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ABSTRACT 

Forecasting Government Bond Yields with Large Bayesian VARs* 

We propose a new approach to forecasting the term structure of interest rates, 
which allows to efficiently extract the information contained in a large panel of 
yields. In particular, we use a large Bayesian Vector Autoregression (BVAR) 
with an optimal amount of shrinkage towards univariate AR models. Focusing 
on the U.S., we provide an extensive study on the forecasting performance of 
our proposed model relative to most of the existing alternative specifications. 
While most of the existing evidence focuses on statistical measures of 
forecast accuracy, we also evaluate the performance of the alternative 
forecasts when used within trading schemes or as a basis for portfolio 
allocation. We extensively check the robustness of our results via subsample 
analysis and via a data based Monte Carlo simulation. We find that: i) our 
proposed BVAR approach produces forecasts systematically more accurate 
than the random walk forecasts, though the gains are small; ii) some models 
beat the BVAR for a few selected maturities and forecast horizons, but they 
perform much worse than the BVAR in the remaining cases; iii) predictive 
gains with respect to the random walk have decreased over time; iv) different 
loss functions (i.e., "statistical" vs "economic") lead to different ranking of 
specific models; v) modelling time variation in term premia is important and 
useful for forecasting. 
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1 Introduction

Producing accurate forecasts of the term structure of interest rates is crucial for bond portfolio

management, derivatives pricing, and risk management. Unfortunately, all the forecasting

models proposed so far in the macroeconomic and �nancial literature have a hard time in

producing forecasts more accurate than a simple no-change forecast (i.e. a random walk

forecast). The existing methods can be roughly categorized in three groups. The �rst two

groups of models have the clear advantage of being grounded on �nance theory, while the

third group is the one that so far has produced the best results in out of sample forecast

accuracy.

The �rst group contains models based on forward rate regressions. Such models try

to forecast the future yields by extracting the information contained in the present forward

rates. Prominent examples of this approach are e.g. Fama and Bliss (1987), and Cochrane and

Piazzesi (2005). Even though these papers document the existence of a predictive content

in the forward rates, the out of sample forecasts produced by these models are typically

outperformed by a simple no-change forecast (see e.g. Diebold and Li 2006).

The second group contains models based on the No-Arbitrage paradigm. Typically the

practical implementation of these models involves imposing an a¢ ne speci�cation on a set of

latent factors. A¢ ne term structure models perform extremely well in �tting the yield curve

in sample (see, e.g. De Jong 2000 and Dai and Singleton 2000) but the performance in out of

sample forecasting is quite poor. Du¤ee (2002) has shown that beating a random walk with

a traditional no arbitrage a¢ ne term structure model is di¢ cult. Ang and Piazzesi (2003)

show that imposing no-arbitrage restrictions and an essentially a¢ ne speci�cation of market

prices of risk improves out-of-sample forecasts from a VAR(12), but the gain with respect to

a random walk forecast is small. Slightly more favourable evidence in this respect has been

found by Almeida and Vicente (2009) but this evidence is still mixed and based on a rather

short dataset, because the focus of this paper is not speci�cally forecasting. Favero et al.

(2007) and Moench (2009) document a rather good performance of the ATSM models, but

in both cases such models are complemented with a large macroeconomic dataset.

A third group of papers uses the Nelson and Siegel (1987) exponential components frame-

work (Diebold and Li, 2006), possibly also imposing on it the no-arbitrage restrictions (Chris-

tensen et al. 2007). The forecasting results obtained by these models are better, with the

Diebold and Li (2006) model producing one-year-ahead forecasts that are noticeably more

accurate than standard benchmarks. Still, the gains are small at shorter forecast horizons.

In this paper we propose a new strategy for forecasting the term structure of interest

2



rates, which exploits the information contained in a large panel of government bond yields.

Focusing on the U.S., we show that our proposed strategy produces systematically better

forecasts than all the methods outlined above. The starting point of our strategy is the

consideration that the yield curve can be thought of as a vector process composed of yields of

di¤erent maturities. In that light, a straightforward approach to forecast would be to simply

run a Vector Autoregression (V AR). However, such a strategy soon encounters the so-called

"curse of dimensionality" problem, as the number of parameters to estimate rapidly reduces

the degrees of freedom of the V AR system. As a result, the forecasts produced by a V AR

are typically poor. To overcome this di¢ culty, one can either chose to sacri�ce completely

the cross-sectional information, and estimate e.g. a simple AR model on each yield, or try

to summarize the information in an e¢ cient but manageable manner. This latter possibility

can be pursued by using a Bayesian Vector Autoregression (BV AR).

A BV AR is a V AR whose coe¢ cients are random variables on which the researcher can

impose some a-priori information. Without entering into philosophical disputes about the

Bayesian and the classical approach in econometrics, we think it is worth stressing here that

BV ARs can be taught of simply as a selection device. Consider the �rst equation of a large

V AR: there are many regressors, and the researcher needs to solve the trade-o¤ between

using as much information as possible, and the loss in degrees of freedom coming from having

too many parameters to estimate. An intuitive way to proceed would be to start with an

empty model, then adding a candidate regressor and performing a test of signi�cance for

that regressor. If the null is rejected, then the regressor is kept. The procedure can be

repeated until the last candidate regressor is considered. What this procedure implicitly

does is selecting the regressors on the basis of how much valuable information they contain.

Information is valuable if it is able to signi�cantly increase the likelihood of the model. The

Bayesian algorithm works similarly. A priori the coe¢ cient attached to a given candidate

regressor is set to 0, and only if the information contained in the data is valuable enough to

in�uence the likelihood the posterior mean will be far from 0. More precisely, rather than

acting as a selection device which either includes or excludes a regressor, the BV AR includes

all the regressors but it assigns a di¤erent weight to each. The weight is higher the higher is

the informational content of a given regressor. The advantage of the BVAR over the simple

step-wise procedure outlined above is that the former is a fully blown approach grounded on

statistical theory, while the latter is not, and as a result it might lead to incorrect inference.

For example, in the simple step-wise procedure the order with which the various candidate

regressors are examined can signi�cantly in�uence the �nal outcome, and the overall size of
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the step-wise procedure is unknown.

BV ARs have a long story in econometrics. Although the good forecasting performance

of BV ARs has been documented years ago by Litterman (1986) and Doan et al. (1984), only

recently they have started to be used more systematically for policy analysis and forecasting

macroeconomic variables (Kadiyala and Karlsson 1997, Banbura et al. 2007, Carriero et

al. 2009, 2010). One of the major stumbling blocks that prevented the use of BV ARs

as a model for forecasting and policy analysis has typically been the large computational

burden they pose. Indeed, the computation of nonlinear functions of the parameters such as

impulse-response functions and multi-step forecasts need to be performed via time consuming

simulations. As we will discuss below in detail, in this paper we solve this problem by directly

estimating the relevant coe¢ cients for each forecast horizon, which allows us to compute the

forecasts at all forecast horizon without resorting to simulation. As a result, the production

of a full set of (Bayesian) forecasts for horizon 1- to 12- month ahead takes seconds.

We compare our proposed approach against all the major forecasting models used so far

in the literature, including forward rate regression (Fama and Bliss (1987), Cochrane and

Piazzesi (2005)), A¢ ne term structure Models (Ang and Piazzesi (2003)), and models based

on the exponential components framework (Diebold-Li (2006), Christensen et al. (2007),

Stock and Watson (2002a,b)). For reference, we include in the comparison also a set of

linear models (Random Walk, Autoregressive Models, Vector Autoregressions). De Pooter

et al. (2007) also propose to use Bayesian techniques to forecast the term structure, but

their paper di¤ers from this as they use Bayesian model averaging over some term structure

models, while we use a large BV AR to extract e¢ ciently the information contained in a large

cross section of yields.

Besides introducing the new approach to forecasting the yields, we extend the available

empirical evidence in three directions: First, for all the models considered, we provide results

for an homogeneous dataset. We use the novel dataset by Gurkaynak et al. (2007), publicly

available on the website http://www.federalreserve.gov and updated regularly. Secondly,

while most of the existing evidence evaluates forecast accuracy only in terms of statistical

measures such as Root Mean Squared Forecast Errors, we also evaluate forecasts on the basis

of "economic" criteria. In particular, we provide Sharpe Ratios arising from simple trading

rules based on the alternative forecasts, and we use the alternative forecasts to perform

optimal portfolio allocation. Finally, we provide extensive robustness checks of the results.

In particular, we provide subsample results and a simulation study in which we simulate

and forecast a set of "arti�cial" term structures. In doing such a Monte Carlo simulation
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the researcher has to choose the Data Generating Process (DGP). Obviously the choice of

a particular DGP over another would in�uence the results, advantaging one rather than

the other model. Therefore, rather than concentrate on simulated data and an inevitably

arbitrary data generation process, we carry out our simulation by bootstrapping the actual

term structure dataset. The use of a real dataset as a basis for such a robustness analysis

is referred to as a �data based Monte Carlo method�and discussed further in, e.g., Ho and

Sørensen (1996).

We �nd that: i) our proposed BVAR approach produces forecasts systematically more

accurate than the random walk forecasts, though the gains are small; ii) some models beat

the BVAR for a few selected maturities and forecast horizons, but they perform much worse

than the BVAR in the remaining cases; iii) predictive gains with respect to the random walk

have decreased over time; iv) di¤erent loss functions (i.e., "statistical" vs "economic") lead to

di¤erent ranking of speci�c models; v) modelling time variation in term premia is important

and useful for forecasting.

The paper is structured as follows. Section 2 develops our BVAR approach. Section 3

introduces the competing forecasting models under comparison. Section 4 describes the data,

the forecasting exercise and the alternative criteria we shall use in evaluating the alternative

forecasts. Section 5 presents the main results, and Section 6 the robustness analysis. Finally,

section 7 concludes.

2 Bayesian VARs (BVAR)

The yield curve can be thought of as a vector process composed of yields of di¤erent matu-

rities. In that light, a straightforward approach to forecasting it, is to simply run a Vector

Autoregression. However, such a strategy encounters an overparameterization problem, as

the number of estimated parameters rapidly reduces the degrees of freedom of the VAR sys-

tem. As a result, the forecasts produced by a VAR are typically poor. To overcome this

di¢ culty, one can either chose to sacri�ce completely the cross-sectional information, and

estimate, e.g., a simple AR model on each yield, or try to summarize the information in an

e¢ cient but manageable manner. This latter possibility can be pursued by modelling the

system of yields as a multivariate model in which yields are a-priori following a univariate

autoregressive process.

5



2.1 Notation and Preliminaries

We denote the log-price of a � -year discount bond at time t as p(�)t , so that the log yield is

y
(�)
t = � 1

� p
(�)
t . The log forward (per-period) rate at time t for loans between t+h and t+h+�

is given by ft(h; �) = 1
� (�p

(�+h)
t + p

(�)
t ) = 1

� ((� + h)y
(�+h)
t � �y(�)t ). The log holding period

return is given by r(�)t+1 = p
(��1)
t+1 � p(�)t . We have a cross-section of N di¤erent maturities

which we denote �1; �2; :::; �N . Whenever we consider vectors of yields, returns, forward rates,

or prices we use bold letters, e.g. yt = (y
(�1)
t y

(�2)
t ::: y

(�N )
t )0 is the N -dimensional vector of

yields for each of the selected maturities. The h-step ahead forecasts (made at time t) are

denoted with a hat, e.g. the h-step ahead forecast of the vector of yields is ŷt+h.

Consider the following Vector Autoregression:

yt = �0;h +�1;hyt�h + "t; "t � i:i:d:N(0;�): (1)

Note that in the above model the vector of yields yt is regressed directly onto yt�h, which

means that for each forecast horizon h a di¤erent model is employed. Such an approach,

is known as "direct" forecasting, and it focuses on minimizing the relevant loss function for

each forecast horizon, i.e. the h-step ahead forecast error. Alternatively, one could use the

traditional "powering up" approach, which consists in regressing yt onto yt�1, and then to

compute recursively the h-step ahead forecasts. For a discussion and a comparison of these

alternative methods see, e.g., Marcellino et al. (2006) and Pesaran et al. (2009). In general,

the powering up approach is more e¢ cient, as it uses more datapoints, but is dangerous in

the presence of misspeci�cation, because the misspeci�cation will in�ate with the forecast

horizon when the forecasts are computed recursively. On the other side, the direct approach

is less e¢ cient but is more robust to misspeci�cation. More importantly for our purposes, the

direct approach implies that the h-step ahead forecast is a linear function of the coe¢ cients:

ŷt+h = �̂0;h + �̂1;hyt, while in the traditional powering up approach the multi step forecasts

will be a highly nonlinear function of the estimated coe¢ cients. As a result, there is an exact

closed form solution for the distribution of the h-step ahead forecasts computed using (1),

while computing the forecasts resulting from the powering up strategy would require the use

of time-demanding simulation methods.

2.2 A Normal-Inverted Wishart AR(1) Prior

It is clear that yields, regardless of maturity, are very persistent processes. Indeed both a

simple Auto Regressive (AR) model and the RandomWalk (RW ) produce very good forecasts

of the yields. Therefore it is reasonable to think a priori that each of the yields in (1) obeys
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a univariate AR with high persistence, or equivalently, that the expected value of the matrix

�1;h is E[�1;h] = 0:99 � I. We also need to assess how strong is the belief we have in such
a prior, i.e. we need to set a variance around the prior mean. More formally, we assume

that �1;h is conditionally (on �) normal, with �rst and second moments given by:

E[�
(ij)
1;h ] =

8<: 0:99 if i = j

0 if i 6= j
; V ar[�

(ij)
1;h ] = ��

2
i =�

2
j ; (2)

where �(ij)1;h denotes the element in position (i; j) in the matrix �1;h, and where the covariances

among the coe¢ cients in �1;h are zero. The shrinkage parameter � measures the tightness of

the prior: when � ! 0 the prior is imposed exactly and the data do not in�uence the estimates,

while as � ! 1 the prior becomes loose and the prior information does not in�uence the

estimates, which will approach the standard OLS estimates. We will discuss in detail the

choice of this parameter below, since it is a key element of our proposal. The factor �2i =�
2
j is

a scaling parameter which accounts for the di¤erent scale and variability of the data. To set

the scale parameters �2i we follow common practice (see e.g. Litterman, 1986; Sims and Zha,

1998) and set it equal to the variance of the residuals from a univariate autoregressive model

for the variables. The prior speci�cation is completed by assuming a di¤use normal prior on

�0;h and an Inverted Wishart prior for the matrix of disturbances � � iW (v0; S0), where v0
and S0 are the prior scale and shape parameters, and are set such that the prior expectation

of � is equal to a �xed diagonal residual variance E[�] = diag(�21; :::; �
2
N ). This provides us

with a Normal-Inverted Wishart prior, which is conjugate, i.e. it features a Normal-Inverted

Wishart posterior distribution.

We can re-write more compactly the VAR as:

Y = Xh	h + E; (3)

where Y = [yh+1; ::; yT ]0 is a T �N matrix containing all the data points in yt, Xh = [1 Y�h]

is a T �M matrix containing a vector of ones (1) in the �rst columns and the h-th lag of Y

in the remaining columns, 	h = [�0;h �1;h]0 is a M� N matrix, and E = ["h+1; ::; "T ]
0 is a

T �N matrix of disturbances. As only one lag is considered we have M = N + 1. The prior

distribution can then be written as:

	hj� � N(	0;�
 
0); � � IW (v0; S0): (4)

Note that 	hj� is a matricvariate normal distribution where the prior expectation E[	h] =

	0 and prior variance V ar[	h] = �

0 are set according to equation (2). The prior variance
matrix has a Kroneker structure V ar[	h] = � 
 
0 where � is the variance matrix of the
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disturbances and the elements of 
0 are given by V ar[�
(ij)
1;h ] in (2). As the used N-IW prior

is conjugate, the conditional posterior distribution of this model is also Normal-Inverted

Wishart (Zellner 1973):

	hj�; Y � N( �	;�
 �
); �jY � IW (�v; �S); (5)

where the bar denotes that the parameters are those of the posterior distribution. De�ning 	̂

and Ê as the OLS estimates, we have that �	 = (
�10 +X 0X)�1(
�10 	0+X
0Y ), �
 = (
�10 +

X 0X)�1, �v = v0 + T , and �S = 	̂0X 0X	̂ + 	00

�1
0 	0 +	0 + Ê

0Ê � 	̂0 �
�1	̂.

2.3 Estimation

In order to perform inference and forecasting one needs the full joint posterior distribution

and the marginal distributions of the parameters �	 and �. One could use the conditional

posteriors in (5) as a basis of a Gibbs sampling algorithm that drawing in turn from the

conditionals 	hj�; Y and �jY would eventually produce a sequence of draws from the joint

posterior 	h�jY and the marginal posteriors 	hjY , �jY , as well as the posterior distribution
of any function of these coe¢ cients (e.g. multi-step forecasts or impulse responses).

