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ABSTRACT 

Improving Portfolio Selection Using Option-Implied Volatility and 
Skewness 

Our objective in this paper is to examine whether one can use option-implied 
information to improve mean-variance portfolio selection with a large number 
of stocks, and to document which aspects of option-implied information are 
most useful for improving the out-of-sample performance of mean-variance 
portfolios. To calculate the optimal mean-variance portfolio weights, one 
needs to estimate for each stock its volatility, correlations with all other stocks, 
and expected return. Our empirical evidence shows that, while using the 
option-implied volatilities and correlations does not improve significantly the 
portfolio variance, Sharpe ratio, and certainty-equivalent return, exploiting 
information about expected returns that is contained in the volatility risk 
premium and option-implied skewness increases substantially Sharpe ratios 
and certainty-equivalent returns, but this is accompanied by higher portfolio 
turnover. 
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1 Introduction

To implement the static mean-variance Markowitz (1952) model in practice, one needs to esti-

mate the means, volatilities, and correlations of stock returns. Traditionally, historical returns

data have been used for this estimation, but researchers have found that portfolios based on

sample estimates perform poorly out of sample.1 Several approaches have been proposed in the

literature for improving the performance of portfolios based on historical data.2

In this paper, instead of trying to improve the quality of the moments estimated from

historical data, we use forward-looking option-implied moments of stock-return distributions.3

The main contribution of our work is to demonstrate empirically how one can use option-implied

information to improve portfolio selection with a large number of stocks, and to document which

aspects of option-implied information are particularly useful. Specifically, we study how one can

use option-implied volatility, correlation, skewness, and the volatility risk premium to adjust

the volatility, correlation, and expected return of stocks in order to improve the out-of-sample

performance of portfolios. We find that the improvement in portfolio performance from using

option-implied volatilities and correlations is small, contrary to what one may have expected.

However, the use of option-implied skewness and the volatility risk premium to adjust expected

returns can lead to substantial improvements in Sharpe ratios and certainty-equivalent returns

(even when short sales are constrained), but this is accompanied by an increase in portfolio

turnover. Our analysis is carried out in a comprehensive fashion: we consider four benchmark

portfolios (1/N , sample-covariance-based minimum-variance, short-sale-constrained minimum-

variance, and minimum-variance with shrinkage of the covariance matrix); four performance

metrics (portfolio volatility, Sharpe ratio, certainty-equivalent return, and turnover); two data

sets (with 100 assets and with 561 assets); two data frequencies (daily and intraday); two

portfolio rebalancing periods (daily and monthly); and, two objective functions (mean-variance

optimization and utility maximization).

To determine mean-variance portfolio weights, one needs to estimate for each stock its

(i) volatility, (ii) correlation with all other stocks, and (iii) expected return. We therefore

undertake our analysis in three corresponding steps. In step one, we determine the optimal

portfolio using volatilities implied by option prices. In step two, we find the optimal portfolio

using correlations implied by option prices. In the first two steps, because of the extensive
1For evidence of this poor performance, see DeMiguel, Garlappi, and Uppal (2009) and the references therein.
2These approaches include: imposing a factor structure on returns (Chan, Karceski, and Lakonishok, 1999;

MacKinlay and Pástor, 2000), using daily data rather than monthly data (Jagannathan and Ma, 2003), using
Bayesian methods (Jobson, Korkie, and Ratti, 1979; Jorion, 1986; Pástor, 2000; Pástor and Stambaugh, 2000;
Ledoit and Wolf, 2004b), constraining shortsales (Jagannathan and Ma, 2003), constraining the norm of the
vector of portfolio weights (DeMiguel, Garlappi, and Uppal, 2009), and using stock-return characteristics such
as size, momentum, and the book-to-market ratio (Brandt, Santa-Clara, and Valkanov, 2009).

3For other examples of the use of option-implied volatility and skewness, see Christoffersen and Chang (2009),
who use implied volatility and skewness to forecast future realized betas.
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results in the literature about the poor performance of portfolios that rely on sample estimates

of expected returns, we set expected returns to be equal across all stocks.4 In step three, we

find the optimal portfolio when expected returns are scaled based on information implied in

option prices. We summarize below the findings from these three steps.

