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1 Introduction

Aggregate stock market returns display negative skewness, the propensity to generate neg-

ative returns with greater probability than suggested by a symmetric distribution. A large

body of literature has aimed to explain this stylized fact about the distribution of aggregate

stock returns (e.g., Fama, 1965, Black, 1976, Christie, 1982, Blanchard and Watson, 1982,

Pindyck 1984, French et al., 1987, Hong and Stein, 2003). The evidence on aggregate returns

contrasts with another stylized fact, namely, that firm-level returns are positively skewed.

For this reason, theories of negative skewness that model single-firm stock markets necessar-

ily depict an incomplete picture. In this paper I provide a unified theory for both stylized

facts by explicitly modeling firm-level heterogeneity and present evidence consistent with the

theory.

The paper develops a simple stationary asset pricing model of cash payout and earnings

announcement events to capture the basic stylized facts on volatility and mean returns around

such events. When cash payouts are periodic, cash flow news is discounted according to

the time remaining until the next payout. The impact of news on the conditional return

volatility is thus greater for news released closer to the payout. This gives rise to a pattern of

increasing conditional return volatility, despite homoskedastic news. In addition, discounting

also implies that the conditional return volatility increases at an increasing rate. The presence

of a risk-return trade-off in the model implies that these properties apply to expected returns

and induces positive skewness in conditional mean returns.

Next, consider earnings announcement events that do not coincide with a payout event. At

an earnings announcement, the disclosure of new information, which can be used to update

old signals, results in conditionally higher return volatility and mean returns. Firm-level

returns may thus display sporadic and short-lived periods of high volatility and high mean

returns consistent with positive skewness in conditional mean returns.

I show that the equilibrium unconditional distribution of stock returns is a mixture of

normals distribution. Under a mixture of normals distribution, skewness in stock returns is

given by two components. The first component is skewness in conditional mean returns. The

second component captures the association between expected returns and conditional return

variance and is positive given the risk-return trade-off imbedded in the model. With both

terms positive, the model can generate positive skewness in firm-level stock returns.

To explain the apparent disconnect between firm-level return skewness and aggregate
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return skewness, consider a portfolio of firms that have positively skewed returns. Skewness

of a portfolio return is the sum of firm-level return skewness and various co-skewness terms.

Co-skewness terms are inherently cross-sectional terms, and loosely speaking, capture co-

movement in one firm’s conditional mean return with the conditional variance of the portfolio

that comprises the remaining firms.1 Hence, co-skewness terms are negative when on average

a low return on one stock coincides with high return volatility in the portfolio of the remaining

stocks. When co-skewness is suffi ciently negative, the portfolio that consists of these firms

has a larger probability of low outcomes than predicted by a symmetric distribution.

I assume that firms’announcement events occur at heterogeneous dates. When firms have

different cash payout dates, the high mean return and return volatility of some firms around

their event date contrasts with the low return volatility of the portfolio of the remaining

firms. This generates negative co-skewness in the market portfolio. A “perfect storm”in the

stock market is thus likely to occur during an “announcement season”in which a significant

fraction of firms display high return volatility, while the rest display low expected returns

and low return volatility.

The paper provides evidence consistent with the above model predictions. Using CRSP

daily stock returns to compute skewness over six-month periods from 1973 to 2009, I first

document that firm-level skewness is higher than aggregate skewness 96% of the time. More-

over, firm-level return skewness is always positive except once, in the second half of 1987,

whereas market skewness is almost always negative. Bakshi et al. (2003) and Conrad et al.

(2009) document a similar disconnect in ex-ante skewness in firm and portfolio returns.

The evidence that the cross-sectional dispersion in event dates can produce the correct

sign for aggregate return co-skewness uses data on earnings announcement events. As in the

model, earnings announcements are associated with brief periods of high volatility and high

mean returns (Ball and Kothari, 1991, and Cohen et al., 2007). I use earnings announcement

dates over the 1973 to 2009 period from the merged CRSP/Compustat quarterly file. I

construct two experiments, both of which use daily return data over six-month periods. In the

first experiment, I form portfolios of firms based on the calendar week of their first earnings

announcement in each semester. I then group the firms in the first portfolio (first-week

announcers) with those firms announcing k weeks later and report the six-month portfolio

1 Intuitively, the co-skewness in a portfolio return skewness calculation resembles the covariance in a portfolio
return variance calculation: A portfolio may have lower skewness than the mean skewness of its component
stocks as it may also have lower variance than the mean variance of its component stocks.
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return skewness. I show that, as in the model, there is a symmetric U-shaped pattern in

skewness: The portfolio of firms that announce in weeks 1 and 2 has similar return skewness

to the portfolio of firms that announce in weeks 13 and 1, and their skewness is higher than

the skewness in any other portfolio configuration.

In the second experiment, I form portfolios of firms that announce in weeks 1 through k

in the quarter for k = 2, ...13, and report the respective portfolio return skewness. This ex-

periment constructs stock markets with announcement seasons. I show that, consistent with

the model, there is a negative relationship between skewness and the increased heterogeneity

that results from adding dispersion in event dates. I also show that portfolio skewness in the

model can be negative if suffi cient heterogeneity in event dates is allowed. The predictive

power of this last result hinges on information flowing to the market in the form of announce-

ment seasons. I show that firms in the U.S. tend to announce between weeks two and eight

in each quarter, consistent with the existence of an earnings announcement season.

The beginning of an announcement season is also the period in the model that most

contributes to the overall negative skewness in the market. Consistent with this model pre-

diction, I split aggregate skewness into its weekly components and document that aggregate

skewness is particularly negative around the beginning of an earnings announcement season.

Finally, I compare the level of co-skewness across industries with varying degrees of cross-

sectional variation in earnings announcement dates. The evidence suggests that industries

with greater dispersion of earnings announcement dates have more negative co-skewness.

An alternative explanation for why market skewness differs in sign from firm skewness is

the existence of a negatively skewed return factor (Duffee, 1995). Following Duffee (1995), I

remove the market return—a negatively skewed factor—from firm returns to obtain “idiosyn-

cratic”returns. I show that while some results are weaker when CAPM-based idiosyncratic

returns are used, the evidence is still broadly consistent with the model. Ideally, the use of

structural models that nest various theories of negative aggregate skewness can provide for

more statistically powerful identification strategies.

The model in this paper is consistent with the evidence from dividend and earnings

announcements. Aharony and Swary (1980), Kalay and Loewenstein (1985), and Amihud

and Li (2006) show that dividend announcements are associated with high returns and high

volatility of stock returns. Ball and Kothari (1991) and Cohen et al. (2007) show that

the high expected returns around earnings announcements are also associated with high

volatility. In addition, in this paper, the increase in expected returns and firm volatility is
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driven by an increase in systematic risk. Using daily firm-level betas, Patton and Verardo

(2010) document an economically and statistically significant increase in firm beta on days

of earnings announcements. Finally, there is evidence that firm-level stock returns are well

described by a mixture of normals distribution (see Kon, 1984, Zangari, 1996, and Haas et

al., 2004).

Many studies have focused on asymmetric volatility as an explanation for negative skew-

ness in aggregate stock returns. Black (1976) and Christie (1982) posit the existence of a

leverage effect, whereby a low price leads to increased market leverage, which in turn leads to

high volatility (see also Veronesi, 1999). Pindyck (1984), French et al. (1987), Campbell and

Hentschel (1992), Bekaert and Wu (2000), Wu (2001), and Veronesi (2004) further propose

the existence of a volatility feedback effect, whereby high volatility is associated with a high

risk premium and a low price. Blanchard and Watson (1982) show that negative skewness can

result from the bursting of stock price bubbles. Hong and Stein (2003) hypothesize that short

sales constraints limit the market’s ability to incorporate bad news. According to their model,

when more bad news arrives in the market, the price responds to the cumulative effect of news

and falls at a time when volatility may be high (see also Bris et al., 2007). These papers have

made important contributions to our understanding of the dynamics of return volatility and

skewness. The current paper contributes to this literature by providing a bottom-up theory

for negative skewness in aggregate stock returns that explicitly models positive skewness in

firm-level returns and firm-level heterogeneity. This paper also contributes to the literature

by documenting empirically the sources of negative skewness in aggregate returns.2

Finally, the model is related to the literature that analyzes the flow of information in

the stock market (e.g., He and Wang, 1995), and the literature that studies properties of

stock returns around public news events (e.g., Kim and Verrecchia, 1991, 1994). This paper

provides a stationary asset pricing model of events to study skewness in stock returns.

The paper is organized as follows. Section 2 describes the model and Section 3 describes

the stock market equilibrium. Section 4 analyzes the skewness properties of aggregate stock

returns. Section 5 presents a model with incomplete information and earnings announcement

events. Section 6 presents evidence on the paper’s main hypotheses and Section 7 concludes.

2There is also a literature that documents that skewness is priced; total skewness (e.g., Arditti, 1967);
co-skewness (e.g., Kraus and Litzenberger, 1976, and Harvey and Siddique, 2000); or, idiosyncratic skewness
(e.g., Boyer et al., 2010). For models of positive skewness at the firm level see Duffee (2002), Grullon et al.
(2010), Hong et al. (2008), and Xu (2007). Hong et al. (2007) develop a model that predicts negatively
skewed returns for glamour stocks and positively skewed returns for value stocks.
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The Appendix contains the proofs of the propositions and some additional results.

