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ABSTRACT 

On the Dynamics of Hedge Fund Risk Exposures* 

We propose a new method to capture changes in hedge funds' exposures to 
risk factors, exploiting information from relatively high frequency conditioning 
variables. Using a consolidated database of nearly 15,000 individual hedge 
funds between 1994 and 2009, we find substantial evidence that hedge fund 
risk exposures vary significantly across months. Our new method also reveals 
that hedge fund risk exposures vary within months, and capturing this 
variation significantly improves the fit of the model. The proposed method 
outperforms an optimal changepoint approach to capturing time-varying risk 
exposures, and we find evidence that there are gains from combining the two 
approaches. We find that the cost of leverage, the carry trade return and the 
recent performance of equity indices are the most important drivers of 
changes in hedge fund risk exposures. 
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1 Introduction

An important feature of hedge funds is the speed at which they alter their investments in response

to changing market conditions. Static analyses of hedge funds�risk exposures are likely to miss

these rapid changes in their strategies or leverage ratios, and several new approaches have been

proposed to overcome this di¢ culty.1 For example, Bollen and Whaley (2009) recommend the use

of optimal changepoint regressions to estimate structural breaks in hedge fund factor loadings. An

alternative approach, employed by Mamaysky, Spiegel and Zhang (2007) for mutual funds and also

considered by Bollen and Whaley (2009) for hedge funds, is to use a Kalman �lter-based model to

track risk exposures as latent random variables.

One factor that must be taken into consideration when measuring changing hedge fund risk

exposures is the high frequency (often daily or even higher) at which these changes occur.2 The

approaches that have thus far been proposed to capture hedge funds�time-varying risk exposures

are limited to tracking changes only at the monthly frequency, as this is the reporting frequency

for all of the main hedge fund databases. To surmount this obstacle, we propose a new method

to capture intra-month variation in hedge fund risk exposures, which uses as its starting point the

widely-used Ferson and Schadt (1996) model to employ higher frequency conditioning information.

To circumvent the lack of high frequency data on hedge fund performance, we posit a daily factor

model for returns and then aggregate it up to the monthly frequency for estimation. We are thus

able to employ monthly returns data and daily factor returns series to shed light on higher frequency

variation in hedge fund returns. Using simulations as well as daily indices of hedge fund returns,

we demonstrate that this technique is able to precisely track the dynamics of daily variation in

hedge fund risk exposures.

Employing returns data on a cross-section of 14,194 individual hedge funds and funds-of-funds

over the period 1994 to 2009, we �nd that our proposed method performs very well at describing

the dynamics of hedge fund returns. In particular, we show that the proposed model generates

1The literature on modeling hedge fund returns using static models is extensive. A partial list includes Fung

and Hsieh (1997, 2004a,b), Ackermann, McEnally and Ravenscraft (1999), Liang (1999), Agarwal and Naik (2004),

Kosowski, Naik and Teo (2006), Agarwal, Fung, Loon, and Naik (2009), Chen and Liang (2007), Fung, Hsieh, Naik

and Ramadorai (2008), Patton (2009) and Jagannathan, Malakhov and Novikov (2010).
2See �Wall Street�s New Race Toward Danger�, Barron�s, March 8, 2010 and �Traders Piqued By the Picosecond,

But Physics Intervenes,�Wall Street Journal, March 10, 2010.
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adjusted R2 statistics that are a substantial improvement over both a static-parameter benchmark

model and the optimal changepoint approach recently proposed by Bollen and Whaley (2009), with

the improvements in adjusted R2s being 13% and 6% respectively. We also �nd that the inclusion

of higher frequency conditioning information is an important contributor to the performance of our

model. The percentage of funds for which we �nd statistically signi�cant factor exposure variation

rises from 14.9% to 23.4% when we include daily information as well as monthly information in

our estimated speci�cations. In short, we �nd that incorporating monthly and daily information

substantially improves our ability to detect variations in hedge fund risk exposures.

The advantages conferred by our approach are not merely statistical. Our model has the added

bene�t of aiding economic interpretation of the variation in factor loadings that we estimate, a

contribution relative to the existing models in the literature. We conduct a relatively wide search

across economically-motivated conditioning variables to help us to capture the variation in hedge

fund risk exposures.3 We �nd that two out of the three most frequently selected interaction variables

are returns on the Dollar/Yen carry trade, and changes in short-term interest rates. We interpret

this as evidence of the signi�cant impact on hedge fund risk exposures of variation in the costs of

leverage. This adds to the growing evidence (Liang (1999) and Khandani and Lo (2008)) on the

role that leverage plays in explaining hedge fund returns. We also �nd evidence that returns on

the NASDAQ and the S&P 500, are important factors driving hedge fund factor loadings.

Finally, we analyze the implications of our method for performance measurement. We �nd that,

across funds with signi�cantly time-varying factor exposures, annualized alpha rises on average by

half a percent when estimated using our model rather than the constant model. This is similar

to the earlier �ndings of Ferson and Schadt (1996), which helped to redeem the performance

of mutual fund managers relative to earlier estimates of their alphas from static factor models.

However this �nding masks much bigger changes at the individual fund level �we �nd a mean

absolute di¤erence of 4.6% between annualized alphas estimated using the constant model and our

time-varying exposure model.

The outline of the paper is as follows. The remainder of this section situates our paper in the

3Of course, as noted by Ferson and Schadt (1996), Sullivan, Timmermann and White (1999), Ferson, Sarkissian

and Simin (2008) and others, incorrect inferences about the signi�cance of the �best�model will be obtained if this

search process is ignored; this is the classic data snooping problem. As in Sullivan et al., for example, we employ the

bootstrap reality check of White (2000) to control for this search.
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literature on the dynamic performance evaluation of managed investments. Section 2 describes

our modelling approach and Section 3 describes the data used in our analysis. Section 4 presents

analyses which verify that our proposed method works well in practice, Section 5 presents our main

empirical results, and Section 6 checks the results for robustness. Finally, Section 7 concludes.

1.1 Related literature

Our paper contributes to the literature on dynamic performance measurement for actively managed

investment vehicles. An intellectual predecessor of our approach is Ferson and Schadt (1996), who

use well-known predictors of returns as proxies for publicly available information, and use these

instruments to estimate an unconditional version of their conditional model for the performance

evaluation of mutual funds.4 Their model uses only monthly data, and is related to Jagannathan

and Wang (1996), who focus on risk adjustments for equities rather than performance evaluation.5

The conditioning information used by Ferson and Schadt is lagged one month so as to capture

only predetermined information; the interpretation of the alphas that they estimate is as the excess

return earned by managers over and above that which could be generated by a managed portfolio

strategy that used only public information to generate returns. The approach in Ferson and Schadt

(1996) is extended by Christophersen, Ferson and Glassman (1998) to include the possibility of

time-variation in alpha. These authors detect performance persistence amongst the most poorly

performing mutual funds with greater precision than static models.

As in Ferson and Schadt (1996), we estimate a conditional performance evaluation model.

Our contribution lies in our use of daily conditioning information for the evaluation of monthly

reported performance. There have been other attempts to combine monthly returns and intra-

monthly information to ascertain the higher-frequency variation in risk factor loadings, following

an in�uential paper by Goetzmann, Ingersoll and Ivkovic (2000), which shows that Henriksson-

Merton timing measures (discussed below) estimated from monthly data are biased in the presence

of daily timing ability. Goetzmann et al. attempt to correct for this bias by cumulating daily put

values on the S&P 500 for each month in their sample, and they incorporate it as an additional

regressor in their market-timing speci�cations. Ferson and Khang (2002) also present a conditional

4Chen and Knez (1996), in a contemporaneous paper, derive related insights about conditional performance

evaluation.
5Related literature includes, but is not limited to, Ferson and Harvey (1991) and Evans (1994).
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version of the holdings-based performance evaluation method that avoids the Goetzmann et al.

bias. Our approach provides a new alternative to the methods followed in these papers; we posit a

daily model for hedge fund returns, which we time-aggregate and estimate at the monthly frequency.

We also search over a wide array of conditioning variables, and rigorously account for the search

using the reality check bootstrap. Our aggregation of a daily factor model up to a monthly model

is similar in spirit to Ferson, Henry and Kisgen (2006), who study government bond funds and

consider an underlying continuous-time process for the term structure of interest rates.

It is worth brie�y mentioning an earlier set of related models which also use conditioning infor-

mation to detect time-variation in managerial risk exposures, but with a somewhat di¤erent goal.

Treynor and Mazuy (1966) proposed an extension to the standard single factor market model which

included a quadratic term in an e¤ort to detect whether fund volatility rose when the market was

performing well. The quadratic regression can be also motivated using the model of Admati, Bhat-

tacharya, P�eiderer and Ross (1986), in which a successful market-timing fund manager receives

a noisy signal about the one period ahead market return. Such quadratic regressions have also

been used by Lehmann and Modest (1987) in the context of mutual funds, and by Chen and Liang

(2007) to describe the market timing ability of hedge funds. The idea has also been generalized to

consider private signals about market attributes such as future market liquidity (see Cao, Chen and

Liang (2009)). Another popular timing speci�cation is that of Henriksson and Merton (1981), who

extend the standard single factor market model by including an interaction between the market

return and an indicator variable for when the market return is positive. The distinguishing feature

of this class of models relative to the conditional performance evaluation models discussed earlier

is the use of contemporaneous information on the conditioning variables. As a consequence of the

use of this information, these models have two measures of managerial ability. The �rst, which

the literature commonly refers to as �timing�, is the coe¢ cient on the interaction term between the

factor and the contemporaneous variable representing the signal (in the case of pure market timing,

the signal would just be the factor plus noise, giving rise to the quadratic model). The second is the

intercept that comes from the unconditional estimation of the conditional model. This is no longer

the only measure of performance, but rather the �selectivity�of the fund.6 In contrast, as we only

6Holdings-based performance evaluation approaches have also been used to separate timing ability from selectivity

(See Daniel, Grinblatt, Titman and Wermers (1997), Chen, Jegadeesh and Wermers (2000), and Da, Gao and

Jagannathan (2009)). Graham and Harvey (1996) use asset allocation recommendations in investment newsletters
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use lagged conditioning information in this paper, the alphas which we estimate are interpretable as

measures of fund performance over and above that which can be garnered using public information

signals. Our estimated alphas are, therefore, measures of managerial ability in the usual manner.

Finally, our use of daily returns on hedge fund indices to validate our technique (see Section 4)

adds to the sparse literature which uses daily data on investment managers�returns to measure their

performance. Busse (1999) �nds that mutual funds have signi�cant volatility timing ability using

daily returns data. Bollen and Busse (2001), also using daily data, con�rm that mutual funds have

signi�cant market timing ability. Chance and Hemler (2001) use daily executed recommendations

of market-timers, and �nd that they have signi�cant daily timing ability which vanishes when their

performance is evaluated at the monthly frequency.

