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Caps in Sequential Contests

Reut Megidish and Aner Sela

May 23, 2010

Abstract

We study a sequential two-stage all-pay auction with two identical prizes. In each stage, the players

compete for one prize and each player may win either one or two prizes. The designer may impose a cap

on the players�bids in each of the stages. We analyze the equilibrium in this sequential all-pay auction

with bid caps and show that capping the players�bids is pro�table for a designer who wishes to maximize

the players�expected total bid.

Jel Classification: D44, D82, J31, J41

Keywords: Multi-stage contests, All-pay auctions, Bid caps

1 Introduction

In many competitions, we can often observe situations where severe constraints are imposed on contestants.

For example, in the US electoral campaign, there is a speci�c maximum campaign contribution that a single

agent can make to a candidate.1 Also several sports leagues (e.g., the NBA) implement a salary cap, which

is a limit to the total amount of money a team can spend on players�salaries. The actual amount of the cap

varies on a year-to-year basis, and is calculated as a percentage of the league�s revenue from the previous

season.2 Professional NBA players also face a variable salary cap where the maximum amount of money a

1Political Action Committees (PACs) can contribute at most $5,000 per election to a candidate, while individuals can

contribute at most $1,000. About caps in political lobbying see Che and Gale (1998).
2For instance, in 2007-08, the NBA salary cap was approximately US $55.63 million per team, and for the 2008-09 season it

was $58.68 million. The 2009-10 salary cap has been set at $57.7 million.
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player can sign for is contingent on the number of years that he has played and on the total of the salary

cap.3

The caps imposed on players have an ambiguous e¤ect on their bids. On the one hand, relatively weak

players believe that they will have a higher chance to win and therefore will make more e¤ort than in a

contest without a bid cap. On the other hand, relatively strong players will make less e¤ort than in a

contest without a bid cap. The e¤ect of the bid cap on the players� total bid, therefore, depends on the

trade-o¤ between the increase of the weak players�e¤ort and the decrease of the strong players�e¤ort. The

all-pay auction would seem to be the natural model to examine the e¤ect of bid caps because of its simple

structure and its advantages over other contest forms.4 La¤ont and Robert (1996), for example, showed

that an all-pay auction with a reserve price is a revenue-maximizing mechanism for selling one object to

bidders who face linear costs and a common and common-knowledge �xed budget constraint. Maskin (2000)

showed that an all-pay auction is constrained e¢ cient, namely, it maximizes expected welfare subject to

incentive-compatibility and budget constraints. These results subsequently motivated several researchers to

study the e¤ect of bid caps in all-pay auctions. Che and Gale (1998) calculated the bidding equilibrium of a

complete information all-pay auction with two bidders having di¤erent valuations for a prize and linear cost

functions, and demonstrated that a bid cap can increase the players�total bid. Gavious, Moldovanu and

Sela (2003) studied symmetric all-pay auctions under incomplete information and showed that, regardless of

the number of bidders, if agents have linear or concave cost functions then setting a bid cap is not pro�table

for a designer who wishes to maximize the average bid. On the other hand, if agents have convex cost

functions (i.e. an increasing marginal cost) then e¤ectively capping the bids is pro�table for a designer

facing a su¢ ciently large number of bidders. Sahuguet�s (2006) �ndings indicate that in asymmetric all-pay

auctions under incomplete information and linear cost functions, capping the bids may be pro�table for the

3The maximum salary of a player with 6 or fewer years of experience is $9,000,000 or 25% of the total salary cap (2009-10:

$14,472,500). For a player with 7�9 years of experience, the maximum is $11,000,000 or 30% of the cap (2009-10: $17,310,000),

and for a player with 10+ years of experience, the maximum is $14,000,000 or 35% of the cap (2008-2009: $20,195,000).
4The economic literature on all-pay auctions is quite extensive. All-pay auction models with complete information about

the prize�s value to di¤erent players have been studied, among others, by Hillman and Riley (1989), Baye Kovenock and de

Vries (1993, 1996) and Siegel (2009). All-pay auctions with incomplete information about the prize�s values, have been studied,

among others, by Krishna and Morgan (1997) and Moldovanu and Sela (2001, 2006).
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designer who wishes to maximize the average bid. Kirkegaard (2009) studied asymmetric all-pay auctions

under incomplete information in which a strong and a weak contestant compete and where a contestant may

su¤er from a handicap or bene�t from a head start. His results show that it is generally pro�table to give

the weak contestant a head start but it may or may not be pro�table to handicap the strong contestant. He

also found that the weak contestant may have a head start as well as a handicap.5

All the above mentioned papers focus on bid caps in one-stage all pay auctions. Works on bid caps in

sequential multi-stage contests, particularly sequential all-pay auctions, are relatively sparse.6 The reason

for this gap is that the e¤ect of bid caps in sequential multi-stage contests on players�equilibrium strategies

is much more complex to analyze than in one-stage contests, as a bid cap in any stage of a sequential contest

a¤ects not only the players�strategies in that stage but also the players�strategies in all the other stages.

