate marginal cost, the wholesale price plus the

transportation cost. This e¤ect may be working to bring �rms either closer to each other or apart,

depending on the locations of the upstream �rms. The marginal production cost of the retailers is

location dependent.

In a standard linear city duopoly model as in D�Aspremont et al. (1979) the marginal production

cost is exogenous. Denoting this cost by c, pro�ts are �X = (pX � c) z for �rm X. By the envelope

theorem, we obtain:

d�X
dx

= (pX � c)
�
dz

dx
+
dz

dpY

dpY
dx

�
;
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evaluated at the equilibrium prices.10 The direct demand e¤ect that pushes �rms close to each

other corresponds to dz
dx while the indirect price competition e¤ect that pushes �rms to the opposite

direction corresponds to dz
dpY

dpY
dx . In our model the marginal production cost for the retailers is

endogenous and equal to the wholesale price plus the transportation cost, fX = wA + �(a � x)2.
The pro�t function of �rm X is �X = (pX � fX) z and by the envelope theorem we now obtain:

d�X
dx

= (pX � fX)
�
dz

dx
+

�
dz

dpY

dpY
dx

+
dz

dpY

dpY
dfX

dfX
dx

+
dz

dpY

dpY
dfY

dfY
dx

��
� dfX
dx
z:

A change in the location x a¤ects the aggregate marginal costs of both retailers and the �nal

prices directly and indirectly via the change in the marginal costs. The direct demand e¤ect

again corresponds to dz
dx but the indirect price competition e¤ect now corresponds to the expression

dz
dpY

dpY
dx +

dz
dpY

dpY
dfX

dfX
dx +

dz
dpY

dpY
dfY

dfY
dx as �nal prices are a¤ected by the endogenous marginal production

costs of the retailers. A change in x, leads to a change in the wholesale prices and the retailers�

transportation cost, therefore, �nal prices change too. Finally, pro�ts are also a¤ected directly by

the change in the marginal cost itself, dfXdx .

Remark 9 In addition to the demand e¤ect and the price competition e¤ect, the aggregate

marginal cost e¤ect plays a key role in shaping the retailer location incentives. These three forces

co-determine the equilibrium locations.

As the pro�t margin (pX � fX) and the demand z are positive, the following derivatives deter-
mine the e¤ect of x on the pro�t �X :

dz

dx
=
�
�
(y � b)2 � (x� a)2

�
+ t (9� y + x) (1� x� y)

18t(1� x� y)2 � x

1� x� y ;

dz

dpY

dpY
dx

+
dz

dpY

dpY
dfX

dfX
dx

+
dz

dpY

dpY
dfY

dfY
dx

=
4 (t (x� 5)� � (a� x))

9t(1� x� y) ;

and
dfX
dx

= �2
3
(t (x+ 4) + 2� (a� x)) :

The price competition e¤ect 4(t(x�5)��(a�x))9t(1�x�y) is negative if �rm A is located to the right of �rm

X (a > x) and x < 5. Given a; b; y, if retailer X moves to right (that is, if x increases) this may

either increase or decrease the aggregate marginal cost that it pays depending on the location of its

supplier A: dfXdx =
d(wA+�(a�x)2)

dx = �2
3 (t (x+ 4)+2� (a� x)) where wA is given by (8). If �rm A is

located to the right of �rm X (a > x) with x > 0 then dfX
dx < 0 and as x increases the marginal cost

of �rm X decreases, which is a positive e¤ect. So, by increasing x, the marginal cost is reduced,

demand is increased (demand e¤ect) and prices fall (price competition e¤ect). But if �rm A is

located to the left of �rm X (a < x), the sign of dfXdx depends on the values of the cost parameters.

If dfXdx > 0, this means that, as x increases, the aggregate marginal cost increases too, which may

lead to an increase in the retail price and a reduction in demand. Therefore, as �rm X moves to the

10See Tirole (1989), page 281.
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centre, the sign of the demand e¤ect and the price competition e¤ect is ambiguous. In equilibrium,

the upstream �rms are located closer to the unit interval compared to the downstream �rms and

all four �rms are outside the unit interval (x < a < 0; y < b < 0). The forces pushing �rms (X

relative to Y and A relative to B) close to each other are dominated by the forces pushing �rms to

the opposite direction and this total e¤ect is stronger for the downstream �rms.

5 Modi�ed order of location choices

We present now some extensions of the basic model which allows us to obtain additional insights

into the problem, especially about the location incentives. We start, in this Section, by considering

what happens when the wholesalers cannot choose their locations �rst. As we show, the equilibrium

locations are a¤ected in a systematic way.

5.1 Simultaneous location choices

Suppose that the four �rms make their location choices simultaneously in the �rst stage, while the

pricing stages of the game remains the same. Now, in the second stage of this modi�ed game the

wholesale prices are determined, followed by the �nal prices, whereas �nal consumers decide which

retailer to buy from. By inserting the wholesale and �nal prices that we have obtained in our

proceeding analysis into the pro�ts of the upstream and downstream �rms, we obtain the pro�t

functions depending on the four location choices. We observe that �A = 3�X and �B = 3�Y for

all location values and parameters t; � :

�X =

�
�
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y)

�2
162t(1� x� y) ;

�Y =

�
�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y)

�2
162t(1� x� y) ;

�A =

�
�
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y)

�2
54t(1� x� y) ;

�B =

�
�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y)

�2
54t(1� x� y) :

The four �rms simultaneously seek to maximize their pro�ts with respect to their locations. From

the �rst order conditions of the upstream �rms (and the fact that the corresponding pro�t margins

are positive), we �nd that each wholesaler chooses to have the same location as the corresponding

retailer:

a = x and b = y:

Further, from the �rst order conditions of the retailers we obtain:11 a = x = b = y = �1:75.
Thus, we have:

11The second order conditions are satis�ed.
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Proposition 3 In the simultaneous locations choice model, the equilibrium outcome is:

a� = b� = x� = y� = �1:75;

w�A = w�B = 13: 5t; p
�
X = p

�
Y = 18t;

z� = 0:5;

��A = ��B = 6: 75t; �
�
X = �

�
Y = 2: 25t:

Like in our basic model, all �rms are located outside the unit interval, now at �1:75. We

observe that the equilibrium locations are independent of the parameter � , as downstream �rms

are located at the same point of their suppliers, which means that they pay zero transportation

costs in equilibrium. Equilibrium locations are also independent of the parameter t; this is a

similar result to the standard linear city model where �rms are located in equilibrium at �0:25 for
all (quadratic) transportation cost parameters. Compared to that model, �rms in our model are

located farther away (�1:75 < �0:25). The introduction of the wholesalers in the problem, which
makes the production costs for the retailers endogenous, pushes the locations farther away. The

forces that push the �rms closer to each other are dominated by the forces that push them to the

opposite direction and the latter are stronger at a model with endogenous production costs.12

5.2 Downstream locations �rst

We could also consider our sequential locations model but with reversed order of location choices.

