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estimated break around 1985 that could be associated with the re-gained 
credibility of the central bank. The responses of output and inflation to policy 
shocks change not only because of the break in 1985 but also according to 
the monetary policy stance: policy shocks have stronger negative effects 
when policy is tight. There is also evidence in favour of large changes in the 
volatility of the output equation, but not of inflation. A set of counterfactual 
experiments indicate that good policy and good luck contributed to the "great 
moderation", but neither of them can fully explain it. A more general variation 
in the model dynamics underlying the shock transmission mechanism is 
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1 Introduction

There is by now a vast literature on the relative role of good luck and good policy in determining the

reduction in the volatility of key US macroeconomic aggregates, known as the "great moderation".

In econometric terms, the debate is on whether changes in the parameters of the conditional mean

of the variables matter more or less than changes in their conditional variances, and on how to

model the pattern of time-variation. The conditional means have been modeled by means of

VAR models in early contributions (e.g. Cogley and Sargent (2005), Sims and Zha (2006)) and

of small scale DSGE models in more recent contributions (e.g., Justiniano and Primiceri (2008),

Benati and Surico (2008), Inoue and Rossi (2009), Davig and Doh (2009), Bianchi (2009)). The

pattern of time variation in the mean is captured either by slowly evolving parameters, typically

modelled as random walks with small innovation variance, e.g. Cogley and Sargent (2005), or by

abruptly changing parameters whose evolution is determined by an unobservable Markov chain,

e.g., the Markov switching speci�cation of Sims and Zha (2006), Davig and Doh (2009), Bianchi

(2009). Time variation in the variance is typically modelled by means of a stochastic volatility

speci�cation, e.g., Sims and Zha (2006). While the results in the literature are mixed, overall there

appears to be limited evidence of relevant changes in the conditional means, and more support

for changing variance of the shocks. However, formal statistical tests to discriminate between the

two hypotheses have in general low power (see e.g. the simulation results in Cogley and Sargent

(2005)).

The contribution of our paper to this literature is that we explicitly link the parameter temporal

evolution to the conduct of monetary policy. More speci�cally, since good monetary policy is

typically associated to following a standard Taylor-type rule (e.g. Cecchetti et al. (2007)), we allow

the parameters of the conditional mean and the conditional variance of key macroeconomic variables

to vary depending on the extent of the deviation of actual monetary policy from that required by

the adoption of the rule suggested by Taylor (1993). In other words, the model parameters can

alternate depending on whether monetary policy is tight, neutral or loose, and the status of the

policy is endogenously determined in the model, based on the distance of the actual interest rate

from that required by the Taylor rule. Hence, in our model parameter time evolution is endogenously

determined.

In addition, we allow for exogenous breaks in the parameters, since the consequences of monetary

policy could depend not only on its stance but also on the credibility of the central bank and other

factors, and it is di¢ cult to explicitly model the latter. For example, a credible central bank can

�ght in�ation with low output losses while a non credible central bank could su¤er high output

losses from adopting a tight monetary policy (e.g., Clarida, Gali and Gertler, (1999) and Goodfriend
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and King (2005)). Hence, the dynamic responses of output and in�ation to a monetary shock could

di¤er not only when policy is loose or tight but also when it is credible or non credible.

In comparison with a range of speci�cations, our model �ts the data quite well, and the main

results we obtain are the following. First, there is strong evidence of an exogenous break in the

parameters, whose date is estimated at 1985Q1. Interestingly, the credibility measure derived in

Demertzis et al. (2008) steadily decreases from the early 70s until around 1985, and increases

afterwards. The Laxton and Diaye (2002) credibility measure also shows a marked jump around

1985. Both measures are based on the fact that long-term in�ation expectations should be anchored

at the implicit or explicit in�ation target of the central bank, when the latter is credible. The marked

increase in both credibility measures in 1985 suggests that, notwithstanding the tight policy of the

early �80s, it took some time to restore the central bank credibility lost in the �70s. This credibility

interpretation of the break in 1985 is also supported by the fact that in our model changes in the

policy rate during the restrictive regime have smaller e¤ects on output and stronger negative e¤ects

on in�ation after 1985. However, we are aware that there can be several other interpretations for

the break in 1985, and therefore we stress that all our subsequent results are independent of our

credibility interpretation of the 1985 break: in the model this break is treated as exogenous with

an estimated timing.

Second, we �nd substantial evidence in favour of endogenous changes in the model parameters,

triggered by the extent of the deviation of the actual interest rate from that prescribed by the Taylor

rule. As a consequence, even when examining the transmission of monetary shocks with sizes that

do not change with the regime, the computed responses suggest di¤erent transmission depending

on whether the policy stance at the impact of the shock is loose, normal or tight. In particular,

the reaction of output and prices to policy shocks is weaker in the loose regime. Moreover, and

in contrast with models with only an exogenous break, we �nd evidence that restrictive monetary

policy has a signi�cantly negative e¤ect on output and prices when the policy shock arises during

the tight regime, even when considering the period after 1985. These di¤erences in the monetary

transmission depending on the policy stance are stronger after the break estimated in 1985.

Third, these detected di¤erences in monetary transmission are complemented by signi�cant

shifts in the sizes of monetary policy shocks. The shifts in the variance-covariance matrix of the

model disturbances are caused not only by the exogenous break, but also depending on the monetary

policy stance. Before 1985, the volatility of output shocks during the loose policy of the �70s is

twice as large as in the period of tight policy in the early �80s. Similarly, after 1985, the volatility

of output when the policy rate is close to the value suggested by the Taylor rule is twice as large as

in periods of tight policy. The model also captures a large decrease in the size of monetary policy
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shocks after 1985, as well as di¤erences related to the monetary policy stance.

Finally, a set of counterfactual experiments suggests that tight monetary policy is helpful in

reducing growth volatility and the level of in�ation. However, this is not su¢ cient to explain

what happened to the US growth and in�ation after 1985. The reduction in the volatility of the

shocks ("good luck") is also not a su¢ cient explanation, according to our model, since using the

pre-85 parameters with the post-85 shocks still generates substantial growth volatility and in�ation

after 1985. What is needed is a more general change in the model parameters, namely, in the

contemporaneous and dynamic transmission of the shocks. This could be related to the increased

credibility of monetary policy after 1985, or to other factors underlying the break in 1985, whose

investigation is left for future research.

The rest of the paper is organized as follows. Section 2 discusses the theoretical model speci�-

cation and estimation, and the method to compute (regime dependent and independent) impulse

response functions and their standard errors. Section 3 presents empirical results on model spec-

i�cation, estimation, timing of the regimes and patterns of parameter time-variation. Section 4

illustrates the changing propagation of monetary shocks before and after 1985 and across policy

regimes. Section 5 contains counterfactual analyses and discusses their implications for the debate

on the sources of the great moderation. Section 6 summarizes and concludes.

2 The Model

This section describes our endogenous threshold VAR model and how to compute impulse response

functions from this model; shows how to introduce additional exogenous breaks in the speci�cation;

and discusses how to determine the transition variable and the number of regimes.

