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Abstract

This paper analyses the use of factor analysis for instrumental variable estimation
when the number of instruments tends to infinity. In particular, we focus on situations
where many weak instruments exist and/or the factor structure is weak. Theoretical
results, simulation experiments and empirical applications highlight the relevance of
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1 Introduction

The paradigm of a factor model is very appealing and has been used extensively in economic

analyses. Underlying the factor model is the idea that a large number of economic variables

can be adequately explained by a small number of indicator variables or shocks. Most factor

analyses were either based on a limited number of variables, N , or used the assumption of

i.i.d. variables, which is rather unrealistic for most economic time series. Recently, Stock and

Watson (2002b) have put forward the case for using all the information in large datasets, where
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N is allowed to tend to infinity and temporal dependence is taken into consideration. Stock and

Watson (2002b) suggest the use of static principal components for estimating factors in this

context, Forni, Hallin, Lippi, and Reichlin (2000) and Forni, Hallin, Lippi, and Reichlin (2004)

propose dynamic principal components, while Kapetanios and Marcellino (2009) develop a

parametric estimator. From an empirical point of view, these new techniques have been

mostly applied to provide a more adequate reduced form modelling tool in various contexts,

such as forecasting.

Recently, there has a been an interest in more structural applications of factor analysis.

In particular, Stock and Watson (2005), Giannone, Reichlin, and Sala (2002) and Bernanke,

Boivin, and Eliasz (2005) have shown that it is possible to obtain more realistic impulse

response functions in a structural factor model. However, overall, factor analysis has been less

widely considered for the estimation of structural relationships. The latter typically requires

to address the problem of endogeneity of the regressors, and the use of instruments is the

standard solution to provide valid estimation and inference. Typically, few valid instruments

are available, but there are also cases where many instruments exist. For example, due to

interdependence, the contemporaneous value of a macroeconomic variable can be related to

past developments in a large set of other variables, which are also orthogonal to the error

term in the structural equation of interest. Some authors have analyzed the properties of

instrumental variable (IV) estimators when the number of instruments tends to infinity as

the sample size grows; eminent examples are Morimune (1983) and Bekker (1994). Clearly

once allowance is made for a large and possibly increasing number of instruments, tools that

parsimoniously summarize them, such as factor models, become important.

From an empirical point of view, Favero, Marcellino, and Neglia (2005) show that us-

ing factors extracted from a large set of macroeconomic variables as additional instruments

in GMM estimation of forward looking Taylor rules for the US and Europe, substantially

improves the efficiency of the parameter estimators. Beyer, Farmer, Henry, and Marcellino

(2008) extend the analysis to a system context, where a Taylor rule is jointly estimated with

a forward looking output equation and a hybrid Phillips curve, along the lines of Gaĺı and

Gertler (1999), finding again substantial gains in the GMM estimator’s efficiency when adding

factors to the instrument set. The present paper provides a theoretical explanation for such

empirical findings, and more generally a theory for Factor-GMM estimation in the presence

of a large set of instruments.

Another paper that analyzes the interface of factor models and instrumental variable esti-

mation is Bai and Ng (2009), while related earlier references on the use of principal components

for IV estimation are Kloek and Mennes (1960) and Amemiya (1966). In a similar vein to our

paper, Bai and Ng (2009) consider the case where the endogenous regressors are linear func-

tions of a set of unobserved factors, which are also underlying an expanding set of observed
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instruments. Clearly, under these circumstances, the use of the true but unknown factors as

instruments would provide a superior GMM estimator with respect to the one based on the ob-

served set of instruments. Factor analysis can provide an estimate of the factors, and thereby

enable feasible Factor-GMM estimation. Bai and Ng (2009) and our paper independently

analyse the properties of Factor-GMM estimation in this context.

With respect to Bai and Ng (2009), our analysis of Factor-GMM focuses on a second

important aspect of IV estimation that has been recently explored in the literature. This is

the possibility that instruments are weak, in the sense that their relation to the endogenous

regressors is local-to-zero. A key reference in the context of a finite set of instruments is

Staiger and Stock (1997). In that paper the strength of the correlation of the regressors and

the instruments is measured in terms of what is refereed to as a concentration parameter. In

standard IV estimation this parameters diverges at a rate equal to the number of observations.

Staiger and Stock (1997) consider the case of a constant concentration parameter, which

implies that the IV estimator is no longer consistent. The work of Staiger and Stock (1997) has

been extended in a variety of ways. Some interesting examples of recent work include Florens,

Johannes, and Van Bellegem (2006), Chao, Hausman, Newey, Swanson, and Woutersen (2006),

Dufour, Khalaf, and Kichian (2006a) and Dufour, Khalaf, and Kichian (2006b). In our view,

the most interesting generalization relates to combining the framework of many instruments

with the framework of weak instruments. One of the first papers in the literature to do this

was Chao and Swanson (2005). This work was subsequently generalised extensively by Han

and Phillips (2006). Other relevant references are Stock and Yogo (2003), Hansen, Hausman,

and Newey (2009) and Newey (2004). We consider a number of elements of such an analysis

in the context of Factor-GMM estimation, which provides a richer framework for analysing

weak instruments than those previously adopted.

Our third contribution in this paper is the evaluation of the presence of a weak factor struc-

ture, a topic considered in some detail in Onatski (2006). Our paper, unlike Onatski (2006),

assumes that the factor structure although weak is still discernible in terms of the asymptotic

properties of the covariance matrix of the data. First, we show that, under certain conditions,

it is still possible to obtain a consistent estimator of the (space spanned by the) factors using

principal components. Second, we assess the consequences of a weak factor structure for the

properties of Factor-GMM estimators, possibly combined with a weak instrument situation.

The fourth contribution of this paper is an extensive Monte Carlo study of the finite sample

properties of the Factor-IV estimator for a wide variety of settings, including ones where the

instruments are weak or many, and the factor structure is strong or weak. Not only the

results are in line with the theoretical findings, they also clearly indicate the superiority of

Factor-GMM over standard GMM estimation in finite samples in most situations. Such robust

performance supports the general applicability of Factor-GMM for empirical applications.
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Related to the previous point, our fifth and final contribution is an empirical analysis

where Factor-GMM is applied to estimate the parameters of a forward looking New Keynesian

Phillips Curve. The results show first that both a small set of macroeconomic indicators and

factors extracted from a much larger set of variables are jointly useful instruments; second, that

the new estimation method is easily implemented; third, that it is empirically relevant since

it substantially reduces estimation uncertainty with respect to standard GMM; and, fourth,

that simple methods to strengthen the factor structure can further improve the efficiency of

Factor-GMM..

The paper is structured as follows: Section 2 develops the theoretical properties of factor-

based instrumental variable estimators. Section 3 generalizes the results to the GMM context.

Section 4 studies the finite sample properties of Factor-GMM estimation using Monte Carlo

experiments. Section 5 presents the empirical example. Finally, Section 6 summarizes and

concludes. All proofs are contained in the Appendix.

2 Factor-IV estimation

In this Section we study the properties of factor-based Instrumental Variable (IV) estimators

with uncorrelated and homoskedastic errors, which is useful to provide insights on the working

of factors as instruments. In the first subsection we derive results for the standard case of

strong instruments and strong factor structure. In the second subsection we consider weak

instruments. In the final subsection we allow for a weak factor structure, possibly combined

with weak instruments.

2.1 Strong instruments and strong factors

Let the equation of interest be

yt = x′tβ + εt, t = 1, . . . , T, (1)

where the k regressors in xt (or a subset of them) are possibly correlated with the error term

εt. A standard source of correlation in the IV literature is measurement error, which could

be widespread in macroeconomic applications, where the variables are typically expressed

as deviations from an unobservable equilibrium value. Another source of endogeneity is, of

course, simultaneity, which is again widespread in applied macroeconomic applications based

on single equation estimation. A more specific source of endogeneity in forward looking

models, such as the new generation of DSGE models, is the use of expectations of future

variables as regressors, which are then typically replaced by their true values for estimation,

see for example the literature on Taylor rules or hybrid Phillips curves (e.g., Clarida, Gaĺı,

and Gertler (1998) or Gaĺı and Gertler (1999), and our empirical application in Section 5).

4



Let us assume that there exist N instrumental variables, st, generated by a factor model

with r ≥ k unobservable factors:

st = Λ0′ft + vt, (2)

where r is much smaller than N . Therefore, each instrumental variable can be decomposed

into a common component (an element of Λ0′ft) that is driven by a few common forces, the

factors, and an idiosyncratic component (an element of vt). When the latter is small compared

to the former, the information in the large set of N instrumental variables st can be efficiently

summarized by the r factors ft.

As the data generation mechanisms for xt we consider

xt = A0′
Z zt + A0′ft + ut, (3)

where E(u′tεt) 6= 0 to introduce simultaneity in (1), and zt is a finite (and small) subset of st,

so that

zt = Λ0′
z ft + vzt.

Equation (3) appears to be the most interesting case from an economic point of view. For

example, future inflation can be expected to depend on a set of key macroeconomic indicators,

such as monetary policy, oil prices and unit labor costs, on the past values of inflation itself due

to persistence, but also on the behaviour of a large set of other variables, such as developments

at the sectoral or regional level, that can be well summarized by a few factors (see Beck,

Hubrich, and Marcellino (2009)). A similar reasoning holds for unobservable variables, such

as the output gap. Moreover, (3) seems the most common case also in empirical analyses, e.g.

it is what turns out to be relevant in the empirical application of Section 5 where a subset

of st and the factors are jointly significant to explain xt. More generally, in the forecasting

literature adding factors to an autoregressive or vector autoregressive model for the variable

of interest improves the performance.

It is also worth mentioning that (3) nests the case considered by Bai and Ng (2009),

where A0
Z = 0, which represents the most favourable situation for Factor-IV estimation, since

the original instruments st become irrelevant, conditional on the factors. Interestingly, Bai

and Ng (2009) show that in this case the factors can be valid instruments also when the s

variables are correlated with the error term in the structural equation. Equation (3) nests also

the standard case where A0 = 0, which is considered in detail in Kapetanios and Marcellino

(2006). When A0 = 0, zt are the optimal instruments and, conditional on zt, the factors

are irrelevant. However, when zt = st and N is very large, possibly larger than T , the full

asymptotic properties of the standard IV estimator are in general unknown, but it can be

expected to perform poorly and in some cases is even inconsistent, as discussed in Bekker

(1994) and Chao and Swanson (2005). In this context, the factors become useful again, since

they provide a concise summary of the information in st.
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Stacking observations across time for the model presented above gives:

y = Xβ + ε (4)

S = FΛ0 + v (5)

Z = FΛ0
Z + vz (6)

X = ZA0
Z + FA0 + u (7)

where y = (y1, ..., yT )′, X = (x1, ..., xT )′, S = (s1, ..., sT )′, Z = (z1, ..., zT )′, F = (f1, ..., fT )′,

u = (u1, ..., uT )′, v = (v1, ..., vT )′ and ε = (ε1, ..., εT )′.