Downstream �rms now choose their locations �rst and upstream location choices follow. This

timing may be especially relevant if the retailers have a stronger position in the market than the

wholesalers. The remaining of the game is the same. From the analysis of our simultaneous locations

case just above, we know that, in the second stage, upstream �rms locate exactly on top of their

corresponding retailers (a = x; b = y). Given these upstream locations the equilibrium downstream

locations in the �rst stage are calculated as x = y = �1:75. Therefore, the sequential locations
outcome where downstream �rms determine their locations �rst coincides with the simultaneous

locations outcome (Proposition 3).

5.3 Comparison

It is important to compare the equilibrium locations in our simultaneous locations game (Proposi-

tion 3) with the sequential locations game (Proposition 1). In the previous Section, we found that

12Brekke and Straume (2004) allow wholesale prices to be determined through bargaining between the upstream

and downstream �rms but they do not study the location choices of the upsream �rms. In contrast, we assume that

wholesale prices are set by the upstream �rms and that their locations are endogenous. When the bargaining power

of the upstream �rms equals one, and there is no product di¤erentiation at the upstream level (� = 0) the two models

deliver the same results, �rms locate at �1:75.
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x < a < 0 and y < b < 0, which means that all �rms are located outside the unit interval with the

upstream �rms to be closer to the center. We can further calculate that for all parameter values

�1:75 < x < a < 0 and �1:75 < y < b < 0. Thus, we �nd that in the simultaneous locations

game �rms move farther away from the city center than when upstream locations are chosen �rst.

In addition, pro�ts for both upstream and downstream �rms and wholesale and �nal prices are

higher compared to the sequential location choice game. Why then do not upstream �rms locate at

�1:75 in our basic model, to obtain higher pro�ts? Each upstream �rm has a unilateral incentive

to deviate from �1:75 and move closer to the center given that its rival is located at �1:75 and
that downstream locations will follow equation (12). Each wholesaler does this in an e¤ort to o¤er

a strategic commitment incentive to its own retailer, to help it move credibly closer to the market

center and, in this way, strengthen its position in the �nal market. However, both retailers become

more competitive in this way and all �rms obtain lower equilibrium pro�ts. We can say that they

are trapped in a Prisoners�Dilemma in locations when wholesalers choose locations �rst. Both

upstream �rms jointly prefer being located at �1:75 (which also leads to x = y = �1:75) however
there is a unilateral incentive for each to move closer to the unit interval to (indirectly) increase its

own demand and enjoy higher pro�ts. For example, if �rm B were located at �1:75 then �rm A

would like to deviate from �1:75 and move closer to the unit interval (a increases) and pull �rm X

also closer to the unit interval (x increases too). Demand would then increase for �rms X and A,

as well as pro�ts.

Remark 10 In the sequential locations game, wholesalers move �rst and locate closer to the

center in an e¤ort to also pull their retailers closer to the center, but they end up with lower

equilibrium pro�ts than in the simultaneous locations game or when retailers choose their locations

�rst.

Thus, we �nd that �rms would prefer to be in a game where they set their locations simulta-

neously compared to the sequential game where upstream �rms move �rst. When upstream �rms

set their locations �rst, they can unilaterally a¤ect the downstream locations and this leads to a

stronger competition between them. Likewise, when the location choices are reversed compared

to our basic model and downstream �rms choose their locations �rst, the equilibrium locations

coincide with the simultaneous equilibrium locations. If retailers are already located at �1:75, the
suppliers have no other choice but to locate on their retailers�locations to maximize their pro�ts.

In summary, all four �rms prefer the downstream �rms to locate �rst (or that locations are simul-

taneous) so that upstream �rms locate at �1:75 and not move to a location closer to the center.
Higher pro�ts can be obtained either with simultaneous location choices or when the downstream

�rms locate �rst, compared to our basic model.

This result is reminiscent of other results in the sequential choices and strategic commitment

literature. In particular, Fershtman and Judd (1987), Bonanno and Vickers (1988), Brander and

Spencer (1985), and others have compared contracting and pricing incentives in structures with a

23



vertical dimension. Owners reward managers for revenue or market shares, upstream �rms choose

low wholesale prices, governments choose export subsidies, all in an e¤ort to unilaterally strengthen

the strategic position of their downstream agents (technically, to shift their reaction functions to a

more aggresive position). Here, we identify how this incentive for strategic commitment to aggresive

behavior a¤ects upstream and downstream equilibrium locations (and prices) along the line.

6 Vertical integration

We study now the vertical integration benchmark for the various timing assumptions on the order

of the location choices of the game. Under vertical integration (�rm X with its supplier A and

�rm Y with its supplier B), the wholesalers charge zero wholesale prices to their own retailers in

the vertical chain. However, as in the vertical separation model, upstream and downsream �rms

are allowed to choose di¤erent locations. We start, in this Section, by considering the case where

upstream �rms choose locations �rst. Then we modify the order of location choices as we did in

the previous Section and compare the vertical integration results to the vertical separation. Do we

observe double marginalization? That is, are the �nal prices under vertical separation higher than

the vertical integration?

6.1 Upstream locations �rst

In the �rst stage of this vertical integration game, the upstream �rms choose their locations and

the downstream locations follow.13 In the third stage, the two vertical integrated chains compete

for the consumers by setting the �nal prices. We proceed backwards to solve for the subgame

perfect equilibrium. The third stage of the game remains the same as in our basic model and the

�nal prices for the chain A-X are given by equation (4). Each vertically integrated pair of �rms

maximizes the joint pro�ts of its chain. Now the marginal production costs, fX and fY , are simply

the transportation costs of the retailers, since the wholesale prices are zero. The equilibrium pro�ts

of the vertically integrated chain A-X, �V IX , are as follows:

�V IX =

8>><>>:
fY � t(1� x� y)(1 + y � x)� fX if fX � fX

(t(1�x�y)(3+x�y)+fY �fX)2
18t(1�x�y) if fX < fX < cfX

0 if fX � cfX ;
(14)

where

cfX = fY + t(1� x� y)(3� y + x)

fX = fY � t(1� x� y)(3� x+ y);

13We may be thinking about vertical integrated �rms with the factory and the point of sale at di¤erent geographical

locations.
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and

fX = �(a� x)2

fY = �(y � b)2:

Similarly, we calculate the joint pro�ts for the chain B-Y.