Therefore a bid cap may increase the players�e¤ort in some stages but decrease it in others. In this paper,

we extend the model of the sequential two-stage all-pay auction under complete information studied by Sela

(2010) by allow the designer to impose bid caps in each of the two stages. Our model has two players

and two identical prizes and each player may win more than one prize. The players�marginal values are

non-increasing such that the marginal value of the second prize is not larger than the marginal value of the

�rst one. In our sequential model like in Che and Gale (1998), a bid cap in the second stage will increase

the players�total bid in this stage. But, a bid cap in the second stage may decrease the players�bid in the

�rst stage such that it is not clear at all that a bid cap in the second stage is as e¤ective as in the one-stage

all-pay auction. Furthermore, a bid cap in the �rst stage does not change only the players�bids in the �rst

stage but also the players�probabilities of winning in that stage. Thus a bid cap in the �rst stage changes

the players�expected bid in the second stage as well. However, despite this seemingly complex e¤ect of bid

caps on players�strategies in our sequential all-pay auction, we show that by choosing the right bid caps the

designer can always increase the players�total bid. In particular, we show that to increase the total bid it is

5Konrad (2002) examined a two-bidder model under complete information with head starts and handicaps.
6The literature presents only a few sequential auctions with constrained bidders. For example, Pitchik and Schotter (1988)

studied complete information sequential auctions with two �nancially constrained bidders and two independent objects. Benoit

and Krishna (2001) extended this model to more than two bidders, assuming synergies among the objects and that budgets

chosen by the bidders. They note that the seller may bene�t from budget constraints, but that this feature cannot occur in

their model if only one object is auctioned.
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su¢ cient to cap the players�bids in the �rst stage of the sequential all-pay auction. However, this last result

does not imply that the bid cap in the second stage is not pro�table for a designer who wishes to maximize

the players�total bid. Indeed, we show that if there is no dominant player such that both of his marginal

values are larger than those of his opponent, the combination of bid caps in both stages of the sequential

all-pay auction is the optimal setting.

The paper is organized as follows: In Section 2, we introduce our sequential two-stage all-pay auction

with bid caps. In Sections 3 and 4, we analyze the equilibrium behavior in both stages of this model. In

Section 5 we analyze the e¤ect of the bid caps on the expected total bid. Section 6 concludes.

2 The model

We consider a sequential all-pay auction with two players (denoted by i = a; b) and two stages (denoted by

t = 1; 2). In each of the stages, a single (identical) prize is awarded. Let vij denotes player i
0s marginal value

for winning his j-th prize. That is, if player i wins only one prize his value is vi1 and if he wins two prizes

his value is vi1 + v
i
2: We assume that the marginal values are non-increasing, namely, v

i
1 � vi2 and that they

are common knowledge.

Each player i submits a bid (e¤ort) in the �rst stage xi1 � d1 where d1 2 [0; 1] is a commonly known bid

cap. The player with the highest bid wins the �rst prize and all the players pay their bids. The players know

the identity of the winner in the �rst stage before the beginning of the second stage, such that the players�

values in the second stage are common knowledge. Then, each player i submits a bid in the second stage

xi2 � d2 where d2 2 [0; 1] is a commonly known bid cap. The player with the highest bid in the second stage

wins the second prize and all the players pay their bids. We assume that the bid caps can be controlled by

the contest designer who wishes to maximize the players�total (average) bid in both stages.

3 Equilibrium - second stage

In order to analyze a subgame-perfect equilibrium of a sequential two-stage all-pay auction with two players

we begin by analyzing the second stage and go backwards to the �rst stage. We assume �rst that there is no
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bid cap in the second stage. Then, if player i�s value in that stage is vi; i = a; b, where va � vb; according to

Baye, Kovenock and de Vries (1996), there is always a unique mixed-strategy equilibrium in which players

a and b randomize on the interval [0; vb] according to their bid cumulative distribution functions, which are

given by

vaF b(x)� x = va � vb

vbF a(x)� x = 0

Thus, player a�s equilibrium bid is uniformly distributed; that is

F a(x) =
x

vb

while player b�s equilibrium bid is distributed according to the cumulative distribution function

F b(x) =
va � vb + x

va

Player a0s probability to win is 1� vb

2va and his expected payo¤ is v
a� vb, while player b0s probability to win

is vb

2va and his expected payo¤ is zero.