Let F̂ denote the Stock and Watson (2002b) principal component estimator of F . We

define the Factor-IV estimator as:

β̂ =
(
X ′F̂ (F̂ ′F̂ )−1F̂ ′X

)−1

X ′F̂ (F̂ ′F̂ )−1F̂ ′y, (8)

while the infeasible factor estimator is given by

β̄ =
(
X ′F (F ′F )−1F ′X

)−1
X ′F (F ′F )−1F ′y. (9)

To study the properties of the estimators, we make the following assumptions:

Assumption 1 1. E||ft||4 ≤ M < ∞, T−1
∑T

t=1 ftf
′
t

p→ Σf for some r×r positive definite

matrix Σf . Λ0 has bounded elements. Further ||Λ0′Λ0/N −D|| → 0, as N →∞, where

D is a positive definite matrix.

2. E(vi,t) = 0, E|vi,t|8 ≤ M where vt = (v1,t, ..., vN,t)
′ The variance of vt is denoted by Σv.

fs and vt are independent for all s, t.

3. For τi,j,t,s ≡ E(vi,tvj,s) the following hold

• (NT )−1
∑T

s=1

∑T
t=1 |

∑N
i=1 τi,i,t,s| ≤ M

• |1/N ∑N
i=1 τi,i,s,s| ≤ M for all s

• N−1
∑N

i=1

∑N
j=1 |τi,j,s,s| ≤ M

• (NT )−1
∑T

s=1

∑T
t=1

∑N
i=1

∑N
j=1 |τi,j,t,s| ≤ M

• For every (t, s), E|(N)−1/2
∑N

i=1(vi,svi,t − τi,i,s,t)|4 ≤ M

Assumption 2 εt is a martingale difference sequence with finite fourth moment and E(ε2
t |Ft) =

σ2 < ∞ where Ft is the σ-field generated by (fs, zs), s ≤ t.

Assumption 3 E(sitεt) = 0, i = 1, ..., N . E(sts
′
t) is nonsingular for all N and t. E(stx

′
t)

has full column rank k. xt and st have finite fourth moments.
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Assumption 1 is standard in the factor literature. In particular, it is used in Stock and

Watson (2002b), Stock and Watson (2002a), Bai and Ng (2002) and Bai (2003) to prove consis-

tency and asymptotic normality (at certain rates) of the principal component based estimator

of the factors, and by Bai and Ng (2006) to show consistency of the parameter estimators in

factor augmented regressions. Assumption 3 guarantees that standard IV estimation using

(possibly a subset of) st as instruments is feasible, and Assumption 2 that it is efficient. As-

sumption 2 will be relaxed in the next Section, while Assumptions 1 and 3 are assumed to

hold throughout the paper, unless otherwise stated or modified.

The next theorem provides the asymptotic distribution of the Factor-IV estimator under

(4)-(7).

Theorem 1 Assuming that ft is known,
√

T (β̄ − β) has an asymptotically Normal distri-

bution, with zero mean and variance covariance matrix given, up to a scalar constant of

proportionality, by

Avar
(√

T (β̄ − β)
)

=
((

A0′
Z Λ0′

Z + A0′
)

Σf

(
Λ0

ZA0
Z + A0

))−1

(10)

If
√

T/N = o(1) then √
T (β̄ − β)−

√
T (β̂ − β) = op(1) (11)

Three additional comments are required. First, similar results hold when zt are added to

the factors as instruments; actually the efficiency of the estimator improves, but we do not

report the details of this case since the notation is even more complicated. Second, comparable

results on the performance of the standard IV estimator when the number of instruments tends

to infinity as the sample size grows (A0′ = 0 and st = zt in (3)) are provided by Morimune

(1983) and Bekker (1994). With respect to that literature, the analysis of the Factor IV

estimator is much simpler, because the number of factors remains fixed even if the number

of instruments diverges. Moreover, there are several cases where consistency is lost for the

standard-IV estimator when N diverges, as we will also see in the simulation experiments

of Section 4, while the Factor IV estimator remains consistent under the mild Assumptions

1-3. Finally, notice that the condition
√

T/N = o(1) is needed for the variance of the factor

estimator to become negligible when computing the asymptotic variance of the Factor-IV

estimator, but the latter remains consistent even if that condition is not satisfied.

2.2 Weak instruments and strong factors

To analyze the weak instrument case, we substitute equation (3) with

xt = A0′
(T )Zzt + A0′

(T )ft + ut. (12)
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Formally, the instruments are referred to as weak when A0′
(T )ZZ ′ZA0

(T )Z or A0′
(T )F

′FA0
(T ) is

less than Op(T ) (see, e.g., Chao and Swanson (2005)). This implies that the explanatory

power for the endogenous variables x of either the factors or the Z variables or both vanishes

asymptotically.

A key reference for the analysis of the standard IV estimator in the context of a finite set

of weak instruments is Staiger and Stock (1997), while Chao and Swanson (2005) and Han

and Phillips (2006) allow the number of weak instruments to diverge. The following theorem

provides results for our Factor-IV estimator in the case of many weak instruments.

Theorem 2 Assume that: a) N = O(T γ), γ > 1/2; b) either every element of Λ0
ZA0

(T )Z is

O(T−ψ), where 0 ≤ ψ < 1/2 or every element of A0
(T ) is O(T−ϑ), 0 ≤ ϑ < 1/2 (or both).

Then, under (12), if ϑ < ψ

T 1/2−ϑ
(
β̂ − β

)
d→ N

(
0, σ2

ε (Ψ′ΣfΨ)
−1

)
(13)

if ϑ > ψ,

T 1/2−ψ
(
β̂ − β

)
d→ N

(
0, σ2

ε (Υ′ΣfΥ)
−1

)
(14)

and if ϑ = ψ,

T 1/2−ψ
(
β̂ − β

)
d→ N

(
0, σ2

ε

(
(Υ + Ψ)′ Σf (Υ + Ψ)

)−1
)

(15)

where

lim
T→∞

Λ0
ZA0

(T )Z

T−ψ
= Υ, lim

T→∞

A0
(T )

T−ϑ
= Ψ (16)

It is worth making a number of comments on the assumptions of Theorem 2. First, the

condition N = O(T γ), γ > 1/2, guarantees that the convergence rate of the estimated factors

is fast enough to avoid generated regressor problems for the computation of the variance of

the Factor IV estimator (the larger γ, the slower T increases with respect to N). Second, in

the requirement that every element of Λ0
ZA0

(T )Z is O(T−ψ), 0 ≤ ψ < 1/2, the parameter ψ

controls how fast the instruments become weak when T increases (the larger ψ, the faster the

instruments become weak, the slower the speed of convergence of the Factor-IV estimator).

The condition that every element of A0
(T ) be O(T−ϑ), 0 ≤ ϑ < 1/2 has a similar interpretation.

If both ψ and ϑ are too large (i.e. assumption b is violated), the Factor-IV estimator is no

longer consistent. Third, and related to the previous comment, the relative size of ϑ and ψ

determines whether the correlation of x with the z variables or the factors decreases faster.

For example, when ϑ > ψ, the factors ”become” weak instruments faster than the z variables.

In this context we note the relevant work of Hahn and Kuersteiner (2002). Finally, the

assumption that the elements of A0
(T )Z and A0

(T ) are deterministic can be relaxed to allow for

the possibility of random elements that are independent of F , ε, u and v. Then, the conditions

in (16) would be modified to ones involving stochastic convergence.
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Three more general comments on the results in this subsection are the following. First,

in our context the concentration parameter is growing but slower than the sample size. This

differs from Staiger and Stock (1997) where the concentration parameter is constant. As

a consequence, we obtain asymptotically normal IV estimators, even though the speed of

convergence is slower than T 1/2. Second, and related to the previous point, the results in

Theorem 2 can be also used to justify the use of standard t or F -tests to verify hypotheses of

interest on the parameters. In analogy to the standard case of IV estimation and testing, where

there is no need to explicitly normalise estimates by the T 1/2 parametric rate of convergence

to obtain t and F -tests, there is no need to know ψ or ϑ in order to construct tests in the

present context. Finally, if every element of A0
(T ) is O(T−1/2), i.e., the factors are very weak

instruments, we are in the context analysed in Staiger and Stock (1997). In this case, if

condition a) and Assumption 1 (1) hold, it can be shown that the factors can be estimated

consistently, the 2SLS estimator based on the true factors has the same probability limit as

the 2SLS estimator based on the estimated factor (the Factor-IV estimator), the Factor-IV

estimator is no longer consistent, and the results of Theorem 1 of Staiger and Stock (1997)

for the 2SLS estimator are valid for the Factor-IV estimator.

2.3 Weak factors

The key idea underlying a factor model such as (2) is that all variables are driven by the same

limited number of factors. In this context, the larger the number of variables, the better the

estimators of the factors, which has led to the use of larger and larger datasets in empirical

analyses, see, e.g., Stock and Watson (2002a). However, it can be expected that while a

large but limited set of key macroeconomic variables have a strong common component, the

common factors are less and less relevant with respect to the idiosyncratic component for the

additional variables that are added to the basic dataset to achieve a very large value for N .

In particular, we might consider a situation such as

zit =
λ0′

i

iαi
ft + eit, (17)

αi =

{
0 for i < N∗

α for i ≥ N∗ ,

for i = 1, ..., N and α > 0, so that, from N∗ onwards, the larger is i the smaller the fraction

of variance of zi explained by the common factors.

If we write the model in a compact notation as

zt = Λ0′
Nft + et, (18)

Λ0′
N =

[
λ0

1

1
,

λ0
2

2α2
, ...,

λ0
N

NαN

]′
,

9



the loading matrix Λ0
N does not necessarily satisfy the condition in Assumption 1 (1). There-

fore, this model cannot be amenable to standard factor analysis. To see this, notice that for

Assumption 1 (1) to be satisfied the all rows sum of Λ0
N must be O(N). But if α > 0, it

follows that
∑N

i=1
λ0′

i

iαi
≤ c1N

∗ + c2N
1−α = o(N) as long as N∗ = o(N), for some finite vectors

c1 and c2.

Another factor specification that can violate Assumption 1 (1) is

zt = Λ0′
Nft + et, (19)

Λ0′
N =

[
λ0

1

Nα
,

λ0
2

Nα
, ...,

λ0
N

Nα

]′
=

Λ0′

Nα
, (20)

so that the factor loadings are decreasing in N for each variable. Such a model may be

considered unrealistic from an economic point of view, but it is analytically tractable and if

we can find consistent factor estimators in (19), the same estimators will remain consistent

in (17). Actually, for all i = [biN ], where [.] denotes integer part and 0 < bi ≤ 1, (19) is

equivalent to (17) since
λ0′

i

iα
=

λ0′
i

bα
i Nα =

λ̃0′
i

Nα where λ̃0′
i =

λ0′
i

bα
i

.

Further justification can be provided for the setup in (19). First, this setup, which es-

sentially defines a sequence of models, is similar to that of Chao and Swanson (2005), which

we have used in the previous subsections to consider the case of many weak instruments.