In the second stage, taking as given the locations of the upstream �rms and assuming that

the retail prices will be subsequently chosen in equilibrium, the downstream �rms simultaneously

choose their locations to maximize their joint pro�ts. Firms are allowed to locate anywhere on the

real line, thus, again special care should be taken about the corner cases. If upstream �rms are

located asymmetrically enough, this can lead a retailer to take the whole demand. Following the

same logic as in Subsection 4.3, the retailer that has cost disadvantage minimizes the area where

its demand is zero. Of cource, when neither retailer has a high cost disadvantage, �rms share the

demand. From this analysis we obtain the equilibrium downstream locations (as functions of the

upstream locations):

(x; y) =
�
t+a�
t+� ;

b��t
t+�

�
if 9t� 4� (a� b� 3) (1� a� b) � 0

=
�
3t2+4t�(�5a+a2�b2+1)+16�2a(a+b�1)

4(t+�)(�3t+4�(a+b�1)) ;
3t2+4t�(�5b�a2+b2+1)+16�2b(a+b�1)

4(t+�)(�3t+4�(a+b�1))

�
if

8<: 9t� 4� (a� b� 3) (1� a� b) > 0
9t+ 4� (a� b+ 3) (1� a� b) > 0

9=;
=

�
a��t
t+� ;

t+b�
t+�

�
if 9t+ 4� (a� b+ 3) (1� a� b) � 0:

(15)

In the �rst stage of the game, upstream �rms choose locations to maximize their joint pro�ts:

�V IX = t(t+�(a�b�1)(1�a�b))
t+�

if 9t� 4� (a� b� 3) (1� a� b) � 0

= t(3t+2�(1�a�b))(9t+4�(a�b+3)(1�a�b))2

36(t+�)(3t+4�(1�a�b))2

if

8<: 9t� 4� (a� b� 3) (1� a� b) > 0
9t+ 4� (a� b+ 3) (1� a� b) > 0

9=;
= 0

if 9t+ 4� (a� b+ 3) (1� a� b) � 0:
Analogously, we calculate for �rms B-Y.

An upstream �rm will not choose a location that will make its own retailer obtain zero demand.

Therefore, in equilibrium both vertical chains avoid receiving zero demand. The relevant joint
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pro�t functions reduce to:

�V IX =
t (3t+ 2� (1� a� b)) (9t+ 4� (a� b+ 3) (1� a� b))2

36 (t+ �) (3t+ 4� (1� a� b))2

�V IY =
t (3t+ 2� (1� a� b)) (9t+ 4� (b� a+ 3) (1� a� b))2

36 (t+ �) (3t+ 4� (1� a� b))2

From the �rst order conditions we obtain: a = b = 3t+��3
p
�2+t2

8� .

Proposition 4 The unique subgame perfect equilibrium outcome under vertical integration and

upstream locations �rst is:

aV I = bV I =
3t+ � � 3

p
�2 + t2

8�

xV I = yV I =
t+ � � 3

p
t2 + �2

8 (t+ �)

pV IX = pV IY =
3t
�
8�3 + 19t�2 + 11t2� + 3t3 +

p
�2 + t2 (�3t+ 8�) (t+ �)

�
32� (t+ �)2

zV I = 0:5

�V IX = �V IY =
3t
�
t+ � +

p
t2 + �2

�
8 (t+ �)

We note that, in equilibrium, the market is equally shared between the two pairs of vertically

integrated �rms. Firms obtain positive pro�ts for all parameter values and the retailers are located

outside the unit interval (xV I = yV I < 0). Further, upstream �rms are located closer to the center

relative to the downstream �rms (aV I > xV I) and upstream �rms are located within the unit

interval (aV I > 0) when t > 4�
3 .

By substituting the equilibrium locations under vertical integration in the social cost function

(13), we calculate that, in equilibrium, the total social cost is:

SCV I =

Z 1
2

0
t(k � x)2dk +

Z 1

1
2

t(1� y � k)2dk +
�
�(x� a)2 + �(y � b)2

�
2

=
t
�
17t� + 17�2 + 27t2 � 9

p
�2 + t2 (3t� �)

�
96� (t+ �)

In a subsequent Subsection, we compare the vertical integration outcome to the equilibrium outcome

in our basic model.

6.2 Simultaneous location choices

Suppose now that the vertical integrated �rms choose their locations simultaneously in the �rst

stage, while the pricing stage of the game remains the same. Each pair of vertically integrated �rms
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choose their upstream and downstream locations simultaneously to maximize their joint pro�ts:

�V IX =

�
t(1� x� y)(3 + x� y) + �(y � b)2 � �(x� a)2

�2
18t(1� x� y)

�V IY =

�
t(1� x� y)(3 + y � x) + �(x� a)2 � �(y � b)2

�2
18t(1� x� y)

Pro�ts �V IX are maximized with respect to a and x and pro�ts �V IY are maximized with respect to

b and y. From the �rst order conditions of the upstream �rms, we �nd that each wholesaler chooses

to have the same location as the corresponding retailer:

a = x and b = y:

Further, from the �rst order conditions of the downstream �rms we obtain:14 a = x = b = y = �1
4 .

Thus, we have:

Proposition 5 In the simultaneous locations choice model, the equilibrium outcome under vertical

integration is:

aV I = bV I = xV I = yV I = �1
4

pV IX = pV IY =
3t

2

zV I = 0:5

�V IX = �V IY =
3t

4

All four �rms locate outside the unit interval, now at �1
4 . Note also that this result coincides with

the result of the standard D�Aspremont et al. (1979) model where there are no wholesalers.

6.3 Downstream locations �rst

With reversed order of location choices, downstream �rms choose their locations �rst and upstream

location choices follow. The �nal stage of the game is the same. From the analysis of our simulta-

neous locations case just above, we know that, in the second stage, upstream �rms locate exactly

on top of their corresponding retailers (a = x; b = y). Given these upstream locations the equi-

librium downstream locations in the �rst stage are calculated as x = y = �1
4 . Therefore, the

sequential locations outcome where downstream �rms determine their locations �rst coincides with

the simultaneous locations outcome.

6.4 Comparison

First, we compare the vertical integration case under the various timing assumptions on the order

of the location choices and then we compare the vertical integration to the vertical separation

14The second order conditions are satis�ed.
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outcome. We calculate that, for all parameter values, �1
4 < x

V I < aV I and �1
4 < y

V I < bV I . In

the simultaneous locations game the vertically integrated �rms move farther away from the city

center relative to the case where upstream locations are chosen �rst. In addition, joint pro�ts are

higher compared to the sequential locations choice game. Why then do not upstream �rms locate

at �1
4 in the sequential locations choice game, to obtain higher pro�ts? The argument parallels

the argument in Subsection 5.3. Each upstream �rm has a unilateral incentive to deviate from �1
4

and move closer to the center given that its rival is located at �1
4 and that downstream locations

will follow equation (15). Each wholesaler does this in an e¤ort to o¤er a strategic commitment

incentive to its own retailer, to help it move credibly closer to the market center and, in this way,

strengthen its position in the �nal market. However, both retailers become more competitive in

this way and all �rms obtain lower equilibrium pro�ts. Thus, we conclude that

Remark 11 Vertically integrated �rms would prefer to set their locations simultaneously (or the

retailers to move �rst) compared to the sequential game where upstream �rms move �rst.