Still, if one is interested only in the posterior distribution of 	h (rather than in any

nonlinear function of it) there is an alternative to simulation: by integrating out � from (5)

Zellner (1973) has shown that the marginal posterior distribution of 	h is a matricvariate t:

	hjY �MT ( �	; �
�1; �S; �v): (6)

The expected value for this distribution is given by:

�	 = (
�10 +X 0X)�1(
�10 	0 +X
0Y ); (7)

which is obviously extremely fast to compute. Recalling that 	̂ is the OLS estimator, and

using the normal equations (X 0X)�1	̂ = X 0Y we can rewrite this as:

�	 = (
�10 +X 0X)�1(
�10 	0 +X
0X	̂); (8)

which shows that the posterior mean of 	h is a weighted average of the OLS estimator and

of the prior mean 	0, with weights proportional to the inverse of their respective variances.

In the presence of a tight prior (i.e., when � ! 0) the posterior estimate will collapse to

�	 = 	0, while with a di¤use prior (i.e., when � !1) the posterior estimate will collapse to
the unrestricted OLS estimate.
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Given the posterior mean �	 = [��0;h ��1;h]0, it is straightforward to produce forecasts up

to h steps ahead simply by setting:

ŷt+h = ��0;h + ��1;hyt; (9)

As shown by Banbura et al. (2009) it is also possible to implement the prior described

above using a set of dummy observations. Consider adding Td dummy observations Yd and

Xd such that their moments coincide with the prior moments: 	0 = (X 0
dXd)

�1X 0
dYd, 
0 =

(X 0
dXd)

�1, v0 = Td �M �N � 1; S0 = (Yd �Xd	0)0(Yd �Xd	0). Augmenting the system
in (3) with the dummy observations gives:

Y + = X+
h 	h + E

+; (10)

where Y + = (Y 0 Y 0d)
0 and E+ = (E0 E0d)

0 are (T +Td)�N matrices and X+ = (X 0 X 0
d)
0 is a

(T + Td)�M matrix. Then it is possible to show that the OLS estimator of the augmented

system (given by the usual formula (X+0
h X

+
h )

�1X+0
h Y

+) is numerically equivalent to the

posterior mean �	.

2.4 Prior tightness

To make the prior operational, one needs to choose the value of the hyperparameters �. The

marginal data density of the model can be obtained by integrating out all the coe¢ cients,

i.e., de�ning � as the set of all the coe¢ cients of the model, the marginal data density is:

p(Y ) =

Z
p(Y j�)p(�)d�: (11)

Under our Normal-Inverted Wishart prior the density p(Y ) can be computed in closed form

(see Bauwens et al. 1999). At each point in time we choose � by maximizing:

��t = argmax
�
ln p(Y ) (12)

Figure 2 depicts the value of ln p(Y ) for the case with h = 1 as a function of � and time.

The results are based on the dataset of Gurkaynak et al. (2007) which is dispalyed in Figure

1, and which we will describe in detail in Section 4. We consider the values of �t in the grid

� 2{2e-16, 4e-16, 6e-16, 8e-16, 1e-15, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}. Interestingly, it
turns out that for all forecast horizons p(Y ) is a hump-shaped function1 of �, which shows that

1Figure 2 depicts the natural logarithm ln p(y), which is rather �at for intermediate values of �, and it

might seem to signal that the function is not sensitive to this parameter. However, this is a feature of the

log-transformation, and the surface p(y) is much steeper.
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imposing some shrinkage (as opposed to no shrinkage or in�nite shrinkage) is optimal, with

the optimal value being around 0:00001. Such value looks rather low, and it implies a rather

high amount of shrinkage. However one should bear in mind that the value of the shrinkage

parameter �� is not interpretable per se but only in relation to the dimension of the system.

The same value for the shrinkage parameter would imply di¤erent amounts of shrinkage if it

is applied to a small or to a large system. De Mol et al. (2009) have formalized this point

and have shown that the optimal shrinkage parameter �� goes to 0 when the cross-sectional

size of the system increases.

As we estimate a di¤erent model for each forecast horizon h, we will select an optimal ��t

for each h. The time series path of the optimal ��t for h = 1; :::; 12 is depicted in Figure 3. As

is clear from the �gure, the optimal ��t always hovers around 0:00001 for all forecast horizons,

and only for long horizons it becomes occasionally higher. We have also experimented based

on a � kept �xed throughout the sample to 0:00001 and found that such a strategy produces

very similar results to those obtained using the optimally selected ��t .

3 Forecasting Models

In this section we describe all the competing forecasting models under evaluation. The

models include linear models (autoregressive models and vector Autoregressions), forward

rate regressions (along the lines of Fama and Bliss (1987) and Cochrane and Piazzesi (2005)),

factor models (along the lines of Diebold and Li (2006), Christensen et al. (2007), and Stock

and Watson (2002a,b)), and a¢ ne term structure models (along the lines of Ang and Piazzesi

(2003)). Our proposed model, i.e. the Bayesian VAR, has been described in Section 2.

3.1 Random Walk (RW)

We include a simple Random Walk forecast (RW). The RW forecast of the yield of maturity

� at time t+ h is given by:

ŷ
(�)
t+h = y

(�)
t (13)

Du¤ee (2002) and Diebold and Li (2006) have shown that beating a Random Walk forecast

of the yield curve is di¢ cult, therefore we will use the RW forecasts as the benchmark with

respect to which we will compare the forecasts of all the competing models.

10



3.2 Univariate Autoregressive model (AR)

We also consider univariate autoregressive models. Forecasts from such process can be pro-

duced in two alternative ways . The �rst way is known as powering-up approach. In this

approach the econometrician estimates the model:

y
(�)
t = �+ �y

(�)
t�1 + "t (14)

for the generic maturity � . The 1-step ahead forecast is produced as ŷ(�)t+1 = �̂+ �̂y
(�)
t , while

the forecasts for h-step ahead horizon are obtained as:

ŷ
(�)
t+h = �̂+ �̂ŷ

(�)
t+h�1:

Alternatively, one can use the direct approach. As we discussed before, this approach directly

optimizes the relevant loss function, i.e. the h-step ahead mean squared forecast error and

has proved to be more robust but less e¢ cient see, e.g., Marcellino, Stock and Watson (2006)

and Pesaran et al (2009). The estimated model is:

y
(�)
t = �h + �hy

(�)
t�h + "t; (15)

i.e. the variable at time t is projected directly onto its past value in period t � h, so the
estimated coe¢ cients summarize the h-step ahead e¤ect. Note that a di¤erent �h and �h are

obtained for each forecast horizon. The forecasts are then derived as:

ŷ
(�)
t+h = �̂�h + �̂�hy

(�)
t (16)

We provide results for both these approaches, labeling them respectively AR(pu) and

AR(di). Note that for the 1-step ahead horizon the two methods produce the same results.

Another relevant dimension of choice when using autoregressive models is the choice of

the lag length. The models described above are AR(1), but in principle one could choose any

lag length p: The speci�cation with one lag is consistent with the prior mean of our BVAR,

which we have described in Section 2. We have also considered richer dynamic speci�cations

and re-estimated both the AR models (with power-up and direct approach) by choosing the

lag length by means of the Bayesian Information Criterion (BIC). The chosen lag length

oscillates between one and four depending on the time period, but the �nal results are close

to those obtained with the simpler AR(1) speci�cations. Therefore, we present the latter

results only, while we have the former available upon request.
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3.3 Vector Autoregression (VAR)

VAR forecasts are produced along the same lines of univariate AR forecasts. Speci�cally,

VAR forecasts based on powering up are produced as follows. The regression model is:

yt = A+Byt�1 + "t; (17)

where yt = (y
(�1)
t y

(�2)
t ::: y

(�N )
t )0. The 1-step ahead forecast is produced as ŷt+1 = Â+ B̂yt,

while the h-step ahead forecasts are obtained as:

ŷt+h = Â+ B̂ŷt+h�1 (18)

For the direct approach, forecasts are obtained as follows. The regression model is:

yt = Ah +Bhyt�h + "t; (19)

where yt = (y
(�1)
t y

(�2)
t ::: y

(�N )
t )0. Note that di¤erent Ah and Bh matrices are used for each

forecast horizon. The forecasts are then derived as:

ŷt+h = Âh + B̂hyt (20)

We provide results for both these approaches, labeling them respectively. V AR(pu) and

V AR(di). Note that for the 1-step ahead horizon the two methods produce the same results.

We have also experimented with longer lag speci�cations and BIC lag selection. This provides

rather poor results which are available upon request.

3.4 Fama and Bliss (1987) (FB)

Fama and Bliss (1987) found that the spread between the � -year forward rate and the one-

year yield predicts the one-year excess return of the � -year bond, with R2 of about 18 percent.

The natural extension of the Fama-Bliss approach in our context uses the following regression

model for each maturity � :

y
(�)
t � y(�)t�h = �h + �h(ft�h(h; �)� y

(�)
t�h) + "t; (21)

where ft(h; �) as the forward rate at time t for loans between time t+ h and t+ h+ � . The

h-step ahead forecasts ŷ(�)t+h are then produced by projecting the change in yields from time

t to time t+ h on the forward-spot spread at time t:

ŷ
(�)
t+h � y

(�)
t = �̂�h + �̂�h(ft(h; �)� y(�)t ) (22)
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3.5 Cochrane and Piazzesi (2005) (CP)

Cochrane and Piazzesi (2005) show that the excess returns on one- to �ve-year maturity

bonds are predicted (with R2 up to 0.44) by a single tent-shaped linear combination of

the corresponding �ve forward rates y(�=12)t ; ft(12; 12); ft(24; 12); ft(36; 12); and ft(48; 12).

Although the natural extension of this approach would imply putting all the available forward

rates on the right hand side, this would lead to multicollinearity, as the Gurkaynak et al.

(2007) data are based on a six-parameter functional form. Therefore, we follow Cochrane

and Piazzesi (2008), and use only three forward rates, y(�12)t ; ft(24; �12); and ft(48; �12), in

order to eliminate problems of collinearity. The forecasts ar obtained as follows. For each

maturity � , we estimate the following linear regression model:

y
(�)
t � y(�)t�h = �h + �hy

(12)
t�h + ft�h(24; 12) + �ft�h(48; 12) + "t (23)

Then, forecasts are computed as:

ŷ
(�)
t+h � y

(�)
t = �̂h + �̂hy

(�12)
t + ̂ft(24; 12) + �̂ft(48; 12) (24)

3.6 Dynamic Nelson and Siegel model (Diebold-Li (2006), DL)

Diebold and Li (2006) proposed a dynamic version of the Nelson and Siegel (1987) exponential

components framework. They obtained very good results in terms of out of sample yield curve

forecasting. The starting point is the following yield curve interpolant:

y
(�)
t = �1 + �2

1� e��
�

+ �3

�
1� e��
�

� e��
�
; (25)

where �1; �2,�3 and  are parameters. Diebold and Li (2006) interpreted equation (25) in a

dynamic fashion as a latent factor model in which �1; �2; and �3 are time-varying level, slope,

and curvature factors and the terms that multiply these factors are factor loadings:

y
(�)
t = �1t + �2t

1� e��
�

+ �3t

�
1� e��
�

� e��
�
: (26)

The cross section of yields can be used to estimate via OLS2 the coe¢ cients �1t; �2t; �3t

at each point in time. Repeating the OLS regression across sections at each point in time

2To do so we follow Diebold and Li (2006) and we �x the value of  to 0:0609, which is the value that

maximizes the loading on �3 at exactly 30 months maturity. As stressed out by Diebold and Li this choice

enhances numerical e¢ ciency and robustness. An alternative approach could be to estimate the model with

nonlinear least squares or Maximum Likelihood.
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provides a time series of estimates of the three factors ~�1t; ~�2t,~�3t. Then, factors are assumed

to follow a univariate autoregressive process and are forecasted as follows :

�̂jt+h = â0 + â1 ~�jt (27)

where â0 and â1 are the coe¢ cients of a regression of ~�jt onto ~�jt�h. Alternatively, one

can assume a VAR structure for the factors, but such strategy typically produces a worse

forecasting performance given that it increases the number of parameters to be estimated

without having much to gain in terms of cross-variable interaction. For completeness we have

also tried a VAR(1) speci�cation as in Diebold et Li (2006). We label respectively DL(AR)

and DL(V AR) the forecasts computed using a univariate AR and a VAR speci�cation for

the factors.

Once forecasts of the factors at time t+ h are available, the forecast of the yields can be

retrieved simply by exploiting again the cross sectional dimension of the system:

ŷ
(�)
t+h = �̂1t+h + �̂2t+h

1� e��
�

+ �̂3t+h

�
1� e��
�

� e��
�
: (28)

The DL model described above has proved to be empirically successful but it is based on

a purely statistical approach not grounded on �nance theory. In a recent paper Christensen

et al. (2007) have shown how the No-Arbitrage restrictions can be imposed onto the DL

model. We have also tried this speci�cation, and we found that although it is at least as good

as the standard unrestricted DL speci�cation for small sized systems, it is systematically

outperformed in systems with a large cross section of yields.

3.7 Stock and Watson (2002a,b) (SW)

Stock and Watson (2002a,b) propose to overcome the curse of dimensionality problem arising

in forecasting with large datasets by using a factor structure. The information contained in

a set of predictors Xt is summarized by a set of K factors:

Xt = �Ft + ut (29)

where Ft is a K-dimensional multiple time series of factors and � a N�K matrix of loadings.

The forecast for ŷ(�)t+h given the predictors can be obtained through a two-step procedure, in

which in the �rst step the set of predictors fXtgTt=1 is used to estimate the factorsfF̂tgTt=1
via principal components, and then the forecasts are obtained by projecting ŷ(�)t+h onto F̂t and

y
(�)
t : In the case at hand the set of predictors used in the �rst step comprises the yields of all
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the remaining maturities. Once the factors have been derived via principal components, we

estimate the following regression model:

y
(�)
t = �hF̂t�h + �hy

(�)
t�h + "t; (30)

and then the forecasts are obtained by projecting:

ŷ
(�)
t+h = �̂hF̂t + �̂hy

(�)
t (31)

Stock and Watson (2002a,b) develop theoretical results for this two-step procedure and

show that under a set of moment and rank conditions the MSFE of the feasible forecast

asymptotically approaches that of the optimal infeasible forecast (i.e. the one based on

the knowledge of the factors) for N and T approaching in�nity, see Bai and Ng (2006) for

additional details.

3.8 A¢ ne Term Structure Models (ATSM)

We consider the model proposed by Ang and Piazzesi (2003), which is a discrete-time version

of the a¢ ne class introduced by Du¢ e and Kan (1996), where bond prices are exponential

a¢ ne functions of underlying state variables. The assumption of no arbitrage (Harrison and

Kreps, 1979) guarantees the existence of a risk neutral measure Q such that the price at time

t of an asset Vt that does not pay any dividends at time t+1 satis�es Vt = E
Q
t [exp(�it)Vt+1],

where the expectation is taken under the measureQ and it is the short term rate. The assump-

tion of no arbitrage is equivalent to the assumption of the existence of the Radon-Nikodym

derivative �t+1, which allows to convert the risk neutral measure to the data generating

measure: EQt [exp(�it)Vt+1] = Et [(�t+1=�t) exp(�it)Vt+1] : Assume �t+1 follows a log-normal
process:

�t+1 = �t exp(�0:5�0t�t � �0t"t+1): (32)

The �t are called market prices of risk and are an a¢ ne function of a vector of k factors Ft:

�t = �0 + �1Ft; (33)

where �0 is a k-dimensional vector and �1 a k�k matrix. Note that by setting �1 = 0 prices
of risk are constant over time. Also the short term rate is assumed to be an a¢ ne function

of Ft:

it = �0 + �
0
1Ft; (34)

where �0 is a scalar and �1 a k-dimensional vector. We assume the factors follow a zero-mean

stationary vector process:

Ft = 	Ft�1 +
"t; (35)
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where "t � iidN(0;�") with �" = I with no loss of generality. The nominal pricing kernel is
de�ned as:

mt+1 = exp(�it)�t+1=�t = exp(��0 � �01Ft � 0:5�0t�t � �0t"t+1); (36)

where the second equality is obtained by using (34) and (32). The nominal pricing kernel

prices all assets in the economy, so by letting p(�)t denote the time t price of a � -period zero

coupon we have:

p
(�+1)
t = Et(mt+1p

(�)
t+1): (37)

By using the above equations is possible to show that bond prices are an a¢ ne function of

the state variables:

p
(�)
t = exp( �A� + �B0�Ft); (38)

where �A� and �B� are a scalar and a k-dimensional vector obeying to:

�A�+1 = �A� + �B0� (�
�0) + 0:80�

0 �B� � �0
�B0�+1 =

�B0� (	� 
�1)� �01
; (39)

with �A1 = ��0 and �B1 = ��1. See Ang and Piazzesi (2003) for a derivation. The continuously
compounded yield on a � -period zero coupon bond is:

y
(�)
t = � ln p(�)t =� = A� +B

0
�Ft; (40)

with A� = � �A�=� and B� = � �B�=� , so yields are also an a¢ ne function of the factors.
Equations (35) and (40) can be interpreted as a transition and a measurement equation

respectively, so the state space model for a vector of yields of q di¤erent maturities �1; �2; :::; �q

can be written as:
Ft = 	Ft�1 +
"t;

Yt = A+BFt + vt;
(41)

where Yt = (y
(�1)
t ; y

(�2)
t ; :::; y

(�q)
t )0 is a q�dimensional vector process collecting all the yields

at hand, A = (A�1 ; A�2 ; :::A�q)
0 and B = (B�1 ; B�2 ; :::; B�q)

0 are functions of the structural

coe¢ cients of the model according to equation (39), and where vt is a vector of iid Gaussian

measurement errors with variance �v.