2.1 Endogenous Threshold VARs

2.1.1 Speci�cation and estimation

The model employed in this paper is a modi�cation of Tsay�s (1998) Threshold VAR. The main

characteristic of the model in comparison with Markov-Switching speci�cations is that the variable

that triggers regime switching is observed. This feature makes regime chagnes easier to interpret

and estimation simpler, without loosing in terms of generality of the speci�cation.

The threshold VAR speci�cation of Tsay (1998) is a multivariate version of Self-Exciting Thresh-

old Models (Tong, 1990). As a consequence, the variable that triggers the regime switching is one

of the endogenous variables in the VAR. In contrast, our Endogenous Threshold Vector Autore-

gressive Model (ET-VAR) employs a combination of endogenous variables as transition variable.
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The combination of endogenous variables is computed using known (not estimated) weights, while

the values of the transition variable that trigger the regime changes are endogenously estimated.1

Let us group the (endogenous) variables of interest observed at time t into the m � 1 vector
yt, and label the transition variable as xt. Recall that xt contains a combination of endogenous

variables. The ET-VAR is:

yt =

8>><>>:
�
(1)
0 +

Pp
i=1�

(1)
i yt�i + "

(1)
t if xt�1 � c1

�
(2)
0 +

Pp
i=1�

(2)
i yt�i + "

(2)
t if c1 < xt�1 � c2

�
(3)
0 +

Pp
i=1�

(3)
i yt�i + "

(3)
t if xt�1 > c2

; (1)

where �(r)0 is an m � 1 vector of intercepts for regime r (r = 1; 2; 3), �(r)i is an m � m matrix

of coe¢ cients of lag i (i = 1; :::; p), and c1 and c2 are (unknown) threshold values. Each regime

has a speci�c full variance-covariance matrix, that is, E("(r)t "
(r)0
t ) = �(r), and we suppose that

"
(r)
t � N(0;�(r)).
If the threshold values were known, the observations of the transition variable xt combined with

the threshold values could be used to split the sample of yt and (yt�1;:::; yt�p) into subsamples (for

t = p+ 1; :::; T ). Hence, the usual least squares formulae could be applied to obtain the estimates

of the coe¢ cient matrices and of the variance-covariance matrices, which are also equivalent to the

maximum likelihood estimates of this reduced form model. However, the thresholds have also to be

estimated. Following Galvão (2006), we use conditional maximum likelihood since it is an adequate

estimation method (based on a Monte Carlo exercise) when the �(r) may di¤er across regimes.

Hence, estimates of the unknown thresholds are obtained as:

ĉ1; ĉ2 = min
c1�C1
c2�C2

�
T1
2
log j�̂(1)(c1; c2)j+

T2
2
log j�̂(2)(c1; c2)j+

T3
2
log j�̂(3)(c1; c2)j

�
; (2)

where j�̂(r)j is the determinant of the estimated variance-covariance matrix computed as �̂(r) =
1=Tr

PTr
t=1 "

(r)
t "

(r)0
t , and Tr is the number of observations in each regime. The variance-covariance

matrix is computed for each combination of threshold values in a grid, �̂(r) (c1; c2), since if the

threshold is known, least squares formulae can be used to estimate the coe¢ cient matrices. The

grid of threshold values is built based on restrictions on the minimum proportion of observations

in each regime (Hansen, 2000). In the case of a model with three regimes, the value of one of the

thresholds a¤ects the grid of values available for the second threshold, so there is a large number

of possible combinations that satisfy the restrictions on a given proportion of observations in each
1 In our case the transition variable cannot be non-stationary (as Caner and Hansen (2001)), since we want to

allow for the regimes to be possibly repeated over time. As a consequence, the transition variable cannot be a time

trend, for example, since regimes de�ned by a time trend do not repeat over time, they just de�ne structural breaks

and subsamples.
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regime. In this paper, we use the approach described by Hansen (1999), called "one-step-at-time",

to reduce the computational burden.

Given the estimated thresholds, the remaining parameter estimates are obtained using standard

OLS formulae. This procedure is equivalent to estimation by minimization of�
T1
2
log j�̂(1)(ĉ1; ĉ2)j+

T2
2
log j�̂(2)(ĉ1; ĉ2)j+

T3
2
log j�̂(3)(ĉ1; ĉ2)j

�
: (3)

Note that this analysis is conditional on the choice of the transition variable, xt, and of the lag

length, p. We will discuss their selection in the last subsection.

2.1.2 Impulse Response Functions for Endogenous Threshold VARs.

An implication of the ET-VAR is that the responses to shocks are regime dependent. More precisely,

the transmission of the shock relies on �(r)i , i = 1; :::; p, and the impact of the shock on �
(r), following

eq. (1). In addition, the dynamic response to the shock can trigger a change in regime. Hence,

the computation of the response functions and their standard errors can be fairly more complex

than in the linear case, and the results quite di¤erent. We will now provide details on the required

procedure.

To start with, let us suppose that each regime de�nes separate subsamples, as in the case

of structural break models, such as Boivin and Giannoni (2006). We could then use a Cholesky

decomposition conditional on the regime to identify the regime-speci�c structural shocks, v(r)t :

v
(r)
t = A(r)�1"

(r)
t ; (4)

where �(r) = A(r)�(r)A(r)
0
, A(r) is a lower triangular matrix with ones on the main diagonal, and

�(r) is a diagonal matrix whose elements, �(r), are the variances of the structural shocks v(r)t . The

dynamic response to a one-unit structural shock is:

IRF condr;j;s =
�yt+s

�v
(r)
j;t

= 	(r)s a
(r)
j ; (5)

where j = 1; :::;m, s indicates the response horizon (s = 1; :::; h), a(r)j is the jth column of

A(r)(Hamilton, 1994, p. 92 and 323), and 	(r)s is the proper matrix in the MA(1) representa-
tion obtained by inverting the V AR(p) conditional on being in the regime r.

When computing the conditional impulse response as described, the implicit assumption is that

a structural shock cannot not cause regime-switching. However, in practice regimes can change,

since the transition variable is a combination of endogenous variables a¤ected by the shock. The

computation of dynamic responses that take into account the endogeneity of the regime switching

of the ET-VAR is more complex. In fact, nonlinear models in general admit a Wold representation
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(e.g., Potter (2000)), but it is not possible to derive the MA(1) representation of an ET-VAR
unconditional on the regime.

To compute unconditional dynamic responses, we must consider, for example, that a shock v(r)j;t

impacting the system in regime 1, that is, xt � c1, could generate an e¤ect such that xt+s�1 > c1
(so that the system switches to regime 2 in period t + s) or even xt+s�1 > c2 (switch to regime

3). Moreover, whether or not the switch takes place depends not only on the impact and dynamic

response to the shock, but also on the current and past values of the endogenous variables (since

there is dependence on the past trough the VAR dynamics). Hence, contrary to the standard linear

case, the history preceding the shock matters to determine its e¤ects, and has to be considered for

the computation of the dynamic responses. Finally, the realizations of the future shocks are also

relevant, since they can also cause a regime change.