It is important now to compare the equilibrium outcome under vertical integration (Proposition

4) to the vertical separation (Proposition 1). We compare the equilibrium locations and obtain:

Proposition 6 We have �1:75 < x� = y� < a� = b� < �1
4 < x

V I = yV I < aV I = bV I < 1
4 :

Under vertical separation downstream �rms locate farther away relative to the upstream �rms

(x� = y� < a� = b�) and the latter are located farther away relative to the simultaneous locations

choices under vertical integration (a� = b� < �1
4). Further, under vertical integration when up-

stream locations are chosen �rst, the downstream and upstream �rms move closer to the center

relative to the vertical separation (x� = y� < a� = b� < �1
4 < xV I = yV I < aV I = bV I) with

the upstream �rms to be located even closer to the center. However, product di¤erentiation under

vertical integration is greater than the social optimum (xV I = yV I < aV I = bV I < 1
4). Under

vertical integration, the aggregate marginal cost e¤ect (third e¤ect) is modi�ed, since the wholesale

prices are zero. A change in the location of �rm X, still a¤ects the marginal cost (fX) that it pays

since it a¤ects its transportation cost but there is no e¤ect through the wholesale price as in our

basic model. The equilibrium locations under vertical integration are closer to the unit interval,

thus, the price competition e¤ect is less intense when there is no competition on the wholesale

prices.

Now, let us turn to the �nal prices. We �nd that, in equilibrium, the �nal prices under vertical

separation are higher than under the vertical integration (p�X = p
�
Y > p

V I
X = pV IY ). This result did

not have to necessarily hold since in our model we have duopoly competition in each stage. We

�nd that each upstream �rm raises its price to a level that makes its retailer charge a higher �nal

price than the one would see in equilibrium under vertical integration. Only part of the negative

e¤ect to its retailer of an increased wholesale price is taken into account by the wholesaler, while

the remainder of this e¤ect emerges as an externality. We also compare for each symmetric pair of
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upstream and downstream locations (a = b; x = y) the �nal prices under vertical separation and

under vertical integration and �nd that:

Proposition 7 Final prices under vertical separation are always higher that under vertical inte-

gration, p�X (a = b; x = y) = p
�
Y (a = b; x = y) > p

V I
X (a = b; x = y) = pV IY (a = b; x = y). Double

marginalization emerges in equilibrium.

We �x the upstream and downstream locations and solve the vertical separation and vertical

integration case. We �nd that double marginalization emerges under vertical separation, with

positive pro�t margins at both upstream and downstream levels. We also compare the social cost

under vertical separation to the social cost under vertical integration and have:

Remark 12 The social cost under vertical separation is higher than under vertical integration.

Under vertical integration, the equilibrium locations are closer to the social optimum relative

to the equilibrium locations under vertical separation, thus, social cost is higher under vertical

separation in equilibrium.

7 Other extensions

In this Section we present two more extensions of our basic model. First, we study the model where

�rms are not allowed to locate outside the unit interval. Then, we allow retailers to locate to the

opposite side of their wholesalers on the line.

7.1 Locations in the unit interval

In this Subsection we modify our basic model so that �rms are restricted to locate within the [0,1],

an assumption often made in the literature. Our analysis of the game is as in the basic model,

however now a; b; x and y cannot take negative values. Thus, we have to solve for the restricted

location choices in the �rst and second stage of the game with the other stages remaining the same.

In the second stage of the game, the downstream �rms set their locations and their pro�t func-

tions are given by expressions (10) and (11). Can one of the two retailers in equilibrium serve the

whole market? Firm X takes the whole demand if �
�
(x� a)2 � (y � b)2

�
+t (y � x+ 9) (1� x� y) �

0. Given that all �rms are located in the unit interval, this expression can be negative only when

�(y� b)2 is higher than �(x� a)2+ t (y � x+ 9) (1� x� y). Thus, �rm Y can avoid receiving zero

demand by setting y = b, that is, locate at the same point as its supplier. Firm Y has some local

monopoly power and always serves some consumers located close to that �rm. Likewise, �rm X

can avoid receiving zero demand by setting x = a. Therefore, in equilibrium no retailer can serve

the whole demand, each retailer can assure at least some sales. The pro�t functions, thus, reduce

to:

�X =

�
�
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y)

�2
162t(1� x� y) ; (16)
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and

�Y =

�
�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y)

�2
162t(1� x� y) :

From the �rst order conditions we obtain (note that the pro�t margin is positive15):

x =

�
16a�2 (1� a� b) + 4t�

�
17a+ 6b� a2 + b2 � 7

�
� 63t2

�
4 (t+ �) (4� (1� a� b) + 9t) ;

and

y =

�
16b�2 (1� a� b) + 4t�

�
17b+ 6a� b2 + a2 � 7

�
� 63t2

�
4 (t+ �) (4� (1� a� b) + 9t) :

However, the pair of locations (x; y) is positive only if the numerators of x and y are positive

(also note that x; y < 1). Otherwise, due to the concavity of the pro�t functions, the equilibrium

locations become zero. We get four cases, depending on the values of a; b and the parameter values

t; � . In the second stage of the game, both retailers may be located within [0,1], both retailers may

be located at the two opposite endpoints or one retailer within [0,1] and the rival at the endpoint.

Nevertheless, in the �rst stage of the game, the wholesalers choose symmetric locations (a = b),

thus, we cannot obtain, as an equilibrium outcome, asymmetric locations downstream. Further,

from the analysis of the unrestricted locations model, we �nd that all four �rms are located outside

the unit interval. Thus, in the restricted locations model, we cannot obtain an equilibrium with

all four �rms located in [0,1], since there does not exist such an equilibrium in the unrestricted

locations model.

Also, in the unrestricted locations model, the forces that push retailers away from the centre

of the unit line are stronger relative to the wholesalers. Thus, there are two possible equilibrium

outcomes in the restricted locations model. Retailers locate at the two opposite endpoints and

the wholesalers either locate within the unit interval or at the endpoints as their corresponding

retailers. We prove that when retailers are located at the two opposite endpoints (x = y = 0),

the wholesalers maximize their pro�ts, in the restricted locations model, by locating at the two

opposite endpoints as their retailers (a = b = 0).

The following results summarize the equilibrium outcome and the social cost in equilibrium.16

Proposition 8 The equilibrium outcome with locations restricted in the unit interval is:

a� = b� = x� = y� = 0;

w�A = w�B = 3t; p
�
X = p

�
Y = 4t;

z� = 0:5;

��A = ��B =
3t

2
; ��X = �

�
Y =

t

2
:

15The pro�t margin of �rm X is positive when �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y) > 0 and the pro�t

margin of �rm Y is positive when �
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) > 0. Also, the second order

conditions are satis�ed in equilibrium.