In the first step, we find that using the implied volatilities to compute the optimal portfolio

does not lead to a substantial reduction in the out-of-sample portfolio volatility (standard de-

viation) or to an increase in the Sharpe ratio and certainty equivalent return. This is surprising

because there is a large literature that documents that implied volatility can predict stock-

return volatility better than sample volatility (see, for example, Blair, Poon, and Taylor (2001)

and Jiang and Tian (2005)). We explain that there are two reasons for this. First, the implied

volatilities are estimators with large variances because they are based exclusively on current

option prices. Second, because the implied volatilities estimate the risk-neutral volatilities, they

are biased estimators of the real-world (objective) volatilities, with the gap between the two

being the volatility risk premium, as explained in Chernov (2007). However, we find that even

the portfolios based on the risk-premium-corrected model-free implied volatilities attain an out-

of-sample portfolio volatility that is only about 5% lower than the traditional portfolios based

on the historical stock-return data, while the improvement in Sharpe ratio is still insignificant.

In the second step, we find that the benefits from using option-implied correlations are even

smaller than the gains from using option-implied volatilities. To understand the reason for this,

note that the covariance matrix that improves portfolio performance will be the one that con-

tains enough information about future covariances and is stable (with a small condition number

and, correspondingly, less volatile portfolio weights). Our empirical results indicate that, while

option-implied volatilities and correlations are better than their historical counterparts at fore-

casting the future realizations of these moments, the gains are not substantial enough to offset

the loss from the increased instability of the covariance matrix, the effect of which appears in

the much higher portfolio turnover.

Finally, in the third step, we study how two sources of option-implied information can

be used to improve estimates of expected returns. The first is the historical volatility risk

premium, and its choice is motivated by the empirical regularity documented by Bali and

Hovakimian (2009) and Goyal and Saretto (2009) that assets with high volatility risk premium

tend to outperform those with low volatility risk premium. Our empirical evidence shows

that portfolios based on expected returns scaled by the volatility risk premiums outperform
4It is well known that it is much more difficult to estimate expected returns than second moments of stock

returns (Merton, 1980), and as a result, much recent research has focused on minimum-variance portfolios, which
rely solely on estimates of covariances. In fact, Jagannathan and Ma (2003, pp. 1652–3) write that: “The
estimation error in the sample mean is so large nothing much is lost in ignoring the mean altogether when no
further information about the population mean is available. For example, the global minimum variance portfolio
has as large an out-of-sample Sharpe ratio as other efficient portfolios when past historical average returns are
used as proxies for expected returns.”
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traditional portfolios. The second source of information is option-implied skewness, whose

choice is motivated by the finding in Rehman and Vilkov (2009) that stocks with high option-

implied skewness outperform stocks with low option-implied skewness.5 We find that portfolios

that use expected returns scaled by implied skewness achieve significantly higher Sharpe ratios

than those of traditional portfolios (even in the presence of short-sale constraints), but these

gains are accompanied with higher portfolio turnover. Moreover, we observe that the use of

option-implied information for portfolio selection does not lead to a substantial change in the

systematic risk profile of the portfolios with respect to the three Fama and French (1993) factors

and the Carhart (1997) momentum factor.

We conclude this introduction by discussing the relation of our work to the existing liter-

ature. The idea that option prices contain information about future asset returns has been

understood ever since the work of Black and Scholes (1972) and Merton (1973).6 The focus of

our work is to investigate how the information implied in option prices can be used to improve

portfolio selection. There are two other papers that study this. The first, by Aı̈t-Sahalia and

Brandt (2008), uses option-implied state prices to solve for the intertemporal consumption and

portfolio choice problem, using the Cox and Huang (1989) martingale representation formula-

tion, rather than the Merton (1971) dynamic-programming formulation. This paper finds that

optimal consumption and portfolio rules based on option-implied information are different from

those obtained using standard return dynamics; however, its focus is not on finding the optimal

portfolio with superior out-of-sample performance. The second, which is by Kostakis, Pani-

girtzoglou, and Skiadopoulos (2009), studies the asset-allocation problem of allocating wealth

between the S&P500 index and a riskless asset. The paper uses options on the index to first

back out the implied risk-neutral distribution of returns and then transforms this to the objec-

tive distribution. This paper finds that the out-of-sample performance of the portfolio based on

this distribution is better than that of a portfolio based on the historical distribution. However,

there is an important difference between this work and ours: rather than considering the prob-

lem of how to allocate wealth between the S&P500 index and the riskfree asset, we consider the
5For the relation between expected stock returns and skewness measured directly, as opposed to option-implied

skewness, see Rubinstein (1973), Kraus and Litzenberger (1976), Harvey and Siddique (2000), and Boyer, Mitton,
and Vorkink (2009).

