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ABSTRACT 

A Balls-and-Bins Model of Trade* 

A number of stylized facts have been documented about the extensive margin 
of trade - which firms export, and how many products they send to how many 
destinations. We argue that the sparse nature of trade data is crucial to 
understanding these stylized facts. Typically the number of observations - that 
is, total shipments - is low relative to the number of possible classifications - 
e.g., countries and product codes. We propose a statistical model to account 
for the sparsity of trade data. We formalize the assignment of shipments to 
categories as balls falling into bins. The balls-and-bins model quantitatively 
reproduces the prevalence of zero product-level trade flows across export 
destinations. The model also accounts for firm-level facts: as in the data, most 
firms export a single product to a single country but these firms represent a 
tiny fraction of total exports. In contrast, the balls-and-bins model cannot 
reproduce the small fraction of exporters among U.S. firms. We discuss the 
implications for identifying the relevant model of the extensive margin in trade. 
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∗
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February 2010

Abstract

A number of stylized facts have been documented about the extensive margin of

trade�which �rms export, and how many products they send to how many destina-

tions. We argue that the sparse nature of trade data is crucial to understanding these

stylized facts. Typically the number of observations�that is, total shipments�is low

relative to the number of possible classi�cations�e.g., countries and product codes.

We propose a statistical model to account for the sparsity of trade data. We formalize

the assignment of shipments to categories as balls falling into bins. The balls-and-bins

model quantitatively reproduces the prevalence of zero product-level trade �ows across

export destinations. The model also accounts for �rm-level facts: as in the data, most

�rms export a single product to a single country but these �rms represent a tiny frac-

tion of total exports. In contrast, the balls-and-bins model cannot reproduce the small

fraction of exporters among U.S. �rms. We discuss the implications for identifying the

relevant model of the extensive margin in trade.

1 Introduction

International trade has long been concerned with aggregate patterns�what and how much
countries trade�and their welfare implications. Recently, �nely disaggregated trade data
have become available and have had an enormous impact on the �eld. This has spurred a
fast-growing research that documents the extensive margin in trade�which �rms export,

∗For useful comments we thank two anonymous referees and the editor, as well as George Alessandria,
Arnaud Costinot, Alan Deardor�, Jonathan Eaton, Tom Holmes, László Mátyás, Marc Melitz, Virgiliu
Midrigan, Esteban Rossi-Hansberg, Peter Schott, Adam Szeidl, Ay³egül �ahin, and seminar participants at
the Federal Reserve Bank of New York, the Institute for Advanced Studies in Vienna, Central European
University, UC San Diego, Princeton, the SED, the NBER Summer Institute, Michigan, Stanford, MIT, and
the University of Zurich. We also thank Jennifer Peck for excellent research assistance. Much of this research
was carried out while Koren was visiting the International Economics Section of Princeton University, and
he gratefully acknowledges their hospitality. The views expressed here do not necessarily re�ect the views of
the Federal Reserve Bank of Philadelphia or the Federal Reserve System.
†Armenter : Federal Reserve Bank of Philadelphia. E-mail: roc.armenter@phil.frb.org. Koren: Central

European University, IEHAS and CEPR. E-mail: korenm@ceu.hu

1



and how many products they send to how many destinations. This, in turn, has led to new
theories in international trade.

A number of stylized facts have been documented about the extensive margin of trade:
(1) Most product-level trade �ows across countries are zero; (2) the incidence of non-zero
trade �ows follows a gravity equation; (3) only a small fraction of �rms export; (4) exporters
are larger than non-exporters; (5) most �rms export a single product to a single country;
(6) most exports are done by multi-product, multi-destination exporters.1 These facts have
proven to be very robust across datasets from di�erent years in several countries.

We argue that the sparse nature of trade data is crucial to understand these stylized facts.
Data are sparse if the number of observations�that is, total shipments�is too low relative
to the number of possible classi�cations�country and product code pairs. Sparse data have
some distinctive features owning to the low number of observations: most categories have
very few or no observations, and the distribution of the number of observations per category
is unimodal at a low count.

Trade data are collected through customs forms, one for each export shipment. There
were about 22 million export shipments originating in the U.S. in 2005. This may seem a
number safe from small-sample problems. However, there are 229 countries and 8,867 product
codes with active trade, so a shipment can have more than 2 million possible classi�cations.
Most of the traded categories had only 1 shipment during the year, a clear sign that the data
are sparse. There are too few shipments, partly because some products are indivisible, and
partly because of the constraints of transportation technology.2

In this paper we propose a statistical model to account for the sparsity of trade data.
We formalize the assignment of shipments to categories as balls falling into bins. Each
shipment constitutes a discrete unit (the ball), which, in turn, is allocated into mutually
exclusive categories (the bins). This structure is inherent to disaggregate trade data: we
observe a given number of shipments and each of them is classi�ed into a unique category.
Because we want an atheoretical account of the sparsity of the data, the model assigns
balls to bins at random. That is, a ball falling in a particular bin is an independent and
identically distributed random event whose probability distribution is determined solely by
the distribution of bin sizes.

In spite of its simplicity, the balls-and-bins model has a rich set of predictions. After a
number of balls, some bins may end up empty and some will not. Among the latter some
will contain a large number of balls, some few. These are taken to be the model's predictions

1The following is a necessarily incomplete list of references. Helpman, Melitz and Rubinstein (2007) and
Baldwin and Harrigan (2007) for facts 1 and 2; Haveman and Hummels (2004) and Hummels and Klenow
(2001, 2005) for fact 1; Bernard and Jensen (1999) and Bernard, Eaton, Jensen and Kortum (2003) for facts
3 and 4; Bernard, Jensen and Schott (2007) for facts 3 to 6; Bernard, Jensen, Redding and Schott (2007)
for facts 2 to 6; and Eaton, Kortum and Kramarz (2004, 2007) for facts 5 and 6. See the main text and the
Appendix for further discussion.

2The typical shipment is rather small; the median shipment value is $12,800. Bulky and valuable products
are mostly shipped by themselves, hence shipment value is fully determined by the value of the product itself.
Smaller and less valuable products are grouped together in batches. The value of these batches show some
(quantitatively small) variation depending on the transportation technology used. Section 2 provides more
details.
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for the extensive and intensive margin, respectively. We can derive analytically the relevant
moments. We show how to compute the prevalence of zeros and how it varies with the
number of balls and the bin-size distribution. These are indeed all the model's systematic
relationships between export �ows and the extensive margin: the assignment of balls to bins
is random.

We are interested, though, in a quantitative evaluation. To this end we set the number
of balls equal to the number of observed shipments in the trade �ow of interest (for example,
total trade between two countries or total exports by a given �rm).3 For the dimension
of choice (product codes or destination countries) we construct the bin size distribution
using category totals. For example, there are 8,867 bins for the 10-digit Harmonized System
product codes, with each bin size set to the corresponding share in total U.S. exports. The
calibration accounts for the fact that the U.S. exports some products more than others, and
exports to some countries more than others (gravity). However, it assumes no systematic
di�erences across destination countries in the composition of exports.

The results are striking: the balls-and-bins model quantitatively reproduces many of the
stylized facts on the extensive margin in trade. Table 1 summarizes our �ndings. For twelve
statistics we report the data and the corresponding prediction by the model�the details on
both are in the main text. Zero product-level trade �ows are as prevalent in the model as
in the data; indeed the pattern of zeros across export destinations is also the same. Trade
with most of the 229 countries is very small and most of the 8,867 traded HS codes are tiny.
It is exactly for these country-product pairs that the trade �ows are missing in the data.
They go missing in the model as well: few balls and tiny bins make for many empty bins.
In other words, given what we observe for aggregate trade �ows (by country, by product), a
large number of zeros is to be expected.

The model also accounts for �rm-level facts: as in the data, most �rms export a single
product to a single country but these �rms represent a very small fraction of total exports.
The left tail in the distribution of exports across �rms is essential to understand the success
of the balls-and-bins model. Most exporters are tiny and are hence assigned only one ball
in the model. They are thus predicted to be single-product, single-country exporters.4 This
�nding suggests that once we account for the skewness of export sales, the incidence and
relative size of single- and multi-product exporters follow.

We must emphasize that in a dense dataset�i.e., with many observations relative to
the number of categories�the balls-and-bins model would be unable to match any stylized
fact on the extensive margin. Indeed all bins will be non-empty and the predictions for the
extensive margin will be trivial.

What do we learn when the balls-and-bins model matches a particular fact? Surely we
are not suggesting that �rms actually ship their goods at random! Our view, instead, is
that if a fact cannot falsify the balls-and-bins model, it will fail to identify the right model
of the extensive margin. For example, as long as a model correctly predicts the gravity

3Unfortunately we do not have access to shipment data at the �rm level. In this case we approximate the
number of shipments by dividing the �rm-level trade �ows into balls of $36,000 � the value of the average
export transaction in the U.S. in 2000.

4The average exports of the bottom three quarters of all exporters are just $75,000. By contrast, the top
one quarter of exporters export $20 million on average.
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Description Data Balls-and-bins
HS10-level product×country U.S. export �ows

Share of zeros 82% 72%
OLS coe�cient of nonzero �ow on GDP 0.08 0.10

Firm×country U.S. export �ows
Share of zeros 98% 96%
Gravity equation for �rms, GDP OLS coe�cient 0.71 0.56

Single-product exporters
Fraction of total exporters 42% 43%
Share of total exports 0.4% 0.3%

Single-destination exporters
Fraction of total exporters 64% 44%
Share of total exports 3.3% 0.3%

Single-destination, single-product exporters
Fraction of total exporters 40% 43%
Share of total exports 0.2% 0.3%

Exporters in U.S. manufacturing
Fraction of total �rms 18% 74%
Size-premium of exporters 4.4 34

Table 1: Summary of Findings
Details on sources, data and model are in the main text and in the Appendix.

equation, it will also match the pattern of zeros across countries once the sparsity of the
data is accounted for. Similarly any model that reproduces the distribution of export sales
will be able to match the facts concerning multi-product and multi-destination exporters.
The quali�cation is important: the balls-and-bins model embeds the economic determinants
of the data used in the calibration. Other economic forces need not have played any role in
shaping the outcomes.

Importantly, we also learn from the balls-and-bins model when it misses a data pattern.
For example, we attempt to predict the share of exporters among manufacturing �rms. In
the balls-and-bins model 74 percent of �rms will export � in contrast with 18 percent in
the data. For a model to match the data it will be necessary to postulate a systematic
relationship between �rms, products, and markets. Hence it is in the split between exporters
and non-exporters that we will be able to identify the relevant trade model of the extensive
margin.