16 In equilibrium, the inequality fX < fX < cfX holds true and corresponds to �3t < 0 < 3t.
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Remark 13 The social cost in equilibrium with locations within the unit interval is equal to t
12 .

As the transportation cost parameter t increases, the social cost increases too.

In equilibrium, the social cost is simply equal to the transportation cost of the consumers since

this is a unit �nal demand model (prices do not a¤ect welfare) and the downstream �rms are located

at the same point as their suppliers:

SC =

Z 1
2

0
t(z � x)2dz +

Z 1

1
2

t(1� y � z)2dz =
Z 1

2

0
tz2dz +

Z 1

1
2

t(1� z)2dz = t

12
:

As the transportation cost parameter t of the consumers increases, products become more dif-

ferentiated and the pro�ts of the upstream and downstream �rms increase. We observe that the

cost parameter � that a¤ects the transportation cost paid by the downstream �rms when supplied

by the upstream �rms does not a¤ect the equilibrium prices and pro�ts as retailers are located

at the same point as their suppliers. The wholesale and product prices in the restricted locations

model are lower than in our basic model where �rms locate anywhere on the real line. Again, there

are three forces that a¤ect the location choices. The demand e¤ect, the price competition e¤ect

and the aggregate marginal cost e¤ect. The forces that push �rms farther away from each other

dominate the forces that push them towards each other and this lead to maximum di¤erentiation.

This result was expected since in the unrestricted locations model we have obtained that all four

�rms locate outside the unit interval (and since the pro�t functions are quasi-concave).

We should also note that if we modify the restricted locations model to have all four �rms

simultaneously choose their locations, we obtain that again upstream �rms locate at the same point

as their retailers and that maximum di¤erentiation occurs (a = x = 0 and b = y = 0) as opposed to

the unrestricted locations model where all �rms locate at �1:75. So, in the simultaneous locations
choice model with locations within [0,1] we obtain the same equilibrium outcome compared to the

sequential location choices with restricted locations.17

7.2 Retailers locating at the opposite side from the wholesalers

In our analysis we have assumed that upstream �rm A locates to the left of B: this is simply a matter

of labelling and without loss of generality. We have also proceeded to the equilibrium derivation

assuming that each downstream �rm locates at the same side of the line as the corresponding

upstream (X with A and Y with B). Doing so has allowed us to simplify the exposition in the �rst

two stages of the game and focus on the core arguments. Here, for completeness, we investigate

the possibility that, while A is to the left of B, X locates to the right of Y. We �nd that for some

upstream locations and parameter values it could also be an equilibrium in the second stage of

17Matsushima (2004) solves the simultaneous restricted locations choice model so that upstream �rms price dis-

criminate among downstream �rms. He �nds that for some parameters values downstream �rms are located closer to

the center of the unit interval compared to the upstream �rms in an e¤ort to reduce the wholesale prices they pay. In

our model, there is no such incentive since each retailer has its own supplier and no price discrimination takes place.
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the game that the retailers locate at the opposite side of the line relative to the corresponding

wholesaler. We also show that second stage equilibrium pro�t is lower in this arrangement. Still,

we do not �nd an equilibrium of the entire game when all locations (upstream and downstream) are

endogenous and are chosen so that wholesalers�and retailers�locations are chosen at the opposite

side of one another.

We proceed with the analysis. Let us �x the upstream locations (with 1 � a � b > 0). Thus

far we have assumed that 1 � x � y > 0. In Appendix A, we calculate the pro�t functions of the
downstream �rms when �rm X is located at the same point of Y (with 1 � x � y = 0) or to the

right of �rm Y (with 1� x� y < 0). The overall pro�t function of �rm X is then:

�X=

8>><>>:
�LX if 1� x� y > 0
0 if 1� x� y = 0
�RX if 1� x� y < 0;

where �LX is the pro�t for X when X is to the left (L) of Y and �RX is the pro�t when X is to the

right (R) of Y with:

�LX = 2t(1� x� y)
if �

�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) � 0

= (�((y�b)2�(x�a)2)+t(x�y+9)(1�x�y))
2

162t(1�x�y)

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (x� y + 9) (1� x� y) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) > 0

9=;
= 0

if �
�
(x� a)2 � (y � b)2

�
� t (x� y + 9) (1� x� y) � 0

(17)

and

�RX = 2t (x+ y � 1)
if �

�
(x� a)2 � (y � b)2

�
+ t (x� y + 9) (x+ y � 1) � 0

= (�((y�b)2�(x�a)2)+t(y�x+9)(x+y�1))
2

162t(x+y�1)

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 9) (x+ y � 1) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (x� y + 9) (x+ y � 1) > 0

9=;
= 0

if �
�
(x� a)2 � (y � b)2

�
� t (y � x+ 9) (x+ y � 1) � 0:

(18)

We can also write the pro�t function of �rm Y in an analogous way.
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Our main result in this Subsection is that for symmetric upstream locations (a = b) and su¢ -

ciently high transportation cost parameter t there is an additional equilibrium when the downstream

locations are set. In the second stage of the game, given the location of �rm Y (and the locations

of the upstream �rms and the cost parameters t; �) �rm X can choose to locate either to the left

or to the right of �rm Y. We have already characterized in Subsection (4.3) an equilibrium where

�rm X locates to the left of �rm Y (see Appendix B for the proof). Now, we will prove that, for

some parameter values, there is another equilibrium where �rm X locates to the right of �rm Y.

If there is an equilibrium where �rm X is located to the right of �rm Y, with locations say (bx; by),
the optimal location choices of the downstream �rms will be given by the maximization of the

downstream �rms�pro�ts �RX (equation (18)) and �
R
Y respectively. From the �rst order conditions

we calculate that:

bx =
16a�2 (a+ b� 1) + 4t�

�
19a+ 12b+ a2 � b2 � 11

�
+ 99t2

4 (t+ �) (4� (a+ b� 1) + 9t) ; (19)

by =
16b�2 (a+ b� 1) + 4t�

�
19b+ 12a+ b2 � a2 � 11

�
+ 99t2

4 (t+ �) (4� (a+ b� 1) + 9t)

if

9t+ 2� (a+ b� 1) > 0;

(81t+ 4� (a� b� 9) (1� a� b))
9t+ 4� (a+ b� 1) > 0;

(81t+ 4� (a� b+ 9) (a+ b� 1))
(9t+ 4� (a+ b� 1)) > 0

with

�RX(bx; by) =
t (9t+ 2� (a+ b� 1)) ((81t+ 4� (a� b� 9) (1� a� b)))2

324 (t+ �) (9t+ 4� (a+ b� 1))2
;