6For example, Latane and Rendleman (1976), Lamoureux and Lastrapes (1993), and Christensen and Prabhala
(1998) find that implied volatility outperforms historical volatility in forecasting future volatility, and Poon and
Granger (2005) provide a comprehensive survey of this literature. Bakshi, Kapadia, and Madan (2003) explain
how one can use option prices to infer also higher moments of the return distribution, such as skewness. Driessen,
Maenhout, and Vilkov (2009) show, in the working paper version of their article, how one can obtain also implied
correlations from the prices of options on individual stocks and on the index, while Bali and Hovakimian (2009)
and Bollerslev, Tauchen, and Zhou (2008), Cremers and Weinbaum (2008), Goyal and Saretto (2009), Rehman
and Vilkov (2009), and Xing, Zhang, and Zhao (2009) show that options can also be used to forecast future
returns of the underlying asset. Of course, one can extract not just particular moments of returns, but also
the probability distribution function, as shown by Jackwerth and Rubinstein (1996), Aı̈t-Sahalia and Lo (1998),
Jackwerth (2000), Bliss and Panigirtzoglou (2004), Panigirtzoglou and Skiadopoulos (2004), and Benzoni (1998),
while Chernov and Ghysels (2000) show how to estimate jointly both the objective measure and the risk-neutral
measure.
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portfolio-selection problem of allocating wealth across a large number of individual stocks; in

particular, we consider portfolios with 100 stocks and 561 stocks. It is not clear how one would

extend the methodology of Kostakis, Panigirtzoglou, and Skiadopoulos (2009) to accommodate

a large number of risky assets. They also need to make other restrictive assumptions, such as

the existence of a representative investor and the completeness of financial markets, which are

not required in our analysis.

The rest of the paper is divided into a number of short distinct sections in order to help

the reader understand each step of our analysis. In Section 2, we provide a brief background to

portfolio selection. In Section 3, we describe the data on stock returns and options that we use

in our empirical work. In Section 4, we explain the various measures we use to evaluate portfolio

performance. The construction and performance of our benchmark portfolios that do not use

option-implied information is described in Section 5. How we compute the quantities implied

by option prices that we use for portfolio selection is explained in Section 6. Our main findings

about the performance of various portfolios that use option-implied information are given in

Section 7. The robustness checks we undertake are described in Section 8, and we conclude in

Section 9. Appendix A explains how to compute variances and covariances for high-frequency

intraday data; Appendix B explains the method used for the shrinkage and regularization of

the covariance matrix; and, Appendix C explains the construction of model-free option-implied

moments.

2 Portfolio Selection

The classic mean-variance optimization problem (Markowitz, 1952) is

min
w

1
2
w>Σw, (1)

s.t. w>e = 1, (2)

w>µ = µ0, (3)

where w ∈ IRN is the vector of portfolio weights invested in stocks, Σ ∈ IRN×N is the covariance

matrix, µ is the vector of mean returns, µ0 ∈ IRN is the target return the portfolio is required

to achieve, and e ∈ IRN is the vector of ones. The objective in (1) is to minimize the variance

of the portfolio return, w>Σw, subject to the constraints that the portfolio weights sum to one,

and the portfolio achieves a target return of µ0. The constraint that the portfolio weights sum

to one is required because we consider the case without the risk-free asset, given our objective

is to explore how to use option-implied information to select the portfolio of risky stocks.

Forming the Lagrangian, where λ1 is the multiplier on the first constraint and λ2 is the

multiplier for the second constraint, differentiating with respect to the weights and the two
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multipliers, and then solving the resulting first-order conditions gives the solution for the opti-

mal weights. As shown in Ingersoll (1987, Chapter 4), the vector of optimal portfolio weights

can then be expressed as:

w(µ0) = (λ1A)wmin + (λ2B)wmax, (4)

where

A = e>Σ−1e, (5)

B = e>Σ−1µ, (6)

wmin =
Σ−1e

e>Σ−1e
, (7)

wmax =
Σ−1µ

e>Σ−1µ
, (8)

where wmin is the global minimum-variance portfolio and wmax is the portfolio that maximizes

the portfolio expected return per unit of portfolio volatility, that is, the Sharpe ratio. Moreover,

one can show that λ1A+ λ2B = 1, so the optimal portfolio w(µ0) can be interpreted as being

composed of the two portfolios, wmin and wmax.

Solving w(µ0) for different values of µ0 allows one to trace out the mean-variance efficient

frontier. Of these frontier portfolios, the portfolio we would like to identify is wmax in (8), which

is the portfolio with the highest Sharpe ratio. Note that the covariance matrix Σ in (8) can be

decomposed into volatility and correlation matrices,

Σ = diag(σ) Ω diag(σ), (9)

where diag (σ) denotes the diagonal matrix with volatilities of the stocks on the diagonal, and

Ω is the correlation matrix. Thus, to obtain the optimal portfolio weights in (8) there are three

quantities that need to be estimated: expected returns (µ), volatilities (σ), and correlations (Ω).