2 The Model

I construct a simple model that captures the observed changes in volatility and mean returns

around dividend announcement events. I use this model to show that the observed pattern of

conditional volatility leads to positive skewness in firm-level returns. In Section 5, I study a

model of incomplete information with earnings announcement events and find similar results.

2.1 Investment opportunities

Time is discrete and indexed by t = 1, 2,... There is a risk-less asset with perfectly elastic

supply that can be traded at the gross rate of return of R > 1. There are also N firms whose

shares are infinitely divisible and trade competitively in the stock market.

Each firm makes a dividend announcement (and simultaneously pays a dividend) at

equidistant periods and with equal frequency. Firms are assumed to differ at most by K

periods in their announcements which limits the amount of heterogeneity with respect to

announcement dates to K+1 possible dates. A firm of type k = 0, 1, ...,K is identified in the

following manner. I arbitrarily assign firm-type 0 to a group of firms announcing in the same

period. All other firm types are identified using the distance of their announcement date to

that of firms of type 0. Therefore, a firm’s type is set vis-à-vis firm-type 0 event time. It

helps to think of a trading period as one week and of K + 1 periods as one quarter: A firm

of type k makes an announcement every quarter at week k + 1 in the quarter, k weeks after

firms of type 0 have made their announcements.

If t corresponds to a dividend event for firm i, then at t firm i announces

Dit = Fit +

K∑
j=0

εDit−K+j . (1)

If t corresponds to a non-dividend period, then Dit = 0. The dividend can be decomposed

into a persistent component,

Fit = ρFiFit−1 + εFit , 0 ≤ ρFi ≤ 1,

with εFit ∼ N
(
0, σ2Fi

)
, and a transitory component,

∑K
j=0 ε

D
it−K+j , with ε

D
it ∼ N

(
0, σ2Di

)
.

Cash flows may be correlated across firms. For any two firms i and i′, E
[
εDit ε

D
i′t−s

]
= σDii′

and E
[
εFitε

F
i′t−s

]
= σFii′ when s = 0, and zero otherwise. I am interested in the case in
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which shocks have one or more common components that affect the cash flows of all firms

in the economy in the same direction, σDii′ , σ
F
ii′ ≥ 0. For simplicity, E

[
εDit ε

F
i′t−s

]
= 0 for any

two firms i and i′ and any s. Note that dividend shocks are homoskedastic and thus any

heteroskedasticity in equilibrium returns is generated endogenously.

The heterogeneity in announcement dates suggests that stock prices may be a function

of a firm’s event time. Let the index ki track event time for firm i. Denote by P kiit and Q
ki
it

the ex-dividend stock price and excess return that occur in period t, ki periods after the last

dividend event for firm i. If t corresponds to a dividend-paying period for firm i, i.e. ki = 0

at t, then firm i’s excess return is

Q0it ≡ P 0it +Dit −RPKit−1.

Alternatively, if ki > 0 at t,

Qkiit ≡ P
ki
it −RP

ki−1
it−1 .

Denote by Qk
t =

(
Qk11t , ..., Q

kN
Nt

)ᵀ
the column vector of time t stock returns. The superscript

k indicates that firms of type k (if there are any) announce at time t. Because heterogeneity

in firm announcements is fixed and given by each firm’s type, k is a suffi cient statistic for the

heterogeneity in firm announcements at t.

2.2 Investors’problem

There is a continuum of identical investors with unit mass. Investors choose their time t asset

allocation, θt =
(
θ1t , ..., θ

N
t

)ᵀ
, to maximize utility over next period wealth, Wt+1,

−E
[
exp−γWt+1 |It

]
,

where γ > 0 is the coeffi cient of absolute risk aversion. The maximization is subject to the

budget constraint

Wt+1 = θᵀtQ
k+1
t+1 +RWt,

and the information set

It =
{
Pt−s, Dt−s, Ft−s, ε

D
t−s
}
s≥0 .

For simplicity, I adopt the short-hand notation Et [.] = E [.|It].
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2.3 Stock market clearing

Each firm has a fixed supply of one share traded in the stock market. Let 1 be a column

vector of ones. Investors trade the stock competitively, making their asset allocation while

taking prices as given. In equilibrium, stock prices are such that the market for each stock

clears:

θt = 1. (2)

3 Stock Market Equilibrium

I start with a characterization of the equilibrium price function.

3.1 Equilibrium stock price

In the Appendix, I show that:

Proposition 1 The equilibrium price function for firm i is

P kiit = pkii + ΓkiFit +R−(K+1−ki)
ki−1∑
j=0

εDi,t−j , (3)

for Γki ≡
(ρFi/R)

K+1−ki

1−(ρFi/R)K+1
and any ki = 0, ...,K. The constants pkii < 0, are given by

pkii = − 1

RK+1 − 1

K∑
j=0

RK−jEt
[
Qki+1+jit+1

]
, (4)

where for any ki, Et
[
Qki+1+Kit+1

]
= Et

[
Qkiit+1

]
.

The stock price at ki reflects the present value of dividends conditional on all available

information. The present value accounts for the fact that at time t —after ki periods have

elapsed since the last dividend payment—it will take another K + 1 − ki periods until div-
idends are paid again. Consider first the coeffi cient associated with Fit. With ki = 0, the

coeffi cient is,
[
(R/ρFi)

K+1 − 1
]−1

, and the stock resembles a perpetuity discounted at rate

(R/ρFi)
K+1− 1. This is because the next payment arises in K + 1 periods and is discounted

by RK+1 and by that time Fit will have decreased in expectation at the rate ρK+1Fi . K + 1

periods later, another payment occurs, which is also discounted at the same rate, and so on.

The transitory shock εDit enters the stock price function because investors learn about

it before it is paid as a dividend: εDit enters the price function at time t with a coeffi -

cient of R−(K−ki), whereas εDit+1 enters the price function at time t + 1 with a coeffi cient of
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R−(K−ki−1) > R−(K−ki). Despite being transitory, εDit has de facto persistence of one until

the next dividend payment and persistence of zero thereafter.

3.2 Conditional distribution of stock returns

Define the vector of conditional mean returns as µk = Et

[
Qk+1
t+1

]
and the conditional covari-

ance matrix of returns as Vk = Et

[(
Qk+1
t+1 − µk

)(
Qk+1
t+1 − µk

)ᵀ]
. The investors’first-order

condition together with stock market clearing requires that

µk = γVk1. (5)

To solve for the equilibrium values of {µk,Vk}k, use the price function above to express
excess returns as

Qkiit = pkii −Rp
ki−1
i + Γkiε

F
it +R−(K+1−ki)εDit , (6)

for any ki. In this expression, Q0it is recovered by replacing ki with K + 1 and noting that

pK+1i = p0i and Q
K+1
it+1 = Q0it+1. Therefore,

Corollary 1 The conditional distribution of stock returns is

Qk+1
t+1 |t ∼ N (µk,Vk) ,

where the elements of Vk are

σ2ik ≡ V art
[
Qki+1it+1

]
= Γ2ki+1σ

2
Fi +R−2(K−ki)σ2Di. (7)

σii′,k ≡ Covt
[
Qki+1it+1 , Q

ki′+1
i′t+1

]
= Γki+1Γki′+1σ

F
ii′ +R−(2K−ki−ki′ )σDii′ . (8)

For each firm i, the conditional mean and volatility of the stock return increase monotonically

and are convex in ki, all else equal.

The corollary states that the conditional stock return volatility increases with ki despite

the fact that the shocks εFit and ε
D
it are conditionally homoskedastic. The intuition is that

news that occurs farther away from the dividend payment is more highly discounted and

contributes less to risk than news that occurs closer to the dividend payment. Further,

geometric discounting penalizes news asymmetrically (i.e., the conditional volatility of stock

returns is convex in k). Holding all else constant, the same comparative statics apply to

conditional mean returns which are weighted averages of volatility and covariance terms.
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Quantitatively, the effect of discounting on conditional heteroskedasticity via the persis-

tent shocks can be very large even for small interest rates. Consider the impact of ki on

the coeffi cient associated with σ2Fi in equation (7). Specifically, evaluate the difference in

coeffi cients at ki = 0 and ki = K and take the limit as ρFi/R → 1. Applying L’Hopital’s

rule,

lim
ρFi/R→1

(ρFi/R)2
(

1− (ρFi/R)2K
)

(
1− (ρFi/R)K+1

)2 = +∞.

Intuitively, a lower interest rate (and higher persistence ρFi) reduces the impact of discounting

associated with news that is released before the next payout, but increases the value of the

perpetuity associated with the news. The second effect is stronger than the first producing

the result. Because transitory shocks lack the second effect, when R → 1 the discounting

effect through transitory shocks disappears.

The result in the Corollary shows that the model is consistent with the evidence that

dividend announcements are associated with both higher mean returns and higher volatility

(e.g., Aharony and Swary, 1980, and Kalay and Loewenstein, 1985). More recently, Amihud

and Li (2006) show evidence of a declining, but still significant, dividend announcement effect.

To clarify the sources of risk in the model, I show next that the model admits a CAPM

representation of the equilibrium. The stock market dollar return is the return from buying

and selling the stock on all N firms. The purchase price is
∑N

i=1 Pit−1 and the sale price plus

the dividend is
∑N

i=1 (Pit +Dit). Thus, the per share excess return in the market is QMt =

1
N (Q1t + ...+QNt). Let α ≡ 1/N and write QkMt = α

ᵀ
Q
k
t . Then, µ

M
k ≡ Et

[
Qk+1Mt+1

]
=

α
ᵀ
µk and σ

2
M,k ≡ Et

[(
Qk+1Mt+1 − µMk

)2]
= α

ᵀ
Vkα. In the Appendix, I show that:

Proposition 2 The stock market equilibrium has a conditional CAPM representation:

µk = βkµ
M
k , (9)

where βk ≡ Covk
(
Qk
t , Q

k
Mt

)
/σ2M,k and α

ᵀ
βk = 1.