We view the balls-and-bins model as a useful statistical tool that can quantitatively
discern the interesting facts in sparse datasets. It can be applied to any categorical dataset,
such as the division of total exports by products, �rms, or destination countries. These
datasets contain a lot of information: it is crucial that we focus on the facts that will help
us di�erentiate among competing trade theories as well as inform the development of new
ones. We should emphasize that we believe there will be no shortage of interesting facts in
the data.
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A paper close to us in spirit is Ellison and Glaeser (1997). They ask whether the observed
levels of geographic concentration of industries are greater than would be expected to arise
randomly. To this end they introduce a �dartboard� model of �rm location. In contrast with
our results, the �dartboard� model rea�rms the previous results on geographic concentration.
Ellison and Glaeser (1997) are also able to provide a new index for geographic concentration
which takes a value of zero under the dartboard model and thus controls for the mechanical
degree of concentration arising from randomness. Such an index is more di�cult for trade
facts, which do not focus on a particular dimension.

The questions sparsity brings are similar to the debate about the theoretical content of
the gravity equation for bilateral trade �ows. The gravity equation is hugely successful in
predicting trade �ows, yet it may be of limited use in distinguishing trade theories. Deardor�
(1998) argues that �just about any plausible model of trade would yield something very like
the gravity equation,� hence the gravity equation should not be the basis for favoring one
theory over another. Evenett and Keller (2002) and Haveman and Hummels (2004) also show
that the gravity equation is consistent with both complete and incomplete specialization
models.

Our paper is also related to a large literature that tests the robustness of empirical �nd-
ings through Monte Carlo techniques or sensitivity analysis. To our knowledge these tests
have not been commonplace in international trade. An early exception is the analysis on
trade-related international R&D spillovers in Keller (1998). There has also been some work
on the robustness of gravity equation models. Ghosh and Yamarik (2004) use Leamer ex-
treme bounds analysis to construct a rigorous test of speci�cation uncertainty and �nd that
the trade creation e�ect associated with regional trading arrangements is fragile. Ander-
son, Ferrantino, and Schaefer (2004) use Monte Carlo experiments to explore alternative
speci�cations of the gravity model and �nd coe�cient bias to be pervasive.

The paper is organized as follows. The next section presents some new evidence that
illustrates that trade datasets are sparse. Section 3 describes the setup of the balls-and-bins
model and characterizes some of its properties. Section 4 presents the empirical facts on
missing product-level trade �ows and discusses how the balls-and-bins model matches these
facts. Section 5 conducts the same exercise for �rm-level trade �ows. Section 6 discusses
the extensive margin of products and destination countries at the �rm level. Section 7 looks
at whether the balls-and-bins model can predict the number and size of exporters. Section
8 discusses what we can and cannot learn about trade theories from sparse data. Finally,
Section 9 concludes. The Appendix provides extensions to the main model, and describes in
detail the datasets used in the cited papers.

2 Trade data are sparse

This Section explains what we mean by �sparse� data. We brie�y lay out the typical features
of a sparse dataset and argue that these are prevalent in trade data. We then brie�y explore
the causes of this sparsity.
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In a categorical dataset, each observation is classi�ed into one of several disjoint cat-
egories. We call a dataset sparse if the number of observations is too low relative to the
number of categories. Statistical inference on the relative frequencies of categories requires
a much larger sample than in non-categorical datasets. Moreover, the sample size needed
grows very fast with the number of categories K. For example, the number of observations
must be of order O(K log(K)) for maximum likelihood estimates to exist.5

The distinctive feature of a sparse dataset is that most categories have very few or
no observations. Moreover, the distribution of the number of observations per category is
unimodal at a low count (zero to four observations). For example, categories with a single
observation may be the most common, followed by categories with none or two observations,
then categories with three observations, and so on.

Categories with no observations are typical of sparse data; yet they are not unique to
them. For example, if the data generating process is censored at some minimum scale, we
will observe plenty of empty categories even if there are many observations. However, the
resulting data will have no or few categories with a low, but positive, number of observations;
generally, the distribution of shipments per category will be bi-modal (at zero and at some
large positive number above the minimum scale).

Our �rst observation is that disaggregated trade data is actually categorical. The Census
Bureau collects trade data through customs forms, one for each export shipment.6 For
each shipment, the export declaration records the destination country, the product being
shipped, and the selling �rm (among other variables), which are categorical variables. The
units of observations are the shipments themselves, so the number of observations, at its
most disaggregated level, equals the number of shipments.

According to the �U.S. Exports of Merchandise� published by the Census Bureau, there
were 21.6 million export shipments in 2005. Whether this number of observations yields
sparse or dense data depends also on the number of categories.7 Each shipment is assigned
a unique product code out of 8,988 potential codes (of which 8,867 had positive exports
in 2005) and one out of 229 destination countries. That makes about 2 million potential
product�country categories, or about one for each 11 shipments. If we further break exports
shipments by �rm the number of categories exceeds the number of observations by orders
of magnitude. The sparsity problem remains severe even if we accumulate several years of
data.

Next we verify the symptoms of sparsity in U.S. export data. As it is well known, there
are many potential trade �ows (country-product pairs) for which no shipment was observed.
But it is the categories with shipments that provide the stronger evidence. Table 2 reports
the �rst few elements of the distribution of shipments per country�product category with
observed shipments. More than one quarter of the categories had only one shipment in 2005.

5See Section 9.8 of Agresti (2002) for a summary discussion of statistical inference in sparse categorical
data.

6See the Data Appendix for more detailed description of the Census export data.
7That the Census collects all export shipments in any given year is irrelevant: the data remains a sample

of the underlying process. Clearly �ve minutes, or a week, would be deemed insu�cient. Whether a quarter,
a year, or �ve years are appropriate sampling periods depends on the resulting number of observations.
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The second most frequent shipment number is two. Sixty percent of categories had �ve or
fewer shipments in a year.

Number of shipments Frequency
1 28.7%
2 12.8%
3 7.8%
4 5.4%
5 4.1%
6-9 9.9%

10 and above 31.4%

Table 2: Number of shipments across product�country categories

2.1 The causes of sparsity

We have seen that disaggregated trade data shows signs of sparsity, suggesting the number
of observations is too low. Why are there no more shipments in a year's worth of trade data?
To understand this, we study the value of individual shipments and explore how it varies
with a number of observable covariates.8 We are interested in what determines whether
goods are shipped in small packages worth, say, $1,000, or in bulky containers worth, say,
$500,000. If the typical shipment is large, there will be few observations, and the resulting
dataset will be sparse.

There is substantial variation in the values of shipments. The typical shipment is rather
small; the median shipment size is $12,800. The vast majority, 94%, of products have a
shipment size below $50,000. The biggest shipment is a single shipment of �cargo aircraft of
an unladen weight exceeding 15,000 kg� to Singapore, in the amount of $245 million. The
smallest shipment is given by the reporting threshold of $2,500.

We �nd two major determinants of shipment value: the physical characteristics of the
product, and the transportation technology used. In fact, there is a clear distinction be-
tween products whose shipment value is given by the product's characteristics and those
for whose the transportation mode is important. Bulky and valuable products are mostly
shipped by themselves, hence shipment value is fully determined by the value of the product
itself. Smaller and less valuable products are grouped together in batches. The value of
these batches show some (quantitatively small) variation depending on the transportation
technology used.

Much of the variation in shipment size is explained by product characteristics. A regres-
sions of log shipment value on product �xed e�ects yields an R2 of 0.37. Not surprisingly,
some products are bulky by their very nature. The biggest shipments include aircraft ($42
million), spacecraft ($5 million), tanker ships ($15 million) and �oating drilling platforms ($5

8We use the monthly �U.S. Exports of Merchandise� DVDs published by the Census Bureau in its original
detail: broken down by districts of origin, month of shipment and mode of transport. See Appendix for
details.
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million). Some products are inherently divisible but storage and transportation limitations
make it unpractical to do so. For example, the median shipment size of enriched uranium is
$13 million.

When we look at countable products (the ones that report �numbers,� �pieces,� �pairs,�
or �dozens� as the units of quantity), we can see how the price of the product is related to its
typical shipment size.9 Figure 1 plots the median shipment size of each indivisible product
(dollar per shipment, log scale) against the median price of the product (dollar per unit, log
scale). The 45-degree line corresponds to the case when the product is shipped by itself: the
typical value of the shipment is equal to the typical price tag of the product. The �gure also
reports a nonparametric curve estimating how shipment size depends on product price.

Figure 1: Shipment value and product price

The clear pattern emerging from Figure 1 is that products that are bulky and or highly
valuable (worth more than about $12,000) are generally shipped individually. The right-hand
side of the plot lines up very much with the 45-degree line.10 Among these bulky items, the
value of the shipment is fully determined by the value of the product itself.

There is a substantial variation of shipment value even within narrowly de�ned product
categories. These categories mask a tremendous amount of heterogeneity in the products

9Such products include, among others, bulky machinery and transportation equipment, but also smaller
items such as valves, integrated circuits and other parts; books, apparel, and live animals.

10When we sort by weight instead of prices, we get very similar results.
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included. Take, for example, �self-propelled combined harvesters,� a 10-digit product cate-
gory. As bulky and expensive machines (the median price tag is $155,000), harvesters are
typically shipped one by one. Yet, there is a substantial variation in the unit value of these
individual shipments, because the price tags of the machines themselves vary greatly. The
interquartile range of unit values is $45,000 to $320,000 for the previous example.

It is important to note that the typical �bulky� product is much smaller than a tanker
ship, a drilling platform or a combined harvester. The $12,000 threshold that is apparent
from Figure 1 is surpassed by practically all cars, most industrial equipment, and numerous
other products, accounting for a total of 45 percent of exports of countable products.

What happens to products worth less than $12,000? Products that are worth less than
$12,000 are shipped in batches of around $12,000, probably because it is not pro�table to
send low-value shipments. For these products, on the left-hand side of Figure 1, we see little
variation in shipment value. That variation can be explained by the physics and economics
of transportation. For example, men's shirts (an indivisible, but low-value product) are
typically shipped in containers, and it is not worth to ship a container that is half empty. In
fact, the same product is shipped in bigger batches if shipped by sea than if shipped by air.

We explored how shipment size depends on the mode of transportation, and some basic
characteristics of the destination country (its size, level of development and distance to the
U.S.). Shipments by air are 36 percent smaller than shipments by ground (the reference
category). In contrast, shipments by sea are 36 percent larger. Given the physical capacities
of vessels, trucks, and airplanes, these di�erences are not surprising. Shipment sizes are not
signi�cantly correlated with GDP per capita of the destination country, nor its distance to
the U.S. There is a weak correlation with country size, but is quantitatively very small.11,12

Our overall assessment is that, while logistics play a role in determining the size of
shipments, the variation generated by di�erences in transportation and storage are small
and uncorrelated with typical economic variables of interest. That is, for most questions in
international trade, the speci�cs of the transportation technology can be safely ignored.13

More importantly for our purposes, because the economic environment matters so little for
shipment size, we are con�dent that trade datasets from other countries or other years will
su�er from the same sparsity problem.