2 Modelling time-varying hedge fund risk exposures

A variety of methods have been proposed in the literature for capturing time-varying risk exposures

of hedge funds, see Bollen andWhaley (2009) for a recent review. In this section we �rst describe the

modelling approach advocated by Bollen andWhaley, namely, an �optimal changepoint�model, and

then introduce our method to capture time-variation in factor loadings. To simplify the discussion

of the various approaches we consider a simple one-factor model for capturing risk exposures,

although in our empirical analysis in Section 5 we allow for multiple factors.

2.1 Changepoint models for hedge fund returns

A simple but e¤ective approach for capturing dynamic hedge fund risk exposures used by Bollen

and Whaley (2009) is the optimal changepoint regression of Andrews, et al. (1996). This approach

models beta as constant between changepoints, with abrupt changes to a new value at the change-

points. The theory in Andrews, et al. (1996) allows the researcher to consider many changepoints

but in the interests of parsimony Bollen and Whaley (2009) allow for the presence of just a single

changepoint for each fund (although the time of the changepoint can di¤er across funds). Thus

this model for hedge fund returns is:

rit = �i + �
0
i � 1 (t � ��i ) + �ift + �0i ft � 1 (t � ��i ) + "it (1)

to evaluate whether they help investors to time the market.
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where rit is the return on hedge fund i in month t; ft is the return on the factor in month t, and

1 (t � ��i ) is an indicator for whether the time period t is before the changepoint ��i : Testing for

the signi�cance of the change in risk exposures in a changepoint regression is complicated by the

fact that the date of the change, ��i ; is estimated at the same time as the pre- and post-change

parameters. Having searched across all possible dates for the most likely date of a change, it is

no longer appropriate to use a standard F -test to test for the signi�cance in the change in the

parameters. Instead, non-standard asymptotic critical values or bootstrap critical values must be

used to determine the signi�cance of the change. We describe a bootstrap approach in Section 2.4

below.

2.2 Models with monthly variation in risk exposures

A simple but economically interpretable alternative to the change-point approach discussed above

is a model for time-varying betas based on observable conditioning variables, which as discussed

above is used by Ferson and Schadt (1996) for mutual funds. In this approach, the betas are

speci�ed to evolve as a linear function of observable variables measured monthly:

rit = �i + �itft + "it (2)

where �it = �i + iZt�1

That is, the return on fund i is driven by a factor, ft, with the factor loading varying according to

some zero-mean variable Zt�1.7 Substituting in the equation for �it we obtain the following:

rit = �i + �ift + iftZt�1 + "it (3)

which is easily estimated using OLS regression.8 Note that the constant-beta model is nested in

the above speci�cation, and the signi�cance of time variation in beta for the ith fund can be tested

via a standard Wald test of the following hypothesis:

H
(i)
0 : i = 0 vs. H(i)

a : i 6= 0 (4)

7De-meaning Zt�1(which we can easily impose in practice) ensures that we can interpret �i as the average level

of risk exposure. Using Zt�1 rather than Zt means that we can interpret �i as a measure of the fund�s risk-adjusted

performance, as discussion in Section 1.1.
8Standard errors that are robust to heteroskedasticity and non-normality should be used in place of the usual OLS

standard errors, to account for these features of hedge fund returns, and we do so in the empirical implementation

below.
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As discussed above, Ferson and Schadt (1996) �nd that capturing variation in risk exposures via

observable variables at the monthly frequency improves the accuracy of factor models such as

those above. Mamaysky, et al. (2008) also �nd that adding observable variables to their model

for mutual fund returns improves its performance, relative to a model solely with a latent factor

driving variation in risk exposures. Cao, et al. (2009) �nd that monthly measures of liquidity are

able to explain some of the changes in the market exposures of hedge funds.

2.3 Models with daily variation in risk exposures

Many hedge funds alter or turn over positions very frequently, thus it is possible that a hedge fund�s

risk exposure changes substantially within a month. This observation necessitates an extension of

the above approach to modelling time-varying risk exposures. Consider the daily returns on hedge

fund i; denoted r�id; and a corresponding daily factor model for these returns:

r�id = �i + �idf
�
d + "

�
id (5)

Let us assume that the factor loadings for this fund vary as a function of some factor, Z; which is

observable at a daily frequency. Let Z�d denote this variable measured at the daily frequency and

Zd denote this variable measured at the monthly frequency (that is, Zd will be constant within

each month and jump to a new level at the start of each month).

�id = �i + iZd�1 + �iZ
�
d�1 (6)

Substituting in we obtain a simple interaction model for daily hedge fund returns:

r�id = �i + �if
�
d + if

�
dZd�1 + �if

�
dZ

�
d�1 + "

�
id (7)

Returns on individual hedge funds are currently only available monthly, and so to estimate this

model we need to aggregate returns from the daily frequency up to the monthly frequency.9 De�ne

the monthly return on fund i as:

rit �
X

d2M(t)

r�id (8)

where M (t) is the set of days in month t. De�ne ft and Zt similarly, and let n (t) denote the

number of days in month t. Then the speci�cation for monthly hedge fund returns becomes:

9We use log-returns, so the monthly return is simply the sum of the daily returns.
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rit = n(t)�i + �ift + iftZt�1 + �i
X

d2M(t)

f�dZ
�
d�1 + "it (9)

Note that the dependent variable above is now the monthly return on hedge fund i; and all variables

on the right-hand side are also measured monthly. The new variable that appears in this speci�ca-

tion relative to the Ferson-Schadt style speci�cation in equation (3) is of the form
X

f�dZ
�
d�1. This

is a monthly aggregate of a daily interaction term, and it captures variations in hedge fund risk

exposures at the daily frequency. If the factor, f�d ; and the conditioning variable, Z
�
d�1; are both

available at the daily frequency, then under the assumption that "�id is serially uncorrelated and un-

correlated with f�s for all (d; s) we are able to estimate the coe¢ cients of this model using standard

OLS. As above, for valid statistical inference we need to account for potential heteroskedasticity

and non-normality in the residuals. In Section 4 we present analyses based on real daily hedge

fund index returns and on simulated returns that con�rm that this modeling approach works well

in realistic applications.

The constant-beta model is nested in the above speci�cation, and the signi�cance of time

variation in beta can be tested via a standard Wald test of the following hypothesis:

H
(i)
0 : i = �i = 0 vs. H(i)

a : i 6= 0 [ �i 6= 0 (10)

Furthermore, we can test whether we �nd signi�cant evidence of daily variation in hedge fund risk

exposures, controlling for monthly variation, by testing that the coe¢ cient on the daily interaction

term is zero:

H
(i)
0 : �i = 0 vs. H(i)

a : �i 6= 0 (11)

While it is anticipated that hedge funds do adjust their risk exposures within the month, our ability

to detect those changes depends on whether we can �nd observable daily interaction variables, Z�d ,

that are correlated with those changes.

2.4 Bootstrap tests

Inference on the above models involves non-standard econometric methods. The optimal change-

point model is estimated by searching over all possible dates for the changepoint, invalidating

standard F -tests for the signi�cance of the changepoint. As discussed in detail in Section 3 below,

our approach based on observable conditioning information also involve searches, this time across
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an array of possible conditioning variables. The approach of searching for the best-�tting condi-

tioning variable and then testing its signi�cance via a standard F -test su¤ers from data snooping

bias, see White (2000) for example. To obtain valid critical values for tests for these models we

employ a bootstrap approach.

2.4.1 Testing the signi�cance of the changepoint

To test the signi�cance of a changepoint for a given fund, we search across all possible changepoint

dates for the one that maximizes the �t, and record the F -statistic associated with that date (this is

the �supF�statistic of Andrews, et al. (1996)). In the absence of a search across dates this statistic

would have an F distribution. However when we search across all possible dates this statistic no

longer has an F distribution and we instead compute its critical value via the bootstrap. We use

a parametric bootstrap with samples drawn according to the stationary bootstrap of Politis and

Romano (1994). To bootstrap data under the null hypothesis of no signi�cant changepoint we �rst

estimate the constant-parameter factor model on a hedge fund�s returns, and save the estimated

parameter vector and the regression residuals. We then create bootstrap samples of returns for this

hedge fund imposing the null of no change in the parameter vector

r
(b)
i;sb(t)

� �̂i + �̂ifsb(t) + "i;sb(t)

where (�̂i; �̂i) are the parameter estimates from the original data, b is an indicator for the bootstrap

number (running from b = 1 to B) and sb (t) is the new time index which is a random draw from the

original set f1; ::; Tg : Serial dependence in returns is captured by drawing returns data in blocks

with starting point and length both random. Following Politis and Romano (1994), the block length

is drawn from a geometric distribution, with a parameter qSB that controls the average length of

each block. In our empirical work we set qSB = 3. Each bootstrap sample is the same length as the

original sample for the fund. For each set of bootstrapped data we search across all possible break

dates for the one that maximizes the �t, and record the F -statistic associated with that date. The

90th percentile of the distribution of this statistic across the B = 1; 000 bootstrap samples serves

as the 0:10 level critical value for the test of no signi�cant changepoint. If the supF statistic for

a given fund is larger than this fund-speci�c critical value, then we have signi�cant evidence of a

9



change in the parameters of this model for that fund.10

2.4.2 Controlling for the search across potential conditioning variables

As noted by Ferson and Schadt (1996), Sullivan, Timmermann and White (1999), and Ferson,

Sarkissian and Simin (2008), it is critical to take into account the search across potential condi-

tioning variables when conducting tests of the signi�cance of the �best�model. We follow Sullivan,

et al. (1999) and test the signi�cance of the best-�tting conditioning variable by using the �re-

ality check� of White (2000), again employing the stationary bootstrap of Politis and Romano

(1994). The test statistic for this approach is the smallest p-value, across all potential condition-

ing variables, from a joint test of the signi�cance of all coe¢ cients on interaction variables, as in

the hypotheses in equation (10). To obtain critical values that are valid in the face of our search

across many possible interaction variables we bootstrap both the hedge fund return and the factor

returns, and estimate the interaction model in equation (9). As in White (2000), to impose the null

hypothesis that the interaction terms have zero coe¢ cients we re-center the parameters estimated

on the bootstrap data by subtracting the actual estimated values of these parameters. We then

compute p-values for the joint test of signi�cance of the interaction terms, and store the smallest

of these across all interaction variables considered. The 10th percentile of the distribution of this

statistic across the 1; 000 bootstrap samples serves as the 0:10 level critical value for the test of no

signi�cant interaction variables. If the smallest p-value observed on our real data is smaller than

this critical value then we have evidence of a signi�cant interaction variable, controlling for our

search across many possible variables.