The proposition demonstrates that in equilibrium only systematic risk is priced. In par-

ticular, if firm i has a high expected return around its announcement event, it must also be

that βik is high around the event. This systematic risk is driven by the volatility associated

with the information flow in common factors. For example, if Fit = Ft for all t and i, and

σDii′ = 0, then the economy has only one common factor, which is persistent. Shocks to this
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common factor, εFt , affect stock returns of firms differently depending on how far each firm is

from its respective payout event. This timing explains the dynamics in the conditional stock

return moments because proximity to a payout event determines the impact of (systematic)

information on returns.3 Consistent with this model prediction, Patton and Verardo (2010)

show that daily firm betas increase by an economically and statistically significant amount

around earnings announcement events.

3.3 Unconditional distribution of stock returns

Proposition 1 shows that firm i stock returns are conditionally normally distributed with

mean µik and variance σ
2
ik. The unconditional distribution of firm i returns is not normal

because the mean and variance of a randomly drawn return observation depends on ki. In

fact, because a ki-period stock return is drawn from a normal density φ
(
Qi;µik, σ

2
ik

)
and such

observations occur with frequency 1/ (K + 1), the unconditional distribution of returns is a

mixture of normals distribution. Formally,

Proposition 3 For K ≥ 1, the unconditional distribution of stock returns for firm i is a

mixture of normals distribution with density

f
(
Qi
)

=
1

K + 1

K∑
k=0

φ
(
Qi;µik, σ

2
ik

)
, (10)

where φ (.) is the normal density function. For K = 0, returns are unconditionally normally

distributed.

The periodicity of dividends —by generating time-varying conditional volatility in stock

returns— leads to the derived mixture of normals distribution for stock returns for K ≥ 1.

This result provides a theoretical justification for attempting to fit a mixture of normals

distribution for stock returns (e.g., Fama, 1965, Granger and Orr, 1972, Kon, 1984, and

Tucker 1992).

In the Appendix, I prove the following corollary.

3Below I show that the same patterns in conditional stock return moments exist if idiosyncratic risk is also
priced (say, because N is small). While some recent literature suggests that idiosyncratic risk is priced, the
results in this paper do not rely on it.
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Corollary 2 The unconditional mean and variance of stock returns are

E
(
Qit+1

)
=

1

K + 1

K∑
k=0

µik,

V ar
(
Qit+1

)
=

1

K + 1

K∑
k=0

[
σ2ik +

(
µik − E

(
Qit+1

))2]
.

The unconditional (non-standardized) skewness in stock returns is

E
[(
Qit+1 − E

(
Qit+1

))3]
=

1

K + 1

K∑
k=0

(
µik − E

(
Qit+1

))3
+

3

(K + 1)2

K∑
k=0

∑
j<k

(
σ2ik − σ2ij

) (
µik − µij

)
.

(11)

The unconditional mean return is simply the mean of the k-conditional expected returns.

The unconditional mean variance is the mean of the k-conditional variances plus the variance

of the k-conditional means.

Skewness in stock returns can be decomposed into two terms. The first term in (11) is the

level of skewness in expected returns, µik. Intuitively, this term is positive if µik is increasing

and convex in ki which means that a small number of periods display high expected returns

relative to the larger number of periods with low expected returns. The second term describes

the impact on skewness of the co-movement between return volatility with expected returns.

This term is positive if both σ2ik and µ
i
k increase with ki. The risk-return trade off imbedded

in the model would normally suffi ce to generate the necessary association between σ2ik and µ
i
k.

Unfortunately, it is not possible to sign skewness because when ki changes other firms’event

time, say ki′ , also changes which may lead to non-monotonicity in the conditional return

covariance between i and i′ and hence in conditional mean returns for firm i. However, in

the numerical examples below, this effect is second order, and firm-level skewness is positive.

3.4 Discussion

The model generates skewness in firm-level stock returns by making use of the time-series

patterns in volatility that arise from having cash payouts spread out over time. While these

patterns in conditional volatility are consistent with the evidence, there could be other expla-

nations for the same facts. For example, it could be the case that the resolution of uncertainty

afforded by earnings announcements also results in greater volatility and higher expected re-

turns. I explore this idea below when earnings announcements are introduced separately from

cash payouts.
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The model produces deterministic patterns in conditional volatility. These patterns are

stylized and consistent with the patterns in volatility around certain firm events. A more

realistic model would also generate stochastic sources of conditional heteroskedasticity. If

the average behavior of conditional volatility is consistent with the deterministic path that

results from the equilibrium of the model here, firm level skewness would likewise be positive.

Finally, positive skewness arises despite the fact that prices and returns are conditionally

normally distributed. The source of skewness in the model is thus distinct from that which

arises mechanically when prices are lognormally distributed due to truncation at zero. This

benefit, which arises from the modeling choices of exponential utility and normal shocks,

comes at the cost of having negative prices with positive probability. To minimize this

probability, it is customary to add a positive long-run mean dividend to the process in

equation (1). Because all main results (i.e., patterns in conditional volatility and expected

returns in event time) are unchanged, I have assumed away this constant for simplicity of

presentation. Nevertheless, one can never rule out the possibility of negative prices in this

setting, which is why the model should be understood as an approximation to reality.

4 Skewness in Aggregate Stock Returns

I start by presenting the unconditional distribution of aggregate stock returns and computing

skewness in aggregate returns.

4.1 The distribution of aggregate stock returns

Aggregate market returns are conditionally normally distributed with mean µMk and variance

σ2M,k. The unconditional distribution of aggregate market returns is a mixture of normals

distribution with

f (QM ) =
1

K + 1

K∑
k=0

φ
(
QM ;µMk , σ

2
M,k

)
. (12)
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The Appendix shows that skewness in aggregate stock returns is

E
[
(QMt − E (QMt))

3
]

(13)

=
1

N3

N∑
i=1

E
[
(Qit − E (Qi))

3
]

+
3

K + 1

1

N3

K∑
k=0

N∑
i=1

(
µik − E (Q)

) N∑
i′ 6=i

(
σ2k,i′ + 2

∑
l>i′

σi′l,k +
(
µi
′
k − E (Q)

)2)
+ 2

N∑
i′>i

σii′,k


+

6

K + 1

1

N3

K∑
k=0

N∑
i=1

(
µik − E (Q)

) N∑
i′>i

N∑
l>i′

(
µi
′
k − E (Q)

)(
µlk − E (Q)

)
.

Skewness in aggregate stock returns is the sum of average firm-level skewness (first term

on the right-hand side of equation (13)) and co-skewness terms (remaining two terms). The

first of the co-skewness terms describes the co-movement of one firm’s stock with other firms’

volatility. I label this term co-vol. The second co-skewness term describes the co-movement

of one firm’s stock with the covariance between any two other firms. I label this term co-

cov and note that it requires N ≥ 3 in the stock market to be non-zero. Together, the

co-skewness terms describe the co-movement between a firm’s conditional mean return with

the conditional variance of the portfolio of the remaining firms.

Because firm-level skewness is positive in this model, negative aggregate skewness must

come from the co-skewness terms: Negative stock market skewness becomes a cross-sectional

phenomenon. The co-skewness terms shift probability mass in the distribution of aggregate

stock returns to the left in order to generate a negatively skewed distribution. Intuitively,

the portfolio return becomes negatively skewed when a low return for one firm is associated

with high volatility in the remaining firms in the portfolio.

4.2 Skewness and cross-sectional heterogeneity in announcement events

To evaluate the effect of cross-sectional heterogeneity in payout dates and co-skewness, I

conduct two numerical experiments simulating different stock market configurations. In all

simulations and for simplicity, I assume one firm per firm type. In the first experiment, each

stock market is composed of two types of firms with cash payouts separated by k periods,

where k ∈ {0, 1, ...,K}. By varying k, the two firms start off similar, become increasingly
dissimilar, and end up similar again. I choose K = 12 so that each trading period represents

one week and the time from 0 to K corresponds to one calendar quarter. Because N = 2,

this experiment explores the effect of cross-sectional heterogeneity ignoring the co-cov term.
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Panel A of Figure 1 plots firm-level and market skewness for the various stock market

configurations. Specifically, the figure depicts normalized skewness of aggregate stock returns,

i.e., the third centered moment normalized by the standard deviation cubed (solid line). The

figure also presents the plot of the corresponding firm-level statistic (dashed line). The plot

starts with a stock market composed of two firms that are identical in all respects including

the payout date. Ignoring this stock market configuration, the plot is symmetric because

having the second firm pay out k periods after the first firm or k periods before the first firm

results in identical cross-sectional heterogeneity. Firm-level skewness is positive and varies

across stock market configurations because of the correlation in cash flows. Co-skewness can

be very large and negative but never suffi ciently so in order to offset the individual skewness

terms. Co-skewness is particularly negative when the two firms pay out at dates that are

farthest apart because then the high volatility of the announcing firm contrasts the most with

the contemporaneously low expected return of the non-announcing firm. In summary, the

experiment suggests that the co-vol terms can significantly reduce market skewness relative to

firm-level skewness, but cannot generate negative market skewness. This result is confirmed

with many other numerical parameterizations available upon request.