To compute the proper dynamic responses from the ET-VAR model, we make use of the concept

of generalized responses introduced by Koop, Pesaran and Potter (1996). The response in period

t+ s of regime r to a shock of size �(r)j hitting in t+ 1 is:

IRFr;j;s = E
�
yt+sj
(r)t ; v

(r)
j;t+1 = a

(r)
j

�
� E

�
yt+sj
(r)t

�
; (6)

where 
(r)t is a matrix containing the set of relevant histories. More precisely, let us de�ne Wt =

(yt; :::; yt�p+1), and 
t = ((Wt; :::;WT )
0). We then partition the matrix 
t so that 


(r)
t has the

rows of 
t that correspond to regime r. Hence, 

(r)
t has dimension Tr � p. The assumption that

v
(r)
j;t+1 = a

(r)
j implies that the impact of the shock computed with the unconditional responses is the

same as in the case of conditional responses.

The response to a shock with the de�nition in (6) is computed conditional on a speci�c regime

history at the time of the shock with no restrictions on regime switches, and averaging out the e¤ects

of future shocks, which a¤ect similarly both conditional means. The cost is that the conditional

means in (6) cannot be evaluated analytically but need to be computed by simulation, using the

following procedure.

Based on the estimates of �(r)i and of the thresholds, we can draw an s �m vector from each

N(0;�(r)) (for r = 1; 2; 3) such that sequences of y�t+1; :::; y
�
t+s can be computed using one row of 


(r)
t

as initial value. The IRFr;j;s will be the di¤erence between two average sequences of y�t+1; :::; y
�
t+s:

one with v(r)j;t+1 = a
(r)
j and the other with v(r)j;t+1 = 0. By using the same draws from each N(0;�(r))

to compute both conditional means, we guarantee that the only di¤erence between them is the

e¤ect of the structural shock at t+1. Note also that the IRFr;j;s is the average across all vector of

histories in 
(r)t . This means that if Tj = 50 and we draw 1000 times from N(0;�(r)), the IRFr;j;s

is computed using the average across 50 � 1000 replications. Finally, notice that the size/sign of
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the shock also matters in this context, since it can trigger a regime change. Hence, responses can

di¤er across regimes both for the size of the shock and for its transmission to the economy.

2.1.3 Standard Errors for the Impulse Response Functions

Another important issue to be addressed is the impact of parameter uncertainty on the impulse

response functions. This means that we would like to assess the impact of using �̂(r)i , �̂
(r), ĉ1 and

ĉ2 obtained by conditional maximum likelihood when computing IRFr;j;s. The normal distribution

is a good approximation for that of �̂(r)i and �̂(r), provided that the threshold e¤ect vanishes

asymptotically, but the distribution of the threshold estimates is non-standard (Hansen, 2000).

Therefore, we use the bootstrap to compute 100(1 � �)% con�dence intervals for the impulse

response functions.

Let us label[IRF r;j;s the impulse response function based on the conditional maximum likelihood

estimates �̂(r)i , �̂
(r), ĉ1 and ĉ2. As described by Canova (2007, p. 134), a typical issue in applying

the bootstrap to compute con�dence intervals for impulse responses obtained from linear models

is that the bootstrapped distributions are not scale invariant, implying that standard error bands

may not include the point estimates. In addition, VAR estimates using small samples are severely

downward biased. Unfortunately, techniques of bias correction such as those described in Kilian

(1998) cannot be applied since the uncertainty in the ET-VAR parameters depends strongly on

the uncertainty about the threshold estimation, while the empirical distribution of the threshold

estimates may be quite asymmetric (Kapetanios, 2000).

Our bootstrap approach attempts to solve some of these issues. The �rst step is to draw with

replacement sequences of length T �p from all "(r)t (r = 1; 2; 3), and use the estimates �̂(r)i , �̂
(r), ĉ1

and ĉ2 and initial values of yt (t = 1; :::; p) to generate bootstrapped sequences of y��p+1; :::; y
��
T . For

each of these sequences, conditional maximum likelihood is applied to obtain estimates of all the

parameters, that is, �̂��(r)i , �̂��(r), ĉ��1 and ĉ
��
2 . Using these parameters and the speci�c bootstrapped

sequence, we compute IRF ��r;j;s using the simulation procedure described previously. By repeating

the bootstrapped procedure B times, an empirical distribution for the IRFr;j;s is obtained.

Using the B values of IRF ��r;j;s, we compute �IRF ��r:j:s = 1=B
PB
b=1 IRF

��
r;j;s;b and the empirical

quantiles q�=2IRF ��r:j:s
and q(1��=2)IRF ��r:j:s

for 100(1� �)% con�dence intervals. Using the empirical quantiles

and the empirical mean of the impulse response function, the range of the 100(1� �)% con�dence

intervals is computed, that is, rgLO = abs(q
�=2
IRF ��r:j:s

��IRF ��r:j:s) and rgUP = abs(q
(1��=2)
IRF ��r:j:s

��IRF ��r:j:s).
As a result, centred con�dence intervals, but potentially asymmetric and skewed, can be computed

as
n
[IRF r;j;s � rgLO;[IRF r;j;s + rgUP

o
. We emphasize that these intervals consider uncertainty on

both coe¢ cient and threshold estimates.
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2.2 Endogenous Threshold VARs with a Break

There is by now strong statistical evidence on the existence of a "Great Moderation" in the variance

of output and several other macroeconomic variables at around 1985 (e.g., McConnell and Perez-

Quiros (2000), Sensier and van Dijk (2004)). Hence, it may be necessary to add an additional break

in the speci�cation of our ET-VAR, in order to capture parameter changes associated with the Great

Moderation that are not explained by monetary policy stances. Since it is not clear whether the

enhanced credibility of monetary policy or other phenomena underlie the Great Moderation, we

prefer not to model the determinants of this additional break in the model parameters, but rather

treat the break as exogenous, while its timing is endogenously determined.

Therefore, following Galvão (2006), we introduce a Structural Break-Endogenous Threshold-

VAR model (SB-ET-VAR). In this model, the break date is estimated rather than exogenously

assumed, since the exact starting date of the Great Moderation is uncertain, and the characteristics

of the regimes and how regimes switch can also change after the break.

To simplify the notation, assume that Yt�1 = (1; yt�1; :::; yt�p) and z(r) = (�
(r)0
0 ;�

(r)
1 ; :::;�

(r)
p )

such that the ET-VAR can be written as:

yt =
h
(z(1)0Yt�1 + "

(1)
t )I (xt�1 � c1)

i
+
h
(z(2)0Yt�1 + "

(2)
t )I((xt�1 > c1) (xt�1 � c2))

i
+
h
(z(3)0Yt�1 + "

(3)
t )I (xt�1 > c2)

i
;

where I(:) is an indicator function that is equal to one if the inequality is true. The inclusion of a

break in the model, which yields our SB-ET-VAR speci�cation, implies that:

yt =

8<:
h
(z(1)0Yt�1 + "

(1)
t )I (xt�1 � c1)

i
+
h
(z(2)0Yt�1 + "

(2)
t )I((xt�1 > c1) (xt�1 � c2))

i
+
h
(z(3)0Yt�1 + "

(3)
t )I (xt�1 > c2)

i
9=; I(t � b)+

(7)8<:
h
(z(4)0Yt�1 + "

(4)
t )I (xt�1 � c3)

i
+
h
(z(5)0Yt�1 + "

(5)
t )I((xt�1 > c3) (xt�1 � c4))

i
+
h
(z(6)0Yt�1 + "

(6)
t )I (xt�1 > c4)

i
9=; I(t > b):

The SB-ET-VAR is an ET-VAR in each of the two subsamples de�ned by the break date, b.