11As an illustration, we consider shipments to Germany and Belgium. Conditional on the type of product
and the mode of transport, Germany receives only 4 percent bigger shipments. For the median product,
which has a shipment value of $12,800, the di�erence is only $500.

12The results are very similar if we measure the size of shipments by their weight rather than their
value. The only di�erence is that countries adjacent to the U.S. (Canada and Mexico) receive lower-weight
shipments.

13Logistics, though, can play a role at the aggregate level. Alessandria, Kaboski, and Midrigan (forthcom-
ing) show how inventory building a�ects the response of trade to large devaluations. Logistics also play a
crucial role for a number of other questions, such as timeliness (e.g., Evans and Harrigan, 2005 and Djankov,
Freund, and Pham, 2006) and market power of intermediaries (Hummels, Lugovskyy and Skiba, 2009).
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3 A model of balls and bins

We model the assignment of export shipments to categories as balls falling into bins. The
balls-and-bins model reproduces the structure inherent in disaggregate trade data. A trade
�ow (such as total exports from the U.S. to Argentina, or total exports of a given �rm) is
composed of a �nite number of shipments, each of them a discrete unit of observation (the
balls). Every shipment has been classi�ed into mutually exclusive categories, for example,
into one of the 10-digit Harmonized System product classi�cations (the bins).

Formally, let n ∈ N be the number of balls (observations). Let K ∈ N be the number of
bins (categories), each of them indexed by subscript i ∈ {1, 2, · · · , K}. The probability that
any given ball lands in bin i is given by the bin size si, with 0 < si ≤ 1 and

∑K
i=1 si = 1.

Thus where a ball lands is independent of the number and location of the other balls.
The state of the system is given by the full distribution of balls across bins, {x1, x2, · · · , xK}.

Clearly, this distribution is a random variable. Since we are primarily interested in the �ex-
tensive margin,� that is, the split between empty and non-empty bins, we de�ne di to be an
indicator variable that takes the value of 1 if bin i is non-empty, xi > 0, and 0 otherwise.
The �intensive margin� will be given by the number of balls per non-empty bin.

Figure 2 shows that the balls-and-bins model looks as simple as it sounds. Figure 1A
depicts �ve bins, ordered by size. Figure 1B shows a particular realization after throwing
seven balls. Bins 3 and 5 are empty and thus we have d3 = d5 = 0.
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Figure 2: Balls and bins

We can derive the key moments of the model analytically. For given bin sizes {s1, s2, ..., sK},
the joint probability of a number of balls {x1, x2, ..., xK}, is given by the multinomial distri-
bution,

Pr(x1, x2, ..., xK) =
n!

x1!x2! · · ·xK !
sx1
1 s

x2
2 · · · s

xK
K ,

where n =
∑K

i=1 xi. Note that, given a total number of balls n, the particular number of
balls in two given bins, xi and xj, are not independent random variables. A ball falling in
bin i is a ball less falling elsewhere, so it reduces the expected number of balls in bin j.

The model has a known probability distribution for the extensive margin. After dropping
n balls the expected value of di is the probability that bin i receives at least one of those:

E(di|n) = 1− Pr(xi = 0|n) = 1− (1− si)n.
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Each ball has a (1−si) probability of landing elsewhere. Where a ball lands is an independent
event, therefore the probability that none of n balls fall in a given bin i is (1−si)n. Obviously,
as the number of balls increases, it is less and less likely that any given bin remains empty.
In the limit, as n→∞, the probability Pr(xi = 0|n) is zero for all bins i ∈ K.

We denote the total number of non-empty bins by k,

k =
K∑
i=1

di.

Clearly, k is a random variable itself with k ∈ {1, 2, ..., K}. Since the number of non-empty
bins is a sum of random variables, we easily obtain that

E(k|n) =
K∑
i=1

[1− (1− si)n] . (1)

This is our key statistic out of the balls-and-bins model. We will use it to derive many
of the stylized facts on the extensive margin, both at the country and at the �rm level.
The comparative statics with respect to the number of balls are as one would expect: more
shipments increase the expected number of non-empty bins. Note that the model is very
stark in its prediction as the number of shipments grows large: the number of empty bins
converges almost surely to zero.

The expected number of non-empty bins also depends on the distribution of bin sizes.
Two bins of equal size �ll up very fast: toss a coin ten times and with almost absolute
certainty the coin will have turned heads some times and tails some others. But if a bin is,
say, 10 times the size of the other, then a lot of balls may be needed to hit the small bin.
This property of the model will play an important role later, as in many of the quantitative
exercises the distribution of bin sizes is particularly skewed.

Formally, the expected number of non-empty bins (1) is convex in si for all n ≥ 2. This
implies that as we even out a bin-size distribution the expected number of non-empty bins
increases.

Proposition 1. Let {si} be a bin size distribution and let

{s̃i} = α{si}+ (1− α)1/K (2)

for α ∈ [0, 1]. Then for all n ≥ 2 the expected number of non-empty bins under {s̃i} is not
less than under {si}.

Figure 3 plots the expected number of non-empty bins against the number of balls for
5 symmetric bins. The �rst few balls fall into distinct bins almost surely. Because of
that, as long as balls are few, the number of �lled bins is close to the number of balls and
the relationship is essentially linear. In other words, most adjustment is on the �extensive
margin.� As the number of balls increases, it is more and more likely that balls fall in
non-empty bins, and the number of �lled bins trails the number of balls.14 Eventually, all

14The �rst ball falling to a non-empty bins comes very early, roughly in proportion to the square root of
the number of bins,

√
K. This is sometimes known as the �birthday paradox:� it takes only 23 balls before

any one of 365 equal-sized bins will contain two or more balls with probability 1/2.
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bins get �lled, and the relationship �attens out. The remaining balls can only add to the
�intensive margin.� More formally, as n → ∞, the number of non-empty bins converges to
K.

1
2

3
4

5
E

xp
ec

te
d 

nu
m

be
r o

f b
in

s 
fil

le
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of balls dropped

Figure 3: The extensive margin

In some occasions we will focus not on the extensive margin but on zeros, that is, the
number of empty bins. It is, of course, trivial to derive the corresponding statistic:

K − E(k|n) =
K∑
i=1

(1− si)n.

This is clearly decreasing in the number of balls, n.
We are also interested in the proportion of �rms that sell only one product or serve only

one country. To this end we derive the probability that a single bin contains all the balls or,
equivalently, that exactly one bin is non-empty. Each ball had si probability of falling into
bin i, so with probability sni all balls fell in bin i. Of course this could happen to any of the
K bins, but they are mutually exclusive events. Hence,

Pr(k = 1|n) =
K∑
i=1

sni . (3)

The probability of a single non-empty bin decreases with the number of balls, n, and increases
with the dispersion of bin sizes. Again, the model becomes degenerate as the number of balls
grows: the probability of a single non-empty bin rapidly converges to zero.
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3.1 Aggregate Statistics

So far we have derived the relevant moments for a single trade �ow. Often, however, we
will be interested in aggregate statistics that involve many trade �ows. For example, we will
look at the fraction of empty product categories for total U.S. exports as well as how this
fraction varies across destinations.

In order to derive aggregate statistics we need to work with the dataset as a whole. The
key di�erence is that each shipment is now classi�ed along many dimensions. For example,
in a dataset containing all U.S. export each shipment is given one HS code as well as one
export destination out of 229 di�erent countries.

We introduce a two-dimensional version of the balls-and-bins model, where each shipment
is randomly assigned a classi�cation in two systems, with T and K categories.15 Visually,
one can think of throwing balls over a T by K grid of bins as in Figure 4. Each classi�cation
system comes with its size distribution, v1, v2, ..., vT and s1, s2, ..., sK , which in Figure 4 pin
down the size of rows and columns, respectively. The probability of a given ball falling in
the bin (i, j) is visj so the ball is randomly and independently allocated across classi�cation
systems.  
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Figure 4: Balls and bins: T by K case

There is, conceptually, nothing di�erent from the previous case: we can always re-arrange
the grid into a row of bins of length TK. We can thus use the formulas derived before. For
example, if we are interested in the expected total number of non-empty bins after throwing
n balls, we have that

E(k|n) =
T∑
j=1

K∑
i=1

[1− (1− visj)n]. (4)

The advantage of the two-dimensional version is that it allows us to easily work with
conditional moments, for example, the number of empty product bins for a given country.
For each realization of ball throws there will be a number of balls in each row and in each

15It is also easy to extend the model to higher-dimensional classi�cation systems.
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column, denoted n1, n2, ..., nT and m1,m2, ...,mK , respectively. (Note that ni or mj may be
zero.) Figure 5 illustrates. We can then ask the distribution of balls across columns 1, 2, ..., K
within a given row with nj balls. Since the classi�cation in each system is independent, this
is equivalent to the exercise we started the section with. Highlighted in Figure 5 is row j = 4.
It is the same as in Figure 2, we only need to substitute n by n4.
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Figure 5: Balls and bins: T by K case

More interestingly, we can compute the statistics of interest given a distribution of balls
n1, n2, ..., nT across rows. This will allow us, for example, to derive how the fraction of zero
product-level bilateral �ows varies across U.S. export destinations using the actual aggregate
export �ows. As discussed above, the conditional statistics for any given row are as in the
�rst version of the model. Let kt denote the number of non-empty bins in row t. We can
thus easily construct the distribution of the expected number of non-empty bins per category
t ∈ T using (1):

E(kt|nt) =
K∑
i=1

[1− (1− si)nt ], (5)

for nt ∈ {n1, n2, ..., nT}. The expected total number of non-empty bins given {n1, n2, ..., nT}
is thus

E(k|n1, n2, ..., nT ) =
T∑
j=1

K∑
i=1

[1− (1− si)nj ]. (6)

It is important to note that, since {n1, n2, ..., nT} is a random variable, conditional aggregate
statistics will not coincide with the corresponding unconditional expectation E(k|n) with
n =

∑T
j=1 nj.

Similarly, we can compute the probability of a single non-empty bin for each row using
(3). Then we can derive the proportion of rows which are expected to contain a single
non-empty bin. Since the number of empty bins is independent across rows,

Pr(kt = 1|n1, n2, ..., nT ) =
1

T

T∑
j=1

K∑
i=1

s
nj

i .
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In practice we will sometimes approximate the distribution of balls across rows {n1, n2, ..., nT}
with some parametric distribution. Appendix A shows how to compute aggregate statistics
in this case. The Appendix also describes how to compute the fraction of balls that are
expected to fall into single non-empty bin rows: this is useful when we want to derive the
fraction of exports originated in single-product or single-destination exporters.