In the second experiment, I allow a full role for the co-cov term by having the number

of firms in the stock market grow as heterogeneity across firms also changes. Each stock

market is indexed by k, meaning it consists of k + 1 firm types with cash payout dates at

periods 0, 1, ..., and k. The period from 0 to k thus denotes an announcement season in

cash payouts during the window of time 0, ...,K. Panel B of Figure 1 depicts the market

(solid line) and firm-level (dashed line) normalized skewness in each of the stock market

configurations. Moving to the right along the x-axis represents an increase in the number of

firms in the stock market, but normalized skewness is not directly affected by the number

of firms. Market skewness displays a flipped J-curve with respect to k. For k = 0 there is

only one firm type in the stock market, and firm-level and market skewness are identical.

For k = 1, the stock market has two firm types, one announcing at 0 and the other at 1.

This case is also presented in panel A of the figure. For k > 1 skewness drops faster than

it did in panel A because of a negative co-cov term. As more firm types are added and

the range of cash payout dates is widened, market skewness becomes negative. The negative

market skewness occurs despite the fact that firm-level skewness is positive. Market skewness

remains negative until the stock market consists of one firm of each type. When the stock

market consists of one firm of each type, skewness is zero because every period looks the same
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with equal aggregate stock market conditional mean and volatility of returns.

The driving force for the negative skewness is the asymmetric volatility across announcing

and non-announcing firms, which is also apparent when total skewness is decomposed into

the contribution from each of the trading periods. Figure 2 presents a decomposition of

the negative skewness for the stock market consisting of nine firm types, each firm type

announcing at a different period k, with k = 0, ..., 8. Most negative skewness occurs around

the start of the announcement season when some firms’ volatility spikes vis-à-vis that of

others.

It is possible to also produce a breakdown of stock market skewness in its various com-

ponents according to equation (13). Figure 3 plots aggregate skewness in each of the stock

market configurations under experiment two as well as the respective co-cov term also nor-

malized by market volatility. A common property of the numerical examples studied, and

of this one in particular, is that the co-cov term is the main driver of negative skewness in

the stock market. The symmetry of events in the model also implies that as k approaches K

and skewness goes to zero, the co-cov term turns positive and the co-vol terms turn negative.

The co-vol terms are negative because, for large k, almost every period t consists of an event

period with one firm with the highest conditional volatility (the one with an event at t+ 1)

and all the others with low volatility possibly below their respective unconditional means.

In the exercises above, I assume that K = 12 so that there are always 13 periods between

any two events for the same firm. While the choice is meant to identify each period as one

week and each set of 13 periods as one quarter to match the regularity of the events studied,

this choice is not innocuous. Taking K = 0 means that payouts occur at every period and

in the model returns become unconditionally normally distributed with zero skewness. More

generally, K controls the amount of firm heterogeneity in payout dates. Small values of K

mean that there cannot be much heterogeneity. For example, consider a stock market that

consists of two firm types and K = 2. When one firm-type has a payout event, the other

will either have one next period or the period after. Because of the regularity of the payout

events, both configurations would imply the same level of market skewness. Because of the

closeness of the announcements, market skewness would generally be positive.

4.3 A simplified model with uncorrelated cash flows

In this subsection, I consider a simplified version of the model where the stock market is

composed of firms with uncorrelated cash flows, i.e., σDii′ = σFii′ = 0. Firms differ only with
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respect to the timing of their cash payouts, but as is clear from above, equilibrium firm

returns are uncorrelated. The main reason to consider this simplified model is to isolate

the effect of cross-sectional heterogeneity in cash payout dates on aggregate skewness: With

uncorrelated cash flows, negative skewness in market returns can only arise from the cross-

sectional heterogeneity in cash payout dates and not from some exogenous, negatively skewed

factor in returns. Another reason is that it becomes possible to sign skewness at the firm

level. The drawback of this simplification is that it presumes that idiosyncratic risk is priced.

However, as shown above, this is not a necessary assumption for the results.

To evaluate the effect of cross-sectional heterogeneity in payout dates and co-skewness, I

repeat the same two experiments above which simulate different stock market configurations.

In the first experiment, the stock market is composed of two types of firms with cash payouts

separated by k periods. Recall that with N = 2 in each stock market configuration, the effect

of cross-sectional heterogeneity is limited to the co-vol terms. Panel A in Figure 4 plots firm-

level and market skewness for the various stock market configurations. First, because the

timing of the announcements in one firm does not influence the pricing in the other firm, mean

firm level skewness (dashed line) is constant across all stock market configurations. Second,

skewness in aggregate returns (solid line) behaves very similarly to the case of correlated cash

flows. Specifically, there is not enough cross-sectional heterogeneity in payout dates to yield

negatively skewed aggregate returns.

In panel B, I reproduce the results from experiment two in which the co-cov term plays a

role. Recall that in experiment two, each stock market is indexed by k, meaning it consists

of k + 1 firm types with cash payout dates at periods 0, 1, ..., and k. As in panel A, firm

level skewness (dashed line) is constant. In contrast with panel A, however, market skewness

(solid line) displays a flipped J-curve with respect to k. Further, market skewness is below

the skewness that results in the correlated cash flow case for most stock market configurations

(see panel B of Figure 1). The reason is that with correlated cash flows, skewness is affected

by the term

6

K + 1

1

N3

K∑
k=0

(
µMk − E (QM )

) N∑
i=1

∑
i′>i

σii′,k, (14)

and this term is likely to be positive because the return covariance is likely to be highest at

event dates k, where mean returns µMk are also likely to be higher.
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5 A Model with Earnings Announcements

Earnings announcements are important firm events with similar return and volatility prop-

erties to dividend announcements. In this section, I allow for an intermediate earnings an-

nouncement event at event date 1 < Ka < K. It helps to introduce earnings announcements

in the model with uncorrelated cash flows of subsection 4.3 for two reasons. First, it is easier

to keep track of what has been learned about each firm avoiding excessive notation: When

cash flows are uncorrelated, announcements on one firm do not provide any information

about other firms. Second, it avoids having to introduce correlated noise in the signals that

investors obtain in order to keep aggregate shocks from being fully revealed. Allowing for

correlated cash flows would not however change the main results below.

For the earnings announcement to be informative, I introduce incomplete information in

the model. To do this with minimal deviation from the model above, I assume that for any

1 ≤ k ≤ Ka − 1, investors learn

SFt = εFt + εSFt ,

SDt = εDt + εSDt ,

with the information noise εSFt ∼ N
(
0, σ2SF

)
and εSDt ∼ N

(
0, σ2SD

)
independent of each

other and of all other shocks. It is assumed that the earnings announcement at event date

Ka reveals all current and past shocks. Also, for simplicity, shocks are known with certainty

after Ka. This gives rise to the following information structure. Let t be any trading period

and k be the corresponding date in event time. For any k = 0 or k > Ka − 1,

Ikt =
{
Pt+k−s, Dt+k−s, Ft+k−s, ε

D
t+k−s

}
s≥0 ,

and for any 1 ≤ k ≤ Ka − 1,

Ikt =
{
Pt+k−s, S

F
t+k−s, S

D
t+k−s, It

}
s=0,...,k−1 .

The Appendix shows the following proposition:

Proposition 4 The equilibrium price function is

P kt = pk + ΓkEt (Ft) +R−(K+1−k)
k−1∑
j=0

Et
(
εDt−j

)
,

for any k = 0, ...,K.
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The stock price function takes the same form as before with the actual values of the

random variables replaced by their conditional expectations. After Ka, the expectations op-

erators drop out because the shocks are in the investors’information set. With the equilibrium

prices, it is possible to derive the equilibrium stock return. For any period 1 ≤ k ≤ Ka − 1,

Qkt = pk −Rpk−1 + ΓkEt
(
εFt
)

+R−(K+1−k)Et
(
εDt
)
.

When the signals that investors get are infinitely precise and σ2SD = σ2SF = 0, equation (6)

is recovered. For k = Ka,

Qkt = pk −Rpk−1 + Γkε
F
t +R−(K+1−k)εDt

+ρFΓk [Ft−1 − Et−1 (Ft−1)] +R−(K+1−k)
k−2∑
j=0

[
εDt−1−j − Et−1

(
εDt−1−j

)]
.

The resolution of uncertainty with the earnings announcement implies that the stock return

at Ka responds to the unanticipated realizations of the past shocks. Finally, for k > Ka,

returns take the same form with the same conditional moments as before.

To conclude the derivation of the equilibrium, use the return process above to get the

conditional stock return variance, and equation (5) to obtain the conditional mean stock

return. It is straightforward to show that for any period 1 ≤ k ≤ Ka − 1,

V art−1
(
Qkt

)
= Γ2k

σ4F
σ2F + σ2SF

+R−2(K+1−k)
σ4D

σ2D + σ2SD
,

and for period k = Ka,

V art−1
(
Qkt

)
= Γ2kσ

2
F +R−2(K+1−k)σ2D

+Γ2kρ
2
FV art−1 (Ft−1) +R−2(K+1−k)

k−2∑
j=0

V art−1
(
εDt−1−j

)
.

The process for the conditional variance of firm returns is increasing and convex up to Ka.

At Ka, the conditional variance may drop so that

V art−1
(
QKa
t

)
> V art

(
QKa+1
t+1

)
.