The values of the thresholds before the break are di¤erent from the values after the break. Hence,

the regimes de�ned by the thresholds c1 and c2 may repeat until t � b. When t > b, the threshold
values are c3 and c4. The autoregressive coe¢ cients F (r) and the variance-covariance matrix �(r)

may di¤er for r = 1; :::; 6.

Galvão (2006) provides Monte Carlo evidence that supports joint estimation of the thresholds

and the break date by maximum likelihood, when there are large changes in the variance of the

shocks across regimes. For each possible value of b in a grid, the sample is split and an ET-VAR
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is estimated in each resulting subsample, by solving the grid minimization problem de�ned by (2),

using the sequential approach to de�ne the threshold grids. The grid of b (b�(bL; bU )) has to be

de�ned such that there is a reasonable number of observations in each regime for the ET-VAR to

be estimated. Formalizing:

b̂; ĉ1; ĉ2; ĉ3; ĉ4 = min
bL�b�bU
c1�C1
c2�C2
c3�C3
c4�C4

24 T1
2 log j�̂

(1)(c1; c2)j+ T2
2 log j�̂

(2)(c1; c2)j+ T3
2 log j�̂

(3)(c1; c2)j
T4
2 log j�̂

(4)(c3; c4)j+ T5
2 log j�̂

(5)(c3; c4)j+ T6
2 log j�̂

(6)(c3; c4)j

35 : (8)

Finally, when computing impulse responses for SB-ET-VAR models, we apply the procedure

described in Section 2.1 for each subsample separately.

2.3 Choosing the Number of Regimes and Transition Variables

The vast literature on choosing the number of thresholds and break dates relies on test statistics

with non-standard distributions (e.g., Andrews (1993), Hansen (1996)), or on sequential procedures

associated with asymptotic bounds (e.g., Altissimo and Corradi (2002), Gonzalo and Pitarakis

(2002)). These methods are typically applied to univariate models, but they can be extended

to multivariate models estimated by conditional least squares when changes in the variance of

the disturbances across regimes are not important. In our application, changes in the variance-

covariance matrix across regimes are instead potentially important, and the estimation procedure

in (8) takes them into explicit account. As a consequence, the use of testing procedures based on

the full sample sum of squared errors may be misleading. In addition, the sample size we have is

rather short considering that we may have up to six di¤erent regimes, so that formal test statistics

can be expected to have low power (see e.g. Cogley and Sargent (2005) in a related context).

An alternative simple approach is to use information criteria based on a penalised likelihood

function, where the penalty depends on the number of estimated parameters, to compare speci�-

cations that di¤er for the assumed number of breaks and regimes. The same method can be also

adopted for the selection of the transition variable, among the members of a pre-speci�ed set.

We consider only the parameters in z(r) when computing the penalty function, as in Altissimo

and Corradi (2002) and Gonzalo and Pitarakis (2002). Therefore, the inclusion of a further regime

in the model requires the estimation of m(mp + 1) additional parameters. The penalty function

can be 2K=T (AIC), 2 log(log(K))=T (HQC) or log(K)=T (SIC), where K is number of estimated

parameters. Altissimo and Corradi (2002) suggest the HQC penalty to choose the number of

regimes in a threshold model, while Gonzalo and Pitarakis (2002) suggest SIC. For comparison, we

will compute all the three criteria, and use them also for the selection of the transition variable xt,
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which does not a¤ect the penalty function but the value of the likelihood.

3 Model speci�cation and estimation results

3.1 The Benchmark Model

The SB-ET-VAR model is built upon a small monetary VAR model, along the lines of Rudebusch

and Svensson (1999), Cogley and Sargent (2005) or Boivin and Giannoni (2006). We focus on

three endogenous variables: aggregate output, prices, and the policy interest rate. We use real

GDP as the output variable, the PCE index as the price variable, and the FED fund rate as the

policy interest rate. Output and prices are measured in log-levels (100*log). This implies that

yt = (GDPt; pt; it)
0
. We consider quarterly data for the period 1960-2008.

One of our aims is to check whether the stance of monetary policy can change the transmission

of monetary policy shocks to output and prices. We identify policy shocks by means of a Cholesky

decomposition based on the ordering yt = (GDPt; pt; it)
0
, which assumes that it takes at least one

quarter for monetary policy shocks to a¤ect output and prices, with current values of prices and

output a¤ecting current monetary policy decisions.

As a starting point, Figure 1 presents the responses to the monetary shock in the full sample and

in the two subsamples de�ned by a popular break date in the literature: 1985:Q1.2 The responses

before the break are familiar: an increase in interest rate decreases output and prices, but the e¤ect

on output is faster than on prices: output starts decreasing after a few quarters, prices after about

two years. After the 1985 break, the size of the monetary policy shocks reduces dramatically, from

about 100 to 25 basis points, the e¤ect on prices becomes smaller and generally positive, and the

e¤ect on output is smaller, not statistically signi�cant, and taking place after about 2 years. These

�ndings are broadly consistent with those in Boivin and Giannoni (2006), though they split the

sample in 1979 and use slightly di¤erent variables. If the VAR is estimated over the entire sample,

there is a massive price puzzle, while the reactions of output and the dynamics of the interest rate

are a mixture of those observed over the two subsamples. This �nding suggests that a constant

parameter model is not appropriate.

A potential weakness of the VAR speci�cation with a break is the limited information set used

to identify the monetary policy shock, since only three variables are employed. However, the fact

that the shock has the expected e¤ects on output and prices before 1985 suggests that this is not

such a major problem. The cause of the counterintuitive results after 1985 could instead be due to

2These results are based on a lag length of p = 2, which is the autogressive order chosen by HQC and AIC for

both subsamples.
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a modi�cation of the VAR parameters, including the variance-covariance matrix of the shocks. In

addition, even within each of the two subsamples the results could di¤er, depending for example on

the monetary policy stance or on the business cycle conditions. Modelling the variables with our

SB-ET-VAR could address these issues and improve our understanding of the e¤ects of monetary

policy.

3.2 Choosing a SB-ET-VAR Speci�cation

An important step in specifying SB-ET-VAR models is the selection of the transition variable.