Following common practice we use three factors, which can be interpreted as the level,

slope and curvature of the term structure. Given that scaling, shifting, or rotation of the

factors provides observational equivalence, a normalization is required. Following Dai and

Singleton (2000) we identify the factors by assuming factor mean equal to zero, a lower

triangular structure for the matrix 	, and we set �1 = (1; 1; 0)0. Given this identi�cation
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scheme the coe¢ cient �0 equals the unconditional mean of the instantaneous rate, which can

be approximated by the sample average of the 1-month yield. As for second order coe¢ cients,

we assume 
 and �v to be diagonal, while we assume absence of correlation between "t and

vt, i.e. E("tvt) = 0.

We collect all the structural parameters to be estimated in the vector:

# = f	;
;�0;�1;�vg: (42)

In our application, we denote this model by ATSM(tvp), to emphasize that the model

features time varying term premia. We also consider a speci�cation which imposes constant

risk premia, and it is obtained simply by setting �1 = 0 in equation (33), and we label this

speci�cation ATSM(cp). We estimate # with the Expectation-Maximization (EM) algorithm,

evaluating the likelihood at each iteration by means of the Kalman Filter. We maximize the

likelihood of the VAR with no-arbitrage restrictions using the Broyden, Fletcher, Goldfarb,

and Shanno (BFGS) algorithm with Brent line search. ATSMs are highly nonlinear in the

parameters. Maximum likelihood estimation of such models involves a di¢ cult optimization

problem, as the likelihood features several local maxima and results are very sensitive to the

initial conditions. A strategy that is often adopted for estimating such models is to start from

several di¤erent initial conditions, �nd the maximum likelihood estimate for each of them, and

�nally pick the highest among the detected local maxima (see Du¤ee 2007). In our exercise

we initialize our algorithm as follows. In the �rst estimation window we compute a maximum,

then we draw 100 alternative starting points by randomizing around this maximum (drawing

from a normal with variance derived from the Hessian at the maximum), maximize again,

and check that none of the random initial points leads to a point with higher likelihood

(i.e. a new maximum). If this is not the case, we take the new maximum and repeat the

randomization until no points with higher likelihood are found. Then, for all the remaining

estimation windows, we use the optimum obtained in the previous period t � 1 as initial
condition for the maximization performed in period t.

4 Forecasting the Yield Curve

4.1 Data

We use the US Treasury zero coupon yield curve estimates by Gurkaynak et al. (2007). This

dataset is publicly available on the website of the Federal Reserve Board, at the address

http://www.federalreserve.gov/pubs/feds/2006 and is updated regularly. Gurkaynak et al.
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(2007) provide several details on the derivation of the yield curve from raw data, here we

just note that the zero coupon yield curve estimates are obtained by using the extension

by Svensson (1994) of the functional form that was initially proposed by Nelson and Siegel

(1987). Such speci�cation assumes that the forward rates are governed by six parameters.

We focus on monthly data going from January 1985 to December 2008. Although the

dataset by Gurkaynak et al. (2007) goes further backward in time, we focus on the post-

Volker period in order to avoid sample instability. We consider yields of the following 18

maturities (in months): 1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120.

These choices provide us with a panel of 288 monthly observations on 18 di¤erent yields.

Some descriptive statistics for the data at hand are contained in Table I, while a plot of the

data is provided in Figure 1.

4.2 Forecasting Exercise

The forecasting exercise is performed in pseudo real time, i.e. we never use information which

is not available at the time the forecast is made. For computing our results we use a rolling

estimation window of 120 months (10 years). We produce forecasts for all the horizons up to

12-step ahead, but for brevity we present results only for the 1-, 3-, 6-, and 12- step ahead.

Results for the remaining horizons are available upon request. The initial estimation window

is 1985:1 1994:12, and the initial forecast window is 1995:1-1995:12. The last estimation

window is 1998:1 to 2007:12, and the last forecast window is 2008:1 to 2008:12. The choice

of a rolling scheme is suggested by two reasons. First, it is a natural way to avoid problems

of instability, see e.g. Pesaran and Timmerman (2005). Second, having �xed the number

of observations used to compute the forecasts and therefore the resulting time series of the

forecast errors allows to use the Giacomini and White (2006) test for comparing forecast

accuracy. Such a test is indeed valid provided that the size of the estimation window is �xed.

4.3 Statistical loss functions

Let ŷ
(�)
t+h(M) denote the forecast of y

(�)
t+h made by model M: The Mean Squared Forecast

Error (MSFE) made by model M in forecasting the yield of maturity � at horizon h is:

MSFEM�;h =
1

T0

X�
ŷ
(�)
t+h(M)� y

(�)
t+h

�2
(43)

where the sum is computed over all the T0 forecasts produced. We assess predictive accuracy

in terms of Relative Mean Squared Forecast Error with respect to the Random Walk:

RMSFEM�;h =
MSFEM�;h

MSFERW�;h
: (44)

18



In order to give an idea of the absolute level of the errors, and to facilitate comparisons with

other studies we shall also report the Root Mean Squared Forecast Error of the Random

Walk forecast, i.e.
q
MSFERW�;h . As it is customary in this literature we present results in

terms of annualized percentage yields. For example, a root MSFE of 0.31 signals an error

of 31 basis points in predicting the annualized yield.

To assess whether the forecasts of two competing models are statistically signi�cantly

di¤erent we use the Giacomini and White (2006) test for forecast accuracy. This is a test

of equal forecasting method accuracy and as such can handle forecasts based on both nested

and non-nested models, regardless from the estimation procedures used in the derivation of

the forecasts, including Bayesian and semi- and non-parametric estimation methods. The

test is valid so long the number of observations used to estimate the forecasting models does

not tend to in�nity, which is the case in our example, as we use a rolling estimation window.

We use the unconditional version of the test, which is based on the same statistic of Diebold

and Mariano (1995).

4.4 Trading rules

Several papers have evaluated the forecasting performance of term structure models by look-

ing at statistical measures such as the one discussed in the previous Section. Only a few

papers (to our knowledge) have tried to use alternative loss functions to evaluate their per-

formance. Cochrane and Piazzesi (2005) use a simple trading rule in order to evaluate the

cumulative pro�ts arising from using their proposed forward rate regression in out of sample

forecasting, and Carriero and Giacomini (2009) have used a utility-based loss function in order

to evaluate the degree of usefulness of the no arbitrage restrictions. In this paper we provide

an assessment of the forecasting performance based on economic criteria. In particular we

consider two alternative trading strategies and a portfolio utility loss function.

Note that in the forecasting exercise we use the models described in Section 2 to produce

forecasts of the yields. However, the forecasts of the yield ŷ(�)t+1 provides a forecast of the

holding period return r̂(�+1)t+1 via a simple transformation:

r̂
(�+1)
t+1 = �� ŷ(�)t+1 + (� + 1)y

(�+1)
t : (45)

Also note that the forecast error made in forecasting the holding period return is proportional

to that made in forecasting the yield of a given bond: r̂(�+1)t+1 � r(�+1)t+1 = ��(ŷ(�)t+1 � �y
(�)
t+1).

This also implies that using the holding period return rather than the yields in the statistical

loss function would just rescale the results.
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The �rst trading rule is similar in spirit to that used by Carriero et al. (2009) for evaluating

the performance of a portfolio of exchange rates. This rule simply suggests to buy or to short

sell a bond of a given maturity depending on the sign of the forecasted variation in holding

period returns. Pro�ts at time t + 1 from this trading rule applied to the yield of maturity

� are given by:

�TR1t;� = sign
�h
r̂
(�)
t+1 � ŷ

(1)
t+1

i�
�
h
r
(�)
t+1 � y

(1)
t+1

i
� 100 (46)

As is clear, this rule uses the forecast of the excess one-period return with respect to the

one-month yield
h
r̂
(�)
t+1 � ŷ

(1)
t+1

i
to recommend the sign of a position which is subject to the

ex post return
h
r
(�)
t+1 � y

(1)
t+1

i
� 100, where 100 is a notional capital. The pro�ts of an equally

weighted portfolio composed of returns of all the maturities at hand is simply given by

��w��
TR1
t;� , where w� are equal weights. Cumulative pro�ts from time t0 to time t can be

easily computed as �TR1t = �tj=t0��w��
TR1
j;� .

The second trading rule is the same as in the Cochrane and Piazzesi (2005, online Ap-

pendix). Pro�ts at time t + 1 from this trading rule applied to the yield of maturity � are

given by:

�TR2t;� =
�h
r̂
(�)
t+1 � ŷ

(1)
t+1

i
� 100

�
�
h
r
(�)
t+1 � y

(1)
t+1

i
� 100: (47)

As is clear, this rule uses the forecast of the excess one-period return with respect to the

one-month yield
h
r̂
(�)
t+1 � ŷ

(�1)
t+1

i
to recommend the size of a position which is subject to the

ex post return
h
r
(�)
t+1 � y

(�1)
t+1

i
, where 100 is a notional capital. The recommended size of the

investment is given by
h
r̂
(�)
t+1 � ŷ

(1)
t+1

i
�100; where 100 is the notional capital. The pro�ts of an

equally weighted portfolio composed of returns of all the maturities at hand is simply given

by ��w��TR2t;� , where w� are equal weights. Cumulative pro�ts from time t0 to time t can be

easily computed as �TR2t = �tj=t0��w��
TR2
j;� .

The Sharpe ratios for a given maturity, for a generic trading rule TR used from t0 to t

can be computed as:

SharpeM� =
��q

1
t�t0�

t
j=t0

(�TRj;� � ��)
; �� =

1

t� t0
�tj=t0�

TR
j;� (48)

4.5 Optimal portfolio allocation

The trading strategies considered in the previous section provide a simple and straightforward

criterion for the economic relevance of the forecasts produced by the various alternative

models. Still, they focus on each yield separately and do not take explicitly into account the

risk-return considerations. To address these latter issues, it is interesting to see how useful
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the di¤erent forecasting models are, when used as a basis for optimal portfolio allocation.

Following Carriero and Giacomini (2009) we consider a portfolio utility loss function which

directly takes into account the risk return trade-o¤. Consider the asset allocation problem of

an investor who is buying a portfolio of N assets in period t and then sells it in period t+1. In

our application the relevant portfolio is a portfolio of bonds of maturities �1; �2; :::; �N bought

in period t and then sold in period t+ 1. The vector of expected returns on this investment

is given by Et[rt+1] = Et[(r
(�1+1)
t+1 ; r

(�2+1)
t+1 ; :::; r

(�q+1)
t+1 )0]. We further assume that the model

does not specify conditional variance dynamics, so that the conditional variance of rt+1 at

time t simply equals the unconditional variance-covariance matrix of the N assets �; so that

V art [rt+1] = �: We suppose that at each time t the forecaster constructs a portfolio by

choosing the weights that minimize a quadratic utility loss function:

w� = argmin
w

n
�w0Et [rt+1] +



2
w0�w

o
; (49)

where Et [�] denotes the conditional mean at time t: The classical solution (Markowitz, 1952)
to this problem is given by

w� = a+BEt [rt+1] ; (50)

a =
��1�

�0��1�
; (51)

B =
1



�
��1 � �

�1��0��1

�0��1�

�
; (52)

where � is a N � 1 vector of ones and  is a user-de�ned parameter related to the coe¢ cient
of relative risk aversion � by the relationship 

1� = �: Our empirical results are obtained by

setting � = 1; so that  = :5:

Each model at hand will provide a di¤erent forecast r̂t+1 = Et [rt+1], therefore providing

a di¤erent set of optimal weights and a di¤erent ex-post utility loss at time t given by:

Losst = �w�(r̂t+1)0rt+1 +


2
w�(r̂t+1)

0�w�(r̂t+1): (53)

The average ex-post utility loss from t0 to t is given by 1
t�t0�

t
j=t0

Losst. Note that the

Giacomini and White (2006) test can be applied to any loss function which is itself a function

of the forecasts, therefore we can use it to determine whether utility losses arising from two

di¤erent models are statistically signi�cantly di¤erent or not.
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5 Results

5.1 Statistical Loss Function

Results in terms of Relative Mean Squared Forecast Errors (RMSFE, our statistical loss

function) are displayed in Table II. The table is divided in four panels, each of them corre-

sponding to a di¤erent forecast horizon, respectively 1, 3, 6, and 12 step ahead. Each column

provides results for a di¤erent maturity. The �rst row in each panel contains the rootMSFE

of the Random Walk (RW ) forecasts. All the remaining rows report the RMSFE of a given

model vis a vis the RW , according to equation (44), so a �gure smaller than one signals

that the model under consideration outperforms the RW . The stars on the right of the cell

entries signal the level at which the Giacomini and White (2006) test rejects the null of equal

forecasting method accuracy (*, **, and *** stars mean respectively rejection at 10%, 5%,

and 1% level). Note that for the 1-step ahead case the results for the AR and VAR with

powering-up and direct approach produce by construction the same results and therefore they

are grouped together. Several conclusions can be drawn from the table.

First, the RW con�rms to be a very competitive benchmark in forecasting the term

structure of bond yields. It systematically outperforms the AR models, which in general

are a competitive benchmark in forecasting macroeconomic variables. The RW forecasts

are generally more accurate than those of most of the competing models, especially at long

horizons.

The BV AR is the only method that is able to systematically outperform the RW at all

maturities for short forecast horizons. The gains are in the range of 0% to 2% for the 1- and

12-step ahead horizon, and in the range of 2% to 4% for the 3-step and the 6-step ahead

horizon. Such gains are not statistically signi�cant, con�rming the di¢ culty of beating the

RW benchmark, but they are systematic for all maturities and forecast horizons.

Some models beat the BVAR for a few selected maturities and forecast horizons but

they perform much worse than the BVAR in the remaining cases. Among these are the

DL(V AR), the ATSM(tvp) and the V ARs, which all provide high gains for bonds of short

maturities, especially at short forecast horizons, but their performance rapidly deteriorates

when forecasting bonds of longer maturities.

Among linear models, it is worth noticing that the powering up produces overall better

forecasts than the direct approach, both for ARs and for V ARs. This �nding suggests that

the extent of mis-speci�cation of linear models is limited. As expected the V ARs are often

outperformed by simpler autoregressive speci�cations, which is likely due to overparametriza-
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tion. Still it is very interesting to note that in some cases V ARs do produce better forecasts

than the simple ARs. This suggests that there is some valuable information in the cross

section of yields, and the problem is to extract it e¢ ciently, as this information probably gets

lost due to the overparametrization of the model.

Turning to the forward rate regressions, their performance is somewhat mixed. In par-

ticular, both the FB and CP regression forecast quite well yields of short maturities but

they have a hard time in beating the RW for yields of longer maturities. As for the internal

ranking of the two, the FB regression seems to systematically outperform the CP regression

in out of sample forecasting. We shall see how this pattern is reversed when one considers a

di¤erent loss function.

Considering now the models based on the Nelson and Siegel interpolant, unexpectedly we

�nd mixed results about the DL model depending on whether an AR or a V AR speci�cation

is assumed for the factors. In particular the model with a V AR speci�cation, DL(V AR),

produces overall good forecasts, especially at short horizons and comparatively better than

those based on the AR model, DL(AR), for short and medium maturities and relatively short

forecast horizon. The pattern is inverted for longer maturities and longer forecast horizons.

As for the ATSM models, the model with constant risk premium, ATSM(crp), produces

quite poor forecasts. The inclusion of a time varying premium improves dramatically forecast

accuracy, although the ATSM(tvp) model can beat the RW only in few instances and overall

is outperformed by alternative models. Also for ATSMs we shall see how results will change

when a di¤erent loss function is considered.

5.2 Trading rules and portfolio utility loss.

We now consider the results in terms of our economic loss function, i.e. the two alternative

trading strategies, and the portfolio utility loss. Table III presents the Sharpe Ratios (i.e.

returns divided by standard deviation) obtained by using the trading strategies speci�ed in

(46) and (47) applied when the forecasts are obtained with our alternative methods. Note that

as the strategies use only 1-step ahead forecasts, The AR and V AR models with powering-up

or direct approach produce by construction the same result and are grouped together.

As is clear, the BV AR provides the highest returns and Sharpe ratios in most of the cases,

followed by the DL(AR) and ATSM(tvp) models. Interestingly, the ATSM(tvp) produce a

rather high Sharpe ratio for both trading strategies, but importantly the presence of a time

varying risk premium is essential to this result, as the ATSM(crp) produces negative returns.

In order to assess possible time variation in the performance of the models, we proceed
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along the lines of Cochrane and Piazzesi (2005, online Appendix) and we plot in Figure 4

the cumulative ex post pro�ts on an equally weighted portfolio containing all the yields to

maturity at hand. The plot shows the same ranking as Table III, namely the BV AR, DL,

and ATSM(tvp) produce the best forecasts, and the inclusion of a time variation in the

premia is essential for ATSMs. Also CP and FB regressions perform quite well. Finally it

is interesting to note that for this trading strategy too the simple V AR produces rather good

forecasts.