Information from prices of options can be used to inform our choices for all three quantities.

Jagannathan and Ma (2003) document that it is very difficult to forecast expected returns

(for a discussion of this, see Footnote 4). One response to this finding is to set all expected

returns to be equal to 1. Then the mean-variance optimization problem in (1) reduces to the

minimum-variance optimization problem, whose solution is wmin in (7), and we see from (9)

that to obtain wmin only two quantities need to be estimated: volatilities and correlations.

3 Data

In this section, we describe the data on stocks and stock options that we use in our study.

Our data on stocks are from the Center for Research in Security Prices (CRSP) and NYSE’s

Trades-And-Quotes (TAQ) database. Our data for options are from IvyDB (OptionMetrics).
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3.1 Data on Stock Returns

Our sample period is January 3, 1995 to June 29, 2007. We study stocks that are in the

S&P500 index at any time during our sample period. The daily stock returns of the S&P500

constituents is from the daily file of the CRSP and we have in our sample a total of 3146 trading

days. We also use high-frequency intraday stock-price data consisting of transaction prices of

the S&P500 constituents; these data are from the NYSE’s Trades-And-Quotes database. We

use the intraday data because several studies have highlighted the advantage of using high-

frequency data to measure volatility of financial returns, and also as a robustness check for the

results obtained from daily data.7

To improve the quality of the raw data used in our analysis, we apply the following filters

and data-cleaning rules. For the daily stock returns of the S&P500 constituents from the CRSP

daily file, we remove the observations with standard missing codes (SAS missing codes A,B,C,D

and E) as described in the Wharton Research Data Services documentation on CRSP. For the

intraday stock-price raw data, we filter data for each day from the official opening at 9:30 EST

until 16:00 EST, delete entries with a bid, ask or transaction price equal to zero, delete entries

with corrected trades (trades with a correction indicator, “corr” 6= 0), delete entries with an

abnormal sale condition (trades where the variable “cond” has a letter code, except for “E”

and “F”)8 and delete entries with prices that are above the ask plus the bid-ask spread or

prices that are below the bid minus the bid-ask spread; see Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2009) for the details and discussion of these rules.9 After cleaning the data,

we construct a regularly spaced one-minute price grid for every trading day using the volume-

weighted average of all transactions within a given minute. If there is no price for a given

minute, we fill it in with the previous available price.

Counting by IvyDB (OptionMetrics) identifiers, we have data for a maximum of 810 stocks,

from which we choose those stocks for which at least 2,000 records of intraday volatilities and

model-free implied volatilities are available, which gives us 561 stocks. Of these 561 stocks,

there are 219 stocks for which the intraday volatilities and model-free implied volatilities are

available for the entire time series. For robustness, we consider two datasets in our analysis.

The first consists of the entire 561 stocks,10 and the second consists of 100 stocks out of the

219 for which data are available for all dates; to select these 100 stocks, we first order the 219
7For a survey of the literature on using high-frequency data to estimate moments of asset returns, see Andersen,

Bollerslev, and Diebold (2009).
8See the TAQ 3 Users Guide for additional details about sale conditions.
9Rules P1, P2, T1, T2 and an adjusted version of T4.

10At each point in time, we consider only those stocks that have no missing data, which means that this sample
has a variable number of stocks; on average, there are about 400 stocks at each point in time.
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stocks with respect to the security identifier code of the IvyDB data base, and then select the

first 100.11

3.2 Data on Stock Options

For stock options we use the IvyDB that contains data on all U.S.-listed index and equity

options. We use data from January 4, 1996 to June 29, 2007.12

We do not use option prices directly in our analysis, but wish to use option-based infor-

mation only to obtain the moments of the option-implied distributions, and for this reason it

is important for us to have the maximum number of options for a given maturity. Therefore,

we choose for our analysis not the raw data on prices of options, but the volatility surface file,

which contains a smoothed implied-volatility surface for a range of standard maturities and a

set of option delta points.13

From the surface file we select for our sample the out-of-the-money implied volatilities for

calls and puts (we take implied volatilities for calls with deltas smaller or equal to 0.5, and

implied volatilities for puts with deltas bigger than −0.5) for standard maturities of 30 and 60

days, which we consider to be the most suitable.14 For each date, each underlying stock, and

each time to maturity, we have from the surface data 13 implied volatilities, which are then

used to calculate the moments of the risk-neutral distribution.15

When working with data on option prices and the volatility surface, for several calculations

we need a proxy for the riskfree rate for the maturity of a particular option. For this, we use

the certificate-of-deposit yields for maturities between one day and one year from the IvyDB

and interpolate them linearly to get the appropriate yield.