From the literature on many weak instruments, it is clear that defining a sequence of models

whereby parameters depend on the sample size (either N or T ) is the most common way of

exploring instrument weakness in IV settings. We simply transfer this device to a factor set-

ting. Second, the dependence of the loadings matrix Λ0
N on N is implicit in all factor models,

since the dimension of the loadings matrix changes with the number of variables N . Here

we just make the loadings of each equation also dependent on N . Third, the main point of

departure of (19) from (17) is that loadings for all variables get weaker as N increases rather

that only for additional variables. While this can be considered more restrictive, it addresses

the problem of the dependence of (17) on the ordering of the variables. Moreover, (19) can

be considered as a device for allowing the proportion of the variance explained by the factors

to go to zero as N tends to infinity. It is likely that this effect is pervasive within the dataset

rather than specific to a particular subset of the variables, thereby motivating (19) instead

of (17).

The first result we present analyses conditions under which a local-to-zero factor loading

matrix in (19) leads to a model that loses its defining factor characteristic, which is commonly

taken to imply that the largest r eigenvalues of the variance covariance of zt tend to infinity.

Theorem 3 Let Λ0
N = Λ0/Nα as in (20). The eigenvalues of the population variance covari-

ance matrix of Z are bounded for α ≥ 1/2 for all N .

10



In the case considered in the above Theorem, the factor model is no longer identifiable and

common and idiosyncratic components cannot be distinguished. This possibility is studied

in some detail in Onatski (2006). The next result concerns estimation of the factors for a

local-to-zero factor loading matrix.

Theorem 4 Let Λ0
N = Λ0/Nα as in (20), where 0 ≤ α < 1/4. Then, as long as N = o(T 1/4α),

1

T

T∑
t=1

∥∥∥f̂t −Hft

∥∥∥
2

= Op

(
min

(
N−4αT, N1−4α

)−1
)

(21)

Therefore, a sufficient condition for estimation in the local to zero case is the presence of a

relatively strong local-to-zero factor model (α < 1/4). Note also the tradeoff between α and

the allowable rate of increase for N (the bigger α, the slower the allowed rate of increase for

N). Finally, the condition on α is not necessary: in specific cases, such as those considered

in the Monte Carlo, it is possible to obtain consistent estimators for the factors even when

α < 1/2.

We now want to evaluate the properties of the Factor IV estimator in the presence of a

weak factor structure, possibly combined with weak instruments. The starting point is the

following lemma.

Lemma 1 Let Λ0
N = Λ0/Nα as in (20). Let α < 1/4 and N2α = o(T 1/2) . Let qt be any

multivariate sequence of random variables. Then,

1

T

T∑
t=1

(f̂t −Hft)q
′
t = Op

(
C−1

NT

)
(22)

where CNT is defined in (54), as long as qt has finite fourth moments, nonsingular covariance

matrix and 1√
T

∑T
t=1 qt satisfies a central limit theorem.

Then, we have the following theorem, which allows for both a weak factor structure and,

possibly, weak instruments.

Theorem 5 Let Λ0
N = Λ0/Nα as in (20). Let α < 1/4, N = o(T 1/4α) and C−1

NT T 1/2 = o(1)

where CNT is defined in (54). Then, Theorem 1 follows.

Further, if either every element of Λ0
Z,NA0

(T )Z is O(T−ψ), 0 ≤ ψ < 1/2 or every element of

A0
(T ) is O(T−ϑ), 0 ≤ ϑ < 1/2, then (13)-(15) of Theorem 2 follow, where

lim
T→∞

Λ0
NA0

(T )Z

T−ψ
= Υ, lim

T→∞

A0
(T )

T−ϑ
= Ψ (23)

and Υ and Ψ are nonsingular matrices.

11



Note that as α → 0, namely, the factor structure becomes strong, the condition C−1
NT T 1/2 =

o(1) becomes equivalent to
√

T/N = o(1), which was the condition in Theorem 1 for asymp-

totic equivalence of the infeasible and feasible Factor-IV estimators. The other requirements

are similar to those in Theorem 2, and limit the decrease in the explanatory power of the

observable instruments and factors.

A further issue that arises in a weak factor model is the determination of the number of

factors. The use of information criteria has been suggested by Bai and Ng (2002) in the strong

factor case. Specifically, they suggest criteria of the form

Vr + rg(N, T ) (24)

where

Vr = (NT )−1

N∑
i=1

T∑
i=1

(
zi,t −

r∑
j=1

λ̂j,if̂j,t

)2

(25)

λ̂j,i denotes the j, i-th element of the estimate of Λ0
N and g(N, T ) denotes a penalty term

that depends on N and T . The following Theorem provides a condition on the penalty term

g(N, T ) that ensures consistency of the estimated number of factors even under a weak factor

structure.

Theorem 6 Let the number of factors be determined by minimising (24) over 1 ≤ r ≤ rmax

for some constant rmax. Let

g(N, T ) = ln (min(N, T ))−1 (26)

Then, the estimated number of factors is consistent for the true number of factors for all

0 ≤ α < 1/4.

The penalty term in Theorem 6 is smaller than that suggested by Bai and Ng (2002) so

that, when α = 0 and N and T are finite, our criterion is expected to select a larger number of

factors. However, in the weak factor case, it provides the correct choice with probability one

in large samples, while the criteria by Bai and Ng (2002) would underestimate the number of

factors.

A final issue that deserves discussion is what happens to the Factor-IV estimator when

Theorem 3 holds, i.e., the factor structure is so loose that the factors cannot be identified

and consistently estimated. In this case the Factor-IV estimator is no longer consistent.

Kapetanios and Marcellino (2008) discuss this case in more detail and introduce an alternative

IV estimator based on averages of the instruments that, under certain conditions, is consistent

in the complete absence of a factor structure. Note that this estimator is of use, in the absence

of a factor structure, only if the large set of instruments enters directly in (3), since otherwise

the large set of instruments becomes irrelevant for xt. Of course, the question remains as to

12



how to decide if we are in a situation with very weak factors where Factor-IV is not consistent

or in a situation where Factor-IV is consistent. We suggest that information criteria can be

used for that. In particular, the case of no factors is a valid case to consider when searching

for the number of factors using the information criteria discussed in Theorem 6. If zero factors

are selected then Factor-IV should not be used. We examine some of these issues through

our Monte Carlo study.

In summary, in this Section we have introduced the Factor-IV estimator, which can be

used in the presence of a large set of instruments whose generating mechanism can be well

represented by a factor model, and derived its asymptotic properties. We have shown that

when N tends to infinity it becomes feasible to estimate the unobserved factors ft consistently,

even for local-to-zero factor models (Theorem 4). Under mild conditions, estimation of the

factors does not matter for the asymptotic properties of the Factor-IV estimator (Theorems 1

and 5). Moreover, whereas the Factor-IV estimator can remain consistent and asymptotically

normal even in the case where zt are weak instruments (Theorems 2 and 5), standard IV esti-

mation can be inconsistent if the number of instrument increases fast enough, as discussed by

Bekker (1994) and Chao and Swanson (2005). Finally, the Factor-IV estimator is inconsistent

either when the factors are very weak instruments, along the lines of Staiger and Stock (1997),

or when the factor structure is very loose, and in this case the estimator of Kapetanios and

Marcellino (2008) can be preferable.

3 Factor-GMM estimation

We now relax assumption 2 and allow for correlation and heteroskedasticity in the errors ε of

equation (1). We formalise this with the following assumption, which substitutes assumption 2:

Assumption 4 εt is a zero mean process with finite variance. The process stεt and, by im-

plication, ftεt, satisfies the conditions for the application of some central limit theorem for

weakly dependent processes, with a zero mean asymptotic normal limit.

Sfε = lim
T→∞

[
E

([
T−1

T∑
t=1

ε2
t ftf

′
t

][
T−1

T∑
t=1

ε2
t ftf

′
t

]′)]

exists and is nonsingular.

We further add the following regularity condition.

Assumption 5 E[(stixtj)
2] exists and has finite elements for t = 1, ..., T , i = 1, ..., N and

j = 1, ..., k.
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Remark 1 Assumption 4 is a high level assumption. It is given in this form for generality.

More primitive conditions on εt such as, e.g., mixing with polynomially declining mixing coef-

ficients or near epoque dependence (see, e.g, Davidson (1994)) are sufficient for Assumption 4

to hold.

As long as the instruments remain uncorrelated with the errors at all leads and lags,

the Factor-IV estimator remains consistent and asymptotically normal, but it is no longer

efficient. In fact, the efficient estimator in this context is obtained by GMM estimation

with S−1
fε as the weighting matrix. Using standard methods, the resulting estimator is b =(

X ′FS−1
fε F ′X

)−1
X ′FS−1

fε F ′y, and when the errors are uncorrelated and homoskedastic, this

expressions simplifies to (9). In practice, Sfε can be estimated by a HAC procedure, such

as that developed in Newey and West (1987). For example, using a Bartlett kernel, we have

Ŝfε,h = Φ̂0 +
h∑

j=1

(1 − j
h+1

)(Φ̂j + Φ̂
′
j), Φ̂j = T−1

T∑
T=j+1

ε̂tε̂t−j f̂tf̂
′
t−j, where h is the length of

the window (bandwidth), ε̂t = yt − x
′
tb, and b is a consistent estimator for β. The resulting

Factor-GMM estimator is denoted by b̂. Some properties of the Factor-GMM estimator are

given in the following Theorems.

Theorem 7 Under Assumptions 3,4 and 5 and assuming that ft is observed, then under (3)

var
(√

T (b− β)
)

=
((

A0′
Z Λ0′

Z + A0′
)

ΣfS
−1
fε Σf

(
Λ0

ZA0
Z + A0

))−1

(27)

If
√

T/N = o(1) then √
T (b− β)−

√
T (̂b− β) = op(1) (28)

Theorem 8 Under Assumptions 1,3,4 and 5, the assumptions of Theorem 2 and assuming

that the bandwidth, h, of the HAC variance estimator is o(T 1/2), then, if ϑ < ψ

T 1/2−ϑ
(
b̂− β

)
d→ N

(
0,

(
Ψ
′
ΣfS

−1
fε ΣfΨ

)−1
)

(29)

if ϑ > ψ,

T 1/2−ψ
(
b̂− β

)
d→ N

(
0,

(
Υ
′
ΣfS

−1
fε ΣfΥ

′
)−1

)
(30)

and if ϑ = ψ,

T 1/2−ψ
(
b̂− β

)
d→ N

(
0,

(
(Ψ + Υ)

′
ΣfS

−1
fε Σf (Ψ + Υ)

)−1
)

(31)

where limT→∞
Λ0

ZA0
(N,T )Z

T−ψ = Υ limT→∞
A0

(T )

T−ϑ = Ψ.

Finally, the results of Theorem 5 on the use of factors in the presence of weak instruments

and a weak factor structure follow straightforwardly also for the GMM case.
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4 Monte Carlo Study

This section presents a detailed Monte Carlo study of the relative performance in finite samples

of the standard and Factor-IV estimators, with a focus on the weak instruments and/or weak

factor cases. In the first subsection, we consider the setup and estimators we have proposed

in Section 2. In the second subsection, we present additional results on the role of variable

preselection and on the Factor-GMM estimation of Section 3.