�RY (bx; by) =
t (9t+ 2� (a+ b� 1)) ((81t+ 4� (a� b+ 9) (a+ b� 1)))2

324 (t+ �) (9t+ 4� (a+ b� 1))2
:

The �rst constraint is necessary to have positive equilibrium pro�ts and the other two to have

positive pro�t margins (to assure that the calculated quantities are not negative). Thus, if such an

equilibrium (bx; by) exists, it will satisfy the conditions under (19).
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Figure 5: Downstream pro�ts with �rm X

located either to the left or right of �rm Y

Figure 5 illustrates the nature of the problem. When the upstream �rms are located at the two

opposite endpoints and the transportation cost parameters are equal to one, we obtain by = 1:375.
In Figure 5, we plot the pro�t function of �rm X allowing X to be located either to the left or to the

right of �rm Y. When �rm X is located to the left of �rm Y and far enough from the unit interval

and its own supplier, it gets zero demand and pro�ts. There is an interval where �rm X is located

to the left of �rm Y and both �rms sell to the �nal consumers. However, when X is located close

to Y, either to the left or to the right, X captures the whole demand. Firm X has a cost advantage

compared to �rm Y and reduces its retail price to capture the whole demand. This cost advantage

is greater when �rm X is located to the right of �rm Y, since �rm X is closer to its supplier, �rm A.

Thus, the pro�ts of �rm X when it captures the whole demand are higher when it chooses the side

that is closer to its supplier. There is again an interval where the two retailers share the market,

but now �rm X is to the right of �rm Y. Finally, if �rm X is located to the right of �rm Y and

away from the unit interval, it obtains zero demand since it has a signi�cant cost disadvantage and

is located away from [0,1] where consumers live.

We prove that for symmetric upstream locations and some parameter values t; � , �rm X (given

y = by = 11t+4a�
4(t+�) ) obtains higher pro�ts when it locates to the right of �rm Y and shares the market

with Y compared to the pro�ts obtained when it locates to the left of Y and shares the market or it

locates to the left of Y and captures the whole demand or it locates to the right of Y and captures

the whole demand. The total maximum of �rm X�s pro�ts is to the right of �rm Y when both �rms

sell to the �nal consumers. Figure 5 presents an example. Employing symmetry, we prove that, for

certain parameter values and given bx, the best response of �rm Y is by.
Proposition 9 For �xed and symmetric upstream locations and t � 4�(1�2a)

9 , the pair of locationsbx = by = 11t+4a�
4(t+�) constitutes an equilibrium in the second stage of the game.
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We �nd that: if the transportation cost parameter of the consumers, t, is high enough (compared

to �), it can also be an equilibrium in the second stage of the game that retailers locate at the

opposite side of the corresponding wholesaler. In the extreme case where t is positive and � is

zero, retailers pay zero transportation costs when supplied by their wholesalers. This is equivalent

to locating at the optimum points on the real line either to the same or the opposite side of their

wholesalers. In Figure 5, we assume a = b = 0 and � = 1, therefore we need t � 4
9 , which is satis�ed

since t = 1.

Therefore, there can be two equilibria in the second stage of the game for �xed upstream lo-

cations, a = b, and for t � 4�(1�2a)
9 . Retailers either locate to the same side (see (x�; y�), from

equation (12) for a = b) or to the opposite side of their wholesalers (bx; by) :
x� = y� =

�7t+ 4a�
4 (t+ �)

; �LX (x
�; y�) = �LY (x

�; y�) =
t (9t+ 2� (1� 2a))

4 (t+ �)

and bx = by = 11t+ 4a�

4 (t+ �)
; �RX(bx; by) = �RY (bx; by) = t (9t� 2� (1� 2a))

4 (t+ �)
:

We now compare the pro�ts in the two equilibria and �nd that equilibrium (x�; y�) Pareto dominates

(bx; by) since �LX (x�; y�) > �RX(bx; by).18 Downstream equilibrium pro�ts are higher when retailers are

located closer to their suppliers.

Can this behavior be part of a subgame perfect equilibrium in the whole game? If we make

the upstream �rms locate at the points indicated in Proposition 1 (a� = b� = 9t�5��9
p
�2+t2

8� ) we

calculate that we can have this additional equilibrium bx = by = 31t�5��9
p
�2+t2

8(t+�) in the second stage

of the game when t � 4
3� . Retailers locate either at (x

�; y�) or at (bx; by) in the second stage of the
game for these �xed upstream locations. He have proved numerically that the pair (a�; b�) is not an

equilibrium pair of locations in the �rst stage of the game, when it is anticipated that the retailers,

in the equilibrium of the subsequent stage, locate at (bx; by). Each wholesaler then has an incentive
to deviate from (a�; b�).

8 Conclusion

Our paper contributes to the horizontal di¤erentiation literature and the vertical contracting liter-

ature. We have studied a linear city model with duopoly upstream and downstream. Wholesalers

and then retailers choose their locations and then their prices, before consumers make their choices.

We derive a unique subgame perfect equilibrium of this �ve stage game and examine its properties.

We �nd that wholesalers choose to become less di¤erentiated (that is, locate closer to the unit

interval) than the retailers and that di¤erentiation is greater compared to the vertical integration

benchmark (which in turn is greater than in the social optimum). We also �nd positive pro�t mar-

gins both upstream and downstream and that �nal prices are higher than under vertical integration

18For symmetric upstream locations, we have a = b < 1
2
.
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(�double marginalization�). Thus, vertical separation in our duopoly implies both a higher social

cost (of transportation) and higher �nal prices for the consumers.

Considering a number of extensions o¤ers additional insights into the problem. When �rms�

locations are restricted to the unit interval, maximum di¤erentiation is obtained. We also modify

the order of location choices. When locations are chosen simultaneously by all four �rms or the

downstream locations are chosen before the upstream, the upstream and the downstream �rms in

each pair choose the same location. This location is also farther away from the city center relative

to the case when upstream locations are chosen �rst: in that case, the wholesalers locate closer to

the city center with the goal to also pull their retailers closer to the center, so that they can each

strategically strengthen their retailer�s position in the downstream market. Still, since this happens

for both vertical chains, the end result is a more competitive market (than when all locations are

chosen simultaneously) and pro�ts are lower.