3 Data

3.1 Hedge fund and fund of funds data

We use a large cross-section of hedge funds and funds-of-funds over the period from January 1994 to

June 2009, which is consolidated from data in the HFR, CISDM, TASS, Morningstar and Barclay-

Hedge databases. Appendix A contains details of the process followed to consolidate these data.

The funds in the combined database come from a broad range of vendor-classi�ed strategies, which

10 In our empirical work we also computed the �avgF�, and �expF�statistics in Andrews, et al. (1996) and found

little di¤erence in the results of the tests when applied to our hedge fund data.
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are consolidated into ten main strategy groups: Security Selection, Global Macro, Relative Value,

Directional Traders, Funds of Funds, Multi-Process, Emerging Markets, Fixed Income, CTAs and

Other (this category contains funds with missing vendor strategy classi�cations). The set contains

both live and dead funds, the percentage of the funds in the data that are live and dead is reported

in Table A.1. in the Appendix. The distribution of live versus defunct funds is roughly similar

across the databases, and the total percentage of defunct funds is 46%, which is comparable to the

ratio reported in Agarwal, Daniel and Naik (2009) of 48%, although their sample period ends in

2002.

Table I reports summary statistics on the hedge fund data. To overcome the well-known problem

of return smoothing in monthly reported hedge fund returns, we use �unsmoothed� returns in

our analysis, which are estimated from the raw returns using the Getmansky, Lo and Makarov

(2004) moving average model. The parameters of this model are estimated separately for each

individual fund, and as in Getmansky, et al. (2004) we use two lags. (In Section 6 we check the

sensitivity of our results to using four lags, or using zero lags, which corresponds to using raw

returns.) The means of the reported returns and unsmoothed returns are similar, but as expected

the distribution of the �unsmoothed�returns is slightly more disperse. The median fund has assets

under management of USD 32MM, while the mean is much larger, at USD 167MM, re�ecting the

signi�cantly skewed size distribution that several other studies (Getmansky (2004), Teo (2010)) have

highlighted. The median management fee is 1:5%, and the median incentive fee is 20%, consistent

with earlier literature (Agarwal, Daniel and Naik (2009)); and the withdrawal restrictions (lockup

& redemption notice periods) are also comparable to earlier literature (Aragon (2005)). Panel B

of the table shows that the lengths of the return histories for the funds in the sample correspond

closely to that reported by Bollen and Whaley (2009), with around half of our funds having 5 or

more years of data available, and around 17% of our funds having less than 3 years of data. Finally,

Panel C reports the distribution of funds across strategies: the two largest strategies are Security

Selection (20.8%) and Funds of Funds (23.3%), while the two smallest strategies (not including

�Other,� which captures those funds with unreported strategies) are Relative Value (1.0%) and

Emerging Markets (3.4%). Given that our complete sample contains 14,194 individual funds, even

the smallest strategy group has 146 distinct hedge funds, which enables us to undertake relatively

precise strategy-level analyses.
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3.2 Hedge fund factors

The second set of data that we employ is on factor returns. Throughout our analysis, we model

the risks of hedge funds using the seven-factor model of Fung and Hsieh (2004a). These seven

factors have been shown to have considerable explanatory power for fund-of-fund and hedge fund

returns, see Fung and Hsieh (2001,2004a,b), and have been used in numerous previous studies,

see Bollen and Whaley (2009), Teo (2009) and Ramadorai (2009). The set of factors comprises

the excess return on the S&P 500 index (SP500); a small minus big factor (SMB) constructed as

the di¤erence between the Wilshire small and large capitalization stock indices; the excess returns

on portfolios of lookback straddle options on currencies (PTFSFX), commodities (PTFSCOM),

and bonds (PTFSBD), which are constructed to replicate the maximum possible return to trend-

following strategies on their respective underlying assets;11 the yield spread of the U.S. 10-year

Treasury bond over the 3-month T-bill, adjusted for the duration of the 10-year bond (TCM10Y);

and the change in the credit spread of Moody�s BAA bond over the 10-year Treasury bond, also

appropriately adjusted for duration (BAAMTSY).

3.3 Variables associated with changes in risk exposures

We consider a variety of di¤erent variables that may be associated with hedge fund managers�deci-

sions to increase or decrease their exposure to systematic risks. These variables can be categorized

into four broad groups, corresponding to the underlying drivers of liquidity, funding and leverage,

volatility and performance.

3.3.1 Liquidity

There is a growing recognition of the impact of liquidity on hedge fund and mutual fund per-

formance. Pollet and Wilson (2008) document that mutual funds rarely diversify in response to

increases in their asset base, and associate their result with limits to the scalability of fund portfo-

lios, such as price impact or liquidity constraints. Aragon (2005) and Sadka (2009) both �nd that

liquidity risk is an important determinant of hedge fund returns, and one that is not captured by

the Fung-Hsieh (2004a) seven factors. Following the recent work of Cao, et al. (2009) we consider

11See Fung and Hsieh (2001) for a detailed description of the construction of these primitive trend-following (PTF)

factors.
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the case that managers may attempt to time their exposure to risk factors in such a manner as

to mitigate the in�uence of price impact. As liquidity rises (falls), the absolute magnitude of risk

exposures will rise (fall) as funds more (less) frequently enter or exit positions.

To capture systematic time-series variation in asset market liquidity at both monthly and daily

frequencies we employ two measures: The �rst is NYSE turnover, measured as the ratio of the

aggregate volume traded in dollars each day or month, divided by the aggregate market capitaliza-

tion of the stocks at the close of the day or month.12 The second is the �Amivest�measure, which

is the absolute return each day or month on the S&P 500 index divided by the trading volume on

the S&P 500 in dollars, measured at the same frequency. This is used as a measure of liquidity by

Amihud, Mendelson and Lauterbach (1997) and Amihud (2002) among others.

3.3.2 Funding and leverage

Mechanically, hedge fund managers�exposures to systematic risk factors will vary with the level of

leverage that they employ, if their long and short positions do not exactly o¤set one another along

the dimension of factor exposure (see Rubin, Greenspan, Levitt and Born (1999) who document

that hedge funds take on signi�cant leverage). The leverage available to hedge funds will vary

with the costs of borrowing, which we capture using several measures. First, we compute level

(the constant maturity three month T-bill rate), slope (the di¤erence between the ten-year T-bond

and three month T-bill rates) and curvature (twice the two-year rate less the three-month rate less

the ten-year rate) factors for the U.S., and use their �rst di¤erences as conditioning variables. To

capture variation in the availability of credit on account of changes in the probability of default,

we also include the level of the credit spread of Moody�s BAA bond over the 10-year Treasury

bond, adjusted for duration. We also include the TED spread (the 3-month LIBOR rate minus the

3-month T-bill rate), as a measure of funding liquidity following Garleanu and Pedersen (2009), and

the USD/JPY carry trade return (change in the spot exchange rate less the interest di¤erential) to

capture variation in the cost of funding of borrowings in Japan.

12Gri¢ n, Nardari and Stulz (2007) employ a similar measure of liquidity, and Hasbrouck (2009) provides evidence

that volume-based liquidity measures are able to capture time-variation in liquidity better than price-based measures.
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3.3.3 Volatility

As �nancial market volatility rises, hedge fund managers wishing to maintain fund return volatility

constant may trim risk exposures, as per the example of Ferson and Schadt (1996). We therefore

include several measures of underlying asset volatility. First, we use the VIX index (see Whaley

(2000)), which is a measure of volatility extracted from the prices of options on the S&P 500 index.

We also use two measures of �realized volatility�(RV) based on intra-daily data, one on the S&P

500 index and the other on the USD/JPY exchange rate.13 Finally, we also include the variance

risk premium on the S&P 500 index, computed using both option-implied and realized volatility

as in Todorov (2009), which measures the sensitivity of investors to volatility in this index.

3.3.4 Performance

Several papers on hedge funds have debated the role of incentive-alignment mechanisms such as

high-water marks on hedge fund risk-taking behavior. When a fund makes low or negative returns,

it is more likely to be under its high-water mark, and consequently, managers may have incentives

to increase their levels of systematic risk, see Goetzmann, Ingersoll and Ross (2003), and vice

versa.14 We therefore include the fund�s recent performance (past one-month and past three-

month returns) as conditioning variables. (Note that these two variables are only available at the

monthly frequency.) Further, hedge fund managers are often implicitly or explicitly benchmarked

to commonly available indices. When the returns on these benchmarks are high, managers may be

tempted to increase their risk-factor loadings to avoid the perception that they are underperforming,

and vice versa. With this in mind, we also include returns on the S&P 500, the NASDAQ, SMB,

HML and the Momentum factor (UMD) as possible conditioning variables.

All told, we have a set of 19 possible conditioning variables in our set: �Level, �Slope,

�Curvature, Default Spread, TED Spread, USD/JPY Carry Trade Return, Fund Performance

(past month), Fund Performance (past quarter), S&P 500 Return, NASDAQ Return, SMB, HML,

13These realized volatilities are based on 5-minute prices and were obtained from the Oxford-Man Institute�s

�Realized Library� data, available at http://realized.oxford-man.ox.ac.uk/. See Heber, et al. (2009) for details on

how these measures are computed. The S&P 500 RV series is available from January 1996 until February 2009, and

the USD/JPY RV series is available from January 1999 to February 2009. Outside of these periods we use the simple

squared returns on these series as the volatility measure.
14However Panageas and Wester�eld (2009) analyze high water mark contracts as a sequence of options with a

changing strike price, and do not �nd risk-shifting problems in their setup.
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UMD, Turnover, Amivest, VIX, Variance Risk Premium, S&P 500 realized volatility and USD/JPY

spot rate realized volatility. The last six of the above variables are at least moderately serially cor-

related, and some are strongly serially correlated. For each of these six variables we use a simple

exponentially weighted moving average (EWMA) model to obtain their �surprise�component, and

use this in place of the levels of these variables.15

4 The accuracy of estimates of daily betas using monthly returns

In this section we study the accuracy of our proposed method for estimating daily variations in

the factor exposures of hedge funds using only monthly returns on these funds. We analyze this

problem in two ways, and we �nd support for our method in both cases. Data on individual hedge

fund returns is almost invariably available only at the monthly frequency, however daily data on

a collection of hedge fund style index returns has recently become available. These daily index

returns are an ideal, real-world dataset on which to check the accuracy of our method. Our �rst

approach is to employ this daily data on hedge fund index returns, and to compare the results

that are obtained when estimating the model on daily data with those that are obtained when

using our method on the monthly returns on these indices. Second, we conduct a simulation study

that is calibrated to match the key features of hedge fund returns, and study the accuracy of the

proposed method in this setting. In this analysis we check the robustness of our estimation method

to di¤erent features of the return-generating process.