Cechetti et al (2007) employ changes in the sign and size of the deviations from the Taylor rule as a

measure of changes in the stance of the monetary policy. The time series of the deviations from the

Taylor rule is then employed to assess whether changes in monetary policy can explain the great

moderation in a group of countries. We use a similar measure as the �rst possible speci�cation for

the transition variable. Speci�cally, we de�ne the deviations from the Taylor rule as:

xt = 1 + 1:5(pt � pt�4) + 0:5(GDPt �GDPt�4)� it: (9)

Our interpretation of using equation (9) as transition variable in the SB-ET-VAR is that xt indicates

how monetary policy should have been conducted, while the interest rate equation of the VAR tracks

the actual monetary policy. If actual monetary policy followed exactly the Taylor rule underlying

(9), the dynamics of the VAR could be described by a single regime. Instead, switches in the sign

and size of xt indicate that actual monetary policy evolves over time, being in some periods in line

with the Taylor rule, and in other periods either looser or tighter than requested.

Two other possible choices for the transition variable in the SB-ET-VAR are the real interest

rate, xat = it�(pt�pt�4), and the growth rate of output, xbt = (GDPt�GDPt�4). The real interest
rate provides another measure of the stance of monetary policy, without considering the economic

activity; it can be considered as a policy rule that depends only on in�ation. Both xt and xat were

assessed by Gali (2008) within the context of a simple new-keynesian model. The output growth

rate is a typical transition variable employed when measuring the e¤ects of business cycle phases

(expansions/contractions) on the responses to shocks.

A second key requirement for the speci�cation of SB-ET-VARmodels is to understand how many

regimes are needed, and whether a simpli�ed version without either the SB or the ET component

would su¢ ce. Note that the SB-VAR speci�cation is similar to the split-sample benchmark model

reported above, but with an estimated rather than a priori imposed break date.

Focusing �rst on the Taylor rule based transition variable, we compare a full sample VAR, an

ET-VAR model with 2 or 3 regimes, an SB-VAR model with 2 or 3 regimes, and an SB-ET-VAR
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model with one break and 2 or 3 regimes in the ET component (for a total of 4 and 6 regimes,

respectively). When de�ning the grid to estimate the models with thresholds and breaks, we set

restrictions based on the minimum proportion of observations in each regime in a given subsample.

Speci�cally, we consider 15% or 30% proportions.3 The two upper panels of Table 1 report

information criteria for all these alternative speci�cations.

It turns out that the benchmark model with just one break (SB-VAR with 2 regimes) �ts really

well the data in comparison with a full sample VAR. The ET-VAR with three regimes is also better

than the VAR, that is, there is evidence of endogenous regime switches when using the Taylor rule as

transition variable. However, the SB-VAR is preferred to the ET-VAR. Putting together the break

and threshold features to obtain the SB-ET-VAR model with six regimes yields the lowest AIC

and HQC when at least 15% of observations are allowed in each regime. With 30% of observations,

the SB-ET-VAR is best according to the AIC. In both cases, the other criteria are minimized by

the SB-VAR with two regimes, that is close to the benchmark speci�cation. However, as we will

see, the SB-ET-VAR generates interesting di¤erences in the shock responses within each of the two

subsamples identi�ed by the SB speci�cation, and responses more in line with economic theory.

Hence, we will adopt an SB-ET-VAR speci�cation with one break and two thresholds (6 regimes).

When the SB-ET-VAR speci�cation is estimated with either the real interest rate or output

growth as transition variables, all the information criteria are higher than those corresponding to

the Taylor rule based transition variable, xt in equation (9), see the lower panel of Table 1. Hence,

we will continue our analysis based on an SB-ET-VAR model with xt as the transition variable.

A �nal interesting issue to consider is whether our approach manages to capture the het-

eroscedasticity usually found in the residuals of similar VAR models (Primiceri, 2006). We can

test for remaining conditional heteroscedasticity by regressing the squared residuals from the (6-

regime) SB-ET-VAR on dummies representing changes in the variance for each regime, and on

lagged squared residuals. Under the null hypothesis of no remaining heteroscedasticity, an F-test

for the non-signi�cance of the coe¢ cients of the lagged squared residuals should not reject. The

results presented in Table 2 suggest no evidence of remaining heteroscedasticity in the output and

price equations. There is instead some evidence of heteroscedasticity in the interest rate equation,

but a split sample analysis reveals that it is a characteristic of the pre 1985 period only. Based on

this analysis, we can conclude that our SB-ET-VAR captures su¢ ciently well also changes in the

variances of the shocks a¤ecting the three variables under analysis.

3 In the case of an SB-ET-VAR model, this restriction applies separately for each subsample. Other papers in the

literature normally set the proportion equal to 10 or 15%. However, because of the relative short sample size and the

impact that parameter estimates have on impulse responses, we also consider at least 30% of observations in each

regime (which in a SB-ET-VAR model means 10% of T observations in each regime).
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3.3 The Chronology of Regimes

In this subsection we discuss three main results. First, the break date for the SB-ET-VAR, which

was estimated in 1985Q1. Second, the estimates of the thresholds, which are ĉ1 = 1:68 and ĉ2 = 3:92

before the break and ĉ3 = :18 and ĉ4 = 2:25 afterward. Third, the time series of the Taylor rule

deviations (xt�1 using (9)), and the regime-switching function de�ning the chronology of the (six)

regimes.

About the break date, the endogenously determined date of 1985Q1 is slightly later than the

tightening of monetary policy and of the beginning of the great moderation. Figure 2 shows that

after 1985Q1 there is a major increase in the credibility of the monetary policy authority, according

to both the Laxton Diaye (2002) and the Demertzis et al. (2008) credibility measures. We are aware

of the existence of several other possible explanations for the break in 1985, such as learning by the

policy makers, faster globalization, improvements in inventory management, etc. As mentioned,

we do not want to investigate this issue further since we want to focus on the consequences of the

monetary regime changes, and therefore we treat the break as exogenous. However, we believe that

our proposed credibility based explanation for the identi�ed break in 1985 is sensible and in line

with the response functions that we will compute later on. In particular, a more credible central

bank that implements a restrictive policy should incur lower output losses and be more successful

in �ghting in�ation, see e.g. Goodfriend and King (2005), which is exactly what we �nd on average

after 1985.

About the endogenously estimated thresholds, which induce switches in the monetary policy

stance from loose to neutral and tight (and viceversa), it is noticeable that they are about 150 basis

points lower after 1985. This implies, for example, that before 1985 a tight policy (regime 1) is

associated with interest rate values that satisfy

it > 1:5(pt � pt�4) + 0:5(GDPt �GDPt�4)� :68 ,

while after 1985 (regime 4) it must be

it > 1:5(pt � pt�4) + 0:5(GDPt �GDPt�4) + 82 .

Therefore, for a given level of in�ation and output growth, the interest rate must be about 150

basis points higher after 1985 for the policy to be classi�ed as tight. In other words, what was

considered a tight policy before 1985 could be no longer tight after 1985 but just neutral.

Similarly, a loose policy (regime 3) before 1985 requires

it < 1:5(pt � pt�4) + 0:5(GDPt �GDPt�4)� 2:92
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while after 1985 (regime 6) it must be

it < 1:5(pt � pt�4) + 0:5(GDPt �GDPt�4)� 1:25

Hence, the interest rate should be much lower before 1985 for a policy to be considered as loose.