This case arises for suffi ciently low precision of the signals prior to the earnings announcement,

which generates significant resolution of uncertainty at Ka. This pattern resembles that

of the non-stationary event model of He and Wang (1995). It is then possible to have

the conditional variance, and thus also the conditional mean return, displaying two distinct
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periods of convexity in the event time from 0 to K (one for the earnings announcement

and another for the cash payout). By making the periods of high conditional mean returns

more likely, the conditional mean return distribution shifts to the right and returns become

less positively skewed. By itself this feature cannot generate negative skewness in aggregate

returns, but may contribute to more negative skewness in market returns relative to the

benchmark model.

The patterns in conditional volatility and mean returns described above are consistent

with the evidence as described in Ball and Kothari (1991). Considering a more recent sample,

Cohen et al. (2007) report persistent, significant earnings announcement premia, albeit a

smaller one in the later part of the sample. They associate the more recent lower premia

with increased voluntary disclosures, which is also consistent with the model above.

To further understand the impact of earnings announcements on aggregate return skew-

ness, I repeat the numerical experiments above. Recall that in experiment one, the stock

market consists of two types of firms that have their payout dates separated by k periods,

where k ∈ {0, ...,K}. In experiment two, the stock market consists of firms with payout at
event dates 0 through k, with k ∈ {0, ...,K}. Likewise, and for both experiments, the earn-
ings announcement dates are separated by the same number of periods for any two firms.

The earnings announcement date occurs at Ka = 6 < K = 12 in event time for each firm.

In Figure 5, I plot normalized skewness in stock returns with incomplete information.

Panel A depicts the results for experiment one and Panel B depicts the results for experiment

two. The plot in Panel A shows a symmetric pattern for skewness, which results from the

symmetry of event dates. For example, a stock market consisting of two firms with payout

dates separated by five periods results in the same return properties regardless of whether

the two firms announce at periods 0 and 5, or at periods 0 and 8. Panels A and B show that

firm-level skewness is lower in the presence of the additional event than when only payout

events are allowed. Comparing with the plots in the model with complete information above,

it is possible that lower levels of skewness are achieved with less payout heterogeneity. In

particular, with incomplete information, this numerical example shows that it is enough to

have seven different types of firms in order to generate negative market skewness, whereas in

the complete information model the same parameters require eight different firm types (see

subsection 4.3).
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6 Empirical Evidence

This section presents evidence on the three main predictions of the model. First, earnings

announcement events are neither uniformly distributed on average in a quarter nor concen-

trated in one week in the quarter. If the former were true, the model would predict zero

unconditional skewness. If the latter were true, the model would predict positive skewness in

aggregate returns because of the clustering in volatility in the same week for all firms. Sec-

ond, cross-sectional dispersion in earnings announcement events can generate large enough

negative co-skewness and negatively skewed aggregate returns. I demonstrate this by repli-

cating experiments one and two developed above. I also show that skewness is most negative

around the start of an earnings announcement season. Third, negative skewness arises due to

co-skewness and in particular the co-cov term. In addition, in a robustness exercise, I repeat

the analysis allowing for a negatively skewed factor in returns.

6.1 Data

I use daily return data on AMEX/NASDAQ/NYSE stocks from CRSP for the period between

1/1/1973 and 12/31/2009. Returns are inclusive of dividends. I also obtain from CRSP the

SIC industry classification and the dividend distribution information. I use variable DCLRDT

to retrieve the date the board declares a distribution and variable DISTCD to select ordinary

dividends and notation of issuance. Information about earnings announcement events is

from the merged CRSP/Compustat quarterly file for the period 1/1/1973 through 6/30/2009

(variable RDQ). Below, skewness is estimated using six months of daily return data. Firms

are required to have complete return data within each semester to be included in the sample.

6.2 The stylized facts

I start by documenting several well-known facts about firm-level and aggregate return skew-

ness. Figure 6 plots the time series of the mean firm-level stock return skewness and of

skewness in the equally weighted market return. Four salient facts emerge from the fig-

ure. First, firm-level skewness is always positive, except in the second half of 1987. Second,

skewness in market returns is almost always negative, representing 77% of the observations.

Third, and as a combination of the two facts above, most semesters of large negative skewness

in market returns are not accompanied by negative skewness in firm-level returns. Fourth,

firm-level skewness is higher than aggregate skewness in 96% of the semesters. The results
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using median firm-level skewness are similar and available upon request. Because skewness is

generally lower and more often negative for larger firms, I also reproduce the same statistics

using value-weighted mean (or median) firm-level skewness and value-weighted aggregate re-

turn skewness. Not surprisingly, the value-weighted mean (or median) of firm-level skewness

is lower, but the general gist of the results above is unaffected (available upon request).

To better understand these results it is useful to write the sample (non-standardized)

skewness for a portfolio with N firms. Assuming equal weights for simplicity, let rpt =

N−1
∑N

i=1 rit be the time-t portfolio return, r̄i = T−1
∑T

t=1 rit be the mean sample return

for firm i, and r̄p = T−1
∑T

t=1 rpt be the mean sample portfolio return. Then, sample non-

standardized skewness is (or, the sample estimate of the third-centered moment of returns):

T−1
∑
t

(rpt − r̄p)3 =
1

N3

N∑
i=1

1

T

∑
t

(rit − r̄i)3 (15)

+
3

TN3

∑
t

N∑
i=1

(rit − r̄i)
N∑
i′ 6=i

(ri′t − r̄i′)2

+
6

TN3

∑
t

N∑
i=1

(rit − r̄i)
N∑
i′>i

N∑
l>i′

(ri′t − r̄i′) (rlt − r̄l) .

The first term in (15) is the mean of firm-level skewness and, as Figure 6 shows, it is positive.

The second and third terms in (15) are the sample equivalent to the co-skewness terms co-vol

and co-cov, respectively. Together, they must be negative for skewness in market returns to

be negative.

The skewness measure I report is the standardized skewness equal to T−1
∑

t (rpt − r̄p)3 /
[T−1

∑
t (rpt − r̄p)2]3/2. Formally, standardizing the third-centered moment introduces a dis-

crepancy between mean firm-level skewness and the component of aggregate skewness re-

lated to firm-level skewness. When normalized skewness is used, the first term in (15) be-

comes the volatility-weighted average of firm-level skewness (with weights ωi = [
∑

t (rit − r̄i)2

/
∑

t (rpt − r̄p)2]3/2). Because small firms tend to be more volatile and also have returns with
more positive skew, this term is also positive, and negative normalized skewness can only

arise from negative normalized co-vol and co-cov terms (see also Figure 11 below).

6.3 Cross-sectional heterogeneity in event dates

The main prediction of the model is that negative co-skewness can arise from heterogeneity

in event dates. As demonstrated above, the special nature of the events discussed in the
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model (payout and earnings announcement events) is that they are associated with increased

return volatility. Further, cross-sectional dispersion in event dates and the corresponding

cross-sectional dispersion in return volatility is shown to lead to negative co-skewness.

Before producing evidence on the model, I describe the cross-sectional dispersion in cash

payout announcements and in earnings announcements. I am interested in the calendar week

of the announcement within the quarter. Figure 7 plots the histograms of the announcement

week for cash payouts (Panel A) and of the announcement week for earnings announcements

(Panel B).4 Cash payouts are close to uniformly distributed across the quarter. In contrast,

earnings announcements are on average concentrated between weeks two and eight in the

calendar quarter, leaving the other half of the quarter with less than 20% of the announce-

ments. These patterns are consistent across various subsamples and also across the various

quarters. This evidence suggests that cross-sectional dispersion in payout dates may not be

able to explain the negative skewness in aggregate returns, but that cross-sectional dispersion

in earnings announcement events may explain the negative skewness in aggregate returns.5 I

use data on earnings announcements below.

Next, I use data to reproduce the experiments that give rise to Figures 1 and 5. For every

semester, I group firms by week of first earnings announcement in the semester. This gives

rise to 13 portfolios, P1 through P13, one for each of the weeks in the first quarter of the

semester. The portfolios vary greatly in the number of firms that comprise them because

of the concentration of earnings announcement events during the quarter (see Figure 7). To

keep a constant number of firms across portfolios, I randomly drop firms from portfolios to

match the number of firms in the smallest portfolio. It is important to note that it is not

possible to replicate in the data the absolute symmetry that exists in the model because firms

do not consistently announce in the same week in every quarter. Forcing firms in portfolio

Pk to contain only firms that announce in week k in both quarters in the semester would

lead to a significant loss of observations.

Figure 8 replicates experiment one above and Figure 9 replicates experiment two. I

consider two samples, namely, the full sample since 1973 and the subsample with data from

1988. Figure 8 plots the sample skewness in the equally weighted portfolio return for the

portfolios consisting of the firms in P1 and Pk against the index k = 1, 2, ..., 13. I also plot

4For earnings announcements, observations with an announcement date before the end of the quarter are
dropped.

5 In addition, many firms do not pay dividends, which results in a much smaller sample relative to the
earnings announcement sample with a consequent decrease in the precision of estimates.
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the corresponding 10% confidence bands constructed assuming the data from each semester

are drawn randomly. The figure shows that portfolio return skewness displays a U-shaped

pattern in both samples, consistent with the symmetric U-shaped pattern in Figures 1 and

5. Mean firm-level return skewness in each of the portfolios is approximately constant and

always positive (available upon request).

Figure 9 plots the sample skewness in the equally weighted portfolio return for the port-

folios that result from the unions P1UP2U...UPk against the index k = 1, 2, ..., 13, and the

corresponding 10% confidence bands. In both sample periods, there is a negative relation-

ship between skewness and the increased heterogeneity that results from adding dispersion in

earnings announcement dates into the portfolio. This evidence is consistent with the model

prediction as depicted in Figures 1 and 5. I also compute mean firm-level return skewness

for each of the portfolios, and find that it is approximately constant and positive (available

upon request).