4 Zeros in product-level trade �ows

The �rst data pattern we explore is the prevalence of product-level zeros (i.e., missing trade
�ows) in country-level exports. In other words, we look at the extensive margin of products
when the units of observation are countries. We later discuss �rm-level evidence.

We also take the chance to carefully describe how we map the data to the balls-and-bins
model and back. The methodology is essentially the same for every exercise in the paper.

4.1 The facts

Baldwin and Harrigan (2007) recently reported that most potential destination-country prod-
uct combinations are missing in U.S. exports. In 2005, the U.S. exported 8,867 di�erent 10-
digit Harmonized System categories to 229 di�erent countries. Of these 2,030,543 potential
trade �ows, 1,666,046 (or 82%) were missing.16 In other words, the average country only
bought 18% of the 8,877 products the U.S. exports. Helpman, Melitz and Rubinstein (2007)
look at the country-level zeros in the gravity equation. Of all potential country pairs, only
about 50% have positive trade in either direction.17

Empirical regularity 1. Most of the potential product-country export �ows are zero �
82% of them in the U.S.

Other levels of aggregation lead to a similar incidence of zeros. Table 3 reports the
incidence of zeros for four classi�cation levels. Zeros only stop being prevalent at the very
broad, 2-digit level.

Classi�cation Number of bins Incidence of zeros
10-digit 8,877 82%
6-digit 5,182 79%
4-digit 1,244 66%
2-digit 97 36%

Table 3: The incidence of zeros under di�erent classi�cations

Baldwin and Harrigan (2007) then report how the incidence of zeros relate to the size
of the importer and its distance to the U.S. Larger countries that are closer buy a larger

16Haveman and Hummels (2004) report a similar incidence of zeros for imports.
17Hummels and Klenow (2005) also look at the product-margin of aggregate exports. They have a di�erent

measure of the extensive margin.
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variety of products. Here we replicate a regression close to their speci�cation. For the
top 99 trading partners of the U.S., we regress the incidence of a positive export �ow on
real GDP of the importer, real GDP per capita, and the distance of the importer from the
U.S. Distance is divided in the same categories as in Baldwin and Harrigan (2007). We use
a linear probability model, so coe�cients can be understood as marginal e�ects.

Non-zero
trade �ow

Real GDP
0.081***
(0.007)

Real GDP per capita
0.025**
(0.009)

Distance = 0
0.330***
(0.060)

0 < distance < 4000km
0.259***
(0.027)

4000 < distance < 7800 omitted

7800 < distance < 14000
0.006
(0.033)

Distance > 14000
0.054
(0.037)

Observations 877,833
Clusters 99
R2 0.24

Table 4: Non-zero �ows and gravity � The data (Baldwin and Harrigan, 2007)

Table 4 reports the results.18 Larger countries are more likely to import any given
product. The same is true for richer countries. The incidence of non-zero �ows decreases
with distance: closer countries have more non-zero �ows than farther countries (the omitted
category is the intermediate distance).

Empirical regularity 2. The incidence of non-zero product exports increases with destination-
country size and decreases with distance.

4.2 From the data to the model

In order to map the balls-and-bins model to the data, we proceed as follows. The trade �ow
of interest is the total U.S. exports to a given country, that is, we will have as many trade
�ows as destination countries (229). We measure the number of shipments going to a country
to calibrate the number of balls. For example, Canada (the biggest importer) received 7.4

18Standard errors are clustered at the country level. These results are comparable to Table 4 of Baldwin
and Harrigan (2007). The coe�cients are similar, but not identical, potentially due to somewhat di�erent
real GDP measures.
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million shipments in 2005. Equatorial Guinea, the median buyer of U.S. exports, had 2,641
shipments.

The bins correspond to the 8,867 10-digit HS categories in which the U.S. exports at all.
The size of each bin (si) is the share of each HS code in total U.S. exports in 2005. That
is, we divide the number of export shipments in a given HS code with the total number of
shipments (21.6 million).19

We then calculate the expected number of non-empty bins for each country using the
previous formula (1),

E(kc|nc) =
8867∑
i=1

[1− (1− si)nc ],

where nc is the number of balls for country c and kc is the number of non-empty HS categories
in exports to country c. The expected number of non-empty bins overall is then

E(k|n1, n2, ..., n229) =
229∑
c=1

kc.

Note that we are computing the expectation conditional on the number of export shipments
from the U.S. to each country. To retrieve the incidence of zeros we only need to substract
from and divide by the appropiate number of categories; 8,867 if we are looking at the zeros
for a particular trade �ow, or 229×8,867 for overall U.S. exports.

The assumption underlying this calibration is that each destination country would buy
the same basket of American products in exactly the same proportions. The only di�erence
across countries is that smaller countries (such as Equatorial Guinea) have a smaller sample
of shipments�drawn from the same distribution�than larger ones (such as Canada). Most
trade theories are concerned with the di�erences in the structure of trade across countries:
our calibration provides a neutral, atheoretical benchmark.

4.3 The model's predictions

We �nd that indeed most of potential product-level bilateral �ows are zero in the model.
The expected share of zeros is 72%, surprisingly close to the data (82%). That is, seven out
of every eight zeros are to be expected given the sparsity of the data. Table 5 reports the
predicted fraction of zeros for other levels of sectoral aggregation. The model's predictions
track the observed incidence of zeros pretty well at all levels.

Moreover the model matches quantitatively the pattern of zeros across �ows in the data.
To show this, we plot the number of exported products for each destination country against
the total number of export shipments to that country in Figure 6. The dots represent the
actual number of products in the data, the line is the predicted number of non-empty bins
for each country. We already know that the balls-and-bins model somewhat underpredicts
zeros, hence overpredicts the number of exported products, but the shape of the relationship
to total exports is strikingly similar.

19We ignore the 121 HS codes for which we did not observe any shipment in 2005. It is possible to account
for the missing bins with a simple speci�cation: if anything, ignoring the missing bins reduces the expected
fraction of zeros in the model.
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Classi�cation Number of bins Data Balls and bins
10-digit 8,867 82% 72%
6-digit 5,182 79% 68%
4-digit 1,244 66% 52%
2-digit 97 36% 23%
Section 21 16% 10%

Table 5: The incidence of zeros under di�erent classi�cations
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Figure 6: The number of shipments and the number of products

Zeros are more likely to occur in small export �ows (those with few balls). This already
suggests that non-zero �ows may follow a gravity equation, as total export �ows are well
known to adhere to gravity. We then try to replicate the gravity speci�cation in Baldwin and
Harrigan (2007). We take the predicted probability of a non-zero �ow (1 − (1 − si)nc) and
regress it on the gravity variables such as country size and distance.20 We emphasize that
the balls-and-bins model has nothing to say about gravity, but given that the total number
of balls (nc) is highly correlated with the gravity variables, we may �nd some signi�cant
correlations.

The second column of Table 6 reports the results. For convenience, the �rst column
repeats the regression on non-zero �ows in the data. Bigger and closer countries are more
likely to have a non-zero �ow under the balls-and-bins model, just as in the data. Moreover,
the magnitudes of the coe�cients are surprisingly similar. The only exception are the two
countries bordering the U.S. (�distance= 0�), Canada and Mexico. These seem to import

20We take the distance categories from Table 3 of Baldwin and Harrigan (2007). Real GDP is taken from
the World Development Indicators.
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more HS codes in the data than under the balls-and-bins model.

Non-zero
trade �ow

B+B
model

Real GDP
0.081***
(0.007)

0.100***
(0.008)

Real GDP per capita
0.025**
(0.009)

0.036***
(0.010)

Distance = 0
0.330***
(0.060)

0.210***
(0.032)

0 < distance < 4000km
0.259***
(0.027)

0.275***
(0.032)

4000 < distance < 7800 omitted omitted

7800 < distance < 14000
0.006
(0.033)

-0.014
(0.035)

Distance > 14000
0.054
(0.037)

0.045
(0.048)

Observations 877,833 877,833
Clusters 99 99
R2 0.24 0.46

Table 6: Non-zero �ows and gravity � Balls and bins

Quantitatively, the dispersion in �ow and bin sizes plays an important role. In both cases
the distribution is skewed, that is, some product categories and U.S. trade partners are very
large, but the vast majority of product categories and trade partners are very small. It is
precisely for the combination of latter (small country export for a small product category)
than we have the missing trade �ows in the data. And it is precisely for smaller bins and
fewer balls that the model predicts the most zeros.

Let us start with the distribution of bin sizes. The size of the average bin is 1/8867 =
1.13 × 10−4. However, the size distribution across bins is rather skewed. The size of the
median bin is 2.2×10−5, about �ve times smaller than the average. For comparison, we �nd
53% zeros if we assume that all 8,867 HS codes have the same size.

What is the source of this skewness across product categories? Category sizes may partly
re�ect the export specialization of the U.S., as higher exports of a product make that product
category bigger. However, they are also a�ected by the nature of the classi�cation system. As
an illustration, we �ag all product categories that contain either of the words �parts,� �other,�
and �n.e.s.o.i.� (for �not elsewhere speci�ed or included�) as catch-all categories. These are
probably heterogeneous aggregates of various products. Of the 100 biggest categories, 69 are
such catch-all. In contrast, only 8 of the 100 smallest categories are catch-all.

It is important to emphasize that it is the dispersion in bin sizes, and not some particular
bins being large and other small, that leads the balls-and-bins to predict so many zeros. To
check for this we re-run the model with the bin-size distribution calibrated to the HS shares
of U.S. exports to Canada and Mexico only. These two trade �ows contain very few zeros
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and so the size distribution of bins would not be a�ected by the large incidence of zeros
in the data. The predicted fraction of zeros under these bin sizes is 76%. We �nd similar
predictions if we use the shares of other countries or some exogenous bin-size distribution
with skewness.

The skewness of trade �ows is also important. Canada alone accounts for more than one
�fth of total U.S. exports; the top �ve U.S. trade partners account for more than a half of the
total. In order to shut down any shipment size variation across destinations, we computed
the fraction of zeros by dividing export �ows (in dollars) by the average shipment value,
$36,000. The fraction and pattern of zeros are virtually unchanged.

We also replace the actual trade �ows with the trade �ows predicted by the gravity
equation in Table 4. We �nd 66% zeros, the number being slightly lower than the baseline
result mainly due to the reduced country sample. This exercise also allows us to pin the key
determinant of the skewness in trade �ows. Assuming distance has no e�ect on trade �ows
reduces the number of zeros only slightly to 64%. In contrast, assuming all countries have
identical size brings the fraction of zeros down to 30%. Thus it is the skewness in country
size, through its impact on export �ows, that it is most important for the calibration.