Finally, we consider the results for the Portfolio Utility Loss for portfolios whose weights

are optimally chosen. We consider a portfolio of bonds of maturity 1; 3; 12; 24; 36; 60; and

120 months. Table IV provides the ex-post average utility loss obtained with each of the

methods at hand. The model producing the lowest average (ex-post) utility loss is the RW ,

followed by the BV AR. The forward rate regressions FB and CP perform quite well but

not as well as the BV AR. Overall, the methods based on multivariate models perform quite

poorly, because they occasionally produce highly volatile forecasts. Finally, it is con�rmed

the importance of allowing for time variation in risk premia, as the loss implied by the ATSM

doubles from 7:95 to 14:21 when constant risk premia are imposed on the model.

6 Robustness

In this section we check the temporal robustness of the results by performing the evaluation

over two subsamples, and we conduct a simulation based on bootstrapped data that allows

a better assessment of forecast uncertainty.

6.1 Sub-sample stability

In order to check for stability of our results in di¤erent samples, we run the forecasting exercise

on two subsamples, each composed of seven years of forecasts. The �rst subsample goes from

1995:1 to 2000:12. Results on this subsample are displayed in Table V (for RMSFE), Table

VI (for the trading rules) and Table VII (for the Portfolio utility loss).

Results in Table V are overall in line with those obtained on the whole sample3. The only

3 In order to compare the results with those in Diebold and Li (2006) we also considered the period going

from 1994:1 to 2000:12. To produce results for the year 1994 we used a shorter rolling window of 108 months

rather than 120 as in our baseline application. Results for this subsample are available upon request and are

in line with those obtained by Diebold and Li (2006) with the same sample and the Fama-Bliss dataset. In

particular, the DL model with factors following an AR produces very good forecasts, and it outperforms the

RW at horizons longer than 1-step ahead.
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exception is the forecasting performance of the AR model, which works much better in this

subsample. The BV AR is still systematically better than the RW .

Table VI contains results on the trading rules. Also in this subsample, the BV AR sys-

tematically provides the highest returns and Sharpe ratios. Also the DL(AR) provides good

results, while the DL(V AR) produces negative returns. In this subsample the CP model

works remarkably well, especially for the second trading strategy. This result is in line with

Cochrane and Piazzesi (2005). Results for the cumulative ex post pro�ts on an equally

weighted portfolio containing all the yields and using the two trading strategies are displayed

in Figure 5.

Table VII contains results on the portfolio utility loss and con�rms the patterns found on

the whole sample (see Table 4). The only noticeable di¤erences are that in this subsample

the forward rate regressions perform better than in the full sample, while the ATSM with

constant risk premium performs relatively worse.

The second subsample contains forecasts for the period ranging from 2001:1 to 2008:12.

Results on this subsample are displayed in Table VIII (for RMSFE), Table IX (for the trading

rules) and Table X (for the Portfolio utility loss).

By looking at Table VIII it is clear that in this subsample all the models display a con-

siderable reduction in forecast accuracy relative to the RW . The AR, which was competitive

in the �rst subsample, becomes worse than the RW (the deterioration explains the overall

performance of the AR). A similar result applies to the DL model, whose forecasting perfor-

mance also deteriorates with respect to the �rst subsample. Also the forecasting performance

of the BV ARs deteriorates, but BV ARs still produce some of the best forecasts, and in sev-

eral instances are still able to outperform the RW . The remaining models, i.e. the SW model

and the forward rate regressions have a consistently poor performance.

Table IX contains results on the trading rules. In this subsample the BV AR is no longer

systematically the best model, even though it produces relatively high Sharpe ratios at least

for medium and long maturities. The evidence in this subsample is instead more mixed, with

the RW , the BV AR, the FB providing the highest Sharpe ratios. Results for the cumulative

ex post pro�ts on an equally weighted portfolio containing all the yields and using the two

trading strategies are displayed in Figure 6. In this case the ATSM with time varying risk

premium performs well when the second strategy is used.

Table X contains results on the portfolio utility loss. Overall, the reduced forecasting

performance (based on the MSFE) in this subsample is con�rmed: the loss from all the

models increases, with the BV AR still producing the smallest possible utility loss closely
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followed by the RW and the CP .

In summary, it is clear that in the second part of the sample there is an overall increase

in unpredictably, i.e. it is even more di¢ cult to beat a simple RW forecast. Most of the

models producing good forecasts in the �rst part of the sample see their performance in the

second part deteriorating.

6.2 Simulation with arti�cial data

To evaluate in more detail the performance and the robustness of the forecasting methods

under analysis, we carry out a stochastic simulation in which we simulate and forecast a set of

"arti�cial" term structures. Using several sets of arti�cial data allows to retrieve distributions

of forecasts and forecast errors, which in turn can be used to assess the amount of variance

implied by each competing model around the point forecasts. As we shall see, the simulation

provides evidence that while most of the models feature an increase in forecast uncertainty

with respect to the RW , our BV ARs lead to a reduction in forecast uncertainty.

In doing a Monte Carlo simulation the researcher has to choose a Data Generating Process

(DGP). Obviously the choice of a particular DGP over another would in�uence the results,

advantaging one rather than the other model. Therefore, rather than concentrate on simu-

lated data and an inevitably arbitrary data generation process, we carry out our simulation

by bootstrapping the actual term structure dataset. The use of a real dataset as a basis for

such a robustness analysis is referred to as a �data based Monte Carlo method�and discussed

further in, e.g., Ho and Sørensen (1996). Following this work, we create a set of arti�cial

term structures by repeatedly bootstrapping the actual term structure.

In particular, we use the block bootstrapping algorithm described in Politis and Romano

(1994). This algorithm is designed for block-bootstrapping from a set of stationary data,

therefore to implement it we �rst di¤erence the data on the yields and then we recover the

bootstrapped level data by adding an initial condition and integrating the arti�cial data. We

set the initial condition equal to the �rst actual data point, i.e. the term structure in 1985:1.

To avoid generating inappropriate patterns for the arti�cial term structures, we eliminate all

the draws involving negative values for any of the yields at any point in time.

We repeat this procedure 100 times, and then for each of the 100 repetitions we implement

our forecasting exercise. We do not include in the experiment the AFDNS and the ATSM

models, as these models are highly (especially the latter) nonlinear and their estimation via

the EM algorithm makes the dimension of the problem unmanageable. This provides us

with 100 time series of forecasts for each yield and forecast horizon, which can be used to
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compute 100 MSFEs (one for each repetition) for each model. Finally, the MSFEs are

averaged through the repetitions to get the average MSFE made by model M in predicting

h-step ahead the yield of maturity � . The square roots of these, denoted avgMSFEM�;h, are

displayed in Table XI. Similarly, we can de�ne the average of the Sharpe Ratio from a given

trading strategy based on modelM . These average Sharpe ratios are displayed in Table XII.

Finally, we can similarly produce the average portfolio utility loss by averaging the loss in

(53) over the 100 replications. Results for this case are in Table XIII.

Looking at the �rst row of Table XI, i.e. the Average Root MSFE of the RW , it is

clear that the arti�cial data are relatively harder to predict with respect to the actual data

(the Average Root MSFE of the RW is almost double with respect to the actual data).

Interestingly all the models but the BV ARs feature much higher average MSFE than the

RW . As the bias for all the models is small4, this implies that the variance of the forecasts

of all the models at hand tends to be higher than that of the RW . The only exception is

the BV AR, whose forecast variability is reduced by the shrinkage towards the random walk

forecasts. Second, comparing these results with those obtained with the actual data, only

the performance of the RW and the BV AR appears to be robust to changes in the sample.

Similarly, Table XII shows that the BV AR is producing the best Sharpe ratios in the

vast majority of cases. Finally, Table XIII shows that in the arti�cial samples the RW , AR,

BV AR, FB and CP all produce similar results, while the V AR and all the factor based

models�forecasts are rather poor.

7 Conclusions

In this paper we introduce a new statistical model for the entire term structure of interest

rates and compare its forecasting performance with the current most promising alternatives,

evaluating the forecasts in terms of both statistical and economic criteria.

Our proposal is a large Bayesian Vector Autoregression (BVAR), with time-variation in

the amount of shrinking towards a set of univariate AR models. The underlying idea is

that, while in general it is di¢ cult to outperform univariate AR or Random Walk models,

there are time periods with enhanced interaction among yields at di¤erent maturities, and

capturing such an interaction only when it is indeed at work further enhances the forecasting

performance.

We suggest an estimation procedure for the BVAR that, combined with the formulation of

direct rather than iterated forecasts, totally eliminates the need of time-demanding simulation

4For brevity we do not report results on the biases, which are available upon request.
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methods. Therefore, we can estimate the BVAR and forecast the entire term structure for

di¤erent horizons in just a few seconds.

We then compare the forecasting performance of our BVAR with that of a large set of

alternative models for the term structure of government bond yields. Speci�cally, we consider

linear models (Random Walk, Autoregressive Models, Vector Autoregressions), factor models

(Diebold-Li (2006), Christensen et al. (2007), Stock and Watson (2002a,b)), forward rate

regression (Fama and Bliss (1987), Cochrane and Piazzesi (2005)), and A¢ ne term structure

Models (Ang and Piazzesi (2003)).

We extended the available empirical evidence on relative forecasting performance in three

directions: i) For all the models considered we provide results for an homogeneous dataset,

rather than using di¤erent maturities and sample periods. We use the novel dataset of

Gurkaynak et al. (2007), which is publicly available and updated regularly. ii) While most

of the existing evidence evaluates forecast accuracy only in terms of statistical measures such

as Root Mean Squared Forecast Errors, we also evaluate forecasts on the basis of "economic"

criteria. In particular we provide Sharpe Ratios arising from simple trading rules based on

the alternative forecasts, and we use the alternative forecasts to perform optimal portfolio

allocation. iii) We provide an extensive robustness check of the results. In particular, we

provide results for two subsamples and we simulate and forecast a set of "arti�cial" term

structures. Using several sets of arti�cial data allows to retrieve distributions of forecasts

and forecast errors, which in turn can be used to assess the amount of variance implied by

each competing model around the point forecasts.

Our main empirical results can be summarized as follows: i) our proposed BVAR approach

produces forecasts systematically more accurate than the random walk forecasts, though the

gains are small; ii) some models beat the BVAR for a few selected maturities and forecast

horizons, but they perform much worse than the BVAR in the remaining cases; iii) predictive

gains with respect to the random walk have decreased over time; iv) di¤erent loss functions

(i.e., "statistical" vs "economic") lead to di¤erent ranking of speci�c models; v) modelling

time variation in term premia is important and useful for forecasting.

In conclusion, we believe that this paper makes a simple but important theoretical contri-

bution, the introduction of a large BVAR model with time-varying shrinkage, and a relevant

empirical contribution, since this model seems to outperform common benchmarks and most

competing speci�cations for the term structure of interest rates.
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Table I. Descriptive Statistics

Maturity Mean StDev 1st Quartile Median 3d Quartile min max
1 4.71 1.99 5.05 3.06 5.86 1.01 8.91
3 4.80 2.04 5.15 3.17 6.01 1.00 9.22
6 4.91 2.09 5.15 3.35 6.29 0.93 9.50
9 5.00 2.11 5.22 3.45 6.37 0.84 9.62
12 5.09 2.12 5.35 3.57 6.41 0.77 9.72
15 5.17 2.11 5.40 3.73 6.50 0.74 9.92
18 5.25 2.11 5.46 3.87 6.58 0.73 10.11
21 5.32 2.10 5.50 3.95 6.67 0.74 10.27
24 5.38 2.09 5.50 4.01 6.76 0.78 10.43
30 5.50 2.06 5.57 4.17 6.98 0.89 10.69
36 5.60 2.04 5.65 4.31 7.13 1.06 10.91
48 5.79 1.99 5.74 4.40 7.26 1.47 11.22
60 5.95 1.95 5.84 4.48 7.41 1.93 11.43
72 6.09 1.91 5.95 4.55 7.52 2.37 11.57
84 6.22 1.87 6.06 4.67 7.61 2.78 11.66
96 6.33 1.84 6.14 4.72 7.69 3.12 11.71

108 6.43 1.81 6.23 4.80 7.76 3.41 11.76
120 6.52 1.78 6.31 4.91 7.81 3.64 11.79

 
Descriptive statistics. D ata are US Treasur y zero coupon yield curve estim ates by Gurkaynak 
et al (2006), publicly available at http:// www.federalreserve.gov/pubs/feds/2006. Data are at 
monthly frequency, going from January 1985 to  December 2008. The units are percentages o n 
annual basis. Data include the yields of the following maturities (in months): 1, 3, 6, 9, 12, 15, 
18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120. 

 

 33



Table II: Relative Mean Square Forecast Errors, Full Sample.

Maturity

Horizon:    1-month ahead

RW (Root MSFE) 0.31 0.21 0.20 0.22 0.23 0.24 0.26 0.26 0.27 0.28 0.29 0.29 0.29 0.28 0.27 0.27 0.26 0.25     

AR (pu), AR(di) 1.05 *** 1.07 *** 1.07 *** 1.07 *** 1.06 *** 1.05 *** 1.05 *** 1.04 *** 1.04 *** 1.04 ** 1.03 *  1.03 *  1.03    1.02    1.02    1.02    1.02    1.02     
VAR (pu), VAR (di) 0.82    0.97    1.25    1.32    1.32    1.30 *  1.28 *** 1.27 *** 1.25 *** 1.24 *** 1.23 *** 1.22 *** 1.23 *** 1.24 *** 1.25 *** 1.27 *** 1.29 *** 1.32 *** 
BVAR 1.00    1.01    1.00    0.99    0.99    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.99    0.99    0.99    0.99    0.99     
DL (AR)   0.82    1.23 *** 1.45 *** 1.38 *** 1.27 *** 1.19 *** 1.13 *** 1.10 *  1.08 *  1.08    1.10    1.15 ** 1.17 ** 1.14 *  1.09    1.03    1.01    1.05     
DL (VAR) 0.73    0.84    1.01    1.07    1.09    1.09    1.10    1.10 *  1.11 *  1.12 *  1.15 ** 1.19 *** 1.22 *** 1.20 *** 1.15 *** 1.11 *** 1.10 *** 1.14 *** 
SW    0.65    0.83 *  1.07    1.15    1.13    1.10    1.09    1.20 *** 1.17 *** 1.14 *** 1.13 *** 1.12 *** 1.10 *  1.08    1.10    1.15 *** 1.13 *** 1.13 *** 
FB    0.64    0.76 *** 0.94    0.99    1.01    1.03    1.04    1.04    1.04 *  1.05 ** 1.05 *** 1.05 *** 1.05 *** 1.05 *** 1.05 *** 1.05 *** 1.04 *** 1.04 *** 
CP    0.92    0.84 *  0.98    1.07    1.11    1.13 *  1.14 *  1.14 ** 1.14 *** 1.14 *** 1.14 ** 1.13 ** 1.13 ** 1.14 ** 1.15 ** 1.15 *** 1.16 *** 1.17 *** 
ATSM (cp) 3.32 *** 4.02 *** 2.40 *** 1.60 *** 1.31 *** 1.21 *** 1.17 *** 1.16 *** 1.16 *** 1.16 *** 1.15 ** 1.12 *  1.08    1.05    1.05    1.06 *** 1.10 *** 1.15 *** 
ATSM (tvp) 0.77    0.89    1.08    1.17 *** 1.19 *** 1.18 *** 1.18 *** 1.17 *** 1.17 *** 1.16 *** 1.16 ** 1.14 *  1.14 *  1.17 ** 1.23 *** 1.32 *** 1.43 *** 1.56 *** 

Horizon:    3-month ahead
RW (Root MSFE) 0.53 0.49 0.49 0.51 0.52 0.53 0.54 0.55 0.55 0.56 0.55 0.54 0.52 0.50 0.48 0.46 0.45 0.44     

AR (pu) 1.13 *  1.11 *** 1.10 *** 1.09 ** 1.08 *  1.07 *  1.07    1.06    1.06    1.05    1.05    1.04    1.04    1.05    1.05    1.05    1.05    1.06     
AR (di) 1.12 ** 1.13 ** 1.13 *  1.12 *  1.12    1.11    1.11    1.10    1.10    1.09    1.09    1.09    1.09    1.09    1.09    1.09    1.09    1.09     
VAR (pu) 0.63 *** 0.92    1.15    1.26    1.30    1.32    1.33    1.34    1.34 *  1.35 *  1.36 *  1.38 *  1.41 ** 1.44 *** 1.47 *** 1.51 *** 1.54 *** 1.57 *** 
VAR (di) 0.85    1.07    1.33    1.48    1.56 *  1.60 *  1.61 ** 1.61 ** 1.61 *** 1.61 *** 1.62 *** 1.64 *** 1.67 *** 1.71 *** 1.74 *** 1.77 *** 1.80 *** 1.81 *** 
BVAR 0.98    0.98    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.96    0.96    0.96    0.96    0.96    0.96     
DL (AR)   0.99    1.27 *  1.39 *** 1.38 ** 1.33 ** 1.28 *  1.24 *  1.21    1.20    1.18    1.18    1.20    1.21 *  1.19    1.15    1.09    1.05    1.02     
DL (VAR) 0.63 *** 0.82    1.01    1.12    1.18    1.23    1.26    1.28    1.31 *  1.35 ** 1.40 ** 1.47 *** 1.50 *** 1.50 *** 1.46 ** 1.41 ** 1.36 *  1.32 *   
SW    0.68 ** 0.87    1.16    1.27    1.30    1.31 ** 1.45 *  1.57 *  1.46 *  1.47 *** 1.48 *** 1.49 *** 1.50 *** 1.50 *** 1.60 *** 1.53 *** 1.50 *** 1.51 *** 
FB    0.60 *** 0.76    0.90    0.99    1.05    1.09    1.11    1.12    1.13    1.13 *  1.13 *  1.12 *  1.12 *  1.11 *  1.10    1.10    1.09    1.09     
CP    0.76 *  0.90    1.11    1.24    1.33    1.39    1.42 *  1.45 *  1.46 *  1.48 ** 1.49 ** 1.50 ** 1.51 ** 1.51 ** 1.52 ** 1.52 *** 1.53 *** 1.53 *** 
ATSM (cp) 1.21    1.32    1.37 *  1.38 *  1.38 ** 1.37 ** 1.36 ** 1.34 ** 1.33 ** 1.30 ** 1.28 *  1.23 *  1.19 *  1.16 *  1.13 *  1.12 ** 1.12 *** 1.12 *** 
ATSM (tvp) 0.73    0.99    1.16    1.21    1.21    1.19    1.17    1.15    1.14    1.11    1.09    1.06    1.03    1.03    1.04    1.07    1.10    1.14     