There are two main differences between the evidence presented and the model predictions.

First, in Figure 9, skewness strictly declines with k whereas in the model, when all firm types

are allowed, skewness becomes zero. The result in the model relies on the assumption of

symmetry where a firm always announces in the same calendar week in every quarter. This

assumption is not validated in the data. Second, in both Figures 8 and 9, portfolio return

skewness is always negative. One possible explanation for the negative portfolio skewness is

that even the firms in the same portfolio Pk differ in the week of earnings announcement in the

second quarter of the semester. Another explanation is that the cross-sectional heterogeneity

in events is not subsumed in the cross-sectional heterogeneity of earnings announcement

events. Finally, it could be the case that firm returns are exposed to a common factor that

is negatively skewed. I return to this last possibility below.

To test the influence of the timing of announcements on skewness, I decompose market

skewness computed using six months of data into its weekly components. The decomposition

guarantees that adding up the weekly components yields the market skewness for the six-

month period. Recalling Panel B of Figure 7, an earnings announcement season starts shortly

after the beginning of every quarter. Figure 10 shows that an earnings announcement season

is also when skewness has its largest (i.e., most negative) components during the quarter,

consistent with the model prediction.

Lastly, I look at co-skewness across industries. Sinha and Fried (2008) show that indus-

tries vary significantly with respect to the cross-sectional dispersion in fiscal year-ends and
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therefore also in their earnings announcement calendar. I use the Herfindahl index of fiscal

year-ends as a measure of dispersion in earnings announcements and choose two 2-digit SIC

sectors from the extremes of its distribution (using the standard deviation produces a similar

ordering). A low value of the index means greater dispersion. The choice of sector also must

yield a large enough (and comparable) number of firms in each sector in order to better esti-

mate skewness. Using the sample from 1973 through 2009, I find that SIC 49 “Electric, Gas,

and Sanitary Services”has an average index of 0.74 and SIC 38 “Measuring, Analyzing and

Controlling Instruments; Photographic, Medical and Optical Goods; Watches and Clocks”

has an average index of 0.30. These sectors have a similar average number of firms, around

420.6 The average six-month co-skewness in SIC 38 is -0.38, which is statistically significantly

lower at the 10% significance level than the average six-month co-skewness in SIC 49 of -0.24

(untabulated). The more negative co-skewness in the sector with greater dispersion in fiscal

year-ends is consistent with the model. This analysis is necessarily preliminary because little

is known about other drivers of skewness across industries. Further development of theory

may allow for a full-fledged conditional analysis.

6.4 The number of firms in a portfolio

The number of firms in a portfolio does not directly affect the calculation of sample skewness.

Inspection of equation (15) reveals thatN−3 multiplies every term. At the same timeN−3 also

multiplies every term in [T−1
∑

t (rpt − r̄p)2]3/2, cancelling off in the calculation of normalized
skewness. Where the number of firms matters is in the breakdown of skewness. Observe that

there are N firm-level skewness terms, N (N − 1) terms in co-vol, and N !/ [3! (N − 3)!] terms

in co-cov. Hence, as the number of firms increases, the number of terms associated with

co-cov increases faster than the number of terms associated with any other component of

skewness. This does not imply that the co-cov terms dominate the sum, because it may be

the case that their component terms cancel each other out. In Figure 11, I plot the ratio of

the standardized co-cov term to the sample skewness of market returns. With a ratio close

to 100%, on average, the figure suggests that indeed it is the co-cov term that drives negative

skewness at the market level, providing additional support to the model (see Figure 3 above).

The co-vol term makes up for the remaining difference between co-cov and skewness of market

returns.
6Two sectors have a higher Herfindahl index than SIC 49: SIC 60 “Depositary Institutions” and SIC 63

“Insurance Carriers,” with approximately 600 and 200 firms, respectively. Several sectors have somewhat
lower Herfindahl index than SIC 38, but also a much lower number of firms.
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There are two additional facts about how the number of firms, N , in a portfolio relates

to skewness in the portfolio return. The first is that the co-skewness terms are important

and negative even when portfolios are composed of a small number of firms. The second

is that the co-skewness terms appear to be monotonically decreasing in N . To show these

two facts, I construct equally weighted portfolios of N = 1, 25, 625, or Market firms.7 The

portfolio labelledMarket comprises all of the firms in CRSP in a given semester. For N = 1,

mean skewness equals mean firm-level skewness. For N equal to 25 and 625, the portfolios

are constructed in the following way. First, I assign a random number to each firm and rank

firms accordingly. Second, non-overlapping portfolios are formed by taking each consecutive

group of N firms according to their ranking. This procedure guarantees that if two firms are

in the same portfolio for N = 25 they are also in the same portfolio for N = 625 —a property

that is needed to capture the effect of increasing N . Finally, mean portfolio skewness is

computed across the N -firm portfolios. The procedure is then repeated for every semester.

The upshot of the exercise is Figure 12. The figure shows that the co-skewness terms

are important even for small N and that they appear to be monotonic in N . Using median

skewness produces a similar observation. The observed monotonicity pattern can be fully

attributed to monotonicity in co-skewness to N because the mean return skewness across

portfolios is the same no matter how many firms are in a portfolio (provided the variance

of the portfolio does not change much). While this evidence is consistent with the model,

because adding firms to a portfolio could also produce additional heterogeneity in firm events,

it is also consistent with the existence of a negatively skewed common factor in returns. If

returns follow rit = βifit + εit where ft is the common factor, it can be shown that, as

N → ∞, non-normalized sample skewness converges to β̄3T−1
∑

t

(
ft − f̄

)3, where β̄ is the
average exposure to the common factor.

6.5 Negatively skewed factor in returns

Duffee (1995) proposes that the discrepancy in measured skewness in firm-level and aggregate-

level returns can be accounted for by the existence of a negatively skewed factor in returns.

Duffee suggests looking at the market factor, but does not try to explain the negative skewness

in the market return. While the model here can explain such skewness in market returns from

the cross-sectional pattern of volatility in firm-level returns, it is also possible that market

7Constructing value-weigthed returns for the portfolios affects the exercise only for small N due to the
known negative correlation between skewness and firm size.
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returns are negatively skewed due to, for example, peso problems or jumps in the cash

flow process. Separating these different explanations is important but diffi cult because the

inclusion of factors, especially those driven by statistical validation, introduces the possibility

of “throwing the baby out with the bath water”, that is of a false rejection of the paper’s

null hypothesis.

In this paper, I choose to remove one common factor from returns for the following reasons.

First, the model is a one-factor model (see Proposition 2). Second, the market factor may

capture the effect of peso problems or jumps in (common factors in) cash flows that would

arise in a more general model, whereas a second factor may capture the skewness induced by

cross-sectional heterogeneity in firm events. Third, Engle and Mistry (2007) suggest that the

ICAPM is inconsistent with priced risk factors that do not display asymmetric volatility or

for which time aggregation changes the sign of skewness. In their paper, the market factor

is negatively skewed across all frequencies. The size and momentum factors are negatively

skewed at high frequencies but positively skewed at lower frequencies and the book-to-market

factor is positively skewed across all frequencies. Because Engle and Mistry focus on the post-

1988 period, I present the empirical results for the full sample and the post-1988 sample.

To remove the market factor, I run a regression of firm-level daily returns on market

returns,

qit = ai + bi1qMt + bi2qMt−1 + bi3qMt−2 + εit,

over the largest possible sample period from 1963 to 2009 for each firm, from which I obtain

the estimated “idiosyncratic”returns, ε̂it. I use logarithmic returns, qit and qMt, as opposed

to simple returns and allow for two lags of the market return because of microstructure effects

such as non-synchronous trading (Duffee, 1995). The use of logarithmic returns eliminates

the positive skewness that arises mechanically because prices are bounded below at zero (see

Duffee, 1995, and Chen et al., 2001). However, the overall impact on the level of skewness

is unclear because removing the market factor acts in the opposite direction to increase the

level of skewness.

Having obtained the residuals ε̂it, I proceed as in subsection 6.3, creating portfolios of

firms according to the calendar week of their first earnings announcement in each semester.

I label these portfolios P1 through P13, one for each of the weeks in the first quarter of the

semester. I then repeat experiments one and two using the estimated residuals ε̂it.

Figure 13 depicts skewness across the various portfolios for experiment one. Removal
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of the market factor contributes to less negative portfolio skewness as compared to Figure

8. In the full sample, portfolio skewness is always insignificant though the point estimate

for P1 is positive. However, the symmetry present in Figure 8 is lost. In the post-1988

sample period, not only is the skewness in P1 significantly positive, but there also is a more

symmetric relation in the point estimates. Figure 14 depicts the results for experiment two.

Again, compared to Figure 9, portfolio skewness is higher after the removal of the market

factor. Consistent with the model there are now several positive point estimates for portfolio

skewness. There is also a more pronounced flattening of the skewness curve as k increases.

Overall, the evidence in favor of the model remains, though admittedly it is somewhat

weaker. In the future, developing structural models that nest various explanations for asym-

metric volatility may provide for more powerful tests to identify the various sources of negative

skewness in portfolio returns.