4.4 What have we learnt?

What do we conclude for this exercise? First, the results suggest that the economic forces
shaping the distribution of trade across products and destinations are su�cient to explain
the prevalence and patterns of zero in U.S. exports. Thus these facts are not useful to
identify theories speci�cally about the extensive margin. Section 8 discusses two models
with radically di�erent implications for the number of zeros under dense data, that is, a
very large number of observations. Both models are capable to match the aggregate trade
patterns, and are calibrated to do so. We show then how these two models have virtually
identical predictions regarding zeros under sparse data. It is worth recalling that the balls-
and-bins model predicts no zeros at all for dense data. Unfortunately the sparsity problem
does not go away by combining some years of data or looking at six digits HS codes.

On a more positive note, we note that a quantitative evaluation of the models could elicit
some identi�cation. We underpredict the fraction of zeros as well as the impact of distance.
Both e�ects are relatively small so we would need trade models capable of matching the data
with precision. We also believe there are other �cuts� of the data that will be more robust
to sparsity. Later we will have an example of this for �rm-level data.

5 Zeros in �rm-level trade �ows

We can also ask about zeros in �rm-level trade �ows: we �nd a remarkably similar pattern.
Bernard, Jensen and Schott (2007) report that the average exporting �rm in 2000 shipped
goods to only 3.5 countries from a total of 229.21 In other words, 98 percent of potential
�rm�country trade �ows are zero.

21Bernard, Jensen and Schott (2007), page 11.
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Again, the zero trade �ows follow a well-de�ned spatial pattern. Firm-level export zeros
are more frequent for small, distant countries. In other words, the number of �rms exporting
to a particular destination increases with country size and decreases with distance.

Table 7 reproduces column 2 of Table 6 from Bernard, Jensen, Redding and Schott (2007).
The log number of exporting �rms is regressed on log GDP of the destination country and
its log distance from the U.S.

Log number of
exporting �rms

Log GDP
0.71***
(0.04)

Log distance
−1.14***
(0.16)

Observations 175
R2 0.74

Table 7: Exporting �rms and gravity � The data (Bernard, Jensen, Redding and Schott,
2007)

We can calibrate the balls-and-bins model similarly to the previous exercise. The key
di�erence is that now we need to create bins for �rms as opposed to product categories. We
take the number and sizes of exporting �rms as given. In other words, we only try to explain
the allocation of exporting �rms across destination markets, we do not analyze the question
of which �rms export. That is done in Section 7.

The number of balls per destination country are again taken by counting the shipments
going to that country. The total number of bins equals the number of exporting �rms,
167,217.22 Because there are many more �rm bins than we had product bins, we already
expect that many more bins remain empty.

The size distribution of �rm bins is calibrated as follows. We take the size distribution of
�rm-level export �ows from Bernard, Jensen and Schott (2007). We take a look at a Lorenz
curve of exports: What fraction of exports is accounted for by the top 1, 5, 10, 25, and 50%
of exporters? Table 8 reports the fraction of �rms and the average exports in each of these
percentile bins.

There is a striking skewness in the distribution of exports across �rms. While the average
�rm exports $5.11 million, the bottom half of exporters export only $20,500.23 The top 1%
of exporters account for 80.9% of total exports.

We approximate the distribution of exports with a lognormal distribution with mean
µ = 11 and standard deviation σ = 3. This matches the mean exports of $5.11 million and
has a median exports of $59,300. The lognormal distribution does a good job in matching
the Lorenz curve reported in Bernard, Jensen and Schott (2007).24 The size distribution of

22Bernard, Jensen and Schott (2007), Table 2.
23Note that this is conditional on having positive exports. A large fraction of �rms have zero exports and

are omitted from this analysis.
24A Pareto distribution does similarly well and leads to similar results.
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Export percentile Fraction of �rms Average exports
99− 100 0.01 $413 million
95− 99 0.04 $15.5 million
90− 95 0.05 $3.37 million
75− 90 0.15 $886,000
50− 75 0.25 $184,000
0− 50 0.50 $20,500
Total 1.00 $5.11 million

Table 8: The distribution of �rm-level exports � Bernard, Jensen and Schott (2007)

bins will then inherit this lognormal distribution with the additional normalization that the
bin sizes add up to one.

The underlying assumption here is that all countries could be served by all the exporting
�rms, only that small countries draw a smaller sample of shipments and may end up with
fewer �rms. We assume no systematic sorting of �rms into destination markets, hence this
exercise provides a natural benchmark.

The balls-and-bins model predicts that 96 percent of the potential �rm×country trade
�ows is going to be zero. This is very close to the 98 percent we see in the data. What
about the distribution of �rm zeros across destinations? For each country, we can calculate
the expected number of non-empty �rm bins. We can then regress (the log of) this number
on GDP and distance.25

Table 9 presents the results. For convenience, we reproduced the regression estimate by
Bernard, Jensen, Redding and Schott (2007) in the �rst column.26 The coe�cient estimates
in the simulated regression are similar to the ones in the actual data. Just as in the data,
bigger, closer countries are served by more exporters: the more balls are thrown, the less
bins will be left empty.

Log number of
exporting �rms

Log number of
non-empty bins

Log GDP
0.71***
(0.04)

0.56***
(0.03)

Log distance
−1.14***
(0.16)

−0.95***
(0.13)

Observations 175 181
R2 0.74 0.75

Table 9: Exporting �rms and gravity � Balls and bins

25We take GDP (in current-price USD) from the World Development Indicators. We take distance from
the bilateral distance dataset of CEPII.

26Because we may have used somewhat di�erent data sources, especially for distance, we have 181 des-
tination countries in contrast to the 175 countries of Bernard, Jensen, Redding and Schott (2007). The
di�erences in coverage, however, are likely very small.
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Interestingly, the skewness in �rm exports does not play as big a role as it did for product
bins: given that there are so many, most �rm bins are going to remain empty anyway. We
calibrated �rm bins to the distribution of overall sales in manufacturing (Table 11), which
resulted in 93% of �rm�country bins remaining empty and a 0.60 elasticity of the number of
�rms exporting to a country with respect to country size. When using 167,217 symmetric
�rm bins, we got 82% empty bins and an elasticity of 0.72. The results seem to be driven
by the fact that the number of exporting �rms is far larger than the number of shipments
for a typical country. (Recall that the median country received only 2,641 shipments.)

Again, this does not imply that the assignment of �rms to destination markets is indeed
random. The only conclusion we can draw is that the variation in market size is so huge
given the sparsity of the data that any model that accounts for both can match the frequency
and pattern of zeros in �rm-level trade �ows.

6 Firm-level export patterns

We now turn to evidence on the extensive margin at the level of individual exporting �rms.
In this section we ask how many products �rms export and how many destinations they
serve. Note that the universe of interest is the set of exporting �rms, because the empirical
facts are usually reported only for �rms that have some exports.27 This way we can use the
balls-and-bins model to understand these moments despite the split between exporters and
non-exporters being very di�erent from random (as we will see in the next section).

The key stylized facts about the extensive margin at the �rm level are that while most
�rms exports a single product to a single country, the bulk of exports is done by multi-
product, multi-destination exporters.28

To start with, 42% of the �rms export only a single product, de�ned by the 10-digit HS
code. While being a little less than half of the total �rms, they account for a tiny fraction
of total exports, 0.4%.

Empirical regularity 3. 42% of �rms export a single product (de�ned as a 10-digit HS
code). These �rms account for only 0.4% of exports.

A similar pattern exists for �rms that export to a single country. These �rms account for
a little less than two thirds of the total, but still amount to a small fraction of total exports.

Empirical regularity 4. 64% of �rms export to a single country. These �rms account for
only 3.3% of exports.

But perhaps the most striking fact corresponds to the fraction of �rms that export a
single product to a single country. These �rms represent 40% of the total exporters yet
account only for a miniscule 0.2 % of total exports.

27Though export datasets can be merged with domestic data such as in Bernard, Jensen, and Schott (2007)
and Eaton, Kortum and Kramarz (2004).

28The following facts are for U.S. merchandise trade in 2002, reported in Bernard, Jensen, Redding and
Schott (2007), Table 4.
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Empirical regularity 5. 40% of �rms export a single product to a single country. These
�rms account for only 0.2% of total exports.

We use the same bin sizes as for the aggregate �ows to calibrate the bins. The 10-digit
HS codes are calibrated to the aggregate export share of each HS code in total U.S. exports
in 2005. The size of each country bin is calibrated to the share of that country in total
U.S. export �ows.29 The following table lists the �ve biggest country bins.

Country Share
Canada 0.341
Mexico 0.189
Japan 0.041
United Kingdom 0.035
Germany 0.030

Table 10: The �ve biggest country bins

We assume each �rm has a di�erent number of export balls. Because we do not have
data on the number of shipments at the �rm level, we calibrate the number of balls to the
distribution of exports across �rms, reported in Table 8. We approximate the distribution
of exports with a lognormal distribution with µ = 11 and σ = 3. This matches the mean
exports of $5.11 million and has a median exports of $59,300. Corresponding to the average
size of export shipments in 2000, we take each $36,000 of export sales to represent one ball,
rounding up. Because of the extreme skewness in the distribution of exports by �rm, many
�rms will end up with just one export ball.

The predicted fraction of single-product exporters is 43%. This is very close to the
actual fraction in the data (42%). The predicted fraction of exports coming from single-
product producers is 0.3%, close to the actual 0.4%. Let us see how the balls-and-bins model
manages to reproduce the fraction of single-product exporters with such precision. In the
model practically all single-product exporters have only one ball. This is because with 8,867
HS codes, the second ball is very likely to fall into an HS category di�erent from the �rst one.
Only 0.3% of two-ball exporters are single-product exporters. The key to understanding the
incidence of single-product exporters is that there are plenty of very small exporters.

The model underpredicts the data with respect to the fraction of single-country exporters,
44% in the model for 64% in the data. The reason is that the fraction of single-country
exporters falls sharply with �rms with the second and third balls. For example, the model
predicts that only 11% of �rms with two shipments export both of them to Canada (and
less than 4% to Mexico). We conjecture that the fraction of relatively-large exporters that
export only to Canada (and possibly Mexico) is signi�cantly higher in the data than in the
model, indicating possibly large market- or proximity-e�ects.

Last but not least, the balls-and-bins is right on the spot with respect to the fraction of
single-product, single-country exporters, and the small fraction of exports that they account

29The assumption here is that the structure of aggregate exports did not change too much between 2002
and 2005.
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for. Note that a fraction of 40% of single-product, single-country exporters implies that most
single-product exporters are also single-country exporters, and vice versa. Is this surprising?
The balls-and-bins model makes it clear the fact follows from the presence of many small
exporters. Almost all single-product exporters have only one ball, and these are all going
to be single-country exporters. And this exactly what we see in the data. The conditional
probability of single-country exporters among single-product exporters is 99.9% in the model,
close to the 96% in the data.