4.1 Factor-IV estimation in finite samples

The basic setup of the Monte Carlo experiments is:

yt =
k∑

i=1

xit + εt (32)

sit =
r∑

j=1

N−pfjt + eit, i = 1, ..., N (33)

xit =
r∑

j=1

T−θr−1/2jfjt + uit, i = 1, ..., k (34)

where eit ∼ i.i.d.N(0, 1), fit ∼ i.i.d.N(0, 1) and cov(eit, esj) = 0 for i 6= s. Let κt =

(εt, u1t, ..., ukt)
′. Then, κt = Pηt, where ηt = (η1,t, ..., ηk+1,t)

′, ηi,t ∼ i.i.d.N(0, 1) and P = [pij],

pij ∼ i.i.d.N(0, 1). The errors eit and uis are independent for each i and s.

We do not consider heteroskedastic and/or correlated errors, in the main part of the Monte

Carlo study, because we want to compare the standard and Factor-IV estimators without the

possible complications arising from estimation of the HAC variance covariance matrix of the

errors. We will consider the case of serial correlation in the second subsection. Also, we only

report results for k = 1, r = 1, since there are no qualitative changes by increasing the number

of endogenous variables or of factors (results available upon request).

The instrumental variables sit are generated by the factor model in (33). The parameter

p controls the ”strength” of the factor structure. We consider the values p = 0, 0.25, 0.33, 0.5.

When p = 0 we are in the standard case analyzed by Stock and Watson (2002b), Stock and

Watson (2002a), Bai (2003), and Bai and Ng (2002). When p > 0 we are in the weak factor

structure case, analyzed in Theorems 4 and 5 of Section 2.3. In particular, we know from

Theorem 4 that it is still possible to estimate consistently the (space spanned by the) factors

using the principal component based estimator when p < 0.25. In this particularly simple set

up, it can be easily shown that the principal component based estimator remains consistent

when p < 0.5. Actually, from (33), it is
∑N

i=1 Np−1zit = ft +
∑N

i=1 Np−1eit and
∑N

i=1 Np−1eit

goes to zero when p < 0.5.
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The parameter θ measures the ”strength” of the factors as instruments, which decreases

for higher values of θ. In fact, from (34), it is

var(xt) = T−2θ + 1. (35)

We consider values θ = 0, 0.25, 0.5. When θ = 0 we are in the standard strong instrument

case; when θ = 0.25 we are in the weak instrument case covered by Theorem 2 of Section

2.2; when θ = 0.5 we are in the very weak instrument context analysed in Staiger and Stock

(1997) and discussed for the factor set-up at the end of Section 2.2.

Note that (34) differs from (3) for the omission of the z regressors. However, as long as

the dimension of z is finite and z are strong instruments, as in the empirical application we

will present below, there are no major changes in the Monte Carlo results. The cases where

z has dimension N , and possibly x depends on z only and not on the factors, are analyzed in

Kapetanios and Marcellino (2008).

We consider the following combinations of N and T : N = (30, 50, 100, 200), T = (30, 50, 100, 200).

In Table 1 we report the mean squared errors (MSE) of the alternative estimators (the biases

are in general small for both estimators, results available upon request). In Table 1 we, fur-

ther report the coverage probability of the Factor-IV estimator (computed as the percentage

of times the null hypothesis that the coefficient is one is not rejected by a t-test).

Let us start with the case p = 0 and θ = 0. In this context, the estimator of the factor is

simply the average of the s variables, while the pseudo true value of the coefficient of sit in a

regression of xt on sit, i = 1, ..., N , is 1/N . Hence, when T is large, and larger than N , the

two IV estimators should produce similar results. This is indeed the case in Table 1: when

T = 200 and N = 30 the MSE for standard IV is 0.109 versus 0.075 for Factor-IV. But when

T is small relative to N , it is more efficient to use the estimated factor rather than estimating

the coefficients of zit, i.e. using the standard IV estimator. For example, when T = 50 and

N = 30 the MSE for standard IV is 0.280 versus 0.159 for Factor-IV. Note also that for

both estimators the MSE decreases with T when N is fixed. However, when both T and N

increase (i.e. we move along the diagonal of the relevant subpanels of Table 1) the MSE of

the standard IV does not decrease, signalling inconsistency, while that of the Factor-IV does

decrease. Also, and as expected, for given T the MSE of the standard IV increases with the

number of instruments N , while it is stable for the Factor-IV estimator. The final comment

on this base case concerns the coverage rates in Table 1, which are remarkably close to the

95% value.

The findings so far confirm the theoretical results in our Section 2.1 and in Bai and Ng

(2009), namely, that when the instruments are many and strong, and the factor structure is

strong, Factor-IV is systematically better than standard IV. Next, we analyze the, perhaps

more interesting, cases where either the factors are weak instruments (θ > 0), or the factor
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structure is weak (p > 0), or both.

Figures for the case p = 0, θ > 0 are reported in the upper parts of the upper and middle

panels of Table 1. When θ = 0.25, there is an increase in the MSE of the Factor-IV estimator,

which becomes larger than that of the standard IV for T < 100. However, the MSE of the

Factor-IV still decreases with T , which confirms consistency, in line with Theorem 2. When

instead θ = 0.5, the MSE of the Factor-IV further increases and becomes rather stable with

T , suggesting inconsistency, in line with the comments we made in Section 2.2 and with the

results in Staiger and Stock (1997). Note that this finding does not imply that we should

use standard IV in this context, even if its MSE is lower it is also inconsistent. Rather, the

implication is that instrument weakness can be a problem also in the factor context, as we

will also see in the empirical application in the next Section. In terms of coverage probability,

the corresponding panels of Table 1 show that there is a deterioration proportional to the size

of θ, with values in the range 0.88− 0.93 when θ = 0.5.

Figures for the case p > 0, θ = 0 are reported in the left parts of the upper and middle

panels of Table 1. Theory predicts that there should be no effects on the standard IV estimator,

since the fit of the first stage regression converges quickly to
∑N

i=1 Np−1sit, which in turn is a

close estimate of the true factor. Indeed, the values of the MSE and coverage rates are very

similar to those for p = 0. Instead, the Factor-IV estimator should loose consistency when p

is too large (larger than 0.5 in this specially simple Monte Carlo design, as discussed above).

When p = 0.25 there are very small changes in the MSE of the Factor-IV, while the MSE

starts increasing substantially for p ≥ 0.33, and for p = 0.5 the MSE increases with N rather

than remaining stable. In this case using st, which contains information on the true factors

ft, is better than estimating ft with the principal component based estimator. However, the

coverage probability is less affected.

Finally, figures for the cases p > 0, θ > 0 are presented in the remaining panels of Table 1.

Two major features deserve a comment. First, the effects of higher θ are in general stronger

for p > 0 than for p = 0, and the joint presence of p > 0, θ > 0 often increases the MSE more

than the sum of the separate increases for p > 0 and θ > 0. Second, when θ = 0.5 (very weak

instruments) changes in p have small effects, while when p = 0.5 (very weak factor structure)

changes in θ still matter, and in this sense weak instruments seems to matter more than weak

factors. In the worst case of p = 0.5, θ = 0.5, the MSEs are 10 to 30 times higher than for

p = 0, θ = 0, while the coverage probabilities decrease to about 0.83− 0.88.

Overall, the Factor-IV estimator is better than the standard IV estimator in finite samples,

as long as the factor model remains strong. When the parameter p increases, the performance

of the estimator of the factor (f̂t) deteriorates, causing a larger variance for the factor-IV

estimator of the parameters of the structural equation. A weaker link between the endogenous

variables and the factors (large θ) also increases the variance of the Factor-IV estimator, but
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in general even more so for the standard IV estimator, unless p is large.

4.2 Additional results

The first issue we address is the effect of the use of the efficient GMM estimators of Section 3

in the presence of serial correlation of the errors of the structural equation. We let εt in

(32) be either an AR(1) process with AR coefficient equal to 0.5 or an MA(1) process with

MA coefficient equal to 0.5. These two cases are interesting because the errors of structural

equations in DSGE models often have an AR structure, while an MA component emerges when

expected future values of the regressors are substituted with their actual values. Results for

the MSE in the AR case are presented in Table 2, those for MA case are similar and available

upon request, as well as the coverage probabilities.

Reassuringly, the resulting ranking of the estimators is extremely similar to the case of

no serial correlation in Table 1, with Factor-GMM having a smaller variance than standard

GMM in most cases.

The second additional issue we evaluate is the role of variable preselection (i.e. selecting

the variables that enter the factor analysis), since it may be conducive to better results in

various modelling situations, such as forecasting macroeconomic variables (see Boivin and Ng

(2006)). To assess whether such a procedure may have some relevance to our work, we consider

the setup (32), (33) and (34) but, prior to using the instruments st either for factor estimation

or to compute the standard IV estimator, we preselect the 50% of the instruments with the

highest correlation with xt. Then, we carry out standard and Factor-IV estimation as usual.

Results are reported in Table 3, focusing for simplicity on a subset of the experiments (θ = 0

only) .

Comparing Tables 3 and 1, it turns out that standard IV estimation is basically unaffected

by instrument preselection. The MSE of Factor-IV is also not affected when p = 0, but

it improves substantially when p > 0 (weak factor structure), and the coverage probability

remains good. When p > 0, variable preselection plays a double role: it selects instruments

correlated with the target, but because of this the selected instruments are also more correlated

among themselves and therefore will present a stronger factor structure. Overall, with variable

preselection Factor-IV estimation becomes superior to standard IV also in the case of a weak

factor structure, and in the next Section we will see that this can matter in practice.

Next, we carry out a robustness check, associated with our assumption of a single factor.

To check whether our analysis extends to multiple factors, we assume that there are two

factors and replace (33) with

sit =
r∑

j=1

N−pνijfjt + eit, i = 1, ..., N (36)
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where νij ∼ i.i.d.U(0, 1). We set p = 0 and θ = 0 and run a Monte Carlo exercise leaving

the rest of the Monte Carlo settings as before. We report RMSE results in Table 4. We see

a pattern of results that is similar to the single factor case. If anything, Factor IV performs

better that standard IV, compared to the single factor case.

Further, we consider the performance of the estimator proposed by Kapetanios and Mar-

cellino (2008) in our setting. Kapetanios and Marcellino (2008) suggest using the cross-

sectional averages (CSA) of sit as instruments. If k = 1, then the CSA estimator is consistent

if the coefficients of sit in the regression model of xt do not have zero mean, while if k > 1,

more restrictive conditions are needed. We know from the Monte Carlo study of Kapetanios

and Marcellino (2008) that the estimator works better than Factor-IV if there is no factor

structure but sit enters directly in xt. Our current setting is different. sit only enters via the

factors in xt. It is of interest to examine the performance of CSA IV in this context when

the factor structure gets weaker. We expect that in this case where sit has information for

xt only via the factors, the two estimators will perform similarly.We report RMSE results

for CSA-IV in Table 5. We see that, as expected given the above discussion, CSA-IV and

Factor-IV perform very similarly.