4.1 Results using daily hedge fund index returns

Daily returns on hedge fund style indices have recently become available from Hedge Fund Research

(HFR).16 We use these data to check whether the estimates of hedge fund factor exposures that

we obtain using our method, based on only monthly returns, are similar to those that would be

obtained if daily data were available. As the HFR daily returns are only available at the index

level and begin only in April 2003, they are not a replacement for the comprehensive data that we

15The �rst-order autocorrelation of these variables ranges from 0.38 (USD/JPY RV) to 0.99 (VIX), while the largest

�rst-order autocorrelation of the remaining 13 variables is only 0.18. We estimate the optimal EWMA smoothing

coe¢ cient for each of these six series using non-linear least squares.
16To our knowledge, Distaso, et al. (2009) are the �rst to study the properties of these data.
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employ on individual hedge funds. Nevertheless this daily information provides us with valuable

insights into the performance of our method.

We employ the daily HFR indices for �ve hedge fund styles: equity hedge, macro, directional,

merger arbitrage, and relative value.17 The period April 2003 to June 2009 yields 1575 daily

observations and 76 monthly observations.18 In our main empirical analysis in Section 5 below, we

consider the seven-factor Fung-Hsieh model for hedge fund returns, but three of the Fung-Hsieh

factors (the returns on three portfolios of lookback straddle options) are only available at a monthly

frequency, and so they are not suitable for our model of daily hedge fund index returns. Thus we

restrict our attention to the four Fung-Hsieh factors that are available at the daily frequency. As

in our main analysis below, we follow Bollen and Whaley (2009) and reduce the Fung-Hsieh model

to a more parsimonious two-factor speci�cation by using the Bayesian Information Criterion to

�nd the two Fung-Hsieh factors that best describe the daily hedge fund index returns. The chosen

factors and the coe¢ cients on these factors in models using daily and monthly returns are presented

in Table II.

Table II reports the estimation results for the constant-beta factor model, using both daily

and monthly hedge fund returns. This table con�rms that estimating a constant-beta model using

monthly returns data yields similar parameter estimates to those obtained using daily data. As

expected, t-statistics are generally lower in the model estimated on monthly data, but the signs

and magnitudes of the estimated parameters are generally close.

Table III presents the results of the model for time-varying factor exposures based on condi-

tioning information, estimated either using daily returns or using monthly returns. The models

17 In total there are nine HFR indices that are available for at least 24 months and have a clear strategy de�nition.

The four remaining style indices generate results that are similar to one of the included style indices; speci�cally, the

convertible arbitrage and distressed securities indices have similar results to the relative value index, market neutral

has similar results to macro, and event driven is similar to directional. These results are omitted in the interests of

brevity and are available on request.
18The HFR directional index started on 1 July 2004 and so slightly fewer observations are available for this series:

1259 daily observations and 60 monthly observations.
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that are estimated are the two-factor versions of the models presented in equations (7) and (9):
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where �i is the daily alpha of the fund, �i1 and �i2 are the constant exposures to the two factors

f1 and f2; i1 and i2 capture variations in factor exposures that occur at the monthly frequency

(with the variable Zt) and �i1 and �i2 capture variations in factor exposures that occur at the daily

frequency (with the variable Z�d).

If the methodology presented in Section 2 is accurate, then we would expect to see similar

parameter estimates across the two sampling frequencies. Up to sampling variability, this is indeed

what we observe: Across all �ve indices, the signs of the estimated coe¢ cients generally agree, and

cases of disagreement all coincide with at least one parameter estimate that is not signi�cantly

di¤erent from zero. As expected, the parameter estimates obtained from monthly returns are

generally less accurate than those estimated using daily returns. Further supporting our approach,

the p-values from the bootstrap test for the signi�cance of time-varying factor exposures agree

in all but one case: for the equity hedge, directional, relative value indices signi�cant variation

is detected using both daily and monthly returns, for the macro index no signi�cant variation is

detected using either frequency, while for the merger arbitrage index signi�cant variation is found

using daily data but not monthly data. In this latter case, the lack of daily returns on the index

hinders our ability to detect time-varying factor exposures.

Table III also presents the correlation between the time series of daily factor exposures (betas)

estimated using daily and monthly returns. For example, the correlation between the time series

of daily exposure to the S&P500 of the equity hedge index estimated using daily and monthly

returns is 0.89, and the correlation of daily estimates of this index�s exposure to BAAMTSY is

0.94. Similar positive results are found for the directional and merger arb indices. For the macro

index both correlations are negative, however for that index no evidence of time-varying beta is

found, using either daily or monthly returns (the bootstrap p-values from the tests were 0.72 and

0.69 respectively), and so the estimated daily betas are essentially just noisy estimates of a constant
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value, and as such we would not necessarily expect a positive correlation between daily and monthly

estimates. For the relative value index we �nd a positive correlation between the daily and monthly

estimates of beta on the S&P 500 index, but a negative correlation for the beta on the BAAMTSY

index. The explanation for the negative correlation can be seen from the estimated values of 2 and

�2: using daily data these are estimated as positive and borderline signi�cant, while using monthly

data they are negative and not signi�cant. In this case, the loss of precision from using monthly

data may mean there are gains in practice from setting insigni�cant parameters to zero.

In Figures 1 and 2 we present an illustration of the correspondence between the estimates of

daily factor exposures estimated using actual daily index returns, or using only monthly returns.

For clarity, we narrow the focus of these plots to the last quarter of our sample period (April 2009

to June 2009), similar conclusions are drawn from other sub-periods. These �gures illustrate the

strong similarity between the two estimates of time-varying exposure to the S&P500 index, and

provide further support for the modelling approach proposed in Section 2.

4.2 Results from a simulation study

Next, we consider a simulation study designed to further investigate the accuracy of our proposed

estimation method. For simplicity, we consider a one-factor model for a hypothetical hedge fund,

and as in our main empirical analysis below, we allow factor exposures to vary at both the daily

and monthly frequencies. We simplify the notation and assume that each month contains exactly

22 trading days. This yields a process for daily hedge fund returns as:

r�d = �+ �f
�
d + f

�
dZd�1 + �f

�
dZ

�
d�1 + "

�
R;d; d = 1; 2; :::; 22� T; (14)

The parameter � captures the average level of beta for this fund,  captures variations in beta that

are attributable to the monthly variable Zd; and � captures variations in beta that are attributable

to the daily variable Z�d : If we aggregate this process up to the monthly frequency we obtain:

rt = 22�+ �ft + ftZt�1 + �
21X
j=0

f�22t�jZ
�
22t�j�1 + "R;t; t = 1; 2; :::; T: (15)

where rt �
X21

j=0
r�22t�j ; is the monthly equivalent of the daily variable in the above speci�cation,

and analogously for ft and Zt. The parameters �; � and  are all estimable using only monthly

data; the focus of this simulation study is our ability to estimate �; and whether attempting to do

so adversely a¤ects our estimates of the remaining parameters.
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We next specify the dynamics and distribution of the factor and the conditioning variable. To

allow for autocorrelation in the conditioning variable (as found in such variables as volatility and

turnover) we use an AR(1) process for Z�d :

Z�d = �ZZ
�
d�1 + "

�
Z;d

The conditioning variable is de-meaned prior to estimation, and so the omission of an intercept

in the above speci�cation is without loss of generality. We also assume an AR(1) for the factor

returns, to allow for the possibility that these are also autocorrelated:

f�d = �F + �F
�
f�d�1 � �F

�
+ "�F;d

Finally, we assume that all innovations are normally distributed, and we allow for correlation

between the factor innovations and the innovations to the conditioning variable:
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To obtain realistic parameter values for the simulation we calibrate the model to the results

obtained when estimating the model using daily HFR equity hedge index returns. This leads to the

following parameters for our simulation:

� = 2=(22� 12); � = 0:4;  = 0:002; � = �0:004

�F = 10= (22� 12) ; �F = 20=
p
22� 12; �Z = 10; �"R =

p
0:1

Thus we assume that the fund generates 2% alpha per annum with an average beta of 0.4, and

a daily beta that varies with both daily and monthly �uctuations in the conditioning variable

(Z� and Z). The factor is assumed to have an average return of 10% per annum and an annual

standard deviation of 20%. The conditioning variable has daily standard deviation of 10 (similar to

the VIX), and the innovation to the returns process has a daily variance of 0.1, which corresponds

to an R2 of around 0.6 in this design.

We vary the other parameters of the returns generating process in order to study the sensitivity
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of the method to these parameters. We consider:

�Z 2 f0; 0:5; 0:9g

�F 2 f�0:2; 0; 0:2g

�FZ 2 f0; 0:5g

T 2 f24; 60; 120g

Thus, we allow the conditioning variable to vary from iid (�Z = 0) to persistent (�Z = 0:9); we

allow for moderate negative or positive autocorrelation in the factor returns; we allow for zero or

positive correlation between the factor and the conditioning variable; and we consider three sample

sizes: 24 months, 60 months or 120 months, which covers the relevant range of sample sizes in our

empirical analysis (the average sample size in our empirical application is 62 months). We simulate

each con�guration of parameters 1000 times, and report the results in Table IV.

The table shows that the estimation method proposed in Section 2 performs very well in all the

scenarios that we consider. In the �base�scenario, we see that with just 60 months of data we are

able to reasonably accurately estimate the parameters of this model, including the parameter �,

which allows us to capture daily variation in hedge fund risk exposures. Across a range of di¤erent

sample sizes, degrees of autocorrelation, and correlation with the factor return, we see that the

estimation method performs well: The 90% con�dence interval of the distribution of parameter

estimates contains the true parameter in all ten scenarios that we consider.

Overall, our analysis of daily returns on hedge fund indices and the simulation results of this

section provide strong support for the reliability of our estimation procedure in practice. Given

daily data on conditioning variables, the results of this section con�rm that our method provides a

means of obtaining reliable estimates of daily risk exposures from monthly hedge fund returns.

5 Empirical evidence on dynamic risk exposures

Given the relatively short histories of returns for the hedge funds in our sample documented in

Table I, and the data-intensive nature of the models for dynamic risk exposures to be estimated,

controlling the number of parameters to be estimated is important. In view of this, we follow Bollen

and Whaley (2009) and reduce the full seven-factor Fung-Hsieh model to a more parsimonious two-

factor model. For each individual fund, we choose the two-variable subset of factors from the full
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set of seven that minimizes the Bayesian Information Criterion when the fund�s returns are on the

left-hand side.19 Figure 3 shows that the most frequently selected factor is the S&P 500 index,

chosen for 60.5% of the funds. Of the remaining six factors, the most frequently selected is the size

factor (SMB) while the second most frequently selected factor is the default spread (BAAMTSY),

which are chosen for 33.1% and 32.6% of funds respectively. Figure 4 breaks this down across

the nine strategy groups and shows that the selected second factors are generally consistent with

intuition about the factors on which di¤erent strategies load. For example, within the Global Macro

strategy, the most frequently picked second factor is the return on a portfolio of lookback straddle

options on currencies (PTFSFX), whereas for �xed income the default spread (BAAMTSY) is the

most frequently picked. With these �optimal�two-factor models for each individual fund, we now

turn to models for dynamic exposures to these factors.