Now assume that there is a bid cap d2 2
�
0; vb

�
in the second stage. Note that if d2 > vb the bid cap is

not e¤ective since it is not binding to the players. According to Che and Gale (1998), if d2 2
h
0; v

b

2

i
there

is an equilibrium with pure strategies in which each player submits a bid equal to the bid cap vb

2 , each of

the players wins with probability of 0.5 and the expected payo¤ of player i = a; b is v
i

2 � d2: If d2 2 (
vb

2 ; v
b]

there is a mixed-strategy equilibrium in which players a and b randomize on the interval [0; 2d2 � vb][ fd2g

according to their bid cumulative distribution functions which are given by

vaF b(x)� x = va
�
F b(2d2 � vb) +

1� F b(2d2 � vb)
2

�
� d2

vbF a(x)� x = vb
�
F a(2d2 � vb) +

1� F a(2d2 � vb)
2

�
� d2

Here the LHS of the above equations are the expected payo¤s of the players if they submit a bid x 2

[0; 2d2 � vb] and the RHS are the expected payo¤s if they submit a bid equal to d2: Thus, player a�s
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equilibrium bid is distributed according to the cumulative distribution function

F a(x) =

8>>>>>><>>>>>>:

x
vb
if x 2 [0; 2d2 � vb]

2d2�vb
vb

if x 2 (2d2 � vb; d2)

1 if x = d2

while player b�s equilibrium bid is distributed according to the cumulative distribution function

F b(x) =

8>>>>>><>>>>>>:
1� vb�x

va if x 2 [0; 2d2 � vb]

1� 2vb�2d2
va if x 2 (2d2 � vb; d2)

1 if x = d2

Then, player a0s probability of winning in the second stage is 1� vb

2va and his expected payo¤ is v
a�vb, while

player b�s probability of winning is vb

2va and his expected payo¤ is zero. Note that in the case where d2 2 (

vb

2 ; v
b] the players�probabilities of winning and their expected payo¤s are the same as in the case without a

bid cap.

4 Equilibrium - �rst stage

We divide the analysis of the equilibrium in the �rst stage into three cases: 1. We have a bid cap d1 in the

�rst stage only. 2. We have a bid cap d2 in the second stage only. 3. We have bid caps d1 and d2 in both

stages. Suppose �rst that there is a bid cap d1 in the �rst stage only, and assume that player i�s marginal

value in stage t = 1; 2 is vit: If player a wins in the �rst stage his payo¤ is v
a
1 and then the players�values

in the second stage are va2 and v
b
1: If v

a
2 > v

b
1; the expected payo¤ of player a will be v

a
2 � vb1 in the second

stage. Otherwise, if va2 � vb1, the expected payo¤ of player a in the second stage will be zero. Thus, if player

a wins in the �rst stage, his expected payo¤ in both stages is va1 +maxfva2 � vb1; 0g:

If player a doesn�t win in the �rst stage then the players�values in the second stage are va1 and vb2. If

va1 > vb2; the expected payo¤ of player a will be v
a
1 � vb2 in the second stage. Otherwise, if va1 � vb2, the

expected payo¤ of player a in the second stage will be zero. Thus, if player a does not win in the �rst stage

his expected payo¤ is maxfva1 � vb2; 0g: A similar argument holds for player b: The induced value of each

player in the �rst stage (denoted by bvi1; i 2 fa; bg) is the di¤erence between his expected payo¤ in the contest
6



when he wins or not in the �rst stage. Thus, the induced values of the players in the �rst stage are:

bva1 = va1 +maxfva2 � vb1; 0g �maxfva1 � vb2; 0g (1)

bvb1 = vb1 +maxfvb2 � va1 ; 0g �maxfvb1 � va2 ; 0g

Note that since the players�marginal values are positive, the induced values are positive as well. Then, using

the induced values, the players�equilibrium strategies in the �rst stage of the sequential two-stage all-pay

auction can be stated as follows.

Proposition 1 Assume that bvj1 � bvk1 ; j; k 2 fa; bg: Then, in the unique subgame-perfect equilibrium of

the sequential all-pay auction with a bid cap d1, the players� strategies in the �rst stage are as follows: If

d1 2
h
0;

bvk1
2

i
both players use the pure strategies

xa = xb = d1

If d1 2
�bvk1
2 ; bvk1i, player j�s equilibrium bid is distributed according to

F j1 (x) =

8>>>>>><>>>>>>:

xbvk1 if x 2 [0; 2d1 � bvk1 ]
2d1�bvk1bvk1 if x 2 (2d1 � bvk1 ; d1)

1 if x = d1

(2)

while player k�s equilibrium bid is distributed according to

F k1 (x) =

8>>>>>><>>>>>>:
1� bvk1�xbvj1 if x 2 [0; 2d1 � bvk1 ]

1� 2bvk1�2d1bvj1 if x 2 (2d1 � bvk1 ; d1)
1 if x = d1

(3)

Proof. See Appendix.

Suppose now that there is a bid cap d2 in the second stage only. We assume that d2 2
h
0;min(

va2
2 ;

vb2
2 )
i

since otherwise the bid cap in the second stage is not necessarily binding to both players. We omit the

equilibrium analysis for when d2 > min(
va2
2 ;

vb2
2 ); namely, for when a bid cap is binding to only one of the

players or it is not binding to both players, since these cases are not relevant to the intent of our study.