Finally, we consider the ability of our modified infomation criterion, analysed in Theorem

6, to provide evidence on the weakness of the factor structure, and thereby on the validity

of the estimated factors as instruments for Factor-IV. We use the same setup as that used

to produce the results in Table 1 but consider θ = 0 and p = 0, 0.25, 0.5, 0.75. We use the

information criterion analysed in Theorem 6, to estimate the number of factors while allowing

that zero factors be selected. The average number of factors selected are reported in Table 6.

We see that while the criterion always selects 1 factor when p = 0, it selects a smaller number

than 1 for p = 0.25, while for the extreme cases, where p = 0.5, 0.75, and Factor IV should

not be used, the criterion correctly suggests that no factor structure exists.

5 Empirical Application

In this Section we discuss two empirical applications of the Factor-GMM procedure, and

compare the results with the CSA GMM estimation of Kapetanios and Marcellino (2008).

The first application concerns estimation of a forward looking Taylor rule, along the lines

of Clarida, Gaĺı, and Gertler (1998) (CGG), Clarida, Gaĺı, and Gertler (2000) (CGG2)) and

Favero, Marcellino, and Neglia (2005). The second application focuses on estimation of a New-

Keynesian Phillips curve, along the lines of Gaĺı and Gertler (1999) (GG 1999) and Beyer,

Farmer, Henry, and Marcellino (2008).
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5.1 Taylor Rule

For the Taylor rule, we adopt the following specification :

rt = α + (1− ρ)β(πt+12 − π∗t ) + (1− ρ)γ(yt − y∗t ) + ρrt−1 + εt, (37)

where εt = (1− ρ)β(πe
t+12− πt+12) + vt, and vt is an i.i.d. error. We use the federal funds rate

for rt, annual cpi inflation for πt, 2% as a measure of the inflation target π∗t , and the potential

output y∗t is the Hodrick Prescott filtered version of the IP series. Since πt+12 and yt − y∗t are

correlated with the error term εt, and the error term has an MA structure, we adopt GMM

estimation with a correction for the MA component in the error εt and a proper choice of

instruments.

In particular, we use a HAC estimator for the weighting matrix, based on a Bartlett kernel

with Newey and West (1994) automatic bandwith selection. For the set of instruments, in the

base case the choice is similar to that in CGG and CGG2. We use one lag of the output gap,

inflation, commodity price index, unemployment and interest rate. We focus on the period

1985-2003, since Beyer, Farmer, Henry, and Marcellino (2008) have detected instability in

Phillips curves and Taylor rules estimated on a longer sample with an earlier start date.

For the Factor GMM estimator, we add to the set of instruments the (one period lagged)

factors extracted from a large dataset of 132 monthly macroeconomic and financial variables

for the US, extracted from the dataset in Stock and Watson (2005). The number of factors is

eight, as indicated by the Bai and Ng (2002) criteria, which suggests that the factor structure

is rather weak. As in the Monte Carlo experiments, we also consider a subset of 12 of the 132

variables, those with an absolute correlation with inflation higher than 0.40, since this can

strenghten the factor structure and improve the information content of the factors for future

inflation. In fact, in this case one factor explains over 60% of the variance of all variables, and

we use one to twelve lags of this factor as instruments, in addition to those in the base case.1

For the CSA GMM, we add to the basic set of instruments the simple average of either all

the (standardized) 132 macroeconomic variables, or of only the subset of 12 variables mostly

correlated with inflation. In both cases, we included one to twelve lags of the averages as

instruments.

Finally, we also considered one lag of the 12 selected macroeconomic variables as instru-

ments, to compare the performance of Factor and CSA IV with a relatively small set of

instruments.

The results from the six estimation methods (Base, Factor-GMM All data, CSA-GMM

All data, Factor GMM Select data, CSA GMM Select data, and Select data as instruments)

1We select the variables using inflation as the target rather than the output gap since the first stage equation
for the gap is unproblematic, with an adjusted R2 close to 0.90, mostly due to the high explanatory power of
lagged gap.
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are reported in Table 7. For the base case, the estimated values for β and γ are, respectively,

about 2.3 and 1, and the fact that the output gap matters less than inflation is not surprising.

The persistence parameter, ρ, is about 0.88, in line with other studies. An LM test for the

null hypothesis of no correlation in the residuals of an MA(11) model for ε̂t does not reject

the null hypothesis, which provides evidence in favor of the correct dynamic specification of

the Taylor rule in (37). The p-value of the J-statistic for instrument validity is 0.11, so that

the null hypothesis is not rejected at the conventional level of 10%.

Adding the ”All data” factors to the instrument set does not improve the precision of the

estimators of ρ, γ and β. Instead, the CSA GMM using ”All data” produces a major reduction

in the variance of the estimators. Using the ”Select data” factors, the precision of the Factor

GMM improves substantially, becoming much lower than for the base case and comparable

to that of the CSA GMM based on the ”Select data”. Using directly the lagged ”Select

data” as additional instruments produces bad results in terms of variances of the estimators,

much worse than in the base case for γ and β. The point parameter estimates are also fairly

different from the other five cases. These findings indicate that GMM estimation based on

18-20 macroeconomic instruments can already be problematic.

Finally, a regression of future (12 months ahead) inflation on the alternative sets of in-

struments indicates that each set of factors is significant at the 10% level when added to the

macro variables, while the CSA from the ”All data” are not, and those from ”Select data”

only marginally so. However, a few of the lagged CSA variables are strongly significant in

both cases. Moreover, the values of the adjusted R2 in these equations are all of comparable

size. Instead, the additional regressors are often not significant in the first stage regression

for the output gap, since the latter is mostly explained by its own lag.

5.2 New Keynesian Phillips Curve

For the second empirical example, the New-Keynesian Phillips curve is specified as,

πt = c + γπt+1 + αxt + ρπt−1 + εt, (38)

where εt = γ(πe
t+1 − πt+1) + vt, and vt is an i.i.d. error. Moreover, πt is annual CPI inflation,

πe
t+1 is the forecast of πt+1 made in period t, and xt is unemployment, with reference to Okun’s

law, as in e.g. Beyer and Farmer (2004). As for the Taylor rule, πt+1 and xt are correlated with

the error term εt, which in turn is correlated over time. Hence, we estimate the parameters

of (38) by GMM, with a correction for the MA component in the error εt, and the same six

sets of instruments as for the Taylor rule.

The results are reported in Table 8. For the base case, the coefficient of the forcing

variable is not statistically significant (though it has the correct sign), while the coefficients
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of the backward and forward looking components of inflation, ρ and γ, are similar and close

to 0.5.

Adding the ”All data” factors to the instrument set improves the precision of the estimators

of all parameters, but the gains are much larger with the ”Select” data factors. For the latter,

the gains are about 10% for α and 120% for γ and ρ. Moreover, a regression of future (1 month

ahead) inflation on the instruments indicates that only the Select data factors are strongly

significant when added to the set of macroeconomic regressors. As for the Taylor rule, the CSA

GMM based on ”All data” performs better than the corresponding Factor GMM. However,

CSA and Factor GMM based on ”Select data” produce very similar results in terms of both

point estimates of the parameters, and the variances of the estimates. The CSA from ”Select

data” are also strongly jointly significant in a regression of future (1 month ahead) inflation

on the instruments.

We should mention that, as for the Taylor rule, there is little role for the factors in the

first step regression for the other potentially endogenous variable, the unemployment rate.

The adjusted R2 in this equation is about 0.98, moslty due to the strong explanatory power

of lagged unemployment. Finally, for estimation of the New Keynesian Phillips curve, using

directly the ”Select data” as instruments is slightly better in terms of efficiency than the base

case, but much worse than either CSA or Factor GMM.

In summary, these two empirical examples confirm the practical relevance of factors as

additional instruments to enhance the efficiency of GMM estimation, possibly after variable

preselection when the factors are weak.
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6 Conclusions

In this paper, and in a related independent article by Bai and Ng (2009), we develop the

theoretical underpinnings of Factor-GMM estimation, which was used by Favero, Marcellino,

and Neglia (2005) and Beyer, Farmer, Henry, and Marcellino (2008) to estimate structural

forward looking equations, such as those typically encountered in DSGE models. We show that

when the endogenous variables in a structural equation are explained by a set of unobservable

factors, which are also the driving forces of a larger set of instrumental variables, using the

estimated factors as instruments rather than the large set of instrumental variables yields

sizeable efficiency gains. Bai and Ng (2009) show that a similar finding remains valid in a

system framework, and the same would be true for our methodology.

We then extend the basic results in two directions. First, we assess the consequences

of a weak factor structure. In this case, the by now standard principal component based

estimators of the factors can be no longer consistent, basically because the factor model is

no longer identified. However, we show that these factor estimators remain consistent even if

the factor loadings in the factor model converge to zero, but at a sufficiently slow rate as a

function of N . In this case, it is still possible to use Factor-IV estimators with well defined

asymptotic properties.

Second, we evaluate what happens when the instruments are weak, possibly combined

with a weak factor structure. It is still possible to derive standard and Factor-IV estimators

with well defined asymptotic properties, when the parameters in the equation that relates the

instruments (or the factors) to the endogenous variables converge to zero at a sufficiently slow

rate. Both types of ”weaknesses”, in the factor structure and/or in the instruments, imply a

slower convergence rate of the instrumental variable estimators.

To evaluate the finite sample properties of the Factor-IV estimators, we conduct an ex-

tensive set of simulation experiments. The results indicate that Factor-IV estimation is in

general more effective than standard IV estimation, intuitively because the information in a

large set of weak instruments in condensed in just a few variables. Variable preselection is

helpful to strengthen the factor structure and further increase the efficacy of the Factor-IV

estimator. Similar results hold for Factor-GMM estimators.