Horizon:    6-month ahead
RW (Root MSFE) 0.90 0.88 0.89 0.89 0.89 0.88 0.88 0.87 0.87 0.85 0.83 0.79 0.75 0.72 0.68 0.65 0.63 0.61     

AR (pu) 1.12    1.11 *  1.10    1.09    1.08    1.07    1.06    1.05    1.05    1.04    1.04    1.04    1.04    1.05    1.06    1.07    1.08    1.10     
AR (di) 1.15    1.17    1.17    1.17    1.18    1.18    1.18    1.19    1.19    1.19    1.20    1.21    1.21    1.21    1.21    1.21    1.21    1.21     
VAR (pu) 0.83    1.04    1.23    1.34    1.42    1.47    1.50 *  1.52 *  1.54 *  1.56 *  1.57 *  1.60 *  1.63 *  1.67 *  1.71 ** 1.75 *** 1.79 *** 1.82 *** 
VAR (di) 1.29    1.74 ** 2.15 *** 2.42 *** 2.62 *** 2.76 *** 2.85 *** 2.91 *** 2.96 *** 3.01 *** 3.03 *** 3.06 *** 3.11 *** 3.17 *** 3.25 *** 3.32 *** 3.40 *** 3.47 *** 
BVAR 0.98    0.98    0.98    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.96    0.96    0.96    0.96    0.96    0.96     
DL (AR)   1.19    1.34    1.42    1.43    1.42    1.39    1.37    1.36    1.34    1.33    1.33    1.34    1.34    1.33 *  1.31 *  1.27    1.22    1.18     
DL (VAR) 0.78    0.96    1.17    1.32    1.44    1.54    1.62    1.68    1.74 *  1.83 *  1.90 *  2.02 *  2.08 ** 2.10 ** 2.08 ** 2.03 *  1.98 *  1.92 *   
SW    0.92    0.86    1.38    1.55    1.61    1.65 *  2.05 ** 2.30 *  2.18 *  2.18 *  2.16 *  2.15 ** 2.20 ** 2.28 *** 2.76 *** 2.46 ** 2.28 ** 2.27 **  
FB    0.70    0.84    0.99    1.09    1.16    1.19    1.21    1.22 *  1.22 *  1.21 *  1.20 *  1.17 *  1.15 *  1.13    1.12    1.10    1.10    1.09     
CP    1.02    1.20    1.44    1.63    1.77    1.89    1.97    2.03    2.08 *  2.14 *  2.18 *  2.23 *  2.26 *  2.30 *  2.33 *  2.35 *  2.37 *  2.38 *   
ATSM (cp) 1.23    1.36    1.44 *  1.48 *  1.49 *  1.49 *  1.48 *  1.47 *  1.45 *  1.42 *  1.39 *  1.34 *  1.29 *  1.26 *  1.23 ** 1.21 *** 1.20 *** 1.20 *** 
ATSM (tvp) 0.89    1.02    1.10    1.12    1.10    1.08    1.05    1.02    1.00    0.96    0.93    0.91    0.90    0.92    0.95    0.99    1.04    1.08     

Horizon:    12-month ahead
RW (Root MSFE) 1.52 1.53 1.53 1.51 1.48 1.45 1.41 1.38 1.34 1.28 1.22 1.11 1.02 0.95 0.89 0.84 0.80 0.77

AR (pu) 1.08    1.13    1.12    1.10    1.08    1.06    1.05    1.05    1.04    1.03    1.03    1.03    1.04    1.06    1.08    1.11    1.13    1.16     
AR (di) 1.20    1.26    1.33    1.40    1.46    1.51    1.56    1.60    1.64    1.70    1.75    1.79    1.77    1.72    1.67    1.63    1.59    1.57     
VAR (pu) 1.05    1.18    1.30    1.39    1.46    1.51    1.55    1.58    1.61    1.65    1.68    1.75    1.81    1.87    1.93    1.98    2.03    2.06 *   
VAR (di) 1.91    2.21    2.47    2.64    2.77 *  2.86 *  2.93 *  2.99 *  3.03 *  3.11 *  3.18 *  3.32 ** 3.48 *** 3.64 *** 3.78 *** 3.91 *** 4.01 *** 4.08 *** 
BVAR 0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.99    0.99    0.99    0.99    0.99    0.99    0.98    0.98     
DL (AR)   1.21    1.26    1.30    1.32    1.34    1.36    1.37    1.39    1.40    1.42    1.45    1.51    1.55    1.56    1.55    1.52 *  1.48 *  1.44 *   
DL (VAR) 1.29    1.46    1.69    1.90    2.08    2.26    2.41    2.56    2.68    2.90    3.08    3.35    3.52 *  3.60 *  3.61 *  3.57 *  3.49 *  3.40 *   
SW    1.70    1.11    2.01    2.30    2.41    2.43    3.12 *  3.71    3.82    3.80    3.73    3.70    3.82 *  4.07 *  5.30 ** 4.73    4.21 *  4.17 *   
FB    0.89    0.99    1.08    1.14    1.18    1.21    1.22    1.23    1.23    1.22    1.21    1.17    1.13    1.09    1.06    1.03    1.01    1.00     
CP    1.82    2.09    2.40    2.66    2.88    3.06    3.20    3.32    3.42    3.56    3.67    3.83    3.95    4.03    4.09    4.13    4.14 *  4.13 *   
ATSM (cp) 1.47    1.48    1.49    1.50    1.51    1.52    1.53    1.53    1.53    1.53    1.52    1.50    1.47 *  1.43 *  1.40 *  1.38 ** 1.36 *** 1.35 *** 
ATSM (tvp) 0.86   0.88   0.89    0.88   0.86   0.84   0.82   0.80   0.78   0.77    0.76   0.79   0.86   0.94   1.04   1.14   1.24    1.33     

1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month 30-month 36-month 48-month 108-month 120-month60-month 72-month 84-month 96-month

 
The Table contains the Relative Mean Squared Forecast Errors vis-à-vis the Random Walk obtained by using each of the competing models, for the horizons 1-, 3, 6-, and 12-step-ahead. 
The evaluation sample is 1995:1 to 2008:12. For the Random Walk we report the Root Mean Squared Forecast Error. The competing models considered are Linear models estimated with 
powering-up a nd direct ap proach (AR(pu), AR (di) , V AR(pu) , a nd V AR(di)), B ayesian V AR (B VAR), Di ebold-Li m odel ba sed o n AR an d VAR factor structure (DL (AR) a nd 
DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM (tvp)) and without (ATSM (cp)) variation in the risk premium. The 
stars on the right of the cell entries signal the level at which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (*, **, and ***  mean respectively rejection 
at 10%, 5%, and 1% level). 

 



 
 

Table III. Sharpe Ratios for alternative models and trrading strategies

Panel A: Trading Strategy 1

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - 0.024 -0.007 0.058 0.108 0.131 0.128 0.125 0.120
AR (pu), AR(di) - 0.016 0.027 -0.017 0.014 0.049 0.051 0.069 0.066
VAR (pu), VAR (di) - -0.015 0.079 0.122 0.115 0.064 0.070 0.094 0.060
BVAR - 0.027 0.058 0.144 0.192 0.202 0.213 0.195 0.211
DL (AR)   - 0.122 0.013 -0.045 -0.031 0.016 0.051 0.102 0.100
DL (VAR) - 0.149 0.045 0.031 0.001 0.065 0.044 0.101 0.116
SW    - 0.019 0.020 -0.003 -0.024 0.084 0.150 0.047 0.025
FB    - 0.118 0.171 0.196 0.174 0.130 0.125 0.123 0.072
CP    - 0.070 0.033 0.053 0.009 0.003 -0.015 -0.036 -0.048
ATSM (cp) - 0.021 0.058 0.005 -0.073 -0.100 -0.138 -0.030 -0.011
ATSM (tvp) - 0.189 0.105 0.000 -0.039 -0.012 0.004 0.046 0.041

0.189 0.171 0.196 0.192 0.202 0.213 0.195 0.211
Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.090 0.094 0.108 0.107 0.122 0.134 0.145 0.133 0.144
AR (pu), AR(di) 0.068 0.063 0.048 0.128 0.080 0.045 0.023 0.018 0.030
VAR (pu), VAR (di) 0.044 0.003 -0.042 -0.079 -0.106 -0.109 -0.118 -0.138 -0.119
BVAR 0.199 0.190 0.181 0.175 0.171 0.168 0.165 0.162 0.159
DL (AR)   0.077 -0.013 -0.026 -0.064 -0.090 -0.011 0.017 0.156 0.182
DL (VAR) 0.068 0.024 -0.073 -0.043 -0.077 -0.053 -0.054 -0.028 0.038
SW    -0.034 -0.078 -0.057 0.047 0.084 0.051 -0.104 -0.064 -0.096
FB    0.011 0.045 0.042 0.025 0.064 0.100 0.103 0.103 0.037
CP    -0.007 -0.032 -0.033 -0.023 -0.005 -0.022 -0.041 -0.004 0.010
ATSM (cp) 0.006 0.034 0.038 0.028 0.007 -0.063 -0.029 -0.025 0.003
ATSM (tvp) 0.063 0.078 0.051 0.034 0.133 0.122 0.120 0.134 0.151

0.000 0.189 0.171 0.196 0.192 0.202 0.213 0.195 0.211
0.199 0.190 0.181 0.175 0.171 0.168 0.165 0.162 0.182

Panel B: Trading Strategy 2

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - 0.090 0.094 0.122 0.149 0.166 0.175 0.179 0.179
AR (pu), AR(di) - 0.084 0.088 0.108 0.124 0.132 0.133 0.129 0.123
VAR (pu), VAR (di) - 0.043 -0.001 0.000 0.007 0.015 0.022 0.028 0.033
BVAR - 0.129 0.145 0.179 0.207 0.223 0.231 0.233 0.232
DL (AR)   - 0.076 0.062 0.052 0.049 0.053 0.063 0.072 0.073
DL (VAR) - 0.105 0.093 0.090 0.096 0.096 0.069 0.042 0.022
SW    - 0.089 0.078 0.016 -0.009 0.015 0.086 0.071 0.048
FB    - 0.212 0.171 0.171 0.164 0.151 0.135 0.119 0.104
CP    - 0.125 0.147 0.116 0.087 0.064 0.047 0.035 0.028
ATSM (cp) - -0.025 0.012 -0.020 -0.056 -0.071 -0.062 -0.044 -0.026
ATSM (tvp) - 0.162 0.092 0.072 0.072 0.086 0.102 0.117 0.128

0.000 0.212 0.171 0.179 0.207 0.223 0.231 0.233 0.232
Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.175 0.169 0.157 0.148 0.142 0.136 0.132 0.129 0.126
AR (pu), AR(di) 0.109 0.097 0.079 0.068 0.062 0.058 0.055 0.049 0.041
VAR (pu), VAR (di) 0.041 0.048 0.055 0.057 0.055 0.051 0.045 0.037 0.029
BVAR 0.226 0.220 0.209 0.202 0.196 0.191 0.187 0.184 0.181
DL (AR)   0.055 0.031 0.000 -0.009 -0.005 0.014 0.063 0.139 0.133
DL (VAR) -0.010 -0.039 -0.083 -0.099 -0.105 -0.105 -0.089 -0.036 0.007
SW    -0.066 -0.109 -0.103 -0.052 0.007 0.023 -0.127 -0.146 -0.128
FB    0.079 0.060 0.036 0.020 0.010 0.001 -0.005 -0.010 -0.014
CP    0.022 0.022 0.027 0.030 0.028 0.021 0.011 -0.001 -0.013
ATSM (cp) -0.001 0.012 0.025 0.026 0.013 -0.051 -0.160 -0.111 -0.093
ATSM (tvp) 0.141 0.149 0.159 0.159 0.148 0.132 0.118 0.107 0.099

0.000 0.212 0.171 0.179 0.207 0.223 0.231 0.233 0.232

0.226 0.220 0.209 0.202 0.196 0.191 0.187 0.184 0.181  
The Ta ble c ontains the Sharpe Ratios obtained by using each  of t he models at hand a nd t he tra ding st rategies 
described i n Section 4.4. The eval uation s ample i s 1 995:1 t o 2008:12. The  com peting m odels co nsidered are  
Random Walk (RW), Linear models estimated with powering-up and direct approach (AR(pu), AR(di) , VAR(pu) , 
and VAR(di)), Bayesian VAR (BVAR), Diebold-Li model based on AR and VAR factor st ructure (DL(AR) and 
DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM 
(tvp)) and without (ATSM (cp)) variation in the risk premium. 
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Table IV. Portfolio Utility Loss 

Average Loss Significance
RW 0.5714
AR 0.8805 ***
VAR 1.5134 *
BVAR 0.5782
DL (AR)   22.2288 ***
DL (VAR) 22.1051 ***
SW    535.542 ***
FB    0.7963
CP    0.6402
ATSM (crp) 14.2197 ***
ATSM (tvp) 7.9544 ***

 
The Table contains the Utility Loss obtained by using each of the models at hand and the trading strategies described 
in Section 4.5. The e valuation sample is 1995:1 to 2008:12. The competing models considered are R andom Walk 
(RW), Li near m odels (AR , VAR ), B ayesian V AR (B VAR), Diebold-Li model based o n AR  an d VAR  fact or 
structure (DL(AR) and DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and 
ATSM with (ATSM (tvp)) and without (ATSM (cp)) variation in the risk premium. The stars on the right of the cell 
entries signal the level at whi ch the Giacomini and White (2006) test reject s the null of equal forecast ing accuracy 
against the random walk (*, **, and *** mean respectively rejection at 10%, 5%, and 1% level).  
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Table V. Relative Mean Square Forecast Errors, Sample 1995:1 to 2000:12

Maturity

Horizon:    1-month ahead

RW (Root MSFE) 0.37 0.23 0.22 0.23 0.24 0.25 0.25 0.26 0.26 0.27 0.27 0.27 0.27 0.26 0.26 0.25 0.24 0.24     

AR (pu), AR(di) 1.04 *  1.07 *** 1.06 *** 1.05 *** 1.05 ** 1.05 *  1.04 *  1.04    1.04    1.03    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02     
VAR (pu), VAR (di) 0.84    1.02    1.31    1.39    1.40    1.38    1.36 *  1.34 *  1.32 ** 1.29 *** 1.28 *** 1.27 ** 1.27 ** 1.29 *  1.32 *  1.35 *  1.40 *  1.44 **  
BVAR 0.99    0.98    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.97    0.97    0.97    0.98    0.98    0.98    0.99    0.99     
DL (AR)   0.77    1.27 *** 1.52 *** 1.46 *** 1.36 *** 1.27 *** 1.21 *** 1.17 *** 1.15 *** 1.14 ** 1.14 *  1.13 *  1.11    1.07    1.03    1.01    1.02    1.08     
DL (VAR) 0.72    0.86    0.99    1.04    1.06    1.08    1.10    1.13    1.16    1.20    1.23 *  1.25 ** 1.23 ** 1.17 *  1.12    1.07    1.07    1.11     
SW    0.61    0.84    1.11    1.22    1.22    1.14    1.02    1.17    1.17    1.16 *  1.15 *  1.12    1.08    1.04    1.07    1.13 *  1.11 *  1.11 *   
FB    0.60    0.72 *** 0.89    0.93    0.95    0.97    0.98    0.99    0.99    1.00    1.01    1.01    1.01    1.01    1.01    1.01    1.01    1.01     
CP    0.97    0.82    0.91    1.00    1.05    1.08    1.09    1.09    1.09    1.09    1.08    1.07    1.06    1.07    1.08    1.09    1.10    1.12     
ATSM (cp) 2.83 *** 3.74 *** 2.27 *** 1.55 *** 1.28 *  1.16 *  1.11 *  1.09 *  1.07    1.06    1.04    1.02    1.00    1.00    1.01    1.04 ** 1.09 *** 1.15 *** 
ATSM (tvp) 0.66    0.72 ** 0.91    1.02    1.06    1.06    1.05    1.04    1.03    1.01    1.00    1.01    1.05    1.13    1.24 *  1.35 *** 1.45 *** 1.54 *** 