Then, given that the bid cap d2 is binding to both players, if player a wins in the �rst stage his payo¤ in this

stage is va1 and in the second stage the expected payo¤ of player a will be va2
2 � d2 . Thus, if player a wins
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in the �rst stage, his expected payo¤ in both stages is va1 +
va2
2 � d2: If player a doesn�t win in the �rst stage

his expected payo¤ in the second stage is v
a
1

2 � d2: A similar argument holds for player b: The induced values

of both players in the �rst stage, which are the di¤erences between their expected payo¤s in the contest if

they win or not in the �rst stage, are given by

eva1 = va1 + v
a
2

2
; evb1 = vb1 + v

b
2

2

Using the induced values, the players�equilibrium strategies in the �rst stage of the sequential two-stage

all-pay auction with a bid cap in the second stage can be stated as follows.

Proposition 2 Suppose that evj1 � evk1 ; j; k 2 fa; bg: Then in the unique subgame-perfect equilibrium of the

sequential two-stage all-pay auction with a bid cap d2, the players�strategies in the �rst stage are as follows:

If d2 2
h
0;min(

va2
2 ;

vb2
2 )
i
, player j�s equilibrium bid is distributed according to

F j1 (x) =
xevk1 (4)

while player k�s equilibrium bid is distributed according to

F k1 (x) =
x+ evj1 � evk1evj1 (5)

Proof. See Appendix.

We assume now that the bid caps in both stages are binding. As was shown above, the bid cap in the

second stage is binding to both players i¤ d2 2
h
0;min(

va2
2 ;

vb2
2 )
i
: We now �nd the values of d1 that are

binding to both players in the �rst stage. If player a wins in the �rst stage, his payo¤ is va1 � d1 and in the

second stage the expected payo¤ of player a will be va2
2 � d2 . Thus, if player a wins in the �rst stage, his

expected payo¤ in the both stages is va1 +
va2
2 � d1� d2: If player a doesn�t win in the �rst stage his expected

payo¤ in both stages is v
a
1

2 �d1�d2: A similar argument holds for player b: Since both players have the same

probability to win in the �rst stage and both choose to participate in the �rst stage we have for all i 2 fa; bg;

1

2
(vi1 +

vi2
2
� d1 � d2) +

1

2
(
vi1
2
� d1 � d2) �

vi1
2
� d2 (6)

where the LHS is the expected payo¤ of player i in the sequential all-pay auction and the RHS is the expected

payo¤ of player i if he would participate in the second stage only. Thus, by (6) we obtain that
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Proposition 3 In the sequential two-stage all-pay auction with bid caps d1 and d2; if d2 2
h
0;min(

va2
2 ;

vb2
2 )
i

and d1 2
h
0;min(

va1+v
a
2

4 ;
vb1+v

b
2

4 )
i
there is a unique subgame-perfect equilibrium in which both players choose

d1 in the �rst stage and d2 in the second stage.

Using the above equilibrium analysis we now examine the e¢ ciency of capping the players�bids for a

designer who wishes to maximize the players�expected total bid.

5 Total bid

Che and Gale (1998) showed that in the one-stage all-pay auction an endogenous bid cap is pro�table for a

designer who wishes to maximize the expected total bid. In this section, we generalize this result and show

that in the sequential two-stage all-pay auction endogenous bid caps increase the players�expected total bid.

Moreover, we show that a bid cap in the �rst stage only is su¢ cient to increase the expected total bid.

If there is no bid cap in the �rst stage, the players�equilibrium strategies are given by Proposition 1

where d1 is equal to the lower induced value, namely, d1 = bvk1 : Then the expected total bid in the �rst stage
of the sequential all-pay auction is given bybvk12 (1 + bvk1bvj1 ): If player j wins in the �rst stage and that happens
with probability 1� bvk1

2bvj1 , then the expected total bid in the second stage is minfvj2;v
k
1g

2 (1 +
minfvj2;v

k
1g

maxfvj2;vk1g
). But

if player k wins in the �rst stage and that happens with probability bvk1
2bvj1 , then the expected total bid in

the second stage is minfv
j
1;v

k
2g

2 (1 +
minfvj1;v

k
2g

maxfvj1;vk2g
): Thus, the expected total bid in the sequential all-pay auction

without any bid cap is given by

TE0 =
bvk1
2
(1 +

bvk1bvj1 ) + (1� bvk1
2bvj1 )minfv

j
2; v

k
1g

2
(1 +

minfvj2; vk1g
maxfvj2; vk1g

) +
bvk1
2bvj1 minfv

j
1; v

k
2g

2
(1 +

minfvj1; vk2g
maxfvj1; vk2g

) (7)

On the other hand, if there is a bid cap in the �rst stage d1 =
bvk1
2 ;