Finally, we apply Factor-GMM for the estimation of a New Keynesian Phillips curve for

the US, using factors extracted from a large set of macroeconomic variables. The findings

confirm the empirical relevance of the theoretical results in this paper, in particular when the

instrumental variables are pre-selected in a first stage, based on their correlation with the

endogenous variable(s). Variable pre-selection can in fact alleviate both the weak instrument

problem, since only instruments correlated with the target variable(s) are retained, and the

weak factor structure problem, since more homogeneous variables are retained. In such a
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context, the gains from Factor-GMM estimation with respect to standard GMM estimation

can be fully exploited.
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Appendix

Proof of Theorem 1

Asymptotic normality for the estimators follows straightforwardly from the martingale difference
central limit theorem given Assumption 2, while unbiasedness follows from F ′ε

T

p→ 0 and Z′ε
T

p→ 0.
We then examine the asymptotic variances. The general expressions for the covariance matrices of
√

T (β̄ − β) are given by the probability limits as T →∞ of
(

X′F
T

(
F ′F
T

)−1
F ′X

T

)−1

. The following

probability limits, using standard laws of large numbers and the uncorrelatedness of ut and vt, give
the required ingredients for the results

F ′F
T

p→ Σf (39)

Z ′Z
T

=

(
FΛ0

Z + vZ

)′ (
FΛ0

Z + vZ

)

T

p→ Λ0′
Z ΣfΛ0

Z + ΣvZ

X ′F
T

=

(
A0′

Z

(
Λ0′

Z F ′ + v′Z
)

+ A0′F ′ + u′
)

F

T

p→
(
A0′

Z Λ0′
Z + A0′

)
Σf

X ′Z
T

=

(
A0′

Z

(
Λ0′

Z F ′ + v′Z
)

+ A0′F ′ + u′
) (

FΛ0
Z + vZ

)

T

p→

A0′
Z Λ0′

ZΣfΛ0
Z + A0′

Z ΣvZ + A0′ΣfΛ0
Z

Then, the first part of the Theorem follows. For the second part, it is sufficient to prove that

√
T

((
X ′F (F ′F )−1F ′X

)−1
X ′F (F ′F )−1F ′ε−

(
X ′F̂ (F̂ ′F̂ )−1F̂ ′X

)−1
X ′F̂ (F̂ ′F̂ )−1F̂ ′ε

)
= op(1)

(40)
(40) follows if

X ′F
T

(
F ′F
T

)−1 F ′X
T

− X ′F̂
T

(
F̂ ′F̂
T

)−1
F̂ ′X
T

= op(1) (41)

and
X ′F
T

(
F ′F
T

)−1 F ′ε
T 1/2

− X ′F̂
T

(
F̂ ′F̂
T

)−1
F̂ ′ε
T 1/2

= op(1) (42)

(41) and (42) follow if
X ′F
T

− X ′F̂
T

= op(1),
F ′F
T

− F̂ ′F
T

= op(1) (43)
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√
T

(
F ′ε
T

− F̂ ′ε
T

)
= op(1) (44)

hold. We examine (43)-(44). They can all be written as

AT
1
T

T∑

t=1

(f̂t −Hft)q′t = op(1) (45)

where AT is 1, 1 and
√

T and qt is xt, ft and εt respectively for (43)-(44). By Lemma A.1 of Bai and
Ng (2006) we have that

1
T

T∑

t=1

(f̂t −Hft)q′t = Op

(
min(N,T )−1

)
(46)

as long as qt has finite fourth moments, nonsingular covariance matrix and 1√
T

∑T
t=1 qt satisfies a

central limit theorem. These conditions are satisfied for xt, ft and εt via assumptions 2 and 3. Hence,

(43) follows, while (44) follows if
√

T/N = o(1).

Proof of Theorem 2

For the sake of brevity, we assume that A0
(T ) = 0, and we show that in this case T 1/2−ψ

(
β̂ − β

)
d→

N
(
0, σ2

ε (Υ′ΣfΥ)−1) .Then, (13)-(15) follow similarly but with a more complex notation. To start

with, we examine the asymptotic distribution of T 1/2−ψ
(
X ′F̂ (F̂ ′F̂ )−1F̂ ′X

)−1

X ′F̂ (F̂ ′F̂ )−1F̂ ′ε.

Using (45) for AT = Tψ and since by assumption N = O(T γ), γ > 1/2, it is sufficient to examine

the asymptotic distribution of
(

X′F
T 1−ψ

(
F ′F
T

)−1 F ′X
T 1−ψ

)−1
X′F
T 1−ψ

(
F ′F
T

)−1 F ′ε
T 1/2 . A standard central limit

theorem suffices to show that under assumptions 1-3, T−1/2F ′ε d→ N (0, σ2
ε Σf ). We examine the

limits of F ′F
T and X′F

T 1−α . The first is given in (39). We examine the second. We have

X ′F
T 1−ψ

=

(
A0′

(T )Z

(
Λ0′

Z F ′ + v′Z
)

+ u′
)

F

T 1−ψ
=

A0′
(T )ZΛ0′

Z

T−ψ

F ′F
T

+
A0′

(T )Zv′ZF

T 1−ψ
+

u′F
T 1−ψ

(47)

The second and third terms of the RHS of (47) tend to zero since 1− ψ > 1/2. The first term

tends to Υ′Σf . Hence, the result follows.

Proof of Theorem 3

The covariance matrix of Z, ΣZ , is given by Λ0′
NΣfΛ0

N + Σv where Σf and Σv are the covariance

matrices of F and v respectively. By Weyl’s theorem (see 5.3.2(9) of Lutkepohl (1996)) the eigenvalues

of ΣZ are bounded if the eigenvalues of Λ0′
NΣfΛ0

N and Σv are bounded. By assumption the eigenvalues

of Σv are bounded. Hence we examine Λ0′
NΣfΛ0

N . By Schwarz, Rutishauser, and Stiefel (1973), the

eigenvalues of Λ0′
NΣfΛ0

N , will be bounded if the column sum norm of Λ0′
NΣfΛ0

N is bounded. But every

element of Λ0′
NΣfΛ0

N is O(N−2α). Hence the column sum norm of Λ0′
NΣfΛ0

N is O(1) for all α ≥ 1/2.

Hence the result follows.
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Proof of Theorem 4

We follow the proof of Theorem 1 of Bai and Ng (2002). A crucial difference is that because of the
local nature of Λ0

N we use a different normalisation for Λ. Therefore, rather than the normalisation
Λ′Λ/N = I, we use Λ′Λ/N1−2α = I. This leads to the mathematical identities F̂ = N−1+2αXΛ̃
and Λ̃ = T−1X ′F̃ where F̃ is the solution to the optimisation problem of maximising tr(F ′(X ′X)F )
subject to F ′F/T = I. Let H = ((F̃ ′F/T )(Λ0′

NΛ0
N/N1−2α))′. Then,

f̂t −Hft = N2αT−1
T∑

s=1

f̃sγN (s, t) + N2αT−1
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s=1

f̃sζst + N2αT−1
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f̃sηst + N2αT−1
T∑

s=1

f̃sξst

where γN (s, t) = E(e′set/N)
ζst = e′set/N − γN (s, t) (48)

ηst = f ′0s Λ0
Net/N (49)

ξst = f ′0t Λ0
Nes/N = ηts (50)

It is easy to see that ||f̂ t−Hf t||2≤ 4(at+bt+ct+dt), where at = N4αT−2
∥∥∥∑T

s=1 f̃sγN (s, t)
∥∥∥

2
, bt =

N4αT−2
∥∥∥∑T
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∥∥∥
2
, ct = N4αT−2

∥∥∥∑T
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∥∥∥
2
, dt = N4αT−2

∥∥∥∑T
s=1 f̃sξst

∥∥∥
2
. It follows that

1/T
∑T

t=1 ||f̂ t−Hf t||2≤ c/T
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t=1 (at+bt+ct+dt), for some constant c. Now,∥∥∥∑T
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∥∥∥
2
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2
) (∑T

s=1 γ2
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)
, which implies that 1/T

∑T
t=1 at= Op(N

4αT−1).

Following the analysis for N−4αbt given in the proof of Bai and Ng (2002) we see that
1/ (N4αT )

∑T
t=1 bt= Op(N

−1), and hence 1/T
∑T

t=1 bt= Op(N
−1+4α) = op(1), as long as a < 1/4.

Finally we look at ct. dt can be treated similarly.
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Proof of Lemma 1

We follow the proof of Lemma A.1 of Bai and Ng (2006). Using (48)-(50) we get

1
T

T∑
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(f̂t −Hft)q′t = N2αT−2
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+ (51)
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The first two terms of (51) apart from the normalisation N2α are the same as those analysed in Lemma
A.1 of Bai and Ng (2006). Thus, under the assumption of the Lemma for qt, we immediately get that
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they are Op

(
N2αT−1/2 min(N, T )−1/2
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)
respectively. Thus, the sum
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)
. The third and the fourth term of (51) are analysed

similarly. We focus on the third term. We have
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The first term on the RHS of (52) can be written as
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For the second term of (52) we have
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, by Theorem 4. Then,
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(53)

But, 1
T

∑T
t=1

f ′0s Λ0et

N
q′t = Op(N

−1/2) and so the RHS of (53) is also Op(N−1+2α). So the second term
of (52) is

Op

(
min

(
N−2αT 1/2, N1/2−2α

)−1 (
N1/2−α

)−1
)

= Op

(
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(
N1/2−3αT 1/2, N1−3α

)−1
)

As a result, the third term of (51) is Op

(
min

(
N1/2−3αT 1/2, N1−3α, (NT )1/2

)−1
)

. Thus, overall

1
T

T∑

t=1

(f̂t −Hft)q′t = Op

(
min

(
N1/2−3αT 1/2, N1−3α, N−2α min(N, T ), (NT )1/2
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= Op

(
C−1

NT
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where
CNT ≡ min

(
N1/2−3αT 1/2, N1−3α, N−2α min(N, T )

)
(54)

since (NT )1/2 is always larger than N−2α min(N, T )

Proof of Theorem 5

The results follow from Lemma 1, (45) and the proofs of Theorems 1 and 2. More particularly,

the results of Theorem 1 require a result similar to (45) which is now provided by Lemma 1. Then,

the results of Theorem 1 are obtained immediately. Similarly, once Lemma 1 is used (13)-(15) of

Theorem 2 follow.
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Proof of Theorem 6

The theorem is proved if we show that the sufficient conditions for consistency given in Theorem 2

of Bai and Ng (2002) are satisfied for all 0 ≤ α < 1/4. Let C̃NT = min
(
N−4αT, N1−4α

)
denote

the rate derived in Theorem 3.. The two conditions of Theorem 2 of Bai and Ng (2002) are firstly

that g(N, T ) → 0 (Condition 1) and secondly that C̃NT g(N, T ) →∞ (Condition 2). First, note that

Corollary 2 of Bai and Ng (2002) implies that the results of Theorem 2 of Bai and Ng (2002) hold

for a an unspecified estimator with unspecified rate C̄NT . Condition 1 is easily seen to be satisfied

for g(N, T ) in (26). Since C̃NT grows polynomially in min(N, T ), for all 0 ≤ α < 1/4, Condition 2 is

also seen to be satisfied for all 0 ≤ α < 1/4. Hence, the Theorem holds.

Proof of Theorem 7

The general expression for the covariance matrices of
√

T (b− β) is given by the probability limits as

T →∞ of
(

X′F
T S−1

fε
F ′X

T

)−1
. The results follow from those in the Proof of Theorem 1 and consistency

of the HAC estimator of S. Next, we need to prove that
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. The theorem is com-

plete if we show formally that Φj − Φ̂j = op(h−1). We show below that Φ0 − Φ̂0 = op(h−1). The
result for j > 0 follows similarly. We have
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for some constants C1,C2 and C3. But, by (45) and
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as long as εt has finite eighth moments. Then,
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for some constant C5. Again by (45) and
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.

By consistency of b, ‖b− β‖ = op(1). Hence Φ0 − Φ̂0 = op(h−1) as long as h = o(T 1/2).
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Proof of Theorem 8

It follows from the proof of Theorem 2, given Theorem 7 and consistency of Ŝ bfε
.