The framework studied in this paper allows a number of additional extensions and modi�ca-

tions. While the results presented here take a relatively simple and clear form, the equilibrium

calculations for this model or its variations are quite involved, as one should expect from a �ve

stage game, especially when care has to be taken for possible corner solutions. Still, a number of

extensions appear promising. In companion work we consider the role of price discrimination and

non exclusive vertical relations. Modi�cations of the product di¤erentiation structure, pricing and

contracting and the timing of the game may o¤er additional important insights, and so would mod-

els where consumers may directly care also about the upstream choices (and not only indirectly, as

in our model). Of course, empirical work that studies the interplay of product di¤erentiation and

vertical contracting will also be very important and hopefully our theoretical study of the topic

also contributes in this direction.
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Appendix A

Pro�t function of �rm X for locations x to the left or the right of y.. In Section

(4.3) we provide the pro�t functions of the downstream �rms when 1 � x� y > 0; that is, �rm X

is located to the left of �rm Y. Now, we also study the case where 1� x� y = 0 and 1� x� y < 0
where �rm X is located at the same point or to the right of �rm Y. When 1� x� y < 0 we cannot
simply replace in the pro�t functions (10) and (11), x with 1 � y and y with 1 � x since there is
exclusive dealing between �rm X and its supplier A and between �rm Y and its supplier B. If �rm

X is located to the right of �rm Y, it is still supplied by �rm A which is located to the left of �rm

B. Thus, when �rm X is located to the right of �rm Y is not completely symmetric to when �rm

Y is located to the right of �rm X, since they have di¤erent suppliers.

Assume 1 � x � y = 0, so that retailers are located at the same point on the line. There is no
product di¤erentiation downstream and consumers buy one unit of the product from the cheapest

retailer. The demand of �rm X, z, becomes:

z = DX= DA=

8>><>>:
1 if pX< pY
1
2 if pX= pY

0 if pX> pY :

Downstream competition is very intense (Bertrand competition) and pushes �nal prices to the

marginal cost. Firm X faces aggregate marginal cost fX = wA + �(x � a)2 and �rm Y fY =

wB+�(y�b)2. Thus, �nal price is set equal to maxffX ; fY g and the �rm with the lowest aggregate
marginal cost captures the whole demand and enjoys positive pro�ts. The pro�t function of �rm

X becomes:

�X=

8<: wB�wA+�
�
(y � b)2�(x� a)2

�
if wA+�(x� a)2< wB+�(y � b)2

0 if wA+�(x� a)2� wB+�(y � b)2:

Since �rm X is supplied by �rm A, the pro�t function of �rm A is:

�A=

8<: wA if wA< wB+�
�
(y � b)2�(x� a)2

�
0 if wA� wB+�

�
(y � b)2�(x� a)2

�
:

Downstream competition is transferred to the upstream level and the wholesale prices are reduced

to the di¤erence in the transportation costs of the two retailers (minus " ' 0). If �rm B charges a

wholesale price higher than that level, �rm A can undercut wB and capture the whole demand via

its retailer X. Thus:

wA =

8<: �
�
(1� x� b)2�(x� a)2

�
if (1� x� b)2�(x� a)2> 0

0 otherwise;

wB =

8<: �
�
(x� a)2�(1� x� b)2

�
if (x� a)2�(1� x� b)2> 0

0 otherwise:

The pro�ts of X reduce to zero, �X=0, as �
�
(1� x� b)2�(x� a)2

�
�
�
�
�
(1� x� b)2�(x� a)2

��
= 0.

In an analogous manner �Y=0.
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Assume 1�x� y < 0, so that �rm X is located to the right of �rm Y. The indi¤erent consumer

is given by:

pY+t(z� (1� y) )2= pX+t(x� z)2

and the demand of �rm Y (z) that is located on the left of �rm X is:

z = DY= DB=

8>>><>>>:
1 if 1+x�y

2 + pX�pY
2t(x+y�1) � 1

1+x�y
2 + pX�pY

2t(x+y�1) if 0 < 1+x�y
2 + pX�pY

2t(x+y�1) < 1

0 if 1+x�y
2 + pX�pY

2t(x+y�1) � 0:

The pro�t functions of �rms X and Y are:

�RX = (pX�fX) (1� z) ;

and �RY = (pY � fY ) z:

The superscript R refers to the case where �rm X is to the right of �rm Y. From the �rst order

conditions, we obtain the equilibrium �nal price for �rm X (likewise, for �rm Y):

pRX=

8>>>>>><>>>>>>:

fY�t (x+ y � 1) (1 + x� y) if fX� fY�t (3� y + x) (x+ y � 1)

1
3 (t (x+ y � 1) (3 + y � x)+fY+2fX) if

8<: fY�t (3� y + x) (x+ y � 1)< fX
fX< fY+t (3� x+ y) (x+ y � 1)

9=;
fX if fX� fY+t (3� x+ y) (x+ y � 1)

with the respective pro�ts

�RX=

8>>>>>><>>>>>>:

fY � t (x� y + 1) (x+ y � 1)� fX if fX� fY�t (3� y + x) (x+ y � 1)

(t(x+y�1)(3+y�x)+fY �fX)2
18t(x+y�1) if

8<: fY�t (3� y + x) (x+ y � 1)< fX
fX< fY+t (3� x+ y) (x+ y � 1)

9=;
0 if fX� fY+t (3� x+ y) (x+ y � 1) :

In the third stage, upstream �rms seek to maximize their pro�ts �RA= wA(1� z) and �RB = wBz
with respect to their wholesale prices. Assuming equilibrium in the subsequent stage, the pro�t

function of �rm A becomes:

�RA = 0

if wA� wB+�
�
(y � b)2�(x� a)2

�
+t (y � x+ 3) (x+ y � 1)

= wA

�
1�

�
2t(y�x)(x+y�1)+wA�wB+�((x�a)2�(y�b)2)

6t(x+y�1) + 1
2(1 + x� y)

��
if

8<: wA< wB+�
�
(y � b)2�(x� a)2

�
+t (y � x+ 3) (x+ y � 1)

wA> wB+�
�
(y � b)2�(x� a)2

�
�t (x� y + 3) (x+ y � 1)

9=;
= wA

if wA� wB+�
�
(y � b)2�(x� a)2

�
�t (x� y + 3) (x+ y � 1) :
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When the aggregate marginal cost faced by �rm X, wA+ �(x� a)2, is high enough, the demand of
�rm X reduces to zero, thus, �rm A gets zero demand too. For intermediate prices, wA, the market

is shared with �rm B and for very low prices �rm A captures the whole demand. As in section

(4.2), we calculate the equilibrium wholesale prices for �rm A (analogously for �rm B):

wRA = �
�
(y � b)2 � (x� a)2

�
� t (x� y + 3) (x+ y � 1)

if �
�
(x� a)2 � (y � b)2

�
+ t (x� y + 9) (x+ y � 1) � 0

=
�((y�b)2�(x�a)2)+t(y�x+9)(x+y�1)

3

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 9) (x+ y � 1) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (x� y + 9) (x+ y � 1) > 0

9=;
= 0

if �
�
(x� a)2 � (y � b)2

�
� t (y � x+ 9) (x+ y � 1) � 0:

The corresponding pro�ts for �rm X are:

�RX = 2t (x+ y � 1)
if �

�
(x� a)2 � (y � b)2

�
+ t (x� y + 9) (x+ y � 1) � 0

= (�((y�b)2�(x�a)2)+t(y�x+9)(x+y�1))
2

162t(x+y�1)

if

8<: �
�
(y � b)2 � (x� a)2

�
+ t (y � x+ 9) (x+ y � 1) > 0

�
�
(x� a)2 � (y � b)2

�
+ t (x� y + 9) (x+ y � 1) > 0

9=;
= 0

if �
�
(x� a)2 � (y � b)2

�
� t (y � x+ 9) (x+ y � 1) � 0:

Section (4.3) provides the pro�ts of �rm X when located to the left of �rm Y (�LX) and Appendix

A presents the pro�ts of �rm X when X is located at the same point or to the right of �rm Y (�RX).