7 Conclusion

The main contribution of this paper is to model and provide evidence on a new source of

negative skewness in aggregate stock returns. This source consists of the cross-sectional

heterogeneity in the timing of certain firm announcement events. The paper develops a

simple model to capture the observed changes in volatility and mean returns around such

firm announcement events. The model shows that periodicity in these events gives rise to

conditional heteroskedasticity and positive skewness in firm-level returns. The model also

shows that heterogeneity in the timing of these events can lead to negative skewness in

aggregate returns despite the positive skewness in firm-level returns.

The results in this paper are informative to the literature on rare disasters that tries to

explain the equity premium puzzle and also predicts negative skewness in aggregate stock

returns (e.g., Rietz, 1988, and Barro, 2006). More research is needed to understand how rare

disasters in the stock market are related to the cross-section of return volatility, and thus to

co-skewness, besides being related to infrequent changes in the pricing kernel.

The results in this paper are also pertinent to the large literature that tries to model the

dynamics of aggregate return volatility. The model predicts that aggregate return volatility

is partly explained by the cross-sectional heterogeneity of firm-level volatility. Testing this

prediction is left for future research.
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Appendix: Proofs
This appendix collects the proofs of the propositions in the text.

Proof of Proposition 1: Guess that firm i’s equilibrium stock price is as given in equation

(3). From the price function it is easy to obtain

Et

[
Qki+1it+1

]
= pki+1i −Rpkii , (A1)

V art

[
Qki+1it+1

]
= Γ2ki+1σ

2
Fi +R−2(K−ki)σ2Di. (A2)

Also,

Covt

[
Qki+1it+1 , Q

ki′+1
i′t+1

]
= Γki+1Γki′+1σ

F
ii′ +R−(2K−ki−ki′ )σDii′ . (A3)

This information can be summarized in the conditional return distribution:

Qk+1
t+1 |t ∼ N (µk,Vk) .

The representative investor solves

max
θt
−Et

(
exp−γWt+1

)
subject to θᵀt =

(
θ1t , ..., θ

N
t

)
and the resource constraint

Wt+1 = θᵀtQ
k+1
t+1 +RWt.

The problem yields the first-order necessary and suffi cient conditions

θt = γ−1V−1k µk.

Imposing the equilibrium condition that the representative investor holds all shares in the

market, θt = 1, gives equation (5), µk = γVk1. Using equation (5), and assuming without

loss of generality that time t + 1 corresponds to a payout period, it is possible to write the

following set of equilibrium conditions for each single firm:

PKt = R−1
[
−γσ2K + Et

[
P 0t+1 +Dt+1

]]
PK−1t−1 = R−1

[
−γσ2K−1 + Et−1

[
PKt
]]

...

P 0t−K = R−1
[
−γσ20 + Et−K

[
P 1t−K+1

]]
PKt−K−1 = R−1

[
−γσ2K + Et−K−1 [Pt−K +Dt−K ]

]
,

where σ2k is the component of Vk1, k = 0, ...,K, associated with the firm. Assuming a

stationary solution, recursive substitution yields equation (3) in the proposition. The values

for pk obey the recursion in equation (A1).�
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Proof of Corollary 1: Note that the variances and covariances in (A2)-(A3) are increasing

and convex in ki for firm i because Γki is increasing and convex in ki (ρFi/R < 1), holding

all else constant. The mean return is a weighted sum of the variances and covariances and

thus is also increasing and convex in ki.�

Proof of Proposition 2: Combining µMk = α
ᵀ
µk and equation (5) gives

µMk = γα
ᵀ
Vk1

= γNσ2M,k,

where the second line follows from σ2M,k = α
ᵀ
Vkα and the definition of α. Using equation

(5) again:

µk = γVk1

=
Vkα

σ2M,k

µMk ,

from which βk ≡ Covk
(
Qk
t , Q

k
Mt

)
/σ2M,k = Vkα/σ

2
M,k. Also, α

ᵀ
βk = α

ᵀ
Vkα/σ

2
M,k = 1. �

Proof of Corollary 2: Without loss of generality drop the firm index i. Using the definition

of f (Q), the unconditional mean stock return is

E (Qt+1) =
1

K + 1

K∑
k=0

Ek (Qt+1) =
1

K + 1

K∑
k=0

µk.

The unconditional variance in stock returns is

V ar (Qt+1) =
1

K + 1

K∑
k=0

∫
(Q− E (Qt+1))

2 φ
(
Q;µk, σ

2
k

)
dQ

=
1

K + 1

K∑
k=0

∫
(Q− µk + µk − E (Qt+1))

2 φ
(
Q;µk, σ

2
k

)
dQ

=
1

K + 1

K∑
k=0

(
σ2k + (µk − E (Qt+1))

2
)
.

Finally, unconditional skewness is

E
[
(Q− E (Qt+1))

3
]

=
1

K + 1

K∑
k=0

∫
(Q− E (Qt+1))

3 φ
(
Q;µk, σ

2
k

)
dQ

=
1

K + 1

K∑
k=0

∫
(Q− µk + µk − E (Qt+1))

3 φ
(
Q;µk, σ

2
k

)
dQ

=
1

K + 1

K∑
k=0

[
(µk − E (Qt+1))

3 + 3σ2k (µk − E (Qt+1))
]
. (A4)
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The third equality uses
∫

(Q− µk)φ
(
Q;µk, σ

2
k

)
dQ = 0 and the fact that skewness is zero for

a normal variable,
∫

(Q− µk)3 φ
(
Q;µk, σ

2
k

)
dQ = 0. The second term under the summation

sign in (A4) can be manipulated to yield the expression in the corollary by noting that

µk − E (Qt+1) =
1

K + 1

K∑
j=0,j 6=k

(
µk − µj

)
,

and grouping terms together under the last summation sign.�

Other calculations in the correlated cash flow case: Here I derive several uncondi-

tional moments of aggregate returns including skewness, which is given in the main text in

equation (13). Using the definition of f (Q), for a stock market composed of N firms, the

unconditional mean stock return is

E (QMt+1) =
1

K + 1

K∑
k=0

Ek (QMt+1) =
1

K + 1

K∑
k=0

1

N

N∑
i=1

µik.

The unconditional variance in stock returns is

V ar (QMt+1) =
1

K + 1

K∑
k=0

∫
(Q− E (Qt+1))

2 φ
(
Q;µMk , σ

2
M,k

)
dQ

=
1

K + 1

K∑
k=0

∫ (
Q− µMk + µMk − E (Qt+1)

)2
φ
(
Q;µMk , σ

2
M,k

)
dQ

=
1

K + 1

K∑
k=0

(
σ2M,k +

(
µMk − E (Qt+1)

)2)
.

Unconditional skewness is

E
[
(QMt − E (QMt))

3
]

=
1

K + 1

K∑
k=0

∫
(Q− E (Q))3 φ (Q; k) dQ

=
1

K + 1

K∑
k=0

∫ ((
Q− µMk

)3
+
(
µMk − E (Q)

)3)
φ (Q; k) dQ

+
3

K + 1

K∑
k=0

∫ (
Q− µMk

)2 (
µMk − E (Q)

)
φ (Q; k) dQ

+
3

K + 1

K∑
k=0

∫ (
Q− µMk

) (
µMk − E (Q)

)2
φ (Q; k) dQ,

or

=
1

K + 1

K∑
k=0

(
µMk − E (Q)

)3
+

3

K + 1

K∑
k=0

(
µMk − E (Q)

)
σ2M,k.
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Expressing market returns as a sum of firm-level returns leads to

=
1

N3

N∑
i=1

E
[
(Qit − E (Qit))

3
]

+
3

K + 1

1

N3

K∑
k=0

N∑
i=1

N∑
i′ 6=i

(
µik − E (Qi)

)2 (
µi
′
k − E (Qi′)

)

+
3

K + 1

1

N3

K∑
k=0

N∑
i=1

(
µik − E (Qi)

) N∑
i′ 6=i

σ2i′k +
6

K + 1

1

N3

K∑
k=0

(
µM,k − E (QM )

) N∑
i=1

∑
i′>i

σii′,k

+
6

K + 1

1

N3

K∑
k=0

N∑
i=1

N∑
i′>i

N∑
l>i′

(
µik − E (Qi)

) (
µi
′
k − E (Qi′)

)(
µlk − E (Ql)

)
.

Proof of Proposition 4: Guess prices to be

P kt = pk + ΓkEt (Ft) +R−(K+1−k)
k−1∑
j=0

Et
(
εDt−j

)
,

for all k. Obviously for k ≥ Ka, the expectations operators drop out because the shocks are

in investors’information set. Excess stock returns are

Qkt = P kt −RP k−1t−1

= pk + ΓkEt (Ft) +R−(K+1−k)
k−1∑
j=0

Et
(
εDt−j

)

−R

pk−1 +
(ρF /R)K+2−k

1− (ρF /R)K+1
Et−1 (Ft−1) +R−(K+2−k)

k−2∑
j=0

Et−1
(
εDt−1−j

) ,

for any period 1 ≤ k ≤ Ka − 1. Because

Et (Ft) = ρFEt−1 (Ft−1) + Et
(
εFt
)

= ρFEt−1 (Ft−1) +
σ2F

σ2F + σ2SF
SFt ,

the expression for returns reduces to

Qkt = pk −Rpk−1 + Γk
σ2F

σ2F + σ2SF
SFt +R−(K+1−k)

σ2D
σ2D + σ2SD

SDt .