Horizon:    3-month ahead
RW (Root MSFE) 0.56 0.51 0.51 0.52 0.53 0.54 0.55 0.55 0.55 0.56 0.55 0.54 0.52 0.51 0.49 0.48 0.47 0.45     

AR (pu) 1.13    1.11 *  1.09    1.08    1.06    1.05    1.04    1.03    1.02    1.01    1.01    1.00    1.01    1.02    1.03    1.03    1.04    1.05     
AR (di) 1.12    1.16    1.15    1.13    1.11    1.09    1.08    1.06    1.05    1.04    1.04    1.04    1.05    1.05    1.06    1.06    1.07    1.08     
VAR (pu) 0.68    1.12    1.41    1.50    1.52    1.51    1.50    1.48    1.46    1.43    1.41    1.39    1.40    1.42    1.45    1.49 *  1.53 *  1.58 **  
VAR (di) 0.95    1.28    1.63    1.81    1.88 *  1.89 *  1.87 *  1.84 *  1.80 *  1.74 *  1.70 *  1.67 *  1.67 *  1.69 ** 1.72 ** 1.74 ** 1.77 *** 1.79 *** 
BVAR 0.97    0.96    0.95    0.95    0.95    0.95    0.95    0.95    0.95    0.95    0.95    0.95    0.95    0.95    0.95    0.96    0.96    0.96     
DL (AR)   0.98    1.36 *  1.48 *  1.45 *  1.39 *  1.32 *  1.27    1.22    1.19    1.15    1.13    1.11    1.09    1.07    1.04    1.03    1.02    1.02     
DL (VAR) 0.63 *  0.92    1.14    1.24    1.29    1.32    1.34    1.36 *  1.38 *  1.41 *  1.44 *  1.46 *  1.45 *  1.42    1.37    1.32    1.28    1.25     
SW    0.74    0.82    1.40    1.53 *  1.52 *  1.46 *** 1.47 *  1.69    1.54    1.50 *  1.48 ** 1.42 ** 1.37 *  1.39    1.62 *  1.43 *  1.34    1.34     
FB    0.50 *** 0.70    0.86    0.93    0.98    1.01    1.02    1.02    1.03    1.03    1.02    1.02    1.01    1.01    1.00    1.00    1.00    1.00     
CP    0.75    0.90    1.15    1.28    1.35    1.39    1.41    1.41    1.41    1.40    1.39    1.38    1.37    1.37    1.38    1.39    1.40    1.42     
ATSM (cp) 1.39    1.53    1.45    1.37    1.30    1.24    1.19    1.16    1.13    1.09    1.07    1.04    1.03    1.03    1.04    1.05    1.07 *  1.09 *** 
ATSM (tvp) 0.52 *** 0.79    0.96    1.00    1.00    0.97    0.94    0.92    0.90    0.87    0.86    0.85    0.87    0.91    0.95    0.99    1.04    1.07     

Horizon:    6-month ahead
RW (Root MSFE) 0.87 0.85 0.87 0.88 0.88 0.87 0.86 0.86 0.85 0.84 0.82 0.80 0.77 0.74 0.72 0.70 0.68 0.66     

AR (pu) 1.12    1.11    1.08    1.05    1.03    1.01    1.00    0.98    0.97    0.96    0.95    0.96    0.98    1.00    1.02    1.03    1.05    1.07     
AR (di) 1.13    1.16    1.15    1.13    1.10    1.08    1.06    1.05    1.04    1.04    1.04    1.05    1.07    1.08    1.09    1.10    1.11    1.13     
VAR (pu) 1.05    1.39    1.59    1.67    1.70 *  1.71 *  1.70 *  1.69    1.67    1.63    1.60    1.54    1.52    1.52    1.54    1.57 *  1.60 *  1.63 **  
VAR (di) 1.91 *  2.68 *** 3.22 *** 3.52 *** 3.72 *** 3.84 *** 3.91 *** 3.94 *** 3.94 *** 3.90 *** 3.82 *** 3.65 *** 3.54 *** 3.49 *** 3.48 *** 3.50 *** 3.54 *** 3.60 *** 
BVAR 0.97    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96    0.96     
DL (AR)   1.23    1.42 *  1.47    1.44    1.40    1.36    1.32    1.29    1.26    1.23    1.21    1.19    1.17    1.16    1.14    1.13    1.13    1.12     
DL (VAR) 0.90    1.15    1.35    1.46    1.54    1.60 *  1.65 *  1.69 *  1.73 *  1.78 ** 1.82 ** 1.86 *  1.85 *  1.82 *  1.77 *  1.71    1.66    1.61     
SW    1.18    0.78    1.63    1.77    1.76 *  1.80 *** 2.13 *** 2.33 ** 2.03 *  1.96 *  1.89 ** 1.80 *  1.80 *  1.96 *  2.63 *** 2.01 *  1.76    1.75     
FB    0.63    0.83    0.97    1.04    1.08    1.08    1.08    1.08    1.07    1.06    1.04    1.03    1.02    1.01    1.01    1.00    1.00    1.00     
CP    1.05    1.25    1.44    1.55    1.62    1.67    1.69    1.71    1.71    1.71    1.70    1.68    1.67    1.68    1.70    1.73    1.76    1.79     
ATSM (cp) 1.34    1.43 *  1.40 *  1.36 *  1.31 *  1.27    1.24    1.20    1.18    1.14    1.11    1.08    1.06    1.06    1.06    1.07    1.08 *  1.09 *** 
ATSM (tvp) 0.68    0.84    0.92    0.92    0.90    0.87    0.84    0.81    0.79    0.77    0.76    0.77    0.80    0.85    0.90    0.96    1.00    1.04     

Horizon:    12-month ahead
RW (Root MSFE) 1.41 1.46 1.49 1.48 1.45 1.41 1.37 1.33 1.30 1.24 1.19 1.11 1.05 1.00 0.96 0.92 0.89 0.86

AR (pu) 0.99    1.06    1.02    0.98    0.95    0.93    0.91    0.90    0.89    0.89    0.90    0.94    0.97    1.01    1.03    1.06    1.08    1.10     
AR (di) 0.88    0.93    0.99    1.04    1.09    1.15    1.20    1.26    1.31    1.40    1.48    1.54    1.53    1.48    1.43    1.40    1.38    1.37     
VAR (pu) 1.53 *  1.62 *** 1.69 *** 1.74 *** 1.78 *** 1.82 *** 1.85 ** 1.87 *  1.88 *  1.89 *  1.89    1.88    1.86    1.87    1.88    1.89    1.90    1.92 *   
VAR (di) 2.76 *** 2.96 *** 3.07 *** 3.17 *** 3.26 *** 3.34 *** 3.40 *** 3.45 *** 3.49 *** 3.52 *** 3.54 *** 3.54 *** 3.53 *** 3.54 *** 3.57 *** 3.61 *** 3.65 *** 3.70 *** 
BVAR 0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.98    0.97    0.97    0.97    0.97    0.97    0.97    0.97    0.97     
DL (AR)   1.24    1.27    1.28    1.28    1.29    1.29    1.29    1.30    1.30    1.30    1.30    1.30    1.30    1.30    1.29    1.27    1.26 *  1.25 *   
DL (VAR) 1.46 *  1.55    1.67    1.81    1.94    2.08    2.21    2.33 *  2.44 *  2.61 *  2.74 *  2.89 *  2.92 ** 2.90 ** 2.85 ** 2.78 ** 2.71 *** 2.64 *** 
SW    1.85 *  0.99    1.73    1.84    1.89    2.09    2.87 *  3.25    3.00    2.90    2.82    2.75 *  2.81 ** 3.11 ** 4.34 *  3.33 *  2.75 ** 2.70 *** 
FB    1.02    1.10    1.15    1.17 *  1.18 *  1.17    1.17    1.15    1.14    1.11    1.09    1.05    1.02    1.00    0.98    0.97    0.97    0.96     
CP    1.42    1.58    1.75    1.90    2.04    2.17    2.28    2.37    2.44    2.55    2.62    2.69    2.72    2.74    2.75 *  2.77 *  2.78 *  2.79 **  
ATSM (cp) 1.53 *** 1.47 *** 1.40 *** 1.36 *** 1.34 *** 1.33 *  1.32 *  1.31 *  1.30    1.28    1.27    1.23    1.20    1.18    1.16    1.15    1.15 *  1.15 *** 
ATSM (tvp) 0.77   0.80   0.80    0.78   0.76   0.73   0.71   0.68   0.67   0.64    0.63   0.64   0.69   0.76   0.83   0.91   0.99    1.06     

1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month 30-month 36-month 48-month 108-month 120-month60-month 72-month 84-month 96-month

 
The Table contains the Relative Mean Squared Forecast Errors vis-à-vis the Random Walk obtained by using each of the competing models, for the horizons 1-, 3, 6-, and 12-step-ahead. 
The evaluation sample is 1995:1 to 2000:12. For the Random Walk we report the Root Mean Squared Forecast Error. The competing models considered are Linear models estimated with 
powering-up a nd direct ap proach (AR(pu), AR (di) , V AR(pu) , a nd V AR(di)), B ayesian V AR (B VAR), Di ebold-Li m odel ba sed o n AR an d VAR factor structure (DL (AR) a nd 
DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM (tvp)) and without (ATSM (cp)) variation in the risk premium. The 
stars on the right of the cell entries signal the level at which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (*, **, and ***  mean respectively rejection 
at 10%, 5%, and 1% level). 

 



 
 
 

Table VI. Sharpe Ratios for alternative models and trrading strategies, Sample 1995:1 to 2000:12 

Panel A: Trading Strategy 1

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - 0.089 0.062 0.130 0.182 0.221 0.210 0.193 0.183
AR (pu), AR(di) - 0.132 0.114 0.020 0.038 0.086 0.079 0.092 0.081
VAR (pu), VAR (di) - 0.034 0.139 0.147 0.135 0.125 0.133 0.178 0.138
BVAR - 0.156 0.186 0.261 0.250 0.256 0.236 0.220 0.283
DL (AR)   - 0.101 0.022 0.003 -0.021 -0.012 -0.017 0.020 0.007
DL (VAR) - 0.135 0.034 0.008 -0.023 -0.010 -0.078 0.065 0.042
SW    - -0.041 -0.055 -0.140 -0.087 0.118 0.218 0.016 0.017
FB    - 0.265 0.290 0.303 0.242 0.214 0.190 0.170 0.147
CP    - 0.156 0.054 0.060 -0.027 -0.033 -0.008 0.000 -0.023
ATSM (cp) - -0.090 -0.012 -0.015 -0.040 -0.082 -0.137 -0.018 -0.012
ATSM (tvp) - 0.263 0.137 0.093 0.019 0.075 0.071 0.082 0.039

0.265 0.290 0.303 0.250 0.256 0.236 0.220 0.283
Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.120 0.124 0.069 0.045 0.093 0.093 0.094 0.096 0.093
AR (pu), AR(di) 0.054 0.018 -0.031 0.050 -0.032 -0.057 -0.049 -0.037 -0.041
VAR (pu), VAR (di) 0.071 0.011 0.023 -0.017 -0.065 -0.108 -0.122 -0.123 -0.083
BVAR 0.253 0.232 0.207 0.194 0.185 0.180 0.175 0.171 0.167
DL (AR)   -0.018 -0.076 -0.006 -0.066 -0.076 0.090 0.041 0.051 0.210
DL (VAR) 0.057 -0.048 -0.120 -0.077 -0.060 0.009 -0.070 -0.043 0.015
SW    -0.044 -0.043 -0.003 0.070 0.119 0.046 -0.107 -0.100 -0.153
FB    0.097 0.106 0.084 0.108 0.116 0.180 0.175 0.171 0.167
CP    0.017 -0.010 -0.025 -0.008 0.030 0.001 0.015 0.023 0.056
ATSM (cp) 0.061 0.119 0.141 0.140 0.079 -0.014 -0.033 0.001 0.059
ATSM (tvp) 0.075 0.080 0.118 0.073 0.159 0.123 0.115 0.105 0.102

0.000 0.265 0.290 0.303 0.250 0.256 0.236 0.220 0.283
0.253 0.232 0.207 0.194 0.185 0.180 0.175 0.171 0.210

Panel B: Trading Strategy 2

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - 0.127 0.115 0.130 0.153 0.169 0.176 0.175 0.171
AR (pu), AR(di) - 0.126 0.110 0.114 0.119 0.120 0.115 0.108 0.100
VAR (pu), VAR (di) - 0.090 0.019 0.013 0.020 0.030 0.042 0.055 0.066
BVAR - 0.185 0.193 0.226 0.256 0.272 0.276 0.272 0.265
DL (AR)   - 0.090 0.076 0.067 0.060 0.052 0.038 0.012 -0.022
DL (VAR) - 0.129 0.122 0.122 0.126 0.112 0.013 -0.064 -0.100
SW    - 0.110 0.036 -0.062 -0.093 -0.045 0.186 0.096 0.060
FB    - 0.325 0.251 0.250 0.245 0.232 0.217 0.201 0.185
CP    - 0.192 0.246 0.201 0.155 0.124 0.104 0.093 0.088
ATSM (cp) - -0.088 -0.005 -0.006 -0.016 -0.012 0.006 0.027 0.048
ATSM (tvp) - 0.210 0.134 0.117 0.123 0.141 0.163 0.184 0.200

0.000 0.325 0.251 0.250 0.256 0.272 0.276 0.272 0.265
Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.156 0.141 0.117 0.100 0.087 0.078 0.072 0.068 0.067
AR (pu), AR(di) 0.087 0.077 0.060 0.041 0.019 -0.007 -0.037 -0.069 -0.098
VAR (pu), VAR (di) 0.085 0.098 0.112 0.117 0.117 0.114 0.109 0.101 0.093
BVAR 0.248 0.234 0.214 0.202 0.193 0.187 0.183 0.179 0.176
DL (AR)   -0.079 -0.103 -0.093 -0.056 -0.013 0.039 0.097 0.120 0.112
DL (VAR) -0.136 -0.152 -0.149 -0.124 -0.097 -0.069 -0.032 0.017 0.046
SW    -0.112 -0.146 -0.110 -0.042 0.036 0.059 -0.103 -0.144 -0.145
FB    0.155 0.129 0.089 0.066 0.056 0.054 0.055 0.058 0.060
CP    0.089 0.097 0.113 0.119 0.118 0.110 0.098 0.084 0.068
ATSM (cp) 0.080 0.103 0.133 0.148 0.147 0.089 -0.141 -0.148 -0.135
ATSM (tvp) 0.219 0.228 0.226 0.199 0.152 0.097 0.046 0.003 -0.028

0.000 0.325 0.251 0.250 0.256 0.272 0.276 0.272 0.265

0.248 0.234 0.226 0.202 0.193 0.187 0.183 0.179 0.176  
The Ta ble c ontains the Sharpe Ratios obtained by using each  of t he models at hand a nd t he tra ding st rategies 
described i n Section 4.4. The eval uation s ample i s 1 995:1 t o 2000:12. The  com peting m odels co nsidered are  
Random Walk (RW), Linear models estimated with powering-up and direct approach (AR(pu), AR(di) , VAR(pu) , 
and VAR(di)), Bayesian VAR (BVAR), Diebold-Li model based on AR and VAR factor st ructure (DL(AR) and 
DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM 
(tvp)) and without (ATSM (cp)) variation in the risk premium. 
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Table VII.  Portfolio Utility Loss, Sample 1995:1-2000:12

Average Loss Significance
RW 0.4447
AR 0.48
VAR 1.8625
BVAR 0.4322
DL (AR)   15.1092 ***
DL (VAR) 14.2607 ***
SW    760.2786 ***
FB    0.1047
CP    0.2643
ATSM (crp) 15.6363 ***
ATSM (tvp) 4.505 ***

 
The Table contains the Utility Loss obtained by using each of the models at hand and the trading strategies described 
in Section 4.5. The e valuation sample is 1995:1 to 2000:12. The competing models considered are R andom Walk 
(RW), Li near m odels (AR , VAR ), B ayesian V AR (B VAR), Diebold-Li model based o n AR  an d VAR  fact or 
structure (DL(AR) and DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and 
ATSM with (ATSM (tvp)) and without (ATSM (cp)) variation in the risk premium. The stars on the right of the cell 
entries signal the level at whi ch the Giacomini and White (2006) test reject s the null of equal forecast ing accuracy  
against the random walk (*, **, and *** mean respectively rejection at 10%, 5%, and 1% level).  
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Table VIII: Relative Mean Square Forecast Errors, Sample 2001:1 to 2008:12

Maturity

Horizon:    1-month ahead

RW (Root MSFE) 0.22 0.17 0.17 0.20 0.22 0.24 0.26 0.27 0.28 0.30 0.30 0.31 0.31 0.30 0.29 0.28 0.28 0.27     