Our results suggest that the skewness of the exporter distribution is key to understand the
split between single-destination, single-product �rms and the rest. In particular, the left tail
of the export distribution�the small exporters�is what enables the balls-and-bins model to
match the data. This property of the distribution is not speci�c to exporters. For example,
our results do not change when we calibrate the model to match the observed skewness
in domestic sales for the U.S. In contrast, the balls-and-bins model underpredicts the data
once we censor the left tail. Interestingly, the right tail properties of the distribution have
little bearing in the results as virtually all �rms selling more than $100,000 are predicted to
be multi-country, multi-product exporters. We thus conclude that trade models capable of
matching the fraction of small exporters in the data will also be able to reproduce the �rm-
level export patterns discussed here.30 As we shall see in the next Section, the split between
exporters and non-exporters is not due to sparsity. There are thus strong economic forces,
yet to be fully understood, shaping the distribution of exporters and thus the �rm-level facts
discussed here.

7 Exporting �rms

We now move on to the di�erences between exporting and non-exporting �rms. It is a well-
established fact that exporters are few and they are signi�cantly larger than non-exporting
�rms.

According to Bernard, Jensen, Redding and Schott (2007), only 18% of manufacturing
�rms export at all. The fraction drops to about 3% when all �rms outside manufacturing are
included.31 Other studies have con�rmed the scarcity of exporters. Plant-level statistics also
fall in the same pattern. For the quantitative exercise, we stay with the fraction of exporters
among U.S. manufacturing �rms.

Empirical regularity 6. Exporters are few � only 18% of manufacturing �rms export in
the U.S.

The second fact is that exporters sell signi�cantly more than non-exporters � about 4.4
times more than non-exporters according to Bernard, Jensen, Redding and Schott (2007).
Again, �rms outside manufacturing and plant-level evidence reveal similar patterns.

Empirical regularity 7. Exporters are large � among U.S. manufacturing �rms, exporters
sell 4.4 times more than non-exporters.

30Most of the literature has not paid much attention to small exporters, with the exception of Arkolakis
(2009).

31See Table 2 in Bernard, Jensen, Redding and Schott (2007). The data is from the 2002 Economic Census.
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That exporters are few and they are larger than non-exporters have been con�rmed in
other datasets, in other settings, and with other measures of size.

We follow essentially the same steps as before to map the model to the data. The key
di�erence is that now the output �ow will include total sales, not only exports. We thus need
data on total sales per �rm in order to construct the distribution of balls (πn). Unfortunately
we do not have direct access to this data for the U.S. The Statistics of U.S. Businesses of the
Census for year 2002, though, reports the number and total sales of �rms in each of eight
size bins (see Table 11).

Size bin Fraction of �rms Average sales
0�$100,000 0.145 $55,600
$100,000�$500,000 0.305 $257,000
$500,000�$1 million 0.144 $718,000
$1�5 million 0.257 $2.26 million
$5�10 million 0.060 $6.84 million
$10�50 million 0.063 $19.3 million
$50�100 million 0.010 $56.4 million
over $100 million 0.015 $670 million
Total 1.000 $13.2 million

Table 11: The distribution of �rm sales in manufacturing � Census

As it is well known, there is enormous skewness in the size distribution of �rms. Whereas
59% of �rms sell less than $1 million, the average �rm sells $13.2 million. We approximate
the distribution of �rm sales by a lognormal distribution with µ = 13.2 and σ = 2.66.
This corresponds to median sales of $680,000 and average sales of $13.2 million. We also
experimented with �tting a Pareto distribution with similar results. In the 2002 Economic
Census, there were 297,873 manufacturing �rms. As before we obtain the number of balls n
per �rm by dividing its total sales by $36,000 and rounding up.32

To distinguish between exporters and non-exporters we only need two bins: one for
domestic sales, the other for foreign sales. Total receipts amounted to $3.94 trillion for man-
ufacturing �rms in the 2002 Economic Census. Exports of manufactured goods amounted
to $545 billion in 2002.33 That is, 13.9% of manufacturing receipts come from exports. This
pins down the size of the domestic bin at 0.861 and the size of the export bin at 0.139.

We �nd that exporters are much less common in the data than in the model: 74% of the
manufacturing �rms should be exporting according to the balls-and-bins model, compared
to 18% in the data.

It is easy to see why the model overpredicts the fraction of exporters. The probability
that a �rm with n balls of total sales does not export is

(1− s)n = 0.86n.

32In the previous section we used evidence on the average shipment value to pin down the �ball size.� We
have no direct equivalent for total sales.

33Bureau of the Census, FT-900, �International Trade in Goods and Services.� We converted all �gures to
2000 dollars.
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Among the smallest �rms, that is, with one ball, 14% of them export. This is already a
very high number given that only 18% of total manufacturing �rms export. It obviously gets
worse. Because where each ball ends up is independent of the distribution of existing balls,
each $36,000 has quite a high chance to end up going to a foreign market. Almost half of the
�rms with a paltry $100,000 of total sales should export. A median �rm has a 95% chance
to export. It is clear that this is not the case in the data: exporting is a more unlikely event
than the balls-and-bins model would indicate.

The unconditional probability of exporting is convex in the fraction of exports, s, so if
there is heterogeneity across industries, the aggregate economy will contain fewer exporters
than predicted by the average s. However, at the 3-digit level, this heterogeneity is rather
small, and does not change the exporting probability substantially.

It is reassuring that the balls-and-bins misses: we �rmly believe that the decision to
export is the key extensive margin in the trade data, and re�ect its very own economic de-
terminants. We can assess the economic signi�cance of the departure from the balls-and-bins
predictions by introducing a minimum scale requirement for exporters.34 More precisely, we
proceed to shut down the foreign-sales bins for which the balls-and-bins model predicts fewer
shipments than a threshold k∗. Note that where each shipment ends up is no longer inde-
pendent of the distribution of existing shipments: the minimum scale implies that whenever
we observe a shipment going abroad we expect this �rm to have a �disproportionate� share
of export shipments.

We �nd that in order to have a share of 18% exporters we need to set k∗ = 24, that is,
�rms predicted to have $850,000 or less in foreign sales must be taken to have zero export
sales. This is a very large number that leaves no doubt that there are signi�cant barriers to
export participation.35

The model's prediction for the exporter's size premium is also o�. Surprisingly, though,
the model overpredicts the size of exporters. That is, despite exporters being four �fths
of total �rms in the model for one �fth in the data, the model predicts that exporters are
34 times larger than non-exporters on average, while in the data they are �only� 4.4 times
larger. In terms of the exporter size premium, in log sales, the di�erence in the model is
3.53, for 1.48 in the data.36

To understand why exporters are larger under balls-and-bins than in the data, note that
balls-and-bins implies that the largest �rms export with a probability close to one. Even
the median �rm that has $660,000 dollars in sales, corresponding to 18 balls, exports with
probability 0.93. The skewness of the �rm sales distribution then implies that the average
�rm in the top half of the distribution is much larger than any of the non-exporters, who
mainly come from the bottom half. The fact that the size premium is smaller in the data
suggests the data has a weak sorting of exporters by size: exporters are smaller, not larger,
than expected. In other words, there have to be a substantial fraction of very large �rms
that do not export � in contrast with the model.

34Clearly we have economies of scale and Melitz (2003) in mind.
35For comparison purposes, we repeat the exercise for country-product trade �ows. In order to increase

the share of zeros from 72%�the balls-and-bins prediction�to 82%�the data�we only need to shut down
trade �ows below $40,000.

36In Appendix A we formally derive the exporter's size premium and include a parametric example.
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8 Weak identi�cation

Throughout the paper we have claimed that a stylized fact will fail to identify the relevant
economic theory if it cannot falsify the balls-and-bins model. In order to back this claim up,
we discuss two very simple models that di�er radically in their theoretical implications for
the extensive margin. We then derive the models' fraction of unobserved (product-country)
trade �ows under sparse data. In doing so, the mechanics of the balls-and-bins model will
become apparent. It is then no surprise that we �nd that both models have nearly identical
predictions.

8.1 A simple Krugman model

We start with a simple model with di�erentiated country varieties, loosely following Krugman
(1980) and Helpman and Krugman (1985). There are J distinct products, which we will
identify with HS-10 product codes in the data. Consumers in each country value consumption
bundles according to a Cobb-Douglas utility function

U =
J∑
j=1

(
Cj
)αj

where αj > 0 for all j and Cj is a composite of all countries' varieties of product j, given by
a constant elasticity of substitution (CES) subutility function,

Cj =

(
L∑
l=1

(
Cj
l

)ρ)1/ρ

.

The number of countries is L, and ρ = 1− 1
σ
is the CES parameter governed by the elasticity

of substitution, σ. We assume the elasticity of substitution is constant across products and
countries.

Let pjl be the price of the U.S. variety of good j that country l faces. The familiar CES
demand formulation for U.S. exports of product j by country l is

logXj
l = logαj + log Yl − (σ − 1)

(
log pjl − logPl

)
,

where Yl and Pl are the country l income and ideal price index respectively. We assume a
very simple speci�cation for trade costs, τl = τ0d

γ
l (where dl denotes the distance to country

l), and predict trade �ows with

logXj
l = κl + logαj + log Yl − (σ − 1)γ log dl (7)

where κl collects the constant terms across products and import destinations.
The speci�cation (7) embodies the gravity equation, so we know that the model can

match the pattern of U.S. trade across export destinations. We set the coe�cient on distance,
(σ − 1)γ, to 0.8 as reported by Anderson and van Wincoop (2003). We use real GDP for
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country income�see Section 4.3 for details with the data. For ease of exposition we exclude
multilateral resistance terms.37 The overall demand for product j is shifted by logαj, so the
model can replicate the skewness in trade �ows across product categories. We treat αj as a
�xed e�ect and let the sector composition of U.S. exports pin down the parameter values.

In the model all possible product-country trade �ows will be positive: the assumption
of di�erentiated products imply there are no perfect substitutes, and the CES demand is
positive for all �nite prices.

8.2 A simple model with �xed costs

We now introduce a �xed cost of exporting, so the model can generate zeros. The economies
of scale imply that the U.S. will export to a given destination only if the demand for the
particular product is large enough. We start by characterizing the potential U.S. exports in
product j to country l, X̃j

l . The demand structure is the same as in the previous model and
potential exports are then given by (7),

log X̃j
l = κ+ logαj + log Yl − (σ − 1)γ log dl.

There is a �xed cost associated with each product-country trade �ow, φ. As a result a U.S.
�rm will �nd it pro�table to export product j to country l only if X̃j

l ≥ φ/(1− ρ). If this is
the case, then actual exports are equal to the potential �ow, Xj

l = X̃j
l . Otherwise, there is

no trade in that particular category, Xj
l = 0. A richer model, as Melitz (2003), would allow

to calibrate the parameter φ to some dollar values. For illustrative purposes, we just set φ
such that half of the possible U.S. export �ows are zero. We maintain the previous values
for all remaining parameters, ensuring that if we set φ = 0, the �xed cost model boils down
exactly to the Krugman model.