Table Appendix

Table 1. Results for Factor and Standard IV estimators
RMSE Results for Standard IV

θ 0 0.25 0.5
p T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 30 0.370 0.375 0.370 0.369 0.620 0.590 0.618 0.604 0.688 0.696 0.694 0.689
0 50 0.284 0.366 0.364 0.371 0.587 0.624 0.629 0.626 0.686 0.685 0.686 0.683
0 100 0.180 0.250 0.359 0.378 0.542 0.592 0.626 0.658 0.700 0.697 0.700 0.700
0 200 0.111 0.150 0.243 0.352 0.500 0.566 0.629 0.655 0.710 0.699 0.704 0.710

0.25 30 0.378 0.377 0.372 0.376 0.601 0.607 0.610 0.599 0.700 0.683 0.691 0.678
0.25 50 0.295 0.364 0.369 0.372 0.594 0.607 0.630 0.625 0.683 0.697 0.686 0.699
0.25 100 0.189 0.246 0.355 0.364 0.552 0.603 0.648 0.653 0.697 0.691 0.695 0.693
0.25 200 0.120 0.164 0.243 0.359 0.516 0.565 0.612 0.654 0.697 0.685 0.713 0.713
0.33 30 0.369 0.368 0.371 0.377 0.597 0.612 0.601 0.610 0.696 0.699 0.696 0.692
0.33 50 0.301 0.366 0.370 0.367 0.602 0.626 0.617 0.613 0.693 0.693 0.693 0.695
0.33 100 0.197 0.264 0.360 0.361 0.563 0.612 0.627 0.653 0.693 0.694 0.699 0.705
0.33 200 0.127 0.170 0.260 0.356 0.531 0.584 0.619 0.663 0.702 0.700 0.706 0.691
0.5 30 0.377 0.371 0.379 0.378 0.615 0.609 0.613 0.616 0.704 0.713 0.686 0.717
0.5 50 0.316 0.368 0.369 0.361 0.601 0.624 0.618 0.637 0.684 0.712 0.712 0.691
0.5 100 0.241 0.290 0.367 0.361 0.594 0.611 0.643 0.642 0.718 0.691 0.688 0.704
0.5 200 0.164 0.212 0.286 0.358 0.564 0.600 0.642 0.657 0.702 0.718 0.722 0.709

RMSE Results for Factor IV
0 30 0.229 0.217 0.210 0.227 1.069 1.005 0.969 0.794 1.853 1.881 1.986 1.617
0 50 0.170 0.163 0.161 0.160 0.777 0.729 0.754 0.768 1.828 1.741 1.982 1.790
0 100 0.108 0.105 0.108 0.103 0.695 0.561 0.586 0.475 1.570 1.858 1.962 1.903
0 200 0.075 0.072 0.071 0.075 0.327 0.409 0.469 0.444 2.003 1.771 1.858 1.909

0.25 30 0.286 0.304 0.241 0.224 0.962 1.110 0.930 1.187 1.779 1.818 1.772 1.846
0.25 50 0.176 0.182 0.162 0.172 0.979 0.904 0.769 0.861 1.954 1.815 1.832 1.779
0.25 100 0.118 0.114 0.111 0.105 0.762 0.662 0.679 0.493 1.845 1.761 1.805 1.674
0.25 200 0.080 0.078 0.075 0.076 0.413 0.455 0.477 0.389 1.844 1.801 1.910 1.664
0.33 30 0.532 0.411 0.499 0.436 1.387 1.154 1.309 1.385 1.802 1.898 2.071 1.881
0.33 50 0.190 0.381 0.199 0.190 0.919 0.967 0.980 1.072 1.749 1.887 1.804 1.990
0.33 100 0.126 0.119 0.117 0.119 0.648 0.758 0.614 0.660 1.869 1.824 1.813 1.755
0.33 200 0.085 0.084 0.082 0.081 0.534 0.574 0.508 0.438 1.918 1.977 1.932 1.700
0.5 30 1.311 1.548 1.651 1.759 2.041 2.156 1.984 2.087 2.026 2.154 2.147 1.925
0.5 50 1.009 1.320 1.462 1.521 1.685 2.042 1.927 1.864 2.184 1.954 1.956 2.054
0.5 100 0.541 0.792 1.096 1.463 1.481 1.586 1.859 2.141 2.014 1.996 2.155 2.201
0.5 200 0.117 0.230 0.430 0.869 0.998 1.122 1.449 1.868 1.971 2.034 1.855 2.054

Estimated Coverage Probability for Factor IV
0 30 0.946 0.937 0.938 0.928 0.933 0.932 0.940 0.914 0.906 0.882 0.906 0.898
0 50 0.943 0.934 0.947 0.950 0.953 0.949 0.942 0.931 0.885 0.899 0.910 0.921
0 100 0.950 0.952 0.950 0.955 0.942 0.939 0.941 0.949 0.886 0.898 0.910 0.896
0 200 0.947 0.949 0.956 0.941 0.942 0.941 0.937 0.951 0.904 0.909 0.903 0.916

0.25 30 0.940 0.939 0.944 0.942 0.908 0.928 0.930 0.927 0.894 0.895 0.891 0.891
0.25 50 0.947 0.953 0.951 0.951 0.934 0.942 0.931 0.929 0.899 0.902 0.912 0.909
0.25 100 0.947 0.956 0.961 0.956 0.950 0.932 0.945 0.951 0.890 0.910 0.911 0.887
0.25 200 0.945 0.945 0.953 0.948 0.944 0.938 0.948 0.944 0.895 0.903 0.913 0.895
0.33 30 0.946 0.952 0.947 0.953 0.938 0.933 0.903 0.921 0.904 0.874 0.880 0.893
0.33 50 0.940 0.940 0.954 0.940 0.933 0.937 0.942 0.933 0.891 0.882 0.895 0.895
0.33 100 0.949 0.967 0.959 0.958 0.942 0.945 0.933 0.925 0.905 0.892 0.897 0.881
0.33 200 0.957 0.944 0.948 0.942 0.946 0.953 0.940 0.945 0.903 0.905 0.888 0.913
0.5 30 0.960 0.961 0.949 0.965 0.908 0.897 0.893 0.888 0.829 0.839 0.842 0.818
0.5 50 0.959 0.954 0.949 0.968 0.910 0.904 0.902 0.869 0.861 0.856 0.824 0.854
0.5 100 0.942 0.945 0.952 0.969 0.936 0.925 0.911 0.915 0.864 0.870 0.869 0.840
0.5 200 0.950 0.951 0.940 0.968 0.948 0.922 0.923 0.906 0.901 0.857 0.850 0.845

The table reports the Root Mean Squared Error for the standard and Factor-IV estimators and the
Estimated Coverage Probability for the Factor-IV Estimator. The Monte Carlo design is as in (32)-(34), with
r=1, k=1.
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Table 2. RMSE Results for Factor and Standard GMM when errors are autocorrelated
Standard IV

θ 0 0.25 0.5
p T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 30 0.375 0.367 0.372 0.371 0.605 0.598 0.600 0.584 0.665 0.680 0.668 0.666
0 50 0.281 0.369 0.367 0.363 0.586 0.628 0.635 0.631 0.686 0.684 0.681 0.690
0 100 0.189 0.246 0.355 0.360 0.532 0.602 0.640 0.651 0.696 0.697 0.678 0.691
0 200 0.115 0.153 0.241 0.357 0.483 0.560 0.625 0.650 0.706 0.700 0.692 0.702

0.25 30 0.373 0.374 0.374 0.367 0.607 0.608 0.601 0.597 0.673 0.682 0.686 0.686
0.25 50 0.299 0.367 0.366 0.366 0.581 0.619 0.616 0.621 0.688 0.700 0.700 0.678
0.25 100 0.197 0.259 0.361 0.360 0.564 0.598 0.642 0.650 0.695 0.691 0.695 0.695
0.25 200 0.121 0.164 0.241 0.352 0.510 0.568 0.614 0.671 0.687 0.688 0.706 0.696
0.33 30 0.382 0.366 0.372 0.374 0.605 0.611 0.591 0.583 0.677 0.681 0.682 0.663
0.33 50 0.305 0.362 0.366 0.366 0.609 0.618 0.612 0.607 0.678 0.694 0.688 0.677
0.33 100 0.213 0.268 0.353 0.356 0.564 0.593 0.643 0.647 0.709 0.709 0.692 0.690
0.33 200 0.131 0.172 0.251 0.357 0.531 0.569 0.630 0.665 0.690 0.692 0.706 0.709
0.5 30 0.377 0.373 0.376 0.362 0.612 0.604 0.588 0.605 0.669 0.673 0.678 0.673
0.5 50 0.325 0.361 0.369 0.360 0.596 0.615 0.602 0.633 0.695 0.692 0.694 0.689
0.5 100 0.247 0.295 0.360 0.360 0.585 0.639 0.647 0.637 0.697 0.701 0.705 0.704
0.5 200 0.165 0.210 0.287 0.357 0.565 0.607 0.627 0.650 0.702 0.707 0.685 0.708

Factor IV
0 30 0.249 0.238 0.236 0.238 1.140 1.116 1.079 0.891 2.062 2.126 1.861 1.998
0 50 0.187 0.170 0.177 0.173 0.735 0.817 0.937 0.894 1.999 2.102 2.071 2.034
0 100 0.118 0.123 0.122 0.117 0.496 0.737 0.546 0.544 2.124 2.032 1.985 2.141
0 200 0.085 0.083 0.083 0.081 0.425 0.443 0.451 0.391 2.132 1.946 2.044 2.120

0.25 30 0.325 0.300 0.283 0.277 1.259 0.916 1.153 1.183 1.970 2.020 1.917 1.873
0.25 50 0.196 0.180 0.190 0.181 0.901 0.912 1.057 0.833 2.137 1.971 2.014 2.112
0.25 100 0.134 0.128 0.127 0.126 0.815 0.698 0.606 0.636 2.165 2.198 2.179 2.148
0.25 200 0.088 0.089 0.091 0.083 0.515 0.524 0.413 0.400 2.088 1.967 2.155 2.096
0.33 30 0.409 0.442 0.484 0.548 1.445 1.375 1.470 1.292 2.151 1.926 2.113 1.978
0.33 50 0.223 0.207 0.213 0.251 1.347 1.052 1.049 1.072 2.389 2.002 2.167 2.252
0.33 100 0.145 0.140 0.136 0.136 0.785 0.862 0.731 0.832 2.337 2.142 1.961 2.109
0.33 200 0.095 0.098 0.094 0.091 0.524 0.559 0.568 0.491 2.221 2.312 2.029 2.056
0.5 30 1.398 1.541 1.862 1.825 1.926 2.146 2.162 2.201 2.040 2.222 2.081 2.237
0.5 50 0.936 1.155 1.630 2.002 1.822 1.754 2.040 2.096 2.296 2.265 2.249 2.175
0.5 100 0.458 0.704 1.098 1.553 1.457 1.660 1.875 2.128 2.398 2.394 2.423 2.264
0.5 200 0.152 0.159 0.431 1.027 0.943 1.222 1.539 1.968 2.120 2.340 2.317 2.483