AR (pu), AR(di) 1.09 *** 1.09 *** 1.10 *** 1.08 *** 1.07 *** 1.06 *  1.05 *  1.05 *  1.05 *  1.05 *  1.04 *  1.04 *  1.04 *  1.03    1.03    1.02    1.02    1.02     
VAR (pu), VAR (di) 0.75    0.87    1.13    1.20    1.21    1.20    1.19    1.19 *  1.18 *  1.18 *  1.18 *  1.18 *  1.19 *  1.19 *  1.20 *  1.20 *  1.20 ** 1.20 **  
BVAR 1.04    1.07    1.07    1.05    1.03    1.02    1.01    1.01    1.01    1.00    1.00    0.99    0.99    0.99    0.99    0.99    1.00    1.00     
DL (AR)   0.98    1.14    1.31 *** 1.25 *  1.16    1.09    1.05    1.03    1.02    1.03    1.07    1.17    1.23    1.21    1.14    1.06    1.00    1.01     
DL (VAR) 0.74    0.79    1.05    1.13    1.13    1.11    1.09    1.07    1.06    1.05    1.07    1.14 *  1.21 ** 1.22 ** 1.19 ** 1.15 ** 1.13 *** 1.18 **  
SW    0.78    0.81    1.00    1.03    1.02    1.05    1.18    1.24 *  1.17    1.12    1.11 *  1.12    1.13    1.12    1.13    1.16 *** 1.14 *  1.14 *   
FB    0.80    0.86    1.02    1.08    1.10    1.10    1.10    1.10 *  1.10 *  1.09 ** 1.09 *** 1.08 *** 1.08 *** 1.08 *** 1.08 *** 1.08 *** 1.08 *** 1.07 *** 
CP    0.77    0.88    1.10    1.18    1.20    1.20    1.20 *  1.20 *  1.20 *  1.19 *  1.19 ** 1.19 *  1.20 *  1.20 ** 1.21 ** 1.21 ** 1.21 *** 1.22 *** 
ATSM (cp) 5.02 *** 4.61 *** 2.65 *** 1.67 *** 1.35 *  1.26 *  1.24 *  1.25 *  1.26 ** 1.26 ** 1.26 *  1.21 *  1.15    1.10    1.08    1.08 *** 1.10 *** 1.15 *** 
ATSM (tvp) 1.15    1.25    1.41 ** 1.40 *** 1.36 *** 1.34 *** 1.32 *** 1.32 *** 1.32 *** 1.31 *** 1.30 *** 1.26 *** 1.22 *  1.20    1.23    1.30 *  1.42 ** 1.57 *** 

Horizon:    3-month ahead
RW (Root MSFE) 0.48 0.47 0.47 0.49 0.51 0.53 0.54 0.55 0.55 0.56 0.56 0.54 0.51 0.49 0.47 0.45 0.43 0.41

AR (pu) 1.14 *** 1.10 *  1.12 *  1.11 *  1.11 *  1.10 *  1.10 *  1.10 *  1.10 *  1.10    1.10    1.09    1.09    1.08    1.08    1.07    1.07    1.06     
AR (di) 1.12 ** 1.10 *  1.10 *  1.11 *  1.12 *  1.13    1.14    1.15    1.15    1.16    1.16    1.15    1.15    1.14    1.12    1.11    1.10    1.10     
VAR (pu) 0.55 *  0.64    0.81    0.93    1.01    1.08    1.13    1.17    1.20    1.25    1.30    1.37    1.42    1.46    1.50 *  1.53 *  1.55 *  1.56 *   
VAR (di) 0.69    0.78    0.92    1.04    1.14    1.22    1.29    1.34    1.39    1.46    1.52    1.61    1.67    1.73    1.78    1.81    1.84    1.85 *   
BVAR 1.00    1.00    1.00    1.00    1.00    0.99    0.99    0.99    0.99    0.99    0.98    0.98    0.98    0.98    0.97    0.97    0.97    0.97     
DL (AR)   1.02    1.15    1.25    1.27    1.26    1.23    1.21    1.20    1.20    1.21    1.24    1.31    1.35    1.34    1.28    1.19    1.09    1.01     
DL (VAR) 0.62 *  0.69    0.84    0.96    1.05    1.10    1.15    1.19    1.22    1.29    1.35    1.48    1.57    1.60    1.58    1.53    1.48    1.43     
SW    0.58 ** 0.94    0.84    0.92    1.00    1.13    1.43    1.41    1.38    1.42    1.47    1.57    1.66 *  1.63    1.58    1.66 *  1.73 *  1.75     
FB    0.77    0.83    0.95    1.06    1.14    1.19    1.22    1.24    1.25    1.25    1.26 *  1.25 *  1.24 *  1.24 *  1.23 *  1.22 *  1.22 *  1.21 *   
CP    0.77    0.89    1.06    1.20    1.30    1.38    1.44    1.49    1.52    1.57    1.61 *  1.65 *  1.68 *  1.70 *  1.70 *  1.70 *  1.70 *  1.69 *   
ATSM (cp) 0.92    1.04    1.25    1.41    1.50    1.54    1.56 *  1.57 *  1.56 *  1.54 *  1.52 *  1.46 *  1.39 *  1.32 *  1.26 *  1.21 *  1.19 *  1.17 *   
ATSM (tvp) 1.07    1.28    1.44    1.48    1.48    1.47 *  1.45 ** 1.43 ** 1.41 ** 1.38 ** 1.36 *  1.30    1.24    1.19    1.16    1.17    1.19    1.23     

Horizon:    6-month ahead
RW (Root MSFE) 0.94 0.92 0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.87 0.85 0.79 0.73 0.68 0.63 0.59 0.56 0.53     

AR (pu) 1.13    1.11    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.13    1.14    1.14     
AR (di) 1.18    1.17    1.19    1.23    1.26    1.29    1.32    1.33    1.35    1.37    1.38    1.39    1.40    1.40    1.40    1.39    1.38    1.36     
VAR (pu) 0.61    0.69    0.84    0.98    1.10    1.20    1.28    1.34    1.40    1.48    1.55    1.67    1.77    1.87    1.96    2.04    2.10 *  2.16 *   
VAR (di) 0.67    0.78    0.99    1.20    1.39    1.55    1.68    1.79    1.88    2.03    2.15    2.36    2.55    2.73    2.89    3.04    3.16    3.24     
BVAR 0.99    0.99    0.99    0.99    0.99    0.99    0.99    0.99    0.99    0.98    0.98    0.98    0.97    0.97    0.97    0.96    0.96    0.96     
DL (AR)   1.16    1.26    1.36    1.41    1.44    1.44    1.43    1.43    1.43    1.43    1.45    1.52    1.57    1.59    1.55    1.48    1.39    1.28     
DL (VAR) 0.65    0.77    0.98    1.17    1.34    1.47    1.58    1.67    1.74    1.88    2.00    2.21    2.38    2.50    2.55    2.56    2.52    2.47     
SW    0.67    0.94    1.11    1.31    1.45    1.47    1.96    2.26    2.35    2.41 *  2.46 *  2.56    2.71    2.74    2.95 *  3.19 *  3.17    3.22     
FB    0.77    0.85    1.00    1.14    1.25    1.31    1.35 *  1.37 *  1.38 *  1.38 ** 1.37 *** 1.34 *** 1.31 *** 1.30 ** 1.28 *  1.27 *  1.26 *  1.25     
CP    1.00    1.16    1.44    1.71    1.94    2.13    2.28 *  2.39 *  2.48 *  2.62 *  2.72 *  2.89 *  3.04 *  3.17 *  3.28 *  3.37 *  3.43 *  3.46 *   
ATSM (cp) 1.13    1.29    1.48    1.61    1.69    1.73    1.75    1.75    1.74    1.72 *  1.70 *  1.65 *  1.60 *  1.55 ** 1.50 *** 1.45 *** 1.42 *** 1.40 *** 
ATSM (tvp) 1.10    1.20    1.30    1.33    1.33    1.31    1.28    1.25    1.22    1.17    1.13    1.07    1.04    1.02    1.03    1.05    1.09    1.14     

Horizon:    12-month ahead
RW (Root MSFE) 1.65 1.62 1.59 1.55 1.52 1.49 1.46 1.43 1.39 1.32 1.25 1.11 0.98 0.88 0.80 0.73 0.68 0.64

AR (pu) 1.15    1.19    1.22    1.22    1.21    1.21    1.20    1.20    1.19    1.17    1.16    1.14    1.13    1.14 *  1.17 *  1.19 *  1.23 *  1.26 *   
AR (di) 1.47    1.57    1.69    1.78    1.85 *  1.90 *  1.94 *  1.96 *  1.98 ** 2.01 ** 2.04 ** 2.08 *  2.09 *  2.09 *  2.08 *  2.05 *  2.02 *  1.98 **  
VAR (pu) 0.64    0.75    0.90    1.01    1.10    1.18    1.23    1.28    1.32    1.40    1.46    1.59 *  1.73 ** 1.88 *** 2.02 *** 2.16 *** 2.27 *** 2.35 *** 
VAR (di) 1.18    1.49    1.84    2.08    2.25    2.36    2.44    2.51    2.56    2.67    2.79    3.07    3.42    3.79    4.15    4.47 *  4.72 *  4.88 *   
BVAR 0.98    0.99    0.99    0.99    0.99    0.99    0.99    0.99    0.99    0.99    1.00    1.00    1.01    1.01    1.01    1.01    1.01 *  1.01     
DL (AR)   1.18    1.25    1.32    1.37    1.40    1.43    1.45    1.48    1.50    1.55    1.61    1.75    1.87    1.96 *  2.01 ** 1.99 *** 1.93 *** 1.84 *** 
DL (VAR) 1.14    1.38    1.71    1.99    2.24 *  2.45 ** 2.63 *** 2.79 *** 2.94 *** 3.20 *** 3.45 *** 3.91 *** 4.32 *** 4.65 *** 4.89 *** 5.02 *** 5.05 *** 5.00 *** 
SW    1.57    1.22    2.29 *  2.81 *  2.97 ** 2.78 ** 3.38 *** 4.19 *** 4.66 *** 4.73 *** 4.71 *** 4.82 *** 5.18 *  5.53 ** 6.95 *** 7.35 *** 7.15 *** 7.26 *   
FB    0.78    0.88    1.01    1.11    1.19    1.24    1.28    1.30    1.32    1.33    1.34    1.32    1.29    1.24    1.19    1.15    1.11    1.07     
CP    2.15 *** 2.58 *** 3.08 *** 3.47 *** 3.77 *** 3.99 *** 4.17 *** 4.30 *** 4.42 *** 4.61 *** 4.80 *** 5.18 *** 5.59 *** 6.00 *** 6.37 *** 6.67 *** 6.87 *** 6.97 *** 
ATSM (cp) 1.41    1.50    1.59    1.65    1.70    1.72    1.74    1.76    1.77    1.78    1.80    1.82 *  1.83 ** 1.83 *** 1.81 *** 1.80 *** 1.78 *** 1.77 *** 
ATSM (tvp) 0.93   0.96   0.98    0.98   0.96   0.95   0.93   0.92   0.91   0.90    0.91   0.98   1.08   1.22   1.39   1.56   1.74    1.90 *   

108-month 120-month60-month 72-month 84-month 96-month24-month 30-month 36-month 48-month12-month 15-month 18-month 21-month1-month 3-month 6-month 9-month

 
The Table contains the Relative Mean Squared Forecast Errors vis-à-vis the Random Walk obtained by using each of the competing models, for the horizons 1-, 3, 6-, and 12-step-ahead. 
The evaluation sample is 2001:1 to 2008:12. For the Random Walk we report the Root Mean Squared Forecast Error. The competing models considered are Linear models estimated with 
powering-up a nd direct ap proach (AR(pu), AR (di) , V AR(pu) , a nd V AR(di)), B ayesian V AR (B VAR), Di ebold-Li m odel ba sed o n AR an d VAR factor structure (DL (AR) a nd 
DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM (tvp)) and without (ATSM (cp)) variation in the risk premium. The 
stars on the right of the cell entries signal the level at which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (*, **, and ***  mean respectively rejection 
at 10%, 5%, and 1% level). 

 



 
 
 

Table IX. Sharpe Ratios for alternative models and trading strategies, Sample 2001:1 to 2008:12

Panel A: Trading Strategy 1

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - -0.093 -0.121 -0.043 0.012 0.025 0.035 0.051 0.053
AR (pu), AR(di) - -0.201 -0.114 -0.070 -0.017 0.004 0.017 0.042 0.048
VAR (pu), VAR (di) - -0.107 -0.017 0.088 0.088 -0.009 -0.004 0.002 -0.025
BVAR - -0.212 -0.148 -0.017 0.119 0.136 0.185 0.166 0.135
DL (AR)   - 0.169 -0.001 -0.115 -0.043 0.049 0.130 0.195 0.205
DL (VAR) - 0.182 0.064 0.064 0.034 0.159 0.188 0.142 0.198
SW    - 0.133 0.146 0.195 0.057 0.043 0.072 0.081 0.034
FB    - -0.135 -0.008 0.054 0.087 0.030 0.050 0.071 -0.010
CP    - -0.083 -0.002 0.043 0.057 0.047 -0.023 -0.076 -0.076
ATSM (cp) - 0.233 0.177 0.035 -0.117 -0.122 -0.138 -0.043 -0.010
ATSM (tvp) - 0.069 0.055 -0.135 -0.115 -0.120 -0.075 0.005 0.043

0.309 0.177 0.195 0.119 0.159 0.188 0.195 0.205
Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.058 0.063 0.149 0.173 0.152 0.177 0.198 0.172 0.196
AR (pu), AR(di) 0.082 0.112 0.131 0.209 0.197 0.150 0.097 0.073 0.103
VAR (pu), VAR (di) 0.015 -0.005 -0.110 -0.143 -0.149 -0.110 -0.114 -0.154 -0.156
BVAR 0.143 0.148 0.153 0.156 0.157 0.156 0.155 0.153 0.151
DL (AR)   0.180 0.052 -0.047 -0.062 -0.104 -0.114 -0.007 0.269 0.154
DL (VAR) 0.080 0.099 -0.025 -0.008 -0.094 -0.117 -0.037 -0.012 0.062
SW    -0.024 -0.115 -0.112 0.023 0.049 0.055 -0.101 -0.028 -0.039
FB    -0.081 -0.018 -0.002 -0.060 0.011 0.022 0.031 0.036 -0.095
CP    -0.032 -0.055 -0.041 -0.039 -0.041 -0.045 -0.098 -0.031 -0.036
ATSM (cp) -0.052 -0.054 -0.066 -0.085 -0.067 -0.114 -0.026 -0.052 -0.055
ATSM (tvp) 0.049 0.076 -0.018 -0.006 0.107 0.121 0.125 0.163 0.202

0.000 0.309 0.177 0.195 0.119 0.159 0.188 0.195 0.205
0.180 0.148 0.153 0.209 0.197 0.177 0.198 0.269 0.202

Panel B: Trading Strategy 2

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - -0.020 0.063 0.111 0.143 0.167 0.183 0.193 0.200
AR (pu), AR(di) - -0.067 0.052 0.101 0.130 0.145 0.151 0.150 0.145
VAR (pu), VAR (di) - -0.202 -0.156 -0.086 -0.049 -0.035 -0.032 -0.033 -0.034
BVAR - -0.064 0.050 0.104 0.140 0.165 0.182 0.194 0.201
DL (AR)   - 0.126 0.066 0.029 0.035 0.076 0.131 0.176 0.198
DL (VAR) - 0.127 0.041 0.021 0.042 0.081 0.114 0.135 0.148
SW    - 0.135 0.181 0.200 0.182 0.118 -0.005 0.024 0.028
FB    - -0.097 0.003 0.025 0.029 0.030 0.031 0.031 0.031
CP    - -0.128 -0.054 -0.008 0.004 0.000 -0.008 -0.017 -0.025
ATSM (cp) - 0.116 0.036 -0.036 -0.100 -0.136 -0.127 -0.102 -0.080
ATSM (tvp) - 0.082 -0.031 -0.066 -0.053 -0.023 0.005 0.027 0.043

0.000 0.227 0.181 0.200 0.182 0.167 0.183 0.194 0.201
Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.204 0.204 0.199 0.193 0.188 0.183 0.179 0.175 0.172
AR (pu), AR(di) 0.131 0.117 0.097 0.091 0.097 0.115 0.141 0.169 0.183
VAR (pu), VAR (di) -0.035 -0.034 -0.032 -0.033 -0.038 -0.046 -0.055 -0.065 -0.074
BVAR 0.208 0.209 0.208 0.204 0.201 0.197 0.194 0.190 0.186
DL (AR)   0.184 0.136 0.056 0.015 -0.001 0.002 0.037 0.202 0.170
DL (VAR) 0.153 0.126 0.008 -0.071 -0.112 -0.141 -0.145 -0.080 -0.021
SW    -0.016 -0.063 -0.095 -0.061 -0.016 -0.016 -0.152 -0.150 -0.120
FB    0.028 0.024 0.013 0.001 -0.013 -0.027 -0.040 -0.051 -0.060
CP    -0.034 -0.038 -0.041 -0.044 -0.049 -0.057 -0.067 -0.078 -0.089
ATSM (cp) -0.052 -0.038 -0.029 -0.033 -0.051 -0.122 -0.181 -0.089 -0.065
ATSM (tvp) 0.064 0.079 0.108 0.136 0.155 0.166 0.170 0.172 0.173

0.000 0.227 0.181 0.200 0.182 0.167 0.183 0.194 0.201

0.208 0.209 0.208 0.204 0.201 0.197 0.194 0.202 0.186  
The Ta ble c ontains the Sharpe Ratios obtained by using each  of t he models at hand a nd t he tra ding st rategies 
described i n Section 4.4. The eval uation s ample i s 2 001:1 t o 2008:12. The  com peting m odels co nsidered are  
Random Walk (RW), Linear models estimated with powering-up and direct approach (AR(pu), AR(di) , VAR(pu) , 
and VAR(di)), Bayesian VAR (BVAR), Diebold-Li model based on AR and VAR factor st ructure (DL(AR) and 
DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM 
(tvp)) and without (ATSM (cp)) variation in the risk premium. 
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Table X. Portfolio Utility Loss, Sample 2001:1-2008:12