5.1 Optimal conditioning variables for dynamic risk exposures

In Section 3.3 we discussed the complete set of 19 variables we consider as conditioning variables for

capturing time variations in hedge funds�risk exposures. Although the model described in Section

2.3 extends naturally to handle both more risk factors, ft; and more conditioning variables, Zt; the

limited time series of data we have on individual funds compels us to keep the model as simple as

possible. To that end, we consider only a single conditioning variable in the model, which drives

variation in both risk exposures.20 We search across the set of 19 conditioning variables to �nd the

variable that is the most signi�cant for a given fund, and to test the signi�cance of the selected

conditioning variable we control for the fact that it is the outcome of a speci�cation search by using

the �bootstrap reality check�approach of White (2000), described in Section 2.4.2.21

19As the number of parameters in each of these models is the same, minimizing the BIC is equivalent to maximizing

the R2 or adjusted R2:
20 It is straightforward to extend our approach to allow for more than one conditioning variable or to allow for a

di¤erent conditioning variable for each of the two factors. In the former case the main constraint is data and degrees

of freedom, while in the latter case the only constraint is computation time.
21We measure the signi�cance of a given conditioning variable by the p-value from a joint test that all coe¢ cients

on interaction terms involving that variable are zero. The number of parameter restrictions that this implies varies

from two to four, depending on whether zero, one or two daily interaction terms are available for inclusion in the

model. We use standard errors based on Newey and West (1987) to obtain the Wald test statistic and use the �2p

distribution, with p = 2; 3; or 4 depending on the number of restrictions being tested, to obtain the p-value. The

critical value for the p-value is determined using the reality check of White (2000).
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Table V presents the results of searching for the optimal conditioning variable for each of the

14,194 individual funds, and shows both the proportions of funds for which a given conditioning

variable is selected, and the proportion of funds for which the selected conditioning variable is

signi�cant at the 0.10 level, according to the bootstrap reality check testing procedure. Table V

orders the conditioning variables by the proportion of funds for which it was signi�cant; the main

di¤erence between the two orderings is that lagged fund performance is selected frequently, but not

signi�cant as often.

Using the bootstrap testing procedure described in Section 2.4, we �nd that the best condition-

ing variable is signi�cant for 3321 individual funds (23.4% of the total number of funds), at the 0.10

level, substantially more than can be attributed purely to chance. The �ve most signi�cant con-

ditioning variables are �Level, the NASDAQ return, the USD/JPY Carry Trade Return, �Slope,

and Fund Performance over the past 3 months. Clearly, funding and performance are the two most

important drivers of changes in hedge funds�risk exposures. Interestingly, the liquidity measures

Turnover and Amivest come in 16th and 19th respectively, suggesting that the other interaction

variables in the model may already be capturing the role of liquidity in a¤ecting time-variation in

funds�exposures. While the frequency of selection is important, it is also of interest to consider the

increase in the R2 that obtains from augmenting the factor model with the conditioning variables.

Across all funds, the R2 increases from an average of 27.2% for the constant-parameter model to an

average of 43.1% for the model with conditioning information. Next, we analyze whether this im-

provement in R2 is attributable purely to the search process, or whether it re�ects truly signi�cant

changes in hedge funds�risk exposures.

5.2 Evidence of time-varying risk exposures

Table VI presents the results of statistical tests for time-varying risk exposures, across the entire

set of 14,194 individual hedge funds in our database. We present the proportion of funds for which

we can reject the null of constant factor exposures at the 0.10 level, using the bootstrap testing

approaches described in Section 2.4.

The �rst column of Panel A of Table VI presents the results from a test based on the optimal

changepoint model employed by Bollen and Whaley (2009), and the �nal row shows that, across

all funds, we detect a signi�cant changepoint for 21.4% of funds using the bootstrap test. Figure 5

shows the most frequently selected changepoint dates between January 1995 and July 2008. The
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three most frequently selected changepoint dates are February, June and July of 2008. The �rst

date lies in a quarter in which signi�cant �nancial volatility was witnessed in �nancial markets,

while the second and third can be traced to the date of the G8 summit, which occurred in July

2008. However, if we look at the dates that are most often signi�cant at the 10% level (shaded in

dark in Figure 5) we �nd that May 2000, July 2008 and January 2001 and are the most signi�cant

changepoint dates. Both May 2000 and April 2001 are di¢ cult to cleanly link to any well-known

event in �nancial markets, although one might stretch the point and argue that May 2000 was two

months post-NASDAQ-crash. The lack of signi�cant events during several of the frequently selected

changepoint months (and the relatively �at nature of the graph of signi�cant break dates) highlights

the di¢ culty in interpreting the results from the changepoint method, a relative advantage of our

approach.

The second column of Panel A of Table VI presents the results from tests based on our proposed

conditioning variable approach. As mentioned earlier, we �nd that 3321 funds, (23.4% of the total)

exhibit signi�cant variation in factor exposures, a slightly higher proportion than the changepoint

model. Interestingly, there is a low degree of overlap between these two sub-sets of funds: only

3.5% of funds exhibit both a signi�cant changepoint and a signi�cant conditioning variable. This

limited overlap suggests a complementarity between the two modeling approaches: for some funds

it appears that a change in beta is best modeled using a discrete one-time change, while for other

funds it appears that beta varies more continuously.

Building on the above insight, in the third column of Panel A of Table VI we present the

results of a �hybrid�model, where we �rst allow for a one-time change in beta using the optimal

changepoint approach, and then conduct a search for the optimal conditioning variable. The results

reveal that our method is even more useful once a changepoint has been identi�ed: the proportion

of funds for which there is a statistically signi�cant conditioning variable rises to 30:1% of the

full sample from the 23:4% originally detected. The proportion 30:1% may be interpreted as the

signi�cance of time-varying betas using our approach after allowing for time-varying betas following

the approach of Bollen and Whaley (2009), and clearly reveals that our method o¤ers additional

gains in the modeling of time-varying hedge fund risk exposures.

Finally, Panel B of Table VI presents the results for all funds when we do not use a bootstrap

procedure to account for the search across interactions or changepoints. The results here are

clearly di¤erent: 80 to 90% of the funds appear to select time-varying models of factor exposures
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when we use the naive approach of testing whether the �best�model (obtained after searching

across changepoints or interactions) is preferred to a model with constant factor exposures. This

highlights the importance of correctly accounting for the �data mining�that goes into the search,

a point emphasized in both the �nance and statistics literatures (see Ferson and Schadt (1996),

White (2000), Sullivan, Timmermann and White (1999), and Ferson, Sarkissian and Simin (2008)).

Table VI shows the percentage of funds selecting di¤erent models, but does not provide infor-

mation about the magnitude of the improvements o¤ered by our model on a fund-by-fund basis.

Figure 6 depicts the performance of the models graphically for the entire set of 14; 194 funds in the

data, plotting the cumulative distribution functions of the adjusted R2 statistic for all funds for the

di¤erent models (the plot is virtually the same with regular R2 statistics), and summary statistics

from these distributions is provided in Table VII. Con�rming Bollen and Whaley�s (2009) �nding,

Figure 6 shows that the changepoint model convincingly beats the constant-parameter models.

This is not only true for the model estimated using the two-variable subset of the seven Fung-Hsieh

factors selected in our �rst stage search procedure; it is also the case for the full seven-factor model.

The latter is an attempt to model dynamic risk-exposures using an option-based replication of the

returns from a posited dynamic trading strategy, and the graph con�rms that this seems insuf-

�cient on its own to capture the movements in funds�risk exposures. Further, our model based

on conditioning variables out-performs both the constant-parameter model and the changepoint

model, in the sense that the CDF of our model everywhere lies under that of the constant model

and the changepoint model. Finally, the hybrid model considered in column three of Table VI beats

our model, con�rming that there are gains to combining the changepoint and conditioning variable

approaches. The mean and the median of the cross-sectional distribution of adjusted R2 statistics

shifts to the right by 6%, when moving from the changepoint model to our interactions model.

In the �nal column of Table VI we seek to isolate the sources of the information from our

modeling approach. In that column, we test for time-varying risk exposures using only monthly

conditioning information. That is, we force the coe¢ cients on the daily information to be zero,

and use a pure Ferson-Schadt (1996) approach. The �nal row of that column reveals that we

can reject constant risk exposures for 14.9% of funds, which is greater than the nominal size of

the test (10%) but substantially less than the proportion of 23.4% obtained when we use combine

daily and monthly information. Furthermore, the overlap between these two tests is almost perfect

(14.2%), revealing that by including daily as well as monthly conditioning information we increase
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the number of funds for which we can detect time-varying risk exposures by 8.5%, a total of 1,201

individual funds. This highlights an interesting and previously undocumented new feature of hedge

funds: (some) hedge funds alter their exposures to standard risk factors at the daily frequency, in

ways that can be detected using an econometric model at the monthly frequency.

5.3 Time-varying risk exposures across hedge fund styles

In addition to the overall proportions of funds for which signi�cant variations in risk exposures are

found, Table VI also breaks these down by hedge fund style. Doing so allows us greater insight

into the heterogeneity, if present, across the set of 14,194 individual funds. From these we see that

there are three styles for which the proposed conditioning information approach does particularly

well compared with the optimal changepoint approach (relative value, funds of funds, and �xed

income), four styles for which the two approaches do approximately equally well (security selection,

directional traders, multi-process and emerging markets) and two styles where the changepoint

approach dominates (macro and CTAs). It is noteworthy that the styles for which the interactions

model out-performs the changepoint model are also those strategies for which the daily information

substantially increases the percentage of funds with signi�cant interaction variables. For example,

for the �xed income and relative value styles we �nd that our approach identi�es substantially

more signi�cant variations in risk exposures than the optimal changepoint approach, and for these

two styles the gains over the model based on monthly conditioning information are also among the

largest. For the macro and CTA styles, on the other hand, the changepoint approach out-performs

the approach based on conditioning information, and for those styles there appears to be only small

gains from using daily information.

To provide further insights into the di¤erences across strategy groups, Table VIII lists the most

often selected interaction variables across the strategy groups. Studies of the e¤ect of leverage

on hedge fund returns have been somewhat sparse given the lack of detailed data on this aspect

of hedge funds� activities, and authors have adopted di¤erent strategies for ascertaining these

e¤ects. For example, using simulations, Khandani and Lo (2008) highlight that systematic portfolio

deleveraging by long-short equity hedge funds could have been responsible for the �quant meltdown�

of August 2007. Liang (1999) uses the self-reported data in the HFR database on hedge funds�use

of leverage, and documents that while there is no discernible di¤erence across all funds between

those using leverage and those not using leverage, convertible arbitrage and merger arbitrage funds
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bene�t from the use of leverage, while emerging market funds are hurt by the use of leverage. In

keeping with this observation, Table VIII shows that for Relative Value (which contains merger

arbitrage funds), all three of the most frequently picked interaction variables are from the leverage

category.