Therefore, a loose policy after 1985 could have been considered neutral before 1985, and a neutral

one tight.

Finally, the resulting chronology of regimes is plotted in Figure 3. It turns out that the tight

monetary policy before 1985 (regime 1, xt < ĉ1 = 1:68) is mainly identi�ed in the 1980-84 period,

with some shorter episodes in the �60s, while the period of loose monetary policy (regime 3, xt >

ĉ2 = 3:92) is largely associated with the 70�s. After the 1985 break, it is harder to associate regimes

with time periods, since the regime-switching is more frequent among all three regimes. However,

the loose monetary policy (regime 6, xt > ĉ4 = 2:25) is mainly associated with the 2002-2006

period.

3.4 Time-varying estimates

We now discuss the estimated parameters of our SB-ET-VAR, starting with those of the conditional

mean.

The three panels of Figure 4 report the evolution across regimes of the sum of the AR(1) and

AR(2) estimated coe¢ cients on GDP, prices and the interest rate for, respectively, the output,

prices and interest rate equations.4 We report the sum of the two coe¢ cients rather than each of

them separately in order to increase the readability. We have also standardized the values in order

to make the relative sizes of the changes in parameters comparable across variables and equations.

We use Figure 4 to evaluate whether parameter changes are concentrated in some key parameters

or they are generalised.

Starting with the output equation, before 1985 there is little parameter movement across the

loose, normal and tight regimes, while after 1985 there are large switches in all coe¢ cients, with

values also fairly di¤erent from those before 1985. A similar picture emerges for the price equation,

while for the interest rate equation there are substantial di¤erences across regimes also before 1985.

It is di¢ cult to attribute a structural interpretation to the parameter movements at this stage,

since the model is just a reduced form. However, Figure 4 suggests generalised changes in the

conditional mean parameters both before and after 1985, and across regimes, even though the

volatilities of the shocks are allowed to change over time.

4The values are obtained from the estimates of z(r) in (8) for r = 1; :::; 6.
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The next question we address is how much the variance of the shocks has changed, and whether

the changes are only related to the great moderation or also to the monetary policy regimes. The

upper panel of Figure 5 illustrates how the variance of the output shock was drastically reduced

after 1985 (and we remember that in our model this date is endogenously determined rather than

a priori imposed).5 But there are also some interesting changes across regimes, in particular before

1985, with large values during the loose monetary policy period of the �70s in comparison with the

tight regime in the beginning of the �80s. After 1985, the volatility of output when the current

policy rate is in line with the Taylor rule (regime 5) is twice as large as during periods of tight

policy (regime 4).

The reduction in the variance of the monetary shock after 1985 is even larger than that for the

output shock, and also in this case the di¤erences across regimes are more marked in the pre-1985

period. Interestingly, there are instead no major changes in the variance of the price shock.

The �nal question we address is whether the contemporaneous transmission of the output and

price shocks to the interest rate has changed. The lower panel of Figure 5 reports the evolution

of the relevant coe¢ cients in the A(r) matrix (see section 2.2). The values are larger in absolute

value and more volatile before 1985. After 1985 the role of output is approximately constant across

regimes, while there are relevant swings in that of in�ation.

In summary, this subsection provides evidence in favour of changes in the size of the shocks

(in particular for output and the policy rate), in their contemporaneous transmission (in particular

before and after 1985), and in their dynamic transmission, both before and after 1985 and across

regimes. Hence, models that focus on changes in only one of these elements would have problems

in properly estimating the consequences of monetary policy shocks.

4 The e¤ects of monetary policy shocks across regimes

We now discuss how the e¤ects of monetary policy have changed over time and across regimes,

according to our estimated SB-ET-VAR model. In the previous section, we have detected substan-

tial changes in the average size of the shocks that, due to the nonlinearity of the model, could by

themselves determine also changes in their transmission. For example, a large shock can trigger

more easily switches in regimes than a smaller shock. However, as argued by Boivin et al (2009),

from an economic point of view it is more interesting and informative to focus on changes in the

transmission of a monetary policy shock of a �xed size. Hence, Figures 6-8 present the dynamic

response to a 25 basis point increase in the interest rate at time t of the interest rate (Figure 6),

5The reported values are the estimates of the variances of the structural shocks vt(r) in (4), i.e., �
(r)
j for r = 1; :::; 6.
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output (Figure 7) and prices (Figure 8).

The responses (black line) are computed as described in equation (6), that is, they are the

average response over all histories from a speci�c regime allowing for regime-switching over the

horizon of up to 20 quarters. All six regimes identi�ed in the estimated SB-ET-VAR are represented

in the �gures. We recall that regimes 1 and 4 describe tight monetary policy before and after the

1985 break, while regimes 3 and 6 are associated with loose monetary policy. The plots also include

68% and 90% con�dence intervals computed by the bootstrap procedure described in Section 2,

and the responses computed without allowing for regime switching as a consequence of the shocks

(eq. 5).

We use Figures 6-8 to answer two main questions. First, is there any statistical evidence in

favour of signi�cant di¤erences in the transmission of shocks across regimes? Second, are there any

changes in the transmission of shocks that can be associated with the "good policy" story?

With reference to the �rst question, Figures 6-8 present evidence that the transmission of

monetary policy shocks is indeed a¤ected by the monetary policy stance, in particular after 1985.

In the tight regime (regime 4), the monetary shocks are substantially less persistent than in the

loose regime 6 (marginal e¤ect of .1 in contrast to .3 after 8 quarters). The e¤ects on output and

prices also di¤er, with a negative and signi�cant reaction only in the tight regime. Before 1985,

there are also some changes in the transmission across regimes, though less evident than after 1985.

In particular, there is a reversion e¤ect on the interest rate response in regimes 1 and 2 that is not

observed in regime 3; a stronger negative e¤ect on prices at long horizons in the tight regime in

comparison with the loose regime; and a stronger e¤ect on the output response after 8 quarters in

the middle regime in comparison with the outer regimes.

About the second question, we also �nd some support for "good policy" as a driver of the

great moderation. In particular, as mentioned before, Figure 3 illustrates that the early �80s were

characterized by a long period of tight policy that likely re-established the credibility of the central

bank, magnifying the e¤ects of the continued tight policy after 1985 and up to about 1987 (again

see Figure 3). Speci�cally, the dynamic response of the interest rate in the tight regimes 1 and

4 (Figure 6) are similar up to 8 quarters. However, the e¤ects on prices and output are rather

di¤erent. Before 1985, it takes 10 quarters to �nd evidence of a negative e¤ect on prices, while this

happens already after 1 quarter after 1985 (Figure 8). The transmission on output also changes.