Average Loss Significance
RW 0.9889
AR 1.6235 ***
VAR 1.2632
BVAR 1.1034
DL (AR)   38.2162 ***
DL (VAR) 37.8461 ***
SW    137.431 ***
FB    2.3247 ***
CP    1.1977
ATSM (crp) 18.4412 ***
ATSM (tvp) 13.8551 ***

 
The Table contains the Utility Loss obtained by using each of the models at hand and the trading strategies described 
in Section 4.5. The e valuation sample is 2001:1 to 2008:12. The competing models considered are R andom Walk 
(RW), Li near m odels (AR , VAR ), B ayesian V AR (B VAR), Diebold-Li model based o n AR  an d VAR  fact or 
structure (DL(AR) and DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and 
ATSM with (ATSM (tvp)) and without (ATSM (cp)) variation in the risk premium. The stars on the right of the cell 
entries signal the level at whi ch the Giacomini and White (2006) test reject s the null of equal forecast ing accuracy 
against the random walk (*, **, and *** mean respectively rejection at 10%, 5%, and 1% level).  
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Table XI: Relative Mean Square Forecast Errors, averages over artificial samples

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

Horizon:    1-month ahead
RW (Root MSFE) 0.67 0.51 0.48 0.46 0.45 0.45 0.44 0.44 0.43 0.42 0.41 0.40 0.38 0.37 0.37 0.36 0.35 0.35

AR (pu) , AR (di) 1.05 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.03 1.03
VAR (pu), VAR (di) 36.94 37.28 31.90 28.27 26.05 24.66 23.71 22.96 21.12 21.12 20.03 18.09 16.44 15.04 13.91 12.98 12.27 11.81
BVAR 1.02 1.06 1.09 1.10 1.10 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.12 1.12 1.12
DL (AR)   6.27 2.38 4.19 4.17 3.21 2.15 1.47 1.26 2.37 2.37 3.21 3.59 2.73 1.70 1.17 1.48 2.41 3.67
DL (VAR) 6.12 2.35 4.24 4.23 3.25 2.17 1.47 1.25 2.37 2.37 3.21 3.61 2.75 1.72 1.17 1.45 2.37 3.63
SW    2.13 1.33 1.26 1.21 1.29 1.25 1.22 1.19 1.12 1.12 1.11 1.10 1.11 1.13 1.20 1.20 1.13 1.11
FB    1.05 1.05 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
CP    1.18 1.16 1.16 1.15 1.15 1.14 1.14 1.14 1.13 1.13 1.12 1.12 1.12 1.12 1.11 1.11 1.11 1.11

Horizon:    3-month ahead
RW (Root MSFE) 1.16 0.94 0.89 0.87 0.86 0.84 0.83 0.82 0.81 0.79 0.77 0.73 0.70 0.67 0.65 0.64 0.62 0.61

AR (pu) 1.10 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.06 1.06 1.06 1.06
AR (di) 1.09 1.08 1.08 1.09 1.09 1.08 1.08 1.08 1.08 1.08 1.08 1.07 1.07 1.07 1.07 1.08 1.08 1.08
VAR (pu) >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100
VAR (di) 71.15 77.20 77.02 77.24 76.70 75.71 74.59 73.44 69.85 69.85 67.53 63.24 59.52 56.31 53.47 50.92 48.63 46.61
BVAR 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03
DL (AR)   3.03 1.63 2.18 2.17 1.87 1.54 1.33 1.26 1.59 1.59 1.86 1.99 1.72 1.39 1.22 1.34 1.67 2.13
DL (VAR) 2.88 1.53 2.12 2.13 1.82 1.49 1.28 1.21 1.57 1.57 1.85 1.99 1.72 1.36 1.16 1.24 1.55 1.99
SW    4.19 1.61 1.47 1.47 1.63 1.67 1.65 1.55 1.36 1.36 1.32 1.33 1.36 1.48 1.66 1.67 1.40 1.33
FB    1.12 1.10 1.10 1.10 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09
CP    1.34 1.35 1.35 1.34 1.33 1.32 1.32 1.32 1.31 1.31 1.31 1.30 1.30 1.30 1.30 1.30 1.30 1.30

Horizon:    6-month ahead
RW (Root MSFE) 1.54 1.33 1.27 1.24 1.22 1.20 1.19 1.17 1.15 1.12 1.09 1.03 0.98 0.95 0.92 0.89 0.87 0.85

AR (pu) 1.15 1.10 1.11 1.11 1.10 1.10 1.10 1.10 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.10 1.10 1.11
AR (di) 1.14 1.15 1.16 1.16 1.16 1.16 1.16 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.16 1.16
VAR (pu) >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100
VAR (di) 37.67 46.26 52.30 57.26 60.12 61.16 61.18 60.68 58.22 58.22 56.58 53.48 50.74 48.47 46.60 45.02 43.77 42.61
BVAR 0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01
DL (AR)   2.42 1.58 1.88 1.90 1.75 1.58 1.47 1.43 1.61 1.61 1.75 1.82 1.68 1.50 1.42 1.48 1.67 1.94
DL (VAR) 2.23 1.39 1.69 1.71 1.56 1.40 1.30 1.27 1.48 1.48 1.63 1.70 1.55 1.34 1.23 1.26 1.43 1.67
SW    7.42 2.61 1.84 1.88 2.26 2.51 2.36 2.12 1.76 1.76 1.68 1.70 1.85 2.10 2.61 2.46 1.88 1.71
FB    1.18 1.16 1.17 1.17 1.18 1.18 1.19 1.19 1.19 1.19 1.19 1.18 1.18 1.18 1.18 1.18 1.18 1.18
CP    1.61 1.60 1.59 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.59 1.59 1.59 1.59 1.59

Horizon:    12-month ahead
RW (Root MSFE) 2.09 1.86 1.80 1.76 1.73 1.71 1.68 1.65 1.63 1.58 1.53 1.45 1.38 1.33 1.29 1.25 1.22 1.20

AR (pu) 1.22 1.18 1.17 1.16 1.16 1.15 1.15 1.15 1.14 1.14 1.14 1.14 1.14 1.14 1.15 1.15 1.16 1.16
AR (di) 1.25 1.28 1.32 1.33 1.33 1.33 1.33 1.32 1.31 1.31 1.30 1.30 1.30 1.30 1.30 1.31 1.31 1.32
VAR (pu) >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100
VAR (di) 37.00 46.18 54.63 57.21 58.02 58.14 58.01 57.79 57.57 57.23 57.13 57.33 57.58 57.22 56.37 55.20 53.84 52.39
BVAR 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DL (AR)   2.22 1.79 1.96 1.98 1.90 1.82 1.77 1.76 1.87 1.87 1.95 1.98 1.90 1.80 1.75 1.78 1.89 2.04
DL (VAR) 1.90 1.41 1.56 1.59 1.52 1.45 1.41 1.41 1.54 1.54 1.62 1.66 1.57 1.45 1.37 1.38 1.46 1.59
SW    10.98 4.39 2.71 2.80 3.47 3.94 3.71 3.39 2.50 2.50 2.37 2.31 2.62 3.36 5.24 4.94 3.05 2.57
FB    1.33 1.32 1.33 1.35 1.37 1.37 1.36 1.35 1.34 1.34 1.35 1.35 1.36 1.36 1.36 1.35 1.34 1.34
CP    2.03 1.99 1.99 1.99 2.00 2.00 2.00 2.00 2.01 2.01 2.01 2.01 2.01 2.01 2.00 1.99 1.99 1.98

 
The Table contains the average Relative Mean Squared Forecast Errors vis-à-vis the Random Walk over 100 bootstrap replications, obtained by using each of the competing models and 
the data based Monte Carlo method described in Section 6.2. For the Random Walk we report the average Root Mean Squared Forecast Error over the 100 replications. The competing 
models considered are Linear models estimated with powering-up and direct approach (AR(pu), AR(di) , VAR(pu) , and VAR(di)), Bayesian VAR (BVAR), Diebold-L i model based on 
AR and VAR factor structure (DL(AR) and DL(VAR)), Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM (tvp)) and without (ATSM 
(cp)) variation in the risk premium. The stars on the right of the cell entries signal the level at which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (*, 
**, and ***  mean respectively rejection at 10%, 5%, and 1% level). 

 
 



 
 
 
 

Table XII. Sharpe Ratios, averages over artificial samples

Panel A: Trading Strategy 1

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - 1.33 1.09 0.88 0.73 0.62 0.56 0.50 0.46
AR - 1.32 1.08 0.87 0.70 0.60 0.52 0.47 0.42
VAR - 0.80 0.55 0.39 0.30 0.24 0.20 0.18 0.16
BVAR - 1.29 1.04 0.84 0.69 0.60 0.53 0.48 0.45
DL (AR)   - 0.76 0.52 0.46 0.37 0.32 0.37 0.39 0.35
DL (VAR) - 0.76 0.51 0.45 0.37 0.31 0.35 0.38 0.34
SW    - 1.06 0.91 0.75 0.60 0.48 0.41 0.37 0.33
FB    - 1.29 1.05 0.84 0.68 0.58 0.51 0.46 0.41
CP    - 1.29 1.00 0.77 0.61 0.51 0.44 0.38 0.34

Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.40 0.35 0.28 0.24 0.22 0.20 0.18 0.17 0.16
AR 0.35 0.30 0.24 0.19 0.16 0.14 0.12 0.11 0.10
VAR 0.13 0.11 0.08 0.07 0.06 0.06 0.05 0.05 0.04
BVAR 0.39 0.35 0.30 0.27 0.25 0.24 0.22 0.21 0.20
DL (AR)   0.21 0.17 0.12 0.09 0.07 0.06 0.03 0.02 0.02
DL (VAR) 0.21 0.17 0.12 0.08 0.06 0.05 0.02 0.02 0.02
SW    0.28 0.24 0.18 0.14 0.12 0.10 0.09 0.08 0.07
FB    0.34 0.29 0.23 0.18 0.15 0.13 0.11 0.10 0.09
CP    0.28 0.24 0.18 0.15 0.13 0.11 0.10 0.09 0.08

0.40 0.35 0.30 0.27 0.25 0.24 0.22 0.21 0.20
0.000 1.333 1.094 0.885 0.726 0.625 0.556 0.503 0.459

Panel B: Trading Strategy 2

Maturity 1-month 3-month 6-month 9-month 12-month 15-month 18-month 21-month 24-month

RW - 1.72 1.25 0.94 0.73 0.62 0.54 0.49 0.44
AR - 1.71 1.23 0.93 0.72 0.59 0.52 0.46 0.41
VAR - 1.58 1.12 0.82 0.63 0.52 0.44 0.38 0.34
BVAR - 1.74 1.27 0.97 0.77 0.66 0.58 0.53 0.48
DL (AR)   - 1.10 0.60 0.47 0.36 0.31 0.36 0.40 0.35
DL (VAR) - 1.10 0.59 0.47 0.36 0.31 0.35 0.39 0.34
SW    - 1.63 1.19 0.88 0.68 0.55 0.46 0.41 0.37
FB    - 1.70 1.23 0.93 0.72 0.60 0.53 0.46 0.42
CP    - 1.69 1.20 0.88 0.68 0.55 0.47 0.41 0.36

1.736 1.271 0.971 0.770 0.659 0.583 0.527 0.481
Maturity 30-month 36-month 48-month 60-month 72-month 84-month 96-month 108-month 120-month

RW 0.38 0.33 0.27 0.23 0.20 0.18 0.17 0.15 0.14
AR 0.35 0.30 0.23 0.18 0.16 0.14 0.12 0.11 0.10
VAR 0.28 0.24 0.18 0.15 0.12 0.10 0.09 0.09 0.07
BVAR 0.42 0.37 0.31 0.26 0.24 0.22 0.21 0.19 0.18
DL (AR)   0.22 0.18 0.13 0.09 0.07 0.05 0.01 0.00 0.01
DL (VAR) 0.22 0.18 0.13 0.09 0.07 0.04 0.01 0.00 0.01
SW    0.31 0.27 0.20 0.16 0.13 0.12 0.10 0.09 0.08
FB    0.35 0.31 0.24 0.20 0.17 0.14 0.13 0.11 0.10
CP    0.30 0.26 0.20 0.16 0.13 0.12 0.10 0.09 0.08

0.42 0.37 0.31 0.26 0.24 0.22 0.21 0.19 0.18

0.000 1.736 1.271 0.971 0.770 0.659 0.583 0.527 0.481  
The Table contains the average Sharpe Ratios over 100 bootstrap replications, obtained by using each of the models 
at hand and the t rading st rategies described in Sect ion 4.4, and the data based Monte Carlo method described in 
Section 6.2. The competing models considered are Random Walk (RW), Linear models (AR, VAR), Bayesian VAR 
(BVAR), Diebold-Li model based on AR and VAR factor st ructure (DL(AR) and DL(VAR)), Stock and Watson 
factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM (tvp)) and without (ATSM (cp)) 
variation in the risk  premium. The stars on  the right of t he cell en tries signal the level at wh ich the Giacomini and 
White (2006) test rejects th e null of equal forecasting accuracy (*, **, and *** mean respectively rejection at 10%, 
5%, and 1% level).  
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Table XIII. Portfolio Utility Loss, artificial samples

Average Loss
RW -28.427
AR -27.639
VAR 391.414
BVAR -28.712
DL (AR)   482.525
DL (VAR) 481.527
SW    461.344
FB    -26.134
CP    -27.701

 
The Table contains the average Utility Loss over 100 bootstrap replications, obtained by using each of the models at 
hand a nd t he trading st rategies descri bed i n Sect ion 4.5, an d t he data based M onte Carlo m ethod described i n 
Section 6.2. The competing models considered are Random Walk (RW), Linear models (AR, VAR), Bayesian VAR 
(BVAR), Diebold-Li model based on AR and VAR factor st ructure (DL(AR) and DL(VAR)), Stock and Watson 
factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM (tvp)) and without (ATSM (cp)) 
variation in the risk  premium. The stars on  the right of t he cell en tries signal the level at wh ich the Giacomini and 
White (2006) test rejects t he null of  equal  forecasting a ccuracy a gainst th e ra ndom walk (*, **, a nd *** m ean 
respectively rejection at 10%, 5%, and 1% level).  
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Figure 1: US Treasury zero coupon yield curve estimates by Gurkaynak et al (2006), publicly available at
http://www.federalreserve.gov/pubs/feds/2006. Data are at monthly frequency, the scale is percentages on
annual basis. Data include the yields of the following maturities (in months): 1, 3, 6, 9, 12, 15, 18, 21, 24, 30,
36, 48, 60, 72, 84, 96, 108, 120.
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Figure 2: Marginal Data Density. The surface represents the value of the log-data density ln p(Y ) =
ln
∫
p(Y |Θ)p(Θ)dΘ for the case h = 1 (1-step ahead) as a function of the shrinkage parameter θ and time. To

facilitate comparison across time the surface is rescaled so that it equals 0 in the point φ = 10.



Figure 3: Time series path of the optimal shrinkage θ∗t = argmaxθ p(Y ) for h = 1, ..., 12.



Figure 4: Cumulative ex-post profits on an equally weighted portfolio managed using the two simple trading
rules described in Section 4.4. The first panel contains results based on trading strategy 1, i.e., a trading rule
that simply suggests to buy or to short sell a bond of a given maturity depending on the sign of the forecasted
variation in holding period returns. The second panel contains results based on the trading strategy 2, i.e.,
a trading rule that uses the forecast of the excess one-period return with respect to the one-month yield to
recommend the size of a position which is subject to the ex post return. The competing models considered
are Random Walk (RW), Linear models (AR and VAR), Bayesian VAR (BVAR), Diebold-Li model based
on AR and VAR factor structure (DL(AR) and DL(VAR)), Stock and Watson factor model (SW), forward
rate regressions (FB and CP), and ATSM with (ATSM (tvp)) and without (ATSM (cp)) variation in the risk
premium.



Figure 5: Cumulative ex-post profits on an equally weighted portfolio managed using the two simple trading
rules described in Section 4.4. Results over the subsample 1995:1 to 2000:12. See notes to Figure 4 for
additional details. The competing models considered are Random Walk (RW), Linear models (AR and VAR),
Bayesian VAR (BVAR), Diebold-Li model based on AR and VAR factor structure (DL(AR) and DL(VAR)),
Stock and Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (ATSM (tvp))
and without (ATSM (cp)) variation in the risk premium.



Figure 6: Cumulative ex-post profits on an equally weighted portfolio managed using the two simple trading
rules described in Section 4.4. Results over the subsample 2001:1 to 2008:12. See notes to Figure 4 for
additional details. The competing models considered are Random Walk (RW), Linear models (AR and VAR),
Bayesian VAR (BVAR), Diebold-Li models based on AR and VAR structure of the factors (DL), Stock and
Watson factor model (SW), forward rate regressions (FB and CP), and ATSM with (tvp) and without (cp)
variation in the risk premium.