8.3 Model predictions with sparse data

The previous models, and indeed most trade models, take the form of a set of continuous
trade �ows. That is, if we were to evaluate the models at di�erent frequencies, the predicted
export �ows would just scale up or down proportionately with the frequency. In this sense
trade in the models is similar to oil �owing through a pipeline at a constant rate.

The data, however, consists of a �nite number of observations, corresponding to the
transactions in a given time period, usually a year. We bridge the gap between the theory and
the data by re-interpreting the model's predictions as the likelihood that a given transaction
is included in a �nite sample. According to the model, the probability that a sample of one
shipment is a product j going to country l is

πjl =
Xj
l

X̄
.

37Including multilateral resistance terms, as well as a dummy for FTA countries (Canada, Mexico), did
not bring any substantial change in the results.
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where X̄ is the U.S. total exports as predicted by the model. This probability is a function
of the model's parameters and observable variables, like distance and GDP. In the Krugman
model, all probabilities are positive since Xj

l > 0. Under the �xed cost model, though, there
is zero probability to observe a transaction in certain categories: we call a trade �ow for which
πjl = 0 a fundamental zero. However, not all unobserved �ows will be fundamental zeros.
For a sample of n shipments, the probability of not observing a shipment in a particular
category is given by

Pr
(
X̂j
l = 0|n

)
=
(
1− πjl

)n
(8)

where X̂j
l is the realized trade �ow. If the model predicts a fundamental zero for exports

in product j to destination l, then clearly Pr
(
X̂j
l = 0|n

)
= 1 for all n. But we would

need an in�nite amount of observations to be completely sure that an unobserved �ow is a
fundamental zero, that is,

lim
n→∞

Pr
(
X̂j
l = 0|n

)
> 0 i� πjl = 0.

In a sparse data set, though, this asymptotic result is of little use.

We now proceed to compute the previous models' predictions for zeros with a sample of
n = 22× 106 observations, roughly the number of shipments in a year worth of U.S. exports.
For each model we derive the likelihood πjl for all trade �ows and then compute the expected
fraction of unobserved trade �ows. Table 12 collects the results of both models, both for
dense data (n = ∞) and sparse data (n = 22 × 106). For reference we also include the
predicted fraction of zeros for the balls-and-bins model.38

Dense data Sparse data

Krugman model 0 % 66 %
Fixed costs 50 % 67 %
Balls and bins 0 % 63 %

Table 12: Predicted fraction of unobserved product-level trade �ows

As Table 12 makes clear, the abundance of zero trade �ows in a sparse data set does not
provide a basis to favor the �xed cost model: the Krugman model, with no fundamental
zeros, has nearly identical predictions regarding the fraction of unobserved trade �ows. The
fraction of zeros in the data is around 66%. Simply put, for the vast majority of unobserved
trade �ows, we cannot tell whether it is a fundamental zero or just a trade �ow that we should
not expect to observe in a given year. In the Krugman model, the gravity equation predicts
that most trade �ows are tiny as the importing countries are small and distant. Hence these
trade �ows have a tiny, albeit positive, probability of being observed. Not surprisingly then,
most go unobserved in any given year. Why does the �xed cost model not predict many

38The fraction of zeros is smaller than reported in Section 4 mainly due to the reduced country sample.
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more zeros? The reason is that the model's fundamental zeros are exactly the trade �ows
that we should not expect to observe in the Krugman model either.

Changing the share of fundamental zeros in the �xed cost model does very little to the
predicted share of unobserved �ows. If we bring the �xed cost parameter down to zero, the
predicted fraction of zeros barely decreases one percentage point as the �xed cost model
boils down to the Krugman model. Increasing the share of fundamental zeros to 60% gets
the �xed cost model to predict 69% unobserved �ows.39

It is important to emphasize the role played by the gravity equation and the skewness
in product shares. Table 13 documents three alternative calibrations for both models. In
the �rst exercise we set γ = 0, so distance has no bearing on trade volumes. We then go
one step further, and completely shut down the gravity equation: all import destinations are
assumed to be of the same size and to be at the same distance from the U.S. Finally, in the
third calibration we impose symmetric product shares across U.S. exports.

Distance does not have a big impact in either model: the dispersion in country trade �ows
is reduced somewhat and the predicted fraction of unobserved �ows falls by 3 percentage
points in both models. Table 13 indicates that completely shutting down gravity does change
the results. In particular, the fraction of unobserved �ows in the Krugman model falls to
30%, as there are fewer trade �ows predicted to be tiny. In the �xed cost model only
fundamental zeros go unobserved. Hence in this case there is enough separation between
the two models so we could use the data to favor one or the other. Of course, this is not of
much use, because in this case neither model would match a key aggregate fact about trade
� the gravity equation. We could have easily rejected both models simply by looking at
the pattern of trade across destinations. Assuming symmetric product shares has a similar
e�ect, although in this case the di�erences in the predicted fraction of zeros are still small.

Dense data Sparse data

without distance γ = 0
Krugman model 0 % 63 %
Fixed costs 50 % 64 %

symmetric countries
Krugman model 0 % 30 %
Fixed costs 50 % 50 %

symmetric products
Krugman model 0 % 46 %
Fixed costs 50 % 50 %

Table 13: Predicted fraction of zeros for product-level trade �ows for alternative calibrations

39Both models have slightly higher fraction of zeros than the balls-and-bins model. The main reason is
that the gravity equation predicts country trade �ows that are somewhat more skewed than in the data.
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More observations help to improve the identi�cation across models. Unfortunately, they
do so at a painfully slow rate. With twenty years worth of U.S. export shipments, we would
still expect about one third of trade �ows to go unobserved in the Krugman model, while the
�xed cost model would predict 50% of zeros. Such long data spans may not be available to
researchers. In addition, it is then necessary to consider dynamics explicitly in the models.

We have discussed just two basic models, but it is straightforward to generalize the
procedure to any model and for di�erent moments in the data. When can we generalize the
results as well? We return to the balls-and-bins model to answer this question.

The reader would have recognized that the mechanics of the sampling process (8) is the
same as those of the balls-and-bins model. We can indeed view the balls-and-bins results as
the sampling of a quite special trade model with two de�ning properties:

1. It matches total category �ows, e.g., total exports per country, per product, per �rm...

2. It assumes no systematic relationship between �rms, products or countries.

For example, for product-country zeros, trade �ow probabilities (bin sizes) were calibrated to
match total trade �ows to each of the destination countries, as well as the product division of
exports. However, there was no relationship between products and countries � every country
had the same chance of buying any of the products. Similarly, for the single-product exporter
application, we took as given the total trade �ows by �rm. However, we did not assume any
speci�c matching between �rms and products.

If the balls-and-bins model �ts a particular fact on the extensive margin, we can be
con�dent that any model that satis�es property 1) will match the fact as well. Any model
that satis�es the gravity equation will be consistent with the pattern of product-country
zeros. Any model that generates the observed skewed �rm size distribution will be consistent
with the fraction and size of single-product exporters.

Most trade theories will not share property 2) with the balls-and-bins model.40 In fact,
most trade theories are concerned with systematic di�erences in the pattern of trade across
countries, across �rms etc. If the balls-and-bins model �ts a particular fact, this implies that
we can learn little about these systematic di�erences based on this particular fact.

Whenever the balls-and-bins model does not match a particular fact, however, models
will be able to do so by introducing some systematic relationship between �rms, products,
or countries. For example, the balls-and-bins model is unable to explain the small number
of exporters given the �rm size distribution. The model in Melitz (2003) is able to do so by
postulating a particular relationship between �rm size and access to foreign markets.

9 Conclusion

Categorical datasets do contain a lot of information, even if they are sparse. Ignoring the
sparsity, however, can lead one to mistake sampling zeros for structural zeros. Nowhere is

40The simple Krugman model does, but even the very simple �xed cost model does not.
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this problem more acute than in the analysis of the extensive margin in trade. We argued
that trade data are sparse, and we should expect many sampling zeros.

The balls-and-bins model provides a parsimonious and, more importantly, atheoretical
account of the sparsity in the data. The structure of the model parallels that of the data:
there is a given number of observed shipments, and each of them will be classi�ed into
a unique category; some trading partners are larger than others, and some products are
traded more often than others. This is indeed all the structure in the model. From there
the assignment of a shipments to a category is an independent and identically-distributed
random event. Independence also governs the construction of the bin sizes. For example,
the probability of a given country�product pair is just the product of the respective shares
in aggregate trade.

Thus whenever the balls-and-bins model matches a particular fact we will fail to identify
the relevant economic theory of the extensive margin in trade among those models that
match the data used in the calibration (e.g., gravity or export sales). Importantly, the balls-
and-bins model also works in the opposite direction: whenever the model fails to reproduce
a fact we know that strong economic forces are at play. In the paper we have discussed the
incidence of exporters among domestic �rms in some detail. Moreover, the balls-and-bins
model provides a quantitative benchmark so we can better evaluate models against the data.
For example, the data shows excess zeros in U.S. exports. We expect that a richer structural
model that accounts for sparsity could do an even better job at matching the empirical
patterns.

We hope that our approach can be used in future empirical work using massive micro-
level trade datasets. Recent transaction-level datasets are very detailed, and trade �ows are
typically broken down by �rms, 8 or 10-digit product codes, and destination countries.41 By
their very nature, these datasets are sparse in the sense that the number of observations
is low with respect to the number of categories of interest. Indeed the sparsity problem is
so severe that it would not go away even if it becomes possible to combine several years of
data. Instead we advocate to account for the sparsity and then focus on deviations�like
the split between exporters and non-exporters. The balls-and-bins model provides a natural
benchmark for working with sparse datasets, and can be easily adapted to any empirical
application.
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Appendix

A Aggregation

In this subsection we formally derive the aggregate statistics given a set of trade �ows. To
be precise, suppose there is a total of T trade �ows (countries, �rms) in the dataset, each
indexed by t and comprised of nt shipments. The distribution of shipments across trade �ows,
n1, n2, ..., nT , is taken as given. We �nd it useful to describe the distribution of shipments
across trade �ows as a probability distribution over N, denoted πn.42 As in Section 3, each
shipment can be classi�ed into one of K categories.

The expected number of non-empty bins across all trade �ows is given by

E(k|n1, n2, ..., nT ) =
N∑
n=1

πn

K∑
i=1

[1− (1− si)n] =
K∑
i=1

N∑
n=1

πn[1− (1− si)n]. (9)

Let G(z) denote the probability generating function (PGF) corresponding to the distribution
{πn}:

G(z) =
N∑
n=1

πnz
n.