The negative e¤ect on output is faster before 1985 than after 1985, although the marginal e¤ect

after 8 quarters (around -.3) is similar. Similar changes in the reaction of output and prices before

and after 1985 are observed for the normal policy regimes 2 and 5, where the actual interest rate

is close to that required by the Taylor rule.
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In comparison with studies such as Boivin et al (2009), our model allows us to shift the focus

from changes in the transmission of monetary policy shocks caused by changes of the chairman of

the Federal Reserve Bank (around the end of 70�s and beginning of the 80�s) to endogenous changes

caused by how strictly following a Taylor rule. The evidence provided in Figures 6-8 supports the

claim that the monetary policy stance, measured by the size and sign of the deviations from the

stabilizing Taylor rule, characterizes regimes where the same shock has a di¤erent e¤ect on output,

prices and the interest rate itself.

Finally, it is worth commenting on the responses that do not allow for a regime switch triggered

by the dynamic transmission of the shock (the dashed lines in Figure 6-8). In a few cases, in

particular during the loose regimes 3 and 6, they can be signi�cantly di¤erent from the responses

that we have commented so far. Hence, in order to avoid biased results, it is important to allow for

the shock to trigger a change in regime rather than simply conditioning the responses on a given

regime.

To conclude and summarize, using our SB-ET-VAR model, this Section has highlighted changes

in the transmission of monetary policy shocks to output, in�ation, and the interest rate itself, related

to a di¤erent monetary policy stance. With �xed size shocks, there are statistically signi�cant

di¤erences in shock tranmission across regimes only after 1985. However, when allowing also for

the detected changes in shock size, the responses di¤er substantially across regimes even before 1985.

In addition, the tight ("good") policy of the early and mid �80s contributed to the stabilization of

in�ation, by triggering a fast and negative impact of a restrictive policy on prices. We will further

qualify this statement in the next section.

5 Counterfactual analysis

The previous Sections have shown that the contemporaneous and dynamic relationships across

output, prices and interest rates are quite di¤erent before and after 1985 and across regimes of

loose, normal and tight monetary policy. In this Section we speculate on what would have happened

if a single monetary regime was in place over the entire sample period, or if the coe¢ cients of

a given regime did not change before and after 1985. The �rst type of experiment could shed

light, for example, on what would have happened if the monetary policy followed rather closely a

Taylor rule over the entire sample, a "good policy story". The second type of experiment would

provide additional information about the role of the structural break in 1985, likely associated

with the regained credibility of the central bank and often considered as the beginning of the great

moderation.
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Of course this kind of counterfactual analysis is open to a wide range of criticisms. Therefore,

we do not want to provide any strong policy advice based on the results. We just think of these

experiments as another useful way to analyze the properties of our SB-ET-VAR model, and to get

information on the relative role of good policy and good luck in determining the lower volatility of

output and the lower level and volatility of in�ation after 1985.

Let us start with counterfactuals based on a single policy regime. From the computational point

of view, we use the estimated coe¢ cients from the regime of a given policy stance before and after

1985 (e.g., regimes 2 and 5 in the case of normal policy), the actual values for output, prices and

interest rate in 1960Q1 and 1985Q1 as starting values, and then solve the model forward �rst for

1960Q2-1985Q1 and then for 1985Q2-2009Q1, adding in each period the estimated SB-ET-VAR

residuals. In this way we obtain generated time series for the three variables, conditional on being

always in a speci�c monetary policy stance. In Figure 9 we report the resulting series for output,

prices and interest rate assuming normal policy for the entire period (small deviations from Taylor

rule), together with the actual time series.

According to the upper panel of Figure 9, a Taylor rule based monetary policy would have

increased the volatility of output during the 1960-1984 period, yielding in particular higher growth

during the recoveries following the recessions of 1974 and 1981-82, and during the period 1978-

79. The rationale for this positive growth result is the much lower interest rates resulting from

the lower panel of Figure 9 around 1974 and 1981-82. But there is a cost: the much higher and

persistent in�ation during 1979-1984, see the middle panel of Figure 9. Interestingly, the interest

rate spike in 1979-80 is compatible with a normal (Taylor rule based) policy, the di¤erence is with

the subsequent behaviour of the interest rate, which was kept at an higher level than that required

by the Taylor rule (indeed the post 1980 period is identi�ed as a tight regime, see Figure 3).

It is also important to mention that the decrease in in�ation after 1985 resulting from Figure 9

is mostly due to the re-iniziatialization of the simulated series (based on the actual 1985Q1 value

of in�ation) and to the new set of parameters characterizing the normal regime (see Figure 4). In

other words, without these changes, in�ation would have remained at a higher level for a longer

period. Hence, the parameter break in 1985 played an important role and good policy by itself

(broadly following a Taylor rule) does not seem su¢ cient to lower in�ation and the volatility of

output.

Looking at the post 1985 period, being in a normal regime would have implied on average

slightly lower interest rates over the 1995-2003 period, but higher ones afterwards (again in line

with the timing of the regimes in Figure 3). Overall, there would have been slightly positive average

e¤ects on output, and no costs in terms of higher in�ation.
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Given the important consequences of the 1985 break emerging from the �rst type of counter-

factual, we now consider an experiment that let us better assess its role. From the computational

point of view, we use the estimated coe¢ cients for the tight, normal and loose regimes before 1985

(including the estimated thresholds) for the entire sample period, actual values for output, prices

and interest rate in 1985Q1, and then solve the model forward for the period 1985Q2-2009Q1,

adding in each period the estimated SB-ET-VAR residuals. In this way we obtain generated time

series for the three variables, conditional on the pre-1985 parameters but on the post-1985 shocks.

The resulting series for output, prices and interest rate are reported in Figure 10.

If the Great Moderation, that is, the reduction in the volatility of output and in�ation (and

other variables), was purely due to "good luck", namely to smaller shocks, it should emerge from

Figure 10, since the simulated values are based on the post-1985 shocks, whose variance is indeed

smaller than in the pre-1985 period (see Figure 5). Instead, both the levels and the volatility of

output and in�ation are fairly close to the pre-1985 values, actually even higher.

The �nal exercise we consider is a mixture of the �rst two cases. Speci�cally, we use the pre-1985

parameters coming from the tight policy regime only, to simulate data for the post-1985 period,

conditional on the post-1985 SB-ET-VAR residuals. The goal is to understand whether a tight

policy enforced over the entire post-1985 period, combined with the smaller post-85 shocks, could

have reduced the volatility of output and the level and volatility of in�ation, in the absence of the

parameter changes that took place around 1985. The results are reported in Figure 11.

A comparison of Figures 10 and 11 shows that the tighter monetary policy is indeed helpful

in reducing the volatility of output and the level of in�ation, but it is de�nitely not su¢ cient to

replicate the actual behaviour, of growth, in�ation, and the interest rate.

Overall, the lesson from this Section is that good monetary policy is helpful in reducing growth

volatility and the level of in�ation. However, this is not su¢ cient to explain what happened to

the US growth and in�ation after 1985. The reduction in the volatility of the shocks is also not

a su¢ cient explanation, according to our model, since using the pre-85 VAR parameters with the

post-85 shocks still generates substantial growth volatility and in�ation after 1985. What is needed

is a more general change in the VAR parameters, namely, in the contemporaneous and dynamic

transmission of the shocks. This could be related to the increased credibility of monetary policy,

or to other factors, whose investigation is beyond the scope of the present paper.
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6 Conclusions

This paper contributes to the literature on the changing transmission mechanism of monetary

policy by introducing a model whose parameter evolution explicitly depends on the conduct of

monetary policy. More precisely, we model prices, aggregate output, and the policy interest rate

with a structural break endogenous threshold VAR speci�cation (SB-ET-VAR), whose parameters

are subject to a structural break at an estimated date and to periodic changes related to how close

or far the interest rate is from the level prescribed by the Taylor rule.