7 by Proposition 1 the expected total bid in

the �rst stage is 2d1 = bvk1 ; and the expected total bid in the second stage is either minfvj2;vk1g2 (1+
minfvj2;v

k
1g

maxfvj2;vk1g
)

or minfv
j
1;v

k
2g

2 (1+
minfvj1;v

k
2g

maxfvj1;vk2g
) with the same probability. Thus, the expected total bid in the sequential all-pay

auction with a bid cap d1 =
bvk1
2 in the �rst stage is given by

TE1 = bvk1 + 12 minfvj2; vk1g2
(1 +

minfvj2; vk1g
maxfvj2; vk1g

) +
1

2

minfvj1; vk2g
2

(1 +
minfvj1; vk2g
maxfvj1; vk2g

) (8)

7This is the maximal value of the bid cap in the �rst stage that is binding to both players.
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Note that if the bid cap in the �rst stage satis�es d1 2
�bvk1
2 ; bvk1i, based on Che and Gale (1998), the expected

total bid and the players�probabilities of winning in the �rst stage are exactly the same as without a bid

cap. Therefore the expected total bid in both stages is the same as in the sequential all-pay auction without

a bid cap. In the following, by comparing the expected total bid in the sequential all-pay auction without

bid caps and with a bid cap in the �rst stage, we demonstrate that capping the bids in the sequential all-pay

auction increases the players�expected total bid.

Proposition 4 For every sequential all-pay auction there are bid caps (d1; d2) > (0; 0) that increase the

players�expected total bid. In particular, the total bid in the sequential all-pay auction with a bid cap of d1 =

bvk1
2 in the �rst stage (d2 = 0) is larger than the expected total bid without bid caps.

Proof. See Appendix.

So far, we have shown that capping the players�bids in the �rst stage increases the players�expected

total bid. The e¤ect of the a bid cap in the second stage, however, is ambiguous since it a¤ects the players�

strategies in both stages. In other words, while we know that a bid cap increases the players�expected total

bid in the second stage it might decrease the players� expected total bid in the �rst stage such that the

total e¤ect of the bid cap in the second stage is not clear and will depend on the exact marginal values of

the players in both stages. However, below we show that a bid cap in the second stage can be an optimal

complement to a bid cap in the �rst stage such that bid caps in both stages might be the optimal setting.

By Proposition 3, if there is a bid cap in each of the stages of the sequential all-pay auction and both caps

have the maximal values which are binding to both players then the players�expected total bid is given by

TE12 = 2d1 + 2d2 = 2min(
vj1 + v

j
2

4
;
vk1 + v

k
2

4
) + 2min(

vj2
2
;
vk2
2
) (9)

A comparison of (9) and (8) yields

Proposition 5 If the players�values satisfy vi1 � v
j
2 i; j 2 fa; bg then the sequential all-pay auction with bid

caps in both stages yields a higher expected total e¤ort than the sequential all-pay auction with a bid cap in

the �rst stage only.

Proof. See Appendix.
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It can be easily veri�ed that if the condition of Proposition 5, according to which vi1 � vj2 i; j 2 fa; bg

does not hold, that is, there exists a dominant player such that his both values are larger than both values

of his opponent, then the expected total bid in the sequential all-pay auction with bid caps in both stages is

not necessarily larger than the expected total bid in the sequential all-pay auction with a bid cap in the �rst

stage only. Hence, the optimal setting for a designer who wishes to maximize the players�expected total bid

could be either with a bid cap in one stage only or in the second stage only or in both stages. In any case,

bid caps are e¤ective for increasing the expected total bids in the sequential all-pay auction.

6 Concluding remarks

We studied a sequential two-stage all-pay auction where the players�marginal values for the prizes are non-

increasing. We showed that a designer who wishes to maximize the expected total bid should impose bid

caps in either one of the stages or in both of them. In particular, we showed that the expected total bid

in the sequential all-pay auction with the optimal bid cap in the �rst stage is larger than in the sequential

all-pay auction without bid caps. We also found that the bid cap in the second stage of a sequential all-pay

auction may have a positive e¤ect on the players�expected total bid. It is most likely that these results

according to which bid caps have a positive e¤ect on players�total e¤ort can be generalized for any relation

between the players�marginal values. However, such a generalization is somewhat complex since neither the

bid cap in the �rst stage nor in the second stage has a signi�cant and clear e¤ect as it does in the �rst stage

of our present model.