Above, I used

Et (Ft−1) = Et−1 (Ft−1) , Et
(
εDt−1

)
= Et−1

(
εDt−1

)
, ..., Et

(
εDt−k+1

)
= Et−1

(
εDt−k+1

)
,

32



knowing that time t signals are not informative about t−n shocks for any n > 0. For period

k = Ka,

Qkt = P kt −RP k−1t−1

= pk + ΓkFt +R−(K+1−k)
k−1∑
j=0

εDt−j

−R

pk−1 +
(ρF /R)K+2−k

1− (ρF /R)K+1
Et−1 (Ft−1) +R−(K+2−k)

k−2∑
j=0

Et−1
(
εDt−1−j

) ,

or rearranging,

Qkt = pk −Rpk−1 + ΓkρF [Ft−1 − Et−1 (Ft−1)] + Γkε
F
t

+R−(K+1−k)

εDt +
k−2∑
j=0

[
εDt−1−j − Et−1

(
εDt−1−j

)] .

Finally, for k > Ka, returns take the same form with the same conditional moments as in

Proposition 1.

It is now easy to construct conditional return moments. For variance, and for any period

1 ≤ k ≤ Ka − 1,

V art−1
(
Qkt

)
= Γ2k

σ4F
σ2F + σ2SF

+R−2(K+1−k)
σ4D

σ2D + σ2SD
,

which is increasing and convex in k. For period k = Ka,

V art−1
(
Qkt

)
= Γ2kρ

2
FV art−1 [Ft−1 − Et−1 (Ft−1)] + Γ2kσ

2
F

+R−2(K+1−k)

σ2D +

k−2∑
j=0

V art−1
[
εDt−1−j − Et−1

(
εDt−1−j

)] .

In addition,

Et−1
(
εDt−1

)
=

σ2D
σ2D + σ2SD

SDt−1,

V art−1
(
εDt−1

)
=

σ2Dσ
2
SD

σ2D + σ2SD
,

and

V art−1,Ka−1 [Ft−1 − Et−1 (Ft−1)]

= V art−1,Ka−1
[
εFt−1 − Et−1

(
εFt−1

)
+ ...+ ρKa−2

F

(
εFt−Ka+1 − Et−Ka+1

(
εFt−Ka+1

))]
=

σ2Fσ
2
SF

σ2F + σ2SF

{
1 + ρ2F + ...+ ρKa−2

F

}
.

33



For k ≤ Ka,

V art−1
(
Qkt

)
> V art−2

(
Qk−1t−1

)
.

Furthermore,

V art−1
(
QKa
t

)
> V art

(
QKa+1
t+1

)
is possible if the arrival of information from past shocks is relevant enough. In that case the

path of conditional variance displays two distinct periods of convexity.

Finally, knowing that µk = γV ark

(
Qk+1t+1

)
, it is then possible to recover the constants pk

verifying that the price function above is an equilibrium price.�
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Figure 1: Stock market skewness in various stock market configurations. In Panel
A, each stock market consists of two types of firms with cash payout dates separated by k
periods, where k ∈ {0, 1, ...,K}. In Panel B, each stock market consists of k + 1 different
types of firms with cash payout dates of 0, 1, ..., and k. Each panel depicts market skewness
(solid line) and firm-level skewness (dashed line). Parameters are: K = 12, σ2D = σ2F = 1,
ρF = 0.9, γ = 5, R = 1.0025, and σD,ij = σF,ij = 0.5.
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Figure 2: Contribution of each trading period to stock market skewness. The
stock market consists of firms with cash payout dates of 0, 1, ..., and 8. The figure plots
the component of normalized skewness, E (Qt − E (Qt))

3 /[E (Qt − E (Qt))
2]3/2, due to each

trading period. Parameters are: K = 12, σ2D = σ2F = 1, ρF = 0.9, γ = 5, R = 1.0025, and
σD,ij = σF,ij = 0.5.
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Figure 3: Decomposing Stock Market Skewness. Each stock market consists of k + 1
different types of firms with cash payout dates of 0, 1, ..., and k as in Panel B of Figure 1.
The figure depicts aggregate skewness (solid) and its co-skewness component term co-cov
(dashed). Parameters are: K = 12, σ2D = σ2F = 1, ρF = 0.9, γ = 5, and R = 1.0025.
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Figure 4: Stock market skewness in various stock market configurations with un-
correlated cash flows. In Panel A, each stock market consists of two types of firms with
cash payout dates separated by k periods, where k ∈ {0, 1, ...,K}. In Panel B, each stock
market consists of k + 1 different types of firms with cash payout dates of 0, 1, ..., and k.
Each panel depicts market skewness (solid line) and mean firm-level skewness (dashed line).
Parameters are: K = 12, σ2D = σ2F = 1, ρF = 0.9, γ = 5 and R = 1.0025.
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Figure 5: Stock market skewness in various stock market configurations with earn-
ings announcement events. In Panel A, each stock market consists of two types of firms
with cash payout dates separated by k periods, where k ∈ {0, 1, ...,K}. In Panel B, each stock
market consists of k+1 different types of firms with cash payout dates of 0, 1, ..., and k. Each
panel depicts market skewness (solid line) and firm-level skewness (dashed line). Parameters
are: K = 12, Ka = 6, σ2D = σ2F = 1, ρF = 0.9, γ = 5, R = 1.0025, and σSD = σSF = 0.3.
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Figure 6: Skewness in firm-level and aggregate stock returns. The figure plots mean
skewness in daily firm-level returns (dashed line) and skewness in the equally weighted market
return (solid line), both computed using six months of trading data. Data comprise all firms
in CRSP with complete daily return data by semester. Period of analysis is 1/1/1973 through
31/12/2009.
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Figure 7: Histogram of announcement week. The figure plots the empirical frequency
by calendar week of cash payouts (Panel A) and earnings (Panel B) announcements. Data
come from the merged Compustat/CRSP quarterly files. The sample period is 1973:Q1 to
2009:Q2. Observations with announcement date before the end of the quarter are dropped.
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Figure 8: Skewness and announcement portfolios. The figure plots portfolio return
skewness with 10% confidence bands. Portfolios are constructed by grouping firms that
announce in the first week of the first quarter in the semester (P1) with firms that announce
in week k of the first quarter in the semester (Pk), k = 2, ..., 13. Skewness is calculated
using daily returns over six months. Portfolio returns are equally weigthed. Portfolios are
constrained to have the same number of firms, which is done by randomly dropping firms
from the larger portfolios. Data are obtained from the merged Compustat/CRSP quarterly
file and the CRSP daily return file. The sample period is January 1, 1973 to December 31,
2009.
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Figure 9: Skewness and announcement portfolios. The figure plots portfolio return
skewness with 10% confidence bands. Portfolios are constructed by grouping firms that
announce between the first week of the first quarter in the semester (P1) and week k of the
first quarter in the semester (Pk), k = 2, ..., 13. Skewness is calculated using daily returns
over six months. Portfolio returns are equally weigthed. Portfolios are constrained to have the
same number of firms, which is done by randomly dropping firms from the larger portfolios.
Data are obtained from the merged Compustat/CRSP quarterly file and the CRSP daily
return file. The sample period is January 1, 1973 to December 31, 2009.
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Figure 10: Skewness and calendar week. The figure plots the weekly component of
market skewness with 10% confidence bands. Skewness is calculated using daily returns over
six months. Portfolio returns are equally weigthed. Data are obtained from the CRSP daily
return file. The sample period is January 1, 1973 to December 31, 2009.

47



1973 1978 1983 1988 1993 1998 2003 2008
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

Figure 11: Skewness decomposition. The figure plots co-cov as a fraction of overall market
skewness. Skewness is computed using equally weighted portfolios and six months of trading
data. Data comprise all firms in CRSP with complete daily return in the specific year and
semester. The sample period is January 1, 1973 to December 31, 2009.
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Figure 12: Skewness in portfolios of varying size. The figure plots mean skewness
in daily returns from portfolios of size N . Skewness is computed using equally weighted
portfolios and six months of daily data. When N = 1, the figure plots firm-level skewness.
The portfolios are constructed by randomly ranking the firms and then grouping them. If two
firms are in the same portfolio when N = 25, then they will also be in the same portfolio for
N = 625. The larger portfolio, labeled “Market”, comprises all firms in CRSP. The sample
period is January 1, 1973 to December 31, 2009.
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Figure 13: Skewness and announcement portfolios using CAPM residuals. The
figure plots portfolio return skewness with 10% confidence bands. Portfolios are constructed
by grouping firms that announce in the first week of the first quarter in the semester (P1)
with firms that announce in week k of the first quarter in the semester (Pk), k = 2, ..., 13.
Skewness is calculated using daily idiosyncratic returns over six months. Portfolio returns
are equally weigthed. Portfolios are constrained to have the same number of firms, which
is done by randomly dropping firms from the larger portfolios. Data are obtained from the
merged Compustat/CRSP quarterly file and the CRSP daily return file. The sample period
is January 1, 1973 to December 31, 2009.
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Figure 14: Skewness and announcement portfolios using CAPM residuals. The fig-
ure plots portfolio return skewness with 10% confidence bands. Portfolios are constructed by
grouping firms that announce between the first week of the first quarter in the semester (P1)
and week k of the first quarter in the semester (Pk), k = 2, ..., 13. Skewness is calculated using
daily idiosyncratic returns over six months. Portfolio returns are equally weigthed. Portfolios
are constrained to have the same number of firms, which is done by randomly dropping firms
from the larger portfolios. Data are obtained from the merged Compustat/CRSP quarterly
file and the CRSP daily return file. The sample period is January 1, 1973 to December 31,
2009.
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