Table VIII also reveals that the USD/JPY Carry Trade Return is the most frequently selected

interaction variable for two strategies which are closely associated with trading in foreign exchange

instruments, namely the Macro and Emerging Markets funds. In recent press reports, there has

been a lot of attention paid to the use of the carry trade as a cheap source of funding for hedge

funds, and this �nding provides some evidence to support that this may be an important vehicle.22

The most frequently selected variables across all strategies are �Level, the NASDAQ return and

the USD/JPY Carry Trade Return. Across our four categories of conditioning variables (liquidity,

funding and leverage, volatility, and performance), variations in funding costs appear to be the

main driver of the changes in factor loadings across all strategy groups, accounting for 17 of the

30 top three variables per strategy. These results con�rm the signi�cant role of leverage in hedge

funds�return-generation processes.

5.4 Time-varying risk exposures and performance measurement

A straightforward way to test the e¢ cient markets hypothesis is to inspect the portfolio returns of

putatively sophisticated agents, such as mutual fund or hedge fund managers, to see if they earn

more than a fair compensation for risk. Jensen�s (1968) study was perhaps the �rst systematic

analysis of this nature, which arrived at the pessimistic conclusion that gross of expenses, mutual

funds achieved a negative average net-of-expenses alpha. Following a host of initial studies that

broadly con�rmed this proposition, Ferson and Schadt (1996) �rst used the time-varying exposure

method to shed light on this question. They motivated their analysis by using the example of a

hypothetical manager who wishes to keep fund volatility stable over time in an economy in which

expected excess market returns and market volatility jointly co-vary with economic conditions.

Their insight is that unconditional performance evaluation of this manager will yield negative

alpha estimates if the time-variation in fund risk exposures is not properly accounted for. Using

their method, they overturn the conclusion that the alpha of the mutual funds in their sample is

22See: �Hedge funds�ATM moves from Tokyo to Washington,�Bloomberg, September 19, 2009, and �Fears rise

for dollar carry trade future,�Financial Times, February 23, 2010.
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negative; their conditional performance evaluation reveals that the performance of these funds over

the 1968 to 1990 period is broadly neutral.

Table IX, Panel A shows how the use of our time-varying exposure model a¤ects inferences

about hedge-fund alpha. The table contrasts the alphas obtained from a static factor model (using

the optimally selected two factors from the set of all seven) with those obtained from our time-

varying exposure model. Across all funds, the average alpha from the two models looks virtually

identical, at around 8% per annum for both models23. When we restrict the sample of funds to

those which reject the null of constant factor exposures, however, the alpha of these funds obtained

from the time-varying exposure model are signi�cantly higher (by approximately half a percent per

annum) than those from the static factor model. This conclusion is similar to that of Ferson and

Schadt (1996), and suggests that on average, hedge funds�variations in risk-exposures are broadly

(although mildly) bene�cial to investors. This conclusion is quite relevant when considering that

the baseline constant alpha for this sub-sample of funds is lower than the overall average, at 6.5%

per annum.

Simply analyzing the average di¤erence of the alphas misses an important point, namely that

the performance of some funds may improve and the performance of others may decline when the

time-varying exposures model is applied. To account for this we �rst separately estimated these

average di¤erences in alpha estimates for each strategy for the funds with signi�cant time-variation.

These results are presented in Panel B of Table IX, and they reveal interesting heterogeneity in

the estimates. For example, the 84 Emerging Markets funds with signi�cantly time-varying risk

exposures have 4.8% per annum lower alphas under the interactions model than under the constant

factor model, whereas for the 35 relative value funds, alphas are on average 1.9% per annum higher

under the interactions model. Second, to see if there are di¤erences between the two models�

inferences on any given fund, we measured the average of the absolute value of the di¤erence

between the alphas from the two models. Table IX, Panel A shows that across all funds, we

�nd a large and highly statistically signi�cant di¤erence of 3.2% per annum (around 40% of the

average alpha) between the alphas from the two models. Again, when we estimate this di¤erence

for only the funds which reject the null of constant factor exposures, we �nd that it increases to a

23We use raw hedge fund returns (net of fees) for the analysis in this paper. The average annualized risk free rate

over our sample period is 3.6%, and subtracting that from our estimates in Table IX yields average alphas that are

comparable to previous studies.
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statistically signi�cant 4.6%.

Finally, we checked the similarity of the performance rankings generated by the two models.

Table IX, Panel A shows that while the correlations of these rankings are high across all funds

(the rank correlation of alphas is 86%), for the subset of funds with signi�cant time-variation in

exposures, there are bigger shifts. In particular, the rank correlation between the two sets of alpha

measures for this cross-section drops to 74%, suggesting that there are important di¤erences in

the relative performance evaluation of these hedge funds generated by the use of the time-varying

risk-exposure model.

6 Robustness Checks

Table X presents robustness checks used to identify whether the method proposed in this paper

performs well over di¤erent sample periods, over di¤erent samples of funds, and under di¤erent

transformations of hedge fund returns. The �rst robustness check that we run is to split the sample

period into two halves, with the second half beginning in 2002, after the NASDAQ crash, and

extending up to 2009, including the credit crisis period. We �nd that the changepoint approach

performs better over the earlier period, with 22.6% of the funds rejecting the null of no break in

risk exposures, whereas our method performs relatively less well, with 17.4% of funds rejecting the

null of no signi�cant interaction variables. In the second sub-period, the relative performance is

reversed, with only 14% of the funds selecting changepoints, and almost 30% of the funds selecting

interactions. This might be explained by the population of funds shifting towards funds with faster-

moving trading strategies, which would suggest that our method is more appropriate to use in the

contemporary setting.

Next, we investigate our use of the Getmansky, Lo and Makarov (2004) unsmoothing of hedge

fund returns. When we do not apply this transformation to the returns data, both the changepoint

and interaction approaches perform better. This may be because the lower volatility of unsmoothed

returns makes it relatively easier to detect variations in risk exposures. However, this result should

be viewed with caution, since the timing of the changepoint detected from raw (smoothed) returns

may be erroneous given that these returns re�ect the performance of past and not just contempo-

raneous trading strategies in any given period. Using a longer number of lags (4 rather than 2)

when estimating the moving average model barely a¤ects the performance of either model.
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We then condition on the length of available return history for the funds, and �nd that the

interaction-based method performs better for funds with shorter history lengths, while the change-

point approach performs best for funds with longer return histories. This results suggests that

changepoint regressions may be better at detecting longer-lived and discrete movements in trading

strategies, whereas our method may be better at picking up more rapid changes in funds�trading.

It may also be a sign that our choice of only one interaction variable per fund over its entire lifetime

may be somewhat restrictive, and that allowing for multiple interaction variables to be selected at

di¤erent stages of a fund�s life may improve the performance of our method.

Finally, we condition on the size of the fund. We �nd that our method works best for the largest

funds in our sample (measured by the average AUM over the fund�s lifetime), while the changepoint

approach works best for the medium-sized funds. Overall, the robustness checks reveal that the two

methods have complementary strengths, and are seemingly better equipped to capture variation

in risk exposures for di¤erent types of funds. Put di¤erently, these robustness checks further

strengthen our earlier �nding that the hybrid model of changepoints and interactions may do best

of all at capturing hedge funds�time-varying risk exposures.

7 Conclusion

Recent research on hedge funds and mutual funds has documented the importance of accounting

for the dynamic nature of the risk exposures of these actively managed investment vehicles. Several

approaches have been proposed in the literature, including modelling these risk exposures as un-

observed latent factors, and employing optimal changepoint regression techniques. We add to this

literature with a new model that is related to the well-known Ferson and Schadt (1996) conditional

performance evaluation model, extending this approach to capture the daily variation in hedge

funds�factor exposures through the use of daily conditioning variables.

Using a comprehensive database of nearly 15,000 individual hedge funds over the 1994 to 2009

period, we �nd that our model performs well on statistical grounds, beating the constant parameter

model, and also out-performing more sophisticated models such as the changepoint regression

approach. The extension of our model to capture daily variation in factor exposures is important

in this context: A model with purely monthly interaction variables performs worse, in terms of the

number of funds for which signi�cant variations in risk exposures is detected, than the changepoint
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regression approach, and the addition of daily information to the monthly conditioning information

allows us to identify over 1,000 more funds with time-varying betas. In addition to its good

statistical performance, our approach provides the added bene�t of economic interpretability of the

changes in factor exposures. We �nd that variations in the cost of leverage, the performance of

the carry trade, and the performance of commonly employed benchmarks such as the NASDAQ

are important drivers of hedge funds�risk exposures. These �ndings add to the sparse evidence on

the role of leverage in hedge funds�risk pro�les, an area of increasing importance in light of recent

public debates.
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Appendix A: The Consolidated Hedge Fund Database

As hedge funds can report to one or more databases, the use of any single source will fail

to capture the complete universe of hedge fund data. We therefore aggregate data from TASS,

HFR, CISDM, BarclayHedge and Morningstar, which together have 48,508 records that comprise

administrative information as well as returns and AUM data for hedge funds, fund of funds and

CTAs. However this number hides the fact that there is signi�cant duplication of information, as

multiple providers often cover the same fund. To identify all unique entities, we must therefore

consolidate the aggregated data.

To do so, we adopt the following steps:

1. Group the Data: Records are grouped based on reported management company names. To

do so, we �rst create a �Fund name key�and a �Management company key�for each data record,

by parsing the original fund name and management company name for punctuations, �ller words

(e.g., �Fund�, �Class�), and spelling errors. We then combine the fund and management name keys

into 4,409 management company groups.

2. De-Duplication: Within a management company group, records are compared based on

returns data (converted into US dollars), and 18,130 match sets are created out of matching records,

allowing for a small error tolerance limit (10% deviation) to allow for data reporting errors.

3. Selection: Once all matches within all management company groups are identi�ed, a single

record representing the unique underlying fund is created for each match set. We pick the record

with the longest returns data history available is selected from the match set, and �ll in any missing

administrative information using the remaining records in the match set. The process thus yields

18,130 representative fund records.

Finally, we apply the criterion that 24 contiguous months of return data are available for each

of the funds in the sample we use in the paper. This brings the �nal number of funds in the sample

to 14,194.
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Table A.1: Data Sources

This table shows the number of funds from each of the �ve sources (HFR, TASS, CISDM, MSCI and BarclayHedge), and

the number of these funds that are alive and defunct (either liquidated or closed) in the consolidated universe of hedge fund

data.