7 Appendix

7.1 Proof of Proposition 1

Without loss of generality, assume that bva1 > bvb1. If d1 2 h0; bvb12 i then both players use the pure strategies
xa = xb = d1 and their expected payo¤s in the contest are

ua =
va1
2
+
maxfva2 � vb1; 0g

2
+
maxfva1 � vb2; 0g

2
� d1; ub =

vb1
2
+
maxfvb2 � va1 ; 0g

2
+
maxfvb1 � va2 ; 0g

2
� d1

11



If d1 2
�bvb1
2 ; bvb1i there is no pure strategy equilibrium and similarly to the one-stage all-pay auction with a

bid cap the players randomize on the interval [0; bx] [fd1g according to their e¤ort cumulative distribution
functions, F a1 (x) and F

b
1 (x); which are given by the indi¤erence conditions:

(va1 +maxfva2 � vb1; 0g)F b1 (x) + (maxfva1 � vb2; 0g)(1� F b1 (x))� x

= (va1 +maxfva2 � vb1; 0g)(F b1 (bx) + 1� F b1 (bx)2
) + (maxfva1 � vb2; 0g)(1� F b1 (bx)� 1� F b1 (bx)2

)� d1

(vb1 +maxfvb2 � va1 ; 0g)F a1 (x) + (maxfvb1 � va2 ; 0g)(1� F a1 (x))� x

= (vb1 +maxfvb2 � va1 ; 0g)(F a1 (bx) + 1� F a1 (bx)2
) + (maxfvb1 � va2 ; 0g)(1� F a1 (bx)� 1� F a1 (bx)2

)� d1

where the LHS of the above equations are the expected payo¤s of the players if they submit a bid x 2 [0; bx]
and the RHS are the expected payo¤s of the players if they submit a bid equal to d1:

Using the induced values bva1 ; bvb1; the above indi¤erence conditions can be written as
bva1F b1 (x)� x = bva1 (F b1 (bx) + 1� F b1 (bx)2

)� d1 (10)

bvb1F a1 (x)� x = bvb1(F a1 (bx) + 1� F a1 (bx)2
)� d1

The system of equations (10) describing the players�mixed strategies F a1 (x); F
b
1 (x) in the �rst stage of the

sequential two-prize all-pay auction with a bid cap d1 is identical to that describing the equilibrium strategies

of players in the standard one-stage all-pay auction with a bid cap d1 where the players�values are the

induced marginal values bva1 ; bvb1. Hence, according to the analysis of the standard one-stage all-pay auction
(Che and Gale 1998), there is a unique mixed strategy equilibrium in the �rst stage of the sequential two-prize

all-pay auction which is given by (2) and (3). Then the players�expected payo¤s in the contest are

ua = bva1 � bvb1 +maxfva1 � vb2; 0g
ub = maxfvb1 � va2 ; 0g

Q:E:D:

7.2 Proof of Proposition 2

Without loss of generality, assume that eva1 > evb1. If d2 2 h0;min(va22 ; vb22 )i then the players randomize in the
�rst stage according to their e¤ort cumulative distribution functions, F a1 (x) and F

b
1 (x); which are given by

12



the indi¤erence conditions:

(va1 +
va2
2
� d2)F b1 (x) + (

va1
2
� d2)(1� F b1 (x))� x =

va1 + v
a
2

2
� v

b
1 + v

b
2

2
+
va1
2
� d2

(vb1 +
vb2
2
� d2)F a1 (x) + (

vb1
2
� d2)(1� F a1 (x))� x =

vb1
2
� d2

Using the induced values eva1 ; evb1; the above indi¤erence conditions can be written as
eva1F b1 (x)� x = eva1 � evb1
evb1F a1 (x)� x = 0

Hence, based on the analysis of the standard one-stage all-pay auction (Baye, Kovenock and de Vries

1996), there is a unique mixed strategy equilibrium in the �rst stage of the sequential two-prize all-pay

auction which is given by (4) and (5). Q:E:D:

7.3 Proof of Proposition 4

Assume that the players�values in both stages are v1 � v2 � v3 � v4. Given that the players values are

non-increasing we have three possible cases:

A : va = (v1; v4); v
b = (v2; v3):

B : va = (v1; v3); v
b = (v2; v4):

C : va = (v1; v2); v
b = (v3; v4):

We wish to show that for all these cases, independent of the values of vi i = 1; 2; 3; 4, the expected total

bid in the sequential contest with a bid cap in the �rst stage TE1 (given by (8)) is larger than the expected

total bid in the sequential contest without any cap TE0 (given by (7)). In all of these cases, by (8) and (7)

we obtain that if the players�induced values are identical, namely, bva = bvb, then TE1 = TE0: We now show
that in each of the three cases the point at which bva = bvb is the maximal point of the di¤erence TE0�TE1:
7.3.1 Case A: va = (v1; v4); vb = (v2; v3)

In this case, by (1) the players�induced values are bva = v3 and bvb = v4: By (8) and (7) we have
TE0 � TE1 =

v1v3v
2
4 + v1v2v

2
4 + v2v

2
3v4 � v1v2v23 � v2v33 � v1v34
4v1v2v3

(11)