Thus,

�X=

8>><>>:
�LX if 1� x� y > 0
0 if 1� x� y = 0
�RX if 1� x� y < 0:

Appendix B

Proof of the downstream equilibrium locations. In Section (4.3) we prove that there is

an equilibrium in the second stage of the game, when �rm X is located to the left of �rm Y, say

(x�; y�) with:

x� =

�
16a�2 (1� a� b) + 4t�

�
17a+ 6b� a2 + b2 � 7

�
� 63t2

�
4 (t+ �) (4� (1� a� b) + 9t) ;

y� =

�
16b�2 (1� a� b) + 4t�

�
17b+ 6a� b2 + a2 � 7

�
� 63t2

�
4 (t+ �) (4� (1� a� b) + 9t) :
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However, we do not compare the pro�ts of �rm X when located either to the left or the right of

�rm Y. We assume that �rm X is located to the left. Now we complete the proof and show that

given y = y�, �rm X prefers to locate at the left of �rm Y at point x�, compared to the right of

�rm Y. For simplicity, we provide the proof for symmetric upstream locations (a = b) since this

will be the equilibrium outcome.

Initially we prove that given y = y� = �7t+4a�
4(t+�) , �rm X cannot capture the whole demand either

located to the left or to the right of �rm Y. Firm X would serve the whole market located to the

left of �rm Y if:

�
�
(x� a)2 � (y � b)2

�
+ t (y � x+ 9) (1� x� y) � 0

or x 2 (x1; x2) with

x1 � 20t+ 4a� � 3
p
t (9t� 16� + 32a�)

4 (t+ �)
;

x2 � 20t+ 4a� + 3
p
t (9t� 16� + 32a�)

4 (t+ �)
:

Since 1�y� < x1 < x2, we have that inequality �
�
(x� a)2 � (y � b)2

�
+t (y � x+ 9) (1� x� y) � 0

is not satis�ed. Firm X would serve the whole market located to the right of �rm Y if:

�
�
(x� a)2 � (y � b)2

�
+ t (x� y + 9) (x+ y � 1) � 0

or x 2 (x4; x3) with

x3 � �16t+ 4a� + 3
p
t (81t+ 16� � 32a�)

4 (t+ �)
;

x4 � �16t+ 4a� � 3
p
t (81t+ 16� � 32a�)

4 (t+ �)
:

Since 1�yL > x3 > x4, we have that inequality �
�
(x� a)2 � (y � b)2

�
+t (x� y + 9) (x+ y � 1) �

0 is not satis�ed.

Thus, we have to prove that �rm X prefers to share the market with �rm Y and locate to the

left of Y. Firm X maximizes its pro�ts to the left at x� with:

�LX(x
�; y�) =

t (9t� 2� (2a� 1))
4 (t+ �)

;

x� =
�7t+ 4a�
4 (t+ �)

and to the right at x+ with

�RX(x
+; y�) =

(9t� 2� (2a� 1)) (9t� 16� + 32a�)2

8748t (t+ �)
;

x+ =
51t+ 16� � 20a�

12 (t+ �)

for

9t+ 16� (2a� 1) > 0:
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The constraint 9t+ 16� (2a� 1) > 0 is necessary so that both �rms sell, when X is located to the
right of Y. If a is low enough, that is, upstream �rms are located away from the unit interval, �rm

X can never sell when located to the right of �rm Y since its supplier A is far away. We compare

the pro�ts �LX(x
�; y�) and �RX(x

+; y�) and obtain �LX(x
�; y�) > �RX(x

+; y�).

Appendix C

Proof of the second equilibrium in the second stage of the game for �xed and

symmetric upstream locations. For symmetric upstream locations (a = b) and given y =by = 11t+4a�
4(t+�) , the pro�ts of �rm X when it locates to the right of �rm Y and shares the market are

maximized at bx where:
�RX(bx; by) =

t (9t+ 2� (2a� 1))
4 (t+ �)

;

bx =
11t+ 4a�

4 (t+ �)
:

Firm X maximizes its pro�ts when it locates to the left of �rm Y and shares the market at x� with:

�LX(x
�; by)

=

�
4 (�9t+ 4� (2a� 1))

q
(9t� 8� + 16a�)2+4

�
�81t2+288t� (2a� 1) + 32�2 (2a� 1)2

��2
279 936t (t+ �)

�
9t+ 4� (1� 2a)+

q
(9t� 8� + 16a�)2

� ;

x� = �

�
15t+ 2� (a� 2) + 1

2

q
(9t� 8� + 16a�)2

�
6 (t+ �)

:

When �rm X locates to the left of �rm Y and captures the whole demand, its pro�ts are maximized

at xLm with:

�LX(x
L
m; by) = 2t(1� x� y) =

t
�
4� (1� 2a)� 27t+ 3

p
t (81t+ 16� (2a� 1))

�
2 (t+ �)

;

xLm =
20t+ 4a� � 3

p
t (81t+ 16� (2a� 1))
4 (t+ �)

:

Finally, �rm X captures the whole demand located to the right of �rm Y and maximizes its pro�ts

at xRm where:

�RX(x
R
m; by) =

t
�
�9t� 4� + 8a� + 3

p
t (9t� 16� (2a� 1))

�
2 (t+ �)

;

xRm =
�16t+ 4a� + 3

p
t (9t+ 16� (1� 2a))

4 (t+ �)
:

The (bx; by) pair of locations is an equilibrium in the second stage of the game when:

�RX(bx; by) � �LX(x
�; by);

�RX(bx; by) � �LX(x
L
m; by);

and �RX(bx; by) � �RX(x
R
m; by)

41



are satis�ed. By direct calculations we �nd that when �RX(bx; by) � �LX(x
�; by) then �RX(bx; by) �

�LX(x
L
m; by) and �RX(bx; by) � �RX(xRm; by). Inequality �RX(bx; by) � �LX(x�; by) is satis�ed when:

t � 4� (1� 2a)
9

:
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