The table reports the Root Mean Squared error for the standard and Factor-GMM estimators. The Monte

Carlo design is as in (32)-(34), with r=1, k=1, and εtin (32) is AR(1) with AR coefficient equal to 0.5.
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Table 3. MSE and coverage of Factor- IV estimator with variable preselection
MSE Results Coverage Probability

Factor IV Standard IV Factor IV
p T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 30 0.216 0.211 0.225 0.209 0.368 0.379 0.372 0.376 0.932 0.932 0.937 0.955
0 50 0.158 0.157 0.155 0.160 0.282 0.362 0.361 0.368 0.947 0.959 0.958 0.942
0 100 0.102 0.105 0.105 0.104 0.179 0.238 0.358 0.355 0.941 0.953 0.956 0.959
0 400 0.070 0.072 0.071 0.073 0.106 0.145 0.235 0.351 0.946 0.947 0.960 0.945

0.25 30 0.209 0.209 0.224 0.227 0.358 0.363 0.371 0.370 0.941 0.944 0.938 0.936
0.25 50 0.151 0.156 0.155 0.157 0.271 0.360 0.369 0.363 0.953 0.929 0.947 0.952
0.25 100 0.103 0.107 0.105 0.108 0.169 0.241 0.358 0.361 0.956 0.937 0.935 0.954
0.25 400 0.070 0.072 0.071 0.072 0.101 0.144 0.238 0.357 0.957 0.947 0.964 0.943
0.33 30 0.218 0.215 0.217 0.210 0.361 0.357 0.371 0.368 0.943 0.934 0.943 0.937
0.33 50 0.142 0.152 0.160 0.147 0.258 0.350 0.358 0.366 0.937 0.959 0.953 0.953
0.33 100 0.101 0.096 0.102 0.103 0.164 0.231 0.345 0.353 0.945 0.961 0.955 0.960
0.33 400 0.068 0.073 0.072 0.068 0.096 0.142 0.227 0.351 0.953 0.936 0.954 0.953
0.5 30 0.394 0.456 0.435 0.545 0.478 0.495 0.517 0.535 0.936 0.932 0.936 0.944
0.5 50 0.223 0.251 0.276 0.348 0.397 0.488 0.496 0.537 0.944 0.954 0.944 0.935
0.5 100 0.149 0.157 0.179 0.203 0.263 0.374 0.517 0.529 0.951 0.964 0.941 0.946
0.5 400 0.103 0.109 0.115 0.131 0.170 0.252 0.385 0.527 0.937 0.946 0.950 0.950

The table reports the MSE and coverage probability of the Factor-IV estimator. The Monte Carlo design

is as in (32)-(34), with r=1, k=1, and we preselect the 50% of the instruments with the highest correlation

with xt

Table 4. RMSE Results for Factor-IV with 2 factors (θ = 0)
Standard IV Factor IV

0 30 0.220 0.966 1.010 1.064 0.134 0.142 0.125 0.131
0 50 0.159 0.214 0.845 1.327 0.100 0.094 0.095 0.089
0 100 0.096 0.133 0.211 1.171 0.068 0.065 0.066 0.064
0 200 0.059 0.076 0.123 0.206 0.046 0.046 0.047 0.047

The table reports the Root Mean Squared Error for the standard and Factor-IV estimators. The Monte

Carlo design is as in (32), (36) and (34), with r=2, k=1.

Table 5. RMSE Results for CSA IV
θ 0 0.25 0.5

p T/N 30 50 100 200 30 50 100 200
0 30 0.221 0.215 0.204 0.231 1.110 0.981 0.957 0.822 1.848 1.874 2.008 1.729
0 50 0.167 0.162 0.157 0.160 0.796 0.752 0.785 0.778 1.766 1.758 1.879 1.767
0 100 0.108 0.105 0.107 0.102 0.735 0.559 0.552 0.472 1.724 1.815 1.963 1.954
0 200 0.075 0.072 0.071 0.075 0.327 0.418 0.448 0.393 1.956 1.820 1.926 1.855

0.25 30 0.270 0.262 0.229 0.218 1.103 1.044 0.905 1.023 1.895 1.873 1.651 1.685
0.25 50 0.173 0.175 0.158 0.165 0.844 0.824 0.792 0.870 1.894 1.791 1.888 1.746
0.25 100 0.117 0.111 0.110 0.103 0.769 0.636 0.590 0.479 1.732 1.739 1.800 1.736
0.25 200 0.080 0.078 0.075 0.076 0.416 0.442 0.463 0.386 1.869 1.906 1.848 1.695
0.33 30 0.304 0.289 0.244 0.233 1.121 0.978 1.205 1.137 1.788 1.972 1.969 1.976
0.33 50 0.178 0.198 0.182 0.166 0.880 0.831 0.796 0.691 1.987 1.769 1.842 2.043
0.33 100 0.123 0.115 0.113 0.112 0.599 0.708 0.593 0.596 1.998 1.937 1.895 1.685
0.33 200 0.084 0.082 0.081 0.079 0.518 0.515 0.516 0.386 1.967 1.977 1.904 1.832
0.5 30 0.476 0.547 0.463 0.440 1.522 1.492 1.583 1.490 2.057 2.191 2.101 2.078
0.5 50 0.229 0.278 0.270 0.339 1.233 1.311 1.472 1.189 1.889 2.228 1.968 1.915
0.5 100 0.156 0.163 0.161 0.159 1.042 0.937 1.002 1.176 2.173 2.101 1.965 2.084
0.5 200 0.102 0.101 0.109 0.104 0.805 0.772 0.778 0.707 1.886 1.880 1.835 2.092

The table reports the Root Mean Squared Error for the CSA-IV estimator of Kapetanios and Marcellino

(2008). The Monte Carlo design is as in (32)-(34), with r=1, k=1.
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Table 6. Results on factor number selection using modified information criterion
p = 0 p = 0.25

T/N 30 50 100 200 30 50 100 200
30 1.000 1.000 1.000 1.000 0.852 0.302 0.008 0.000
50 1.000 1.000 1.000 1.000 0.699 0.255 0.000 0.000
100 1.000 1.000 1.000 1.000 0.471 0.041 0.000 0.000
200 1.000 1.000 1.000 1.000 0.262 0.000 0.000 0.000

p = 0.5 p = 0.75
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The table reports the average number of factors over Monte Carlo replications, using the modified infor-

mation criterion analysed in Theorem 6. The Monte Carlo design is as in (32)-(34), with r=1, k=1.

Table 7. Results for Taylor rule
1st stage (πl+12) 1st stage (yt − y∗t )

ρ γ β R2 S.E. P. J R2 P. F R2 P. F
Base 0.883 0.993 2.310 0.98 0.27 0.11 0.12 0.86

st. err 0.037 0.241 0.278
Factors 0.908 1.261 2.905 0.98 0.27 0.13 0.15 0.05 0.97 0.00
All data st. err 0.024 0.291 0.394
Average 0.901 1.102 2.206 0.98 0.24 0.47 0.20 0.47 0.87 0.00
All data st. err 0.018 0.189 0.228
Factors 0.884 1.122 2.251 0.98 0.27 0.52 0.15 0.08 0.85 0.99
Select data st. err 0.028 0.233 0.204
Average 0.877 1.086 2.353 0.98 0.28 0.50 0.15 0.10 0.85 0.98
Select data st. err 0.030 0.227 0.216
All 0.940 1.723 2.953 0.99 0.23 0.18 0.14 0.14 0.86 0.30
Select data st. err 0.019 0.412 0.479

Notes: The estimated equation is rt = α+(1−ρ)β(πt+12−π∗t )+(1−ρ)γ(yt−y∗t )+ρrt−1+εt (see

text for details). The parameters are estimated by GMM over 1986.01-2003.12. In the base case (no factors) the

set of instruments used includes lags of the output gap, unemployment, inflation, interest rate and commodity

price index. In the Factors cases, the SW factors are added to the instruments. In particular, in ”All data”

the (8) factors are extracted from the whole dataset; in ”Select data” the (1) factor extracted from.a subset

of the variables selected with the Boivin and Ng (2006) criterion. The number of factors is based on the Bai

and Ng (2002) criteria for ”All data”, while it is set to one for ”Select data”. We use one lag of each factor,

but 12 lags for the ”Select data” factor. In the Average cases, the instruments are one to 12 lags of the simple

average of the standardized variables in ”All data” or in ”Select data”. In the ”All select data” case, the

instruments are one lag of all the variables selected with the Boivin and Ng (2006) criterion. The last four

columns contain statistics related to the first-stage regression of the one-year ahead expected inflation or the

gap on the set of instruments used. In particular, we report the adjusted R2and the p-value of an F-test for

the joint significance of the coefficients on factors, when factors are added to the baseline model.
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Table 8. Results for New Keynesian Phillips curve
1st stage (πl+1) 1st stage (urt)

α γ ρ R2 S.E. P. J R2 P. F R2 P. F
Base -0.002 0.538 0.462 0.98 0.16 0.62 0.12 0.98

st. err 0.007 0.048 0.047
Factors -0.000 0.513 0.492 0.98 0.16 0.30 0.11 0.48 0.98 0.23
All data st. err 0.006 0.038 0.038
Average -0.002 0.473 0.532 0.98 0.16 0.29 0.12 0.37 0.98 0.01
All data st. err 0.006 0.030 0.029
Factors -0.002 0.500 0.509 0.98 0.15 0.12 0.23 0.00 0.98 0.50
Select data st. err 0.006 0.021 0.020
Average -0.002 0.501 0.509 0.98 0.16 0.10 0.16 0.03 0.98 0.85
Select data st. err 0.006 0.021 0.020
All -0.000 0.551 0.459 0.98 0.16 0.27 0.11 0.64 0.98 0.21
Select data st. err 0.006 0.043 0.042

Notes: The estimated equation is πt = c + α(urt) + γ(πt+1) + ρπt−1 + εt (see text for details). The

parameters are estimated by GMM over 1986.01-2003.12. In the base case (no factors) the set of instruments

used includes lags of the output gap, unemployment, inflation, interest rate and commodity price index. In

the Factors cases, the SW factors are added to the instruments. In particular, in ”All data” the 8 factors

are extracted from the whole dataset; in ”Select data” the (1) factor extracted from a subset of the variables

selected with the Boivin and Ng (2006) criterion. The number of factors is based on the Bai and Ng (2002)

criteria for ”All data”, while it is set to one for ”Select data”. We use one lag of each factor, but 12 lags for

the ”Select data” factor. In the Average cases, the instruments are one to 12 lags of the simple average of the

standardized variables in ”All data” or in ”Select data”. In the ”All select data” case, the instruments are

one lag of all the variables selected with the Boivin and Ng (2006) criterion. The last four columns contain

statistics related to the first-stage regression of the one-year ahead expected inflation or the unemployment

rate on the set of instruments used. In particular, we report the adjusted R2and the p-value of an F-test for

the joint significance of the coefficients on factors, when factors are added to the baseline model.
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