Source Dataset Number of Funds Alive Defunct % Defunct

TASS 5962 2738 3224 54.076

HFR 3712 2449 1263 34.025

CISDM 2782 860 1922 69.087

BarclayHedge 966 930 36 3.727

Morningstar 772 681 91 11.788

Total 14194 7658 6536 46.048
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Figure 1: Estimates of the daily exposure of the HFR equity hedge index to the SP500 index over
the second quarter of 2009 from three models: constant beta, time-varying beta using daily returns
on the index, and time-varying beta using the proposed method based only on monthly returns.
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Figure 2: Estimates of the daily exposure of the HFR relative value index to the S&P 500 index over
the second quarter of 2009 from three models: constant beta, time-varying beta using daily returns
on the index, and time-varying beta using the proposed method based only on monthly returns.
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Figure 3: Proportion of times each of the Fung-Hsieh (2004) factors are selected in a two-factor
model, as a percentage of the 14,194 individual funds.
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Figure 4: Number of times each of the Fung-Hsieh (2004) factors are selected in a two-factor model,
for each of the nine hedge fund strategies. Factors 1�7 are, in order, SP500, SMB, TCM10Y,
BAAMTSY, PTFSBD, PTFSFX, PTFSCOM.
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Table I  
Summary Statistics 

 
This table shows summary statistics for the funds in our sample.  Panel A reports the percentiles of the 
pooled (cross-sectional) distribution of returns, unsmoothed returns, AUM, management fees, incentive 
fees, lockup and redemption notice periods.  Panel B shows the percentages of funds in the consolidated 
sample of 14,194 which have return histories of the lengths specified in the column headers.  Panel C 
shows the number and percentage of the 14,194 funds in each of the strategies represented in the rows.  
 

Panel A 
 

  Returns Unsmoothed  AUM  Management Incentive Fee Lockup  Redemption Notice

    Returns ($MM)  Fee Fee (Days) (Days) 

25th Prctile -0.700 -0.841 9.400 1.000 10.000 0.000 10.000 
50th Prctile 0.720 0.710 32.000 1.500 20.000 0.000 30.000 
75th Prctile 2.230 2.363 106.756 2.000 20.000 90.000 45.000 
Mean 0.845 0.847 166.714 1.484 15.162 94.176 33.913 

 
 
 

Panel B 
 

<36 Months >=36 , <60 >=60 

Length(Return History) 17.423 31.062 51.515 
 
 
 

Panel C 
 

Funds in Strategy 

Percent Number 

Security Selection 20.752 2946 

Global Macro 6.243 846 
Relative Value 1.030 146 
Directional Traders 12.788 1815 
Funds of Funds 23.341 3313 

Multi-Process 12.520 1777 

Emerging Markets 3.372 479 

Fixed Income 5.678 806 
CTAs 13.973 1983 
Other 0.303 43 

TOTAL 100 14194 
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Table II  
Static Factor Models for Daily and Monthly Hedge Fund Style Indexes 

 
Table II shows results from a simple two-factor model applied to five hedge fund style index returns, identified in the first row of the table. In all cases a constant 
is included, and two factors from the set of four daily Fung-Hsieh factors are selected using the Bayesian Information Criterion. The first row presents annualized 
alpha. Robust t-statistics are reported below the parameter estimates, and the R2 and adjusted R2 are reported in the bottom two rows of the table. 
 

  Equity Hedge Macro Directional Merger Arbitrage Relative Value 

Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly 

Alpha 1.575 1.595 3.738 3.322 3.044 3.709 5.444 5.331 -1.032 -0.473 
t-stat 0.781 0.880 0.985 0.985 0.995 1.453 3.376 4.208 -0.422 -0.234 
SP500 0.259 0.321 0.270 0.327 0.111 0.063 0.063 0.190 
t-stat 15.395 6.070 11.298 4.029 5.181 2.332 1.811 3.935 
SMB 0.070 0.111 
t-stat 2.111 0.849 
TCM10Y -0.905 -0.376 
t-stat -2.742 -0.405 
BAAMTSY -2.006 -2.027 -2.720 -3.861 -0.460 -0.579 -2.544 -6.080 

t-stat -4.184 -2.728     -3.847 -3.686 -0.804 -1.935 -3.724 -9.584 

R2 0.549 0.681 0.014 0.007 0.454 0.664 0.290 0.182 0.090 0.784 

R2adj 0.548 0.672 0.013 -0.021 0.453 0.652 0.289 0.160 0.089 0.778 
  



42 
 

Table III 
Time-Varying Exposure Factor Models for Daily and Monthly Hedge Fund Style Indexes 

Table III shows results from a two-factor model applied to five hedge fund style index returns, identified in the first row of the table, allowing for time variation 
in the factor exposures through conditioning variables. This model is described in equations (12) and (13). Two factors from the set of four daily Fung-Hsieh 
factors are selected using the Bayesian Information Criterion, and are identified in Table II. The first row presents annualized alpha. Robust t-statistics are 
reported below the parameter estimates, and the R2 and adjusted R2 are also reported. The fourth-last row presents the bootstrap p-value for the joint significance 
of the coefficients on the interaction terms (Gamma1, Gamma2, Delta1, Delta2), controlling for the search across possible interaction variables that was 
conducted. The second- and third-last rows present the correlation between the time series of daily factor exposures estimated using daily and monthly data, for 
each of the two factors. The selected conditioning variable is presented in the final row. 
 

  Equity Hedge Macro Directional Merger Arbitrage Relative Value 

  Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly 

Alpha 1.397 3.106 3.803 2.314 3.702 5.068 5.337 5.444 -0.665 0.168 
t-stat 0.643 1.508 1.005 0.593 1.113 1.613 3.479 4.149 -0.249 0.094 
Beta1 0.301 0.321 0.064 0.090 0.264 0.357 0.116 0.071 0.067 0.144 
t-stat 38.426 6.374 2.520 0.586 29.344 3.940 25.547 1.954 8.465 2.927 

Beta2 -1.832 -1.829 -0.859 -0.651 -2.590 -1.920 -0.388 -0.619 -2.293 -6.144 
t-stat -6.417 -2.613 -3.685 -0.554 -6.789 -1.468 -2.137 -1.064 -7.252 -7.795 

Gamma1 0.006 0.009 0.037 -0.509 0.086 0.272 0.011 0.004 0.016 0.003 
t-stat 8.053 1.526 0.993 -1.349 7.839 2.395 9.685 0.578 7.969 0.304 
Gamma2 -0.007 0.025 0.886 -1.306 -0.352 1.209 0.098 0.108 0.174 -0.140 
t-stat -0.228 0.223 2.207 -0.534 -0.759 0.641 2.002 0.832 2.040 -0.800 
Delta1 0.006 0.034 -0.456 -0.020 0.053 -0.164 -0.005 0.001 0.048 0.053 
t-stat 2.682 2.848 -1.985 -0.009 0.878 -0.570 -1.218 0.064 7.236 1.884 
Delta2 0.216 0.340 10.538 -21.165 -14.831 -42.915 -0.233 -2.386 0.498 -2.631 

t-stat 3.053 0.444 4.225 -0.592 -5.305 -1.961 -1.535 -1.320 1.885 -1.073 

R2 0.574 0.734 0.029 0.049 0.497 0.722 0.335 0.223 0.168 0.814 

R2adj 0.572 0.710 0.026 -0.035 0.494 0.691 0.333 0.155 0.165 0.798 

Boot p-val 0.000 0.010 0.724 0.692 0.000 0.044 0.000 0.633 0.000 0.004 

Corr-b1[t] 0.887 -0.404 0.974 0.981 0.785 

Corr-b2[t] 0.936 -0.994 0.963 0.630 -0.770 

Interact var S&P500 Total Return TED Spread TED Spread HML HML 
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Table IV 
Results from a simulation study of the estimation method 

Table IV reports the mean and standard deviation, across 1000 independent simulation replications, of estimates of the parameters of a model of time-varying 
factor exposures. The results for ten different simulation designs are presented. Simulation design parameters are presented in the first panel of the table, and the 
mean and standard deviation of the simulation distribution of parameter estimates are presented in the second and third panels. The true values of the four 
parameters are presented in the first column of the table. The values for alpha, gamma and delta are scaled up by a factor of 100 for ease of interpretability. 
 

1 2 3 4 5 6 7 8 9 10 

    
True 

values  
Base  

scenario 
Short  

sample 
Long  

sample 

Low  
autocorr

in Z 

High  
autocorr

in Z 

Corr  
b/w F, 

Z 

Neg 
autocorr  

in F,  
rhoFZ=0 

Pos 
autocorr  

in F,  
rhoFZ=0 

Neg 
autocorr  

in F,  
rhoFZ=0.5 

Pos 
autocorr  

in F,  
rhoFZ=0.5 

T 60 24 120 60 60 60 60 60 60 60 
rhoFZ 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 
phiZ 0.5 0.5 0.5 0.0 0.9 0.5 0.5 0.5 0.5 0.5 

 phiF 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.2 -0.2 0.2 

Mean Alpha*100 0.758 0.715 0.827 0.794 0.729 0.773 0.812 0.780 0.735 0.725 0.721 
Mean Beta 0.400 0.400 0.397 0.399 0.400 0.401 0.400 0.401 0.400 0.399 0.401 
Mean Gamma*100 0.200 0.198 0.198 0.200 0.198 0.200 0.200 0.199 0.201 0.198 0.199 
Mean Delta*100 -0.400 -0.391 -0.400 -0.409 -0.399 -0.404 -0.410 -0.381 -0.392 -0.397 -0.394 

St dev Alpha*100   0.089 0.146 0.062 0.089 0.092 0.194 0.085 0.091 0.191 0.191 
St dev Beta 0.035 0.060 0.024 0.033 0.035 0.035 0.042 0.031 0.041 0.029 
St dev Gamma*100 0.005 0.009 0.003 0.008 0.003 0.005 0.006 0.004 0.005 0.004 
St dev Delta*100   0.038 0.062 0.026 0.035 0.052 0.034 0.039 0.034 0.037 0.031 
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Table V 
Selection of Conditioning Variables  

Table V shows results from the interaction-based model applied to the 14,194 funds in the data.  In order, the columns report the variable name; the number of 
funds for which the conditioning variable is selected (the funds for which the variable beats all the other conditioning variables on the R2 criterion); the mean R2 
from the benchmark constant-parameter factor model; the mean R2 from the factor model augmented with the selected conditioning variable; the ratio of the two 
R2’s; the number of funds for which the conditioning variable is significant using the bootstrap reality check; the average R2 from the benchmark and conditional 
factor models (and their ratio) only for those funds for which the conditioning variable is significant 
 

 Funds for which variable is selected Funds for which variable is significant 
Variable Number Base R2 Best R2 Best/Base Number Base R2 Best R2 Best/Base 