Then the number of non-empty bins can be written as

E(k|n1, n2, ..., nT ) =
K∑
i=1

[1−G(1− si)].

Since G(z) is strictly convex, uneven bin-size distributions will have a smaller expected
number of non-empty bins. That is, aggregation preserves the properties discussed in Section
3.

What about the proportion of single-bin trade �ows? For each trade �ow of size n, the
probability is

∑K
i=1 s

n
i . The conditional probability is then

Pr(k = 1|n1, n2, ..., nT ) =
N∑
n=1

πn

K∑
i=1

sni =
K∑
i=1

N∑
n=1

πns
n
i .

We can also express it in terms of the PGF as

Pr(k = 1|n1, n2, ..., nT ) =
K∑
i=1

G(si).

It then becomes clear that the convexity of G(z) also preserves the properties of each
�ow with respect to the fraction of single bins. In particular, we can now assert that more
even bin-size distributions induce a lower fraction of single-bin �ows.

42To be precise, we assume that the support is bounded by some �nite N .
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Finally we can also calculate the fraction of balls that have fallen into a single bin. This
corresponds to, for example, the fraction of sales attributed to single-product �rms.

N∑
n=1

πnn

K∑
i=1

sni =
K∑
i=1

N∑
n=1

πnns
n
i .

With the use of the PGF notation,

N∑
n=1

πnns
n
i = G′(si)si.

And we can easily have the average size of trade �ows that all fall in bin i is∑N
n=1 πnns

n
i∑N

n=1 πns
n
i

=
G′(si)si
G(si)

.

It is important to note that, unless the number of trade �ows is in�nite, the actual
fractions will be a random variable. Since all distributions are known it is actually possible
to derive the actual distribution for each moment. It is, however, often unpractical to do so
and one can use Monte Carlo methods to derive the distribution as needed.

B Deriving the exporter's size premium

We now derive the size-exporting relationship formally. Let πn be the unconditional size
distribution of �rms. The �rm-size distribution conditional on not exporting is

Pr(n|no export) =
Pr(no export|n)πn

Pr(no export)
.

The average sales (number of balls) of non-exporters is

E(n|no export) =
∞∑
n=1

πnn(1− s)n

Pr(no export)
.

The average sales for the population of �rms is

E(n) =
∞∑
n=1

πnn.

We can express the expected sales of non-exporters in terms of the probability generation
function G(z) of the �rm size distribution.

E(sales|no export) =
(1− s)G′(1− s)

G(1− s)
,
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the elasticity of G evaluated at 1− s. Note that G is di�erentiable. The unconditional mean
is given by the same formula but evaluated at z = 1:

E(sales) =
1G′(1)

G(1)
.

A su�cient condition for non-exporters being smaller than the average if the elasticity of G
is increasing in z.

To see how the skewness in the �rm size distribution leads to a large exporter premia, we
parameterize the distribution as a zeta distribution. This is the discrete analogue to Pareto
distribution, and its probability mass function is

πn =
n−α

ζ(α)
.

Here α is the tail exponent, and is estimated to be about 2.06 by Axtell (2001). The
probability generating function of the zeta distribution is

G(z) =
Liα(z)

ζ(α)
,

where Liα is the (non-analytic) polylogarithm function. By properties of polylogarithm, the
elasticity of G(z) is given by

zG′(z)

G(z)
=

Liα−1(z)

Liα(z)
.

With α = 2.06, this implies that exporters are about 18 times as big as non-exporters.
If we lower α closer to 2, we are putting more mass of the distribution on its upper tail. For
α = 2.02, exporters are 27 times as big as non-exporters.

C Data reference

Description of U.S. export data

Export data in the U.S. are based on Shipper's Export Declaration (SED) forms �led by
exporters with the Customs and Border Protection and the Census Bureau. Filing a separate
SED is mandatory for each shipment valued over $2,500. A shipment is de�ned as �all
merchandise sent from one USPPI [�rm] to one foreign consignee, to a single foreign country
of ultimate destination, on a single carrier, on the same day.�43

Each shipment is assigned a unique product code out of 8,988 potential �Schedule B�
codes (of which 8,880 had positive exports in 2005). The Schedule B classi�cation is based
on the Harmonized System; the �rst six digits are HS codes. The remaining 4 digits are
speci�c to U.S. exports. For convenience, we refer to these product codes in the paper as
10-digit HS codes.

43�Correct Way to Complete the Shipper's Export Declaration,� February 14, 2001 version.
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We drop all 15 product codes in Chapter 98 (Special Classi�cation Provisions). These
categories are for products that are not identi�ed by kind, either because of their low value,
or some other reason.

There are 231 potential destination countries. Some of these entities are not countries
but territories within countries (for example, Greenland has its own country code). We drop
the country code 8220 (Unidenti�ed Countries) and 8500 (International Organizations).

The Census Bureau publishes product�country aggregates based on this shipment-level
dataset in �U.S. Exports of Merchandise.� For each statistic, it also reports the number of
SEDs (hence the number of shipments) that statistic is based on.

We calculate the average shipment size for a product�country pair as the total value of
exports divided by the total number of shipments in 2005. For each product, we then take
the median shipment size across destination countries.

Baldwin and Harrigan (2007)

Baldwin and Harrigan (2007) use data on U.S. imports and exports with all trading partners
in 2005 in their analysis. This data comes from the U.S. Census, which reports value,
quantity, and shipping mode for imports and exports and shipping costs and tari� charges
for imports by trading partner and 10-digit HS commodity code. The Census does not report
import trade values less than $250 for imports and $2,500 for exports, so small trade values
are treated as zeroes. For imports, their dataset contains 228 trading partners (countries for
which at least one good had a nonzero import value) for goods in 16,843 di�erent 10-digit HS
categories. For exports, there are 230 trading partners for goods in 8,880 di�erent 10-digit
HS categories (see Table 2).

Baldwin and Harrigan also use data on trading partner distance from the United States
from Jon Haveman's website:

http://www.macalester.edu/research/economics/PAGE/HAVEMAN

/Trade.Resources/Data/Gravity/dist.txt.
Macro variables (GDP, GDP per worker) are from the Penn World Tables.

Helpman, Melitz, and Rubinstein (2007)

Helpman, Melitz and Rubinstein (2007) use annual trade data on bilateral trade �ows for
158 countries (see Table A1 for a list) from Feenstra's �World Trade Flows, 1970-1992� and
�World Trade Flows, 1980-1997�.

They also use data on population and GDP per capita from the Penn World Tables
and the World Bank's World Development Indicators. They use data from the CIA World
Factbook on whether a country is landlocked or an island, along with each country's latitude,
longitude, legal origin, colonial origin, GATT/WTO membership status, primary language
and religion.

Data from Rose (2000) and Glick and Rose (2002) is used to identify whether a country
pair belonged to a currency union or the same FTA, and data from Rose (2004) to identify
whether a country is a member of the GATT/WTO.
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The variable capturing regulation costs of �rm entry is derived from data reported in
Djankov et al. (2002).

Bernard, Jensen, and Schott (2007)

Bernard, Jensen, and Schott (2007) use a dataset that links individual trade transactions to
information on the U.S.-based �rms involved in the transactions. Data on trade transactions
for exports in 1993 and 2000 is collected by the U.S. Census Bureau, and includes information
on export value, quantity, destination, date of transaction, port, and mode of transport at the
10-digit HS code level. Shipments data are collected for all export shipments above $2,500.
Transaction-level data on imports are collected by U.S. Customs and Border Protection for
all import shipments above $2,000. Detailed �rm data comes from the Longitudinal Business
Database of the Census Bureau. This dataset includes employment and survival information
for all U.S. establishments, though the linked dataset does not include establishments in
industries outside the scope of the Economic Census.

Hummels and Klenow (2005)

Hummels and Klenow (2005) use data from the United Nations Conference on Trade and
Analysis (UNCTAD) Trade Analysis and Information System (TRAINS) CD-ROM for 1995.
This dataset consists of bilateral import data for 5,017 goods, 76 importing countries and all
227 exporting countries. Goods are classi�ed by 6-digit HS code. They also use matching
employment and GDP data for a subset of 126 exporters and 59 importers from Alan Heston
et al. (2002). More detailed U.S. trade data comes from the �U.S. Imports of Merchandise�
CD-ROM for 1995 from the U.S. Bureau of the Census. This dataset reports value, quantity,
freight paid, and duties paid for 13,386 10-digit commodity classi�cations and 222 countries
of origin, 124 of which have matching data on employment and GDP.

Bernard and Jensen (1999)

This paper uses �rm-level data from the Longitudinal Research Database of the Bureau of
the Census from 1984-1992. Their dataset includes all plants that appear in the Census
of Manufactures for 1987 and 1992. For comparisons which involve more than one year,
the set of �rms is further restricted to those which also appear in the the Annual Survey
of Manufactures for the inter-census years. The result is an unbalanced panel of between
50,000 and 60,000 plants for each year.

Bernard, Eaton, Jensen and Kortum (2003)

Bernard, Eaton, Jensen and Kortum (2003) use data from the 1992 U.S. Census of Manu-
factures in the Longitudinal Research Database of the Bureau of the Census. This dataset
covers over 200,000 plants, and records the value of their shipments, production and non-
production employment, salaries and wages, value-added, capital stock, ownership structure,
and value of exports.
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Bernard, Jensen, Redding and Schott (2007)

Bernard, Jensen, Redding and Schott (2007) use transaction-level U.S. data from the 2002
U.S. Census of Manufactures. This paper also looks at more detailed data from the Linked-
Longitudinal Firm Trade Transaction Database, which is based on data collected by the U.S.
Census Bureau and the U.S. Customs Bureau. The dataset reports the product classi�cation,
value and quantity shipped, data of shipment, trading partner, mode of transport, and
participating U.S. �rm for all U.S. trade transactions between 1992 and 2000.

Eaton, Kortum, and Kramarz (2004)

Eaton, Kortum, and Kramarz (2004) use French �rm-level data on type and destination of
exported goods from 1986. This dataset is constructed by merging customs data with tax-
administration data sets from Béné�ces Réel Normal (BRN)-Système Uni�é de Statistiques
d' Entreprises (SUSE) data sources, and contains information on over 200 export destinations
and 16 SIC industries.

Eaton, Kortum, and Kramarz (2007)

Eaton, Kortum, and Kramarz (2007) use sales data of over 200,000 French manufacturing
�rms to 113 markets in 1986. As in Eaton, Kortum, and Kramarz (2004), this dataset is
constructed by merging customs data with tax-administration data sets from Béné�ces Réel
Normal (BRN)-Système Uni�é de Statistiques d' Entreprises (SUSE) data sources.
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