The resulting model, with a break in the �rst quarter of 1985 and three regimes in each of

the subperiods identi�ed by the break date, �ts the data well. In addition, we �nd substantial

evidence of changes both in the parameters of the conditional means of the three variables, and in

the variances of the output and interest rate shocks.

The model generates responses of output and prices to monetary policy shocks changing not

only before and after 1985 but also according to the monetary policy stance. Restrictive monetary

policy has stronger negative e¤ects on output before 1985, but takes time to reduce prices, even

during the tight policy regime. After 1985, on average across regimes, the e¤ects on output are

smaller and prices decrease faster, particularly so during a tight or normal policy regime. These

results suggest that the 1985 break could be associated with the regained credibility of the central

bank, which makes monetary policy more e¤ective in �ghting in�ation and less costly in terms of

output loss. In addition, they indicate that good policy matters when the central bank is credible:

after 1985 the FED could indeed decrease in�ation with small output costs by increasing the interest

rate.

A set of counterfactual experiments con�rms that good monetary policy is helpful for reducing

the level of in�ation, and also the volatility of output growth. However, the extent of the reduction

is not su¢ cient to explain what happened to the US growth and in�ation after 1985. The reduction

in the volatility of the shocks is also not a su¢ cient explanation, according to our model, since using

the pre-85 VAR parameters with the post-85 shocks still generates substantial growth volatility and

in�ation after 1985.

Therefore, we conclude that good policy and good luck were relevant to explain part of the

reduction in the level and volatility of in�ation and growth. However, the bulk of the reduction

seems to be due to a more general change in the model parameters, namely, in the contemporaneous

and dynamic transmission of the monetary shocks and output and in�ation. We suggest that the

change is related to the regained credibility of the FED, but this is an issue that deserves additional

investigation in future research.
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Figure 1: The effects of (one-standard deviation) monetary policy shocks in a constant parameter VAR and 

in a SB-VAR 



 

 

25

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1980 1985 1990 1995 2000 2005

Laxton_Diaye

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1975 1980 1985 1990 1995 2000 2005

Demetzis et al

 

Figure 2: Two measures of monetary policy credibility 
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Figure 3: The six regimes identified by the SB-ET-VAR model.   
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Figure 4: Time-varying estimates:  sum of coefficients of both lags of each variable in each 

equation of the SB-ET-VAR model; standardized values.
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Figure 5: Time-varying estimates: Variance of structural shocks (upper panel) and of coefficients in 

Choleski decomposition(lower panel).  

 



 

 

29 

                                       Regime 1                                                                                       Regime 2                                                                              Regime 3 

  
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19

 
                                          Regime 4                                                                              Regime 5                                                                                     Regime 6 

  
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19

 
Figure 6: Monetary Policy Shocks (25 basis point shock): IRFs with 68% (dark grey) and 90% (light grey) confidence intervals. Dashed black line is 

response when regime-switching is not allowed. Regimes 1 (4), 2 (5) and 3 (6) correspond to tight, normal and loose monetary policy before 1985Q1 (after 

1985Q1). 
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Figure 7: Responses of output to monetary policy shocks (25 basis point shock): IRFs with 68% (dark grey) and 90% (light grey) confidence intervals. 
Dashed black line is response when regime-switching is not allowed. Regimes 1 (4), 2 (5) and 3 (6) correspond to tight, normal and loose monetary policy 
before 1985Q1 (after 1985Q1). 
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Figure 8: Responses of Prices to Monetary Policy Shocks (25 basis point shock): IRFs with 68% (dark grey) and 90% (light grey) confidence intervals. 
Dashed black line is response when regime-switching is not allowed. Regimes 1 (4), 2 (5) and 3 (6) correspond to tight, normal and loose monetary policy 
before 1985 (after 1985). 
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Figure 9. Counterfactual:  Always in the normal regime (reg2 and reg5) in each subsample. Black line is 
observed data; grey line is the simulated counterfactual.  
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Figure 10. Counterfactual:  Using pre-1985 estimates (including threshold values) for the period after 1985 
Black line is observed data; grey line is simulated counterfactual.  
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Figure 11: Counterfactual: Using the tight regime estimated with data before 1985 (regime 1) during the 
post-1985 period. Black line is observed data; grey line is simulated counterfactual.  
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Table 1: Measures of Fit of Different Specifications 

Model N. Regimes Lik AIC HQC SIC 

Specifications with Taylor rule as Transition Variable  
(with at least 15% obs. in each regime in each subsample) 

VAR 1 -537.673 5.70 5.84 6.05 

ET-VAR 2 -874.180 9.35 9.63 10.05 

SB-VAR 2 -422.533 4.74 5.02 5.44 

ET-VAR 3 -440.664 5.14 5.57 6.19 

SB-VAR 3 -383.481 4.56 4.98 5.61 

SB-ET-VAR 4 -466.281 5.62 6.18 7.02 

SB-ET-VAR 6 -261.917 3.96 4.81 6.07 

Specifications with Taylor rule as Transition Variable  
(with at least 30% obs. in each regime in each subsample) 

ET-VAR 2 -689.114 7.46 7.74 8.16 

SB-VAR 2 -422.533 4.74 5.02 5.44 

ET-VAR 3 -452.218 5.26 5.68 6.31 

SB-VAR 3 -392.211 4.65 5.07 5.70 

SB-ET-VAR 4 -466.281 5.62 6.18 7.02 

SB-ET-VAR 6 -305.687 4.41 5.26 6.51 

Specification with Real Interest Rate as Transition Variable  
(with at least 30% obs. in each regime in each subsample) 

SB-ET-VAR 6 -315.813 4.51 5.36 6.62 

Specification with Output Growth as Transition Variable  
(with at least 30% obs. in each regime in each subsample) 

SB-ET-VAR 6 -313.113 4.48 5.33 6.59 

Note: All estimates are with p=2; effective sample period: 1960:Q2-2009:Q1. 
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Table 2: Tests for remaining heteroscedasticity in the SB-ET-VAR (6 regimes) 

Test on Disturbances from: Wald [pv] 

Output equation 4.39 [.11] 
Price equation 3.99[.14] 
Fed fund equation 17.80[.01] 

Fed fund equation 
(first subsample) 

9.07[.01] 

Fed fund equation 
(second subsample) 

1.62[0.44] 

Note: The test statistics are computed with an auxiliary regression (LM) of 

squared residuals on dummies to capture regime-dependent changes and with 

two lags of squared residuals. The null hypothesis of homoscedasticity is that 

the coefficients on the lag-squared disturbances are zero.  

 