1 d(Level) 1370 0.289 0.459 1.588 465 0.383 0.624 1.631 
2 Nasdaq Return 758 0.300 0.472 1.577 249 0.400 0.650 1.626 
3 USD/JPY Carry Trade Return 958 0.289 0.455 1.575 243 0.397 0.666 1.677 
4 d(Slope) 614 0.326 0.497 1.526 195 0.435 0.692 1.591 
5 Fund Performance (3 months) 1232 0.262 0.388 1.483 190 0.397 0.620 1.561 
6 S & P 500 Return 634 0.304 0.469 1.540 186 0.397 0.644 1.622 
7 TED Spread 750 0.271 0.433 1.594 186 0.358 0.625 1.748 
8 Variance Risk Premium 645 0.301 0.470 1.558 186 0.407 0.663 1.629 
9 BAAMTSY 705 0.281 0.438 1.558 169 0.370 0.628 1.699 
10 Fund Performance (1 month) 1043 0.232 0.376 1.620 168 0.348 0.633 1.817 
11 Realized Volatility: S&P 500 628 0.274 0.441 1.607 164 0.391 0.638 1.630 
12 VIX 576 0.307 0.459 1.497 150 0.450 0.675 1.500 
13 SMB 734 0.261 0.402 1.543 130 0.419 0.658 1.568 
14 HML 578 0.265 0.429 1.617 125 0.390 0.669 1.714 
15 UMD 679 0.267 0.416 1.557 121 0.372 0.628 1.687 
16 Turnover  628 0.264 0.422 1.602 121 0.432 0.671 1.553 
17 Realized Volatility: USD/JPY 590 0.263 0.422 1.601 111 0.366 0.651 1.781 
18 d(Curvature) 625 0.246 0.394 1.601 90 0.345 0.633 1.834 
19 Amivest Ratio  447 0.145 0.343 2.362 72 0.365 0.650 1.783 

Total/Average 14194 0.272 0.431 1.611 3321 0.392 0.646 1.666 
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Table VI 
Evidence of Time-Varying Risk Exposures in Hedge Fund Returns 

 
This table shows results from various tests for time-varying risk exposures in hedge fund returns. The first column shows the number of funds in each strategy, 
and the remaining columns report the proportion of funds for we can reject the null hypothesis of constant risk exposures at the 0.10 level, according to various 
models: the optimal changepoint regression approach of Bollen and Whaley (2009); the conditioning variables approach adopted in this paper; a model with the 
optimal changepoint included in the baseline two-factor model, and then the optimal conditioning variable being selected; the conditioning variables model 
estimated using only monthly variables. Panel A presents results based on bootstrap procedures described in Section 2.4. Panel B presents results when naive 
statistical procedures which fail to account for the search process are used instead of these bootstrap procedures. 
 
 

Strategy Number of Funds Changepoints Interactions 
Changepoints and 

Interactions 
Interactions,  

but only Monthly 
  

Panel A: Results based on bootstrap-based tests 
 

Security Selection 2942 0.229 0.200 0.263 0.131 
Macro 885 0.215 0.116 0.179 0.084 
Relative Value 146 0.144 0.240 0.322 0.158 
Directional Traders 1813 0.240 0.266 0.326 0.189 
Fund of Funds 3309 0.210 0.344 0.424 0.200 
Multi-Process 1775 0.226 0.246 0.326 0.148 
Emerging 478 0.186 0.176 0.232 0.117 
Fixed Income 805 0.195 0.278 0.350 0.175 
CTA 1981 0.187 0.110 0.154 0.083 
Other 43 0.140 0.186 0.419 0.093 

All 14194 0.214 0.234 0.301 0.149 
 

Panel B: Results based on naive tests of significance 
 

All 14194 0.803 0.910 0.893 0.896 
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Table VII 
Comparing Distributions of R-squared and Adjusted R-squared Statistics across Factor Models 

 
This table shows percentile points of the R-squared and Adjusted R-squared distributions across all 14,194 funds when applying the different methods to allow 
for time-varying factor loadings.  The columns show the method employed for allowing for time-varying betas: The model with static factor loadings on the two 
best of the seven Fung-Hsieh factors selected per fund; the optimal changepoint regression approach; the conditioning variables (or “interactions”) approach 
proposed in this paper; a model with the optimal changepoint included in the baseline two-factor model, and then the optimal interaction variable being selected; 
and finally, the interaction model estimated using only monthly interaction data.  The rows show the statistic being computed; the top panel presents these 
statistics for R-squared; and the bottom panel presents these statistics for the Adjusted R-squared.  
 

  

Static Changepoints Interactions 
Changepoints and 

Interactions 
Interactions,  

but only Monthly 
      

R-squared 

10th % 0.076 0.179 0.189 0.278 0.177 

25th % 0.141 0.255 0.285 0.382 0.263 
Mean 0.272 0.377 0.431 0.511 0.400 
Median 0.252 0.367 0.424 0.513 0.389 

75th %  0.389 0.493 0.575 0.650 0.531 

90th % 0.516 0.604 0.691 0.750 0.649 
      

Adjusted R-squared 

10th % 0.044 0.098 0.123 0.180 0.123 

25th % 0.107 0.180 0.219 0.280 0.210 
Mean 0.244 0.311 0.371 0.425 0.352 
Median 0.223 0.301 0.361 0.422 0.339 

75th %  0.365 0.436 0.520 0.573 0.487 

90th % 0.497 0.557 0.645 0.687 0.614 
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Table VIII 
Selected Interaction Variables by Strategy 

 
This table shows which interaction variables are most often statistically significant for each of the ten strategies listed in rows.  For example, in the Security 
Selection strategy, 20% of funds have statistically significant interaction variables.  Of these, 2.7% pick ∆Level as the interaction variable, 1.4% pick the 
USD/JPY Carry Trade return, and 1.2% pick the momentum factor UMD.  These three interaction variables are the three most often picked of the entire set of 19 
interaction variables, across all individual funds in this strategy.      
 

Strategy Perc. Sig Selection Rank 

 First Second Third 

Security Selection 0.200 ∆Level 0.027 USD/JPY Carry Trade 0.014 UMD 0.012 

Global Macro 0.116 USD/JPY Carry Trade  0.017 S & P 500 Total Return 0.011 ∆Level 0.009 

Relative Value 0.240 ∆Level 0.055 ∆Slope 0.027 BAAMTSY 0.021 

Directional Traders 0.266 ∆Level 0.034 USD/JPY Carry Trade 0.023 Fund Perf. (3 months) 0.022 

Funds of Funds 0.344 ∆Level 0.066 NASDAQ Return 0.041 ∆Slope 0.024 

Multi-Process 0.246 ∆Level 0.034 TED spread 0.020 Variance Risk Premium 0.019 

Emerging Markets 0.176 USD/JPY Carry Trade 0.015 Fund Perf. (1 month) 0.015 Fund Perf. (3 months) 0.015 

Fixed Income 0.278 Variance Risk Premium 0.034 TED Spread 0.030 Fund Perf. (1 month) 0.025 

CTAs 0.110 Fund Perf. (3 months) 0.014 Fund Perf.  (1 month) 0.013 ∆Level 0.008 

Other 0.186 USD/JPY Carry Trade 0.023 Realized Volatility: S&P 500 0.023 NASDAQ Return 0.023 

All 0.234 ∆Level 0.033 NASDAQ Return 0.018 USD/JPY Carry Trade 0.017 
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Table IX 
Accounting for Time-Variation in Factor Exposures: Implications for Alpha 

 
The first two columns of Panel A of this table present means of the estimated annualized alphas from two different models, namely, the model with static factor 
loadings on the two best of the seven Fung-Hsieh factors selected per fund (1), and those from the conditioning variables (or “interactions”) approach adopted in 
this paper (2). The third column shows the cross-sectional mean difference of these two alphas, the fourth column reports the cross-sectional mean of the absolute 
difference of these alphas, and the final column reports the cross-sectional rank correlation of these alphas. The rows show the cross-section of funds for which 
these statistics are computed: First, for all 14,194 funds; then for only the 3,321 funds for which the bootstrap test rejects the null hypothesis of constant risk 
exposures. Panel B shows the mean difference between the constant model alpha and the interactions model alpha broken out by strategy, for the subsample of 
funds with significant time-variation in risk exposures. 
 
 

Panel A: Alpha Differences between Static Model and Interactions Model 
 
  Alpha From  Alpha From Difference Absolute Value Rank Correlation 

Static Model Interactions Model of Difference 

  (1) (2) (1)-(2) |(1)-(2)| RankCorr[(1),(2)]  

All Funds 
Mean 8.042 8.076 -0.034 3.225 0.860 
t-stat 70.991 67.504 -0.594 63.987 201.180 

Funds w/Significant Time Variation 
Average 6.527 7.029 -0.502 4.588 0.736 
t-stat 27.946 28.267 -3.119 32.746 62.580 

 
Panel B: Strategy-Level Variation in Alpha Difference for Funds w/Significant Time Variation 

 
 
  

Sec. 
Select. Macro 

Rel. 
Value 

Dir. 
Traders FoF 

Multi-
Proc. Emerg Fixed Inc. CTA Other All 

 
N(Funds) 589 103 35 483 1139 437 84 224 218 9 3321 
Mean Alpha Diff. ((1)-(2)) -0.584 1.073 -1.867 0.765 -0.725 -1.492 4.816 -0.928 -0.089 -2.054 -0.502 
t-stat -1.221 1.488 -2.497 1.655 -4.007 -3.796 2.311 -2.178 -0.063 -2.397 -3.119 
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Table X 
Robustness Checks 

 
This table presents the proportion of funds with significant changepoints or interactions selected when the specification is altered according to the robustness 
checks itemized in the rows of the first column.  The first row is taken from our main table of results (Table VI) and is repeated here for ease of reference. The 
first set of robustness checks splits the sample period into two halves; the second set alters the type of “unsmoothing” done to the returns prior to testing; the third 
set sorts funds according to their history lengths in the consolidated database; and the fourth set sorts funds according to their average assets under management.      
 

Robustness Test N(Funds) Changepoints Interactions Interactions,  
        but only monthly 

Main Results in Paper 14194 0.214 0.234 0.149 

Sample Period 
Earlier period (1994:01-2001:12) 5618 0.226 0.174 0.11641 
Later period (2002:01-2009:06) 11386 0.140 0.293 0.17284 

Smoothing 
Raw returns (no GLM) 14194 0.276 0.248 0.145 
Longer (4) MA lags in GLM model 14194 0.211 0.202 0.134 

Fund History Length 
24<=N(Fund Observations)<36 2473 0.106 0.366 0.249 
36<=N(Fund Observations)<60 4409 0.138 0.252 0.159 
N(Fund Observations)>=60 7312 0.297 0.178 0.110 

Fund Size 
Avg AUM <= 33rd Prctile 3963 0.209 0.174 0.118 
33rd Prctile< Avg AUM <= 66th Prctile 4085 0.263 0.212 0.134 
Avg AUM > 66th Prctile 3963 0.196 0.296 0.177 
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