13



We intend to show that the maximal value of (11) is obtained when v3 = v4 and that this value is equal to

zero. Therefore, we solve the following maximization problem:

max
v1;v2;v3;v4

TE0 � TE1 = max
v1;v2;v3;v4

v1v3v
2
4 + v1v2v

2
4 + v2v

2
3v4 � v1v2v23 � v2v33 � v1v34

s.t:

v2 � v1 � 0

v3 � v2 � 0

v4 � v3 � 0

The Lagrangian is given by

L = v1v3v
2
4 + v1v2v

2
4 + v2v

2
3v4 � v1v2v23 � v2v33 � v1v34

��1(v2 � v1)� �2(v3 � v2)� �3(v4 � v3)

where �j ; j = 1; 2; 3 are the Lagrangian multipliers. The �rst-order conditions are:

v3v
2
4 + v2v

2
4 � v2v23 � v34 = ��1

v1v
2
4 + v

2
3v4 � v1v23 � v33 = �1 � �2

v1v
2
4 + 2v2v3v4 � 2v1v2v3 � 3v2v23 = �2 � �3

2v1v3v4 + 2v1v2v4 + v2v
2
3 � 3v1v24 = �3

The solution of this system of equations is

v1 � v2 � v3 = v4

�1 = �2 = 0

�3 = v2v
2
3 + v1v3(2v2 � v3) > 0

Therefore the maximal value of TE0 � TE1 is obtained when v3 = v4 and this value is equal to zero.

7.3.2 Case B: va = (v1; v3); vb = (v2; v4)

In this case, by (1) the players�induced values are bva = v4 and bvb = v3: By (8) and (7) we have
TE0 � TE1 =

v2v3v
2
4 + v1v2v

2
4 + v1v

2
3v4 � v1v2v23 � v1v33 � v2v34
4v1v2v3

(12)
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We intend to show that the maximal value of (12) is obtained when v3 = v4 and that this value is equal to

zero. Therefore, we solve the following maximization problem:

max
v1;v2;v3;v4

TE0 � TE1 = max
v1;v2;v3;v4

v2v3v
2
4 + v1v2v

2
4 + v1v

2
3v4 � v1v2v23 � v1v33 � v2v34

s.t:

v2 � v1 � 0

v3 � v2 � 0

v4 � v3 � 0

The Lagrangian is given by

L = v2v3v
2
4 + v1v2v

2
4 + v1v

2
3v4 � v1v2v23 � v1v33 � v2v34

��1(v2 � v1)� �2(v3 � v2)� �3(v4 � v3)

where �j ; j = 1; 2; 3 are the Lagrangian multipliers. The �rst-order conditions are:

v2v
2
4 + v

2
3v4 � v2v23 � v33 = ��1

v1v
2
4 + v3v

2
4 � v1v23 � v34 = �1 � �2

v2v
2
4 + 2v1v3v4 � 2v1v2v3 � 3v1v23 = �2 � �3

2v2v3v4 + 2v1v2v4 + v1v
2
3 � 3v2v24 = �3

The solution of this system of equations is

v1 � v2 � v3 = v4

�1 = �2 = 0

�3 = 2v1v2v3 + v
2
3(v1 � v2) > 0

Therefore the maximal value of TE0 � TE1 is obtained when v3 = v4 and this value is equal to zero.

7.3.3 Case C: va = (v1; v2); vb = (v3; v4)

In this case, by (1) the players�induced values are bva = v2 + v4 � v3 and bvb = v3: We divide the analysis

into two sub-cases.
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1. If v2 + v4 � 2v3, then by (8) and (7) we have

TE0 � TE1 =
v1v2v3v4 + 3v1v2v

2
3 + 2v2v3v

2
4 + v1v

2
3v4

4v1v2(v2 + v4 � v3)
(13)

�v1v22v3 � v1v22v4 � v1v2v24 � v22v24 � v2v34 � 2v1v33
4v1v2(v2 + v4 � v3)

We intend to show that the maximal value of (13) is obtained when v2 + v4 = 2v3 and that this value is

equal to zero. Therefore, we solve the following maximization problem:

max
v1;v2;v3;v4

TE0 � TE1 = max
v1;v2;v3;v4

v1v2v3v4 + 3v1v2v
2
3 + 2v2v3v

2
4 + v1v

2
3v4

�v1v22v3 � v1v22v4 � v1v2v24 � v22v24 � v2v34 � 2v1v33

s.t:

v2 � v1 � 0

v3 � v2 � 0

v4 � v3 � 0

2v3 � v2 � v4 � 0

The Lagrangian is given by

L = v1v2v3v4 + 3v1v2v
2
3 + 2v2v3v

2
4 + v1v

2
3v4

�v1v22v3 � v1v22v4 � v1v2v24 � v22v24 � v2v34 � 2v1v33

��1(v2 � v1)� �2(v3 � v2)� �3(v4 � v3)� �4(2v3 � v2 � v4)

where �j ; j = 1; 2; 3; 4 are the Lagrangian multipliers. The �rst-order conditions are:

v2v3v4 + 3v2v
2
3 + v

2
3v4 � v22v3 � v22v4 � v2v24 � 2v33 = ��1

v1v3v4 + 3v1v
2
3 + 2v3v

2
4 � 2v1v2v3 � 2v1v2v4 � v1v24 � 2v2v24 � v34 = �1 � �2 � �4

v1v2v4 + 6v1v2v3 + 2v2v
2
4 + 2v1v3v4 � v1v22 � 6v1v23 = �2 � �3 + 2�4

v1v2v3 + 4v2v3v4 + v1v
2
3 � v1v22 � 2v1v2v4 � 2v22v4 � 3v2v24 = �3 � �4

16



The solution of this system of equations is

v2 + v4 = 2v3

�1 = �2 = �3 = 0

�4 =
4v1v2v4 + 4v2v

2
4 + v1(v

2
2 � v24)

4
> 0

Therefore the maximal value of TE0 � TE1 is obtained when v2 + v4 = 2v3 and this value is equal to zero.

2. If v2 + v4 � 2v3, then by (8) and (7) we have

TE0 � TE1 =
3v1v2v

2
3 + 2v2v3v

2
4 + 3v1v

2
2v4 + v1v2v

2
4 + v1v

2
3v4 + 2v1v

3
2

4v1v2v3
(14)

�3v1v2v3v4 � 5v1v22v3 � 2v1v33 � v22v24 � v2v34
4v1v2v3

We intend to show that the maximal value of (14) is obtained when v2 + v4 = 2v3 and that this value is

equal to zero. Therefore, we solve the following maximization problem:

max
v1;v2;v3;v4

TE0 � TE1 = max
v1;v2;v3;v4

3v1v2v
2
3 + 2v2v3v

2
4 + 3v1v

2
2v4 + v1v2v

2
4 + v1v

2
3v4 + 2v1v

3
2

�3v1v2v3v4 � 5v1v22v3 � 2v1v33 � v22v24 � v2v34

s.t:

v2 � v1 � 0

v3 � v2 � 0

v4 � v3 � 0

v2 + v4 � 2v3 � 0

The Lagrangian is given by

L = 3v1v2v
2
3 + 2v2v3v

2
4 + 3v1v

2
2v4 + v1v2v

2
4 + v1v

2
3v4 + 2v1v

3
2

�3v1v2v3v4 � 5v1v22v3 � 2v1v33 � v22v24 � v2v34

��1(v2 � v1)� �2(v3 � v2)� �3(v4 � v3)� �4(v2 + v4 � 2v3)
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where �j ; j = 1; 2; 3; 4 are the Lagrangian multipliers. The �rst-order conditions are:

3v2v
2
3 + 2v

3
2 + 3v

2
2v4 + v2v

2
4 + v

2
3v4 � 3v2v3v4 � 5v22v3 � 2v33 = ��1

3v1v
2
3 + 2v3v

2
4 + 6v1v

2
2 + 6v1v2v4 + v1v

2
4 � 3v1v3v4 � 10v1v2v3 � 2v2v24 � v34 = �1 � �2 + �4

6v1v2v3 + 2v2v
2
4 + 2v1v3v4 � 3v1v2v4 � 5v1v22 � 6v1v23 = �2 � �3 � 2�4

4v2v3v4 + 3v1v
2
2 + 2v1v2v4 + v1v

2
3 � 3v1v2v3 � 2v22v4 � 3v2v24 = �3 + �4

The solution of this system of equations is

v2 + v4 = 2v3

�1 = �2 = �3 = 0

�4 =
7v1v

2
2 + v1v

2
4 + 4v2v4(v1 � v4)
4

> 0

Therefore the maximal value of TE0 � TE1 is obtained when v2 + v4 = 2v3 and this value is equal to zero.

Q:E:D:

7.4 Proof of Proposition 5

Assume that the players�values satisfy va1 � vb2 and vb1 � va2 . Given that the players values are non-increasing

we have two possible cases:

A : va = (v1; v4); v
b = (v2; v3)

B : va = (v1; v3); v
b = (v2; v4)

where v1 � v2 � v3 � v4:

In case A by (8) and (9), if v1 + v4 � v2 + v3 we have

TE12 � TE1 =
v1v2(v3 � v4) + v2(v1v2 � v23) + v1(v22 � v24)

4v1v2
� 0

and if v1 + v4 < v2 + v3 we have

TE12 � TE1 =
v1v4(v2 � v4) + v1v2(v1 � v3) + v2(v21 � v23)

4v1v2
� 0
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In case B by (8) and (9) we have

TE12 � TE1 =
v2v4(v1 � v4) + v1v2(v2 � v3) + v1(v22 � v23)

4v1v2
� 0

Thus, we obtained that the players�expected total bid in the sequential all-pay auction with bid caps in

both stages is larger than in the sequential all-pay auction with a bid cap in the �rst stage only. Q:E:D:
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