4 Description of Portfolio-Performance Metrics

We evaluate performance of the various portfolios using four criteria. These are the (i) out-

of-sample portfolio volatility (standard deviation); (ii) out-of-sample portfolio Sharpe ratio;

(iii) out-of-sample portfolio certainty-equivalent return; and (iv) portfolio turnover (trading
11In addition to the reported results, we have also checked our results on different subsamples of 50 and 100

stocks out of the 219 for which data are available for all dates, and these subsamples deliver similar results;
details of this robustness check are provided in Section 8.1.

12Note that our data for stocks start in 1995, but we need 750 data points to compute the covariance matrix,
so our portfolio optimization starts only at the beginning of 1998.

13We calculated implied moments also from the raw data on option prices, and the results are similar.
14The use of out-of-the-money options is standard in this literature; see, for instance, Bakshi, Kapadia, and

Madan (2003) and Carr and Wu (2009). The reason is that selecting options that are out of the money reduces
the effect of the premium for early exercise for these American options.

15There are 13 implied volatilities given for standard delta points for each call and put. For puts, these 13
are {−0.80,−0.75,−0.70,−0.65,−0.60,−0.55,−0.50,−0.45,−0.40,−0.35,−0.30.−0.25,−0.20}, and for calls the
delta points are the same, but positive. We select calls with a delta less than or equal to 0.5 and for puts greater
than −0.5, which gives a total of 13 implied volatilities for out-of-the-money options—a mix of calls and puts.
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volume). The reason for considering the certainty-equivalent return, in addition to the Sharpe

ratio, is that the Sharpe ratio considers only the mean and volatility of returns, while the

certainty-equivalent considers also the higher moments of returns.

We use the following “rolling-horizon” procedure for computing the portfolio weights and

evaluating their performance. First, we choose a window over which to perform the estimation.

We denote the length of the estimation window by τ < T , where T is the total number of

returns in the dataset. For our experiments, we use an estimation window of τ = 750 data

points, which for daily data corresponds to three years.16 Two, using the return data over the

estimation window τ , we compute the various portfolios we wish to compare. Three, we repeat

this “rolling-window” procedure for the next day, by including the data for the next day and

dropping the data for the earliest day. We continue doing this until the end of the dataset is

reached. At the end of this process, we have generated T − τ portfolio-weight vectors for each

strategy; that is, wstrategyt for t = τ, . . . , T − 1 and for each strategy.

Following this “rolling horizon” methodology, holding the portfolio wstrategyt for one day (or

for one month, when we consider a monthly holding period) gives the out-of-sample return at

time t + 1: that is, rstrategyt+1 = wstrategyt rt+1, where rt+1 denotes the returns from t to t + 1.

After collecting the time series of T − τ returns, rstrategyt , the out-of-sample mean, volatility

(σ̂), Sharpe ratio of returns (SR), and certainty-equivalent return (ce) are:

µ̂strategy =
1

T − τ

T−1∑
t=τ

rstrategyt+1 , (10)

σ̂strategy =

(
1

T − τ − 1

T−1∑
t=τ

(
rstrategyt+1 − µ̂strategy

)2
)1/2

, (11)

ŜR
strategy

=
µ̂strategy

σ̂strategy
, (12)

ĉestrategy = u−1

(
1

T − τ

T−1∑
t=τ

u
(
rstrategyt+1

))
, (13)

where u denotes the power utility function with a relative risk aversion of γ = 1, and the

certainty-equivalent return (ce) is the riskless return that an investor is willing to accept instead

of investing in the risky strategy.

To measure the statistical significance of the difference in the volatility, Sharpe ratio and

certainty-equivalent return of a particular portfolio from that of another portfolio that serves

as benchmark, we report also the p-values for these differences. We are interested in the finite-

sample properties of the portfolios. Therefore, when calculating the p-values for the case of daily
16Because our sample consists of 561 stocks, estimation window lengths shorter than τ = 750 often give

singularities in the covariance matrix.
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rebalancing we use the bootstrapping methodology described in Efron and Tibshirani (1993),

and for monthly rebalancing we make an additional adjustment, as in Politis and Romano

(1994), to account for the autocorrelation arising from overlapping returns.17

Finally, we wish to obtain a measure of portfolio turnover. Let wstrategyj,t denote the portfolio

weight in stock j chosen at time t under strategy strategy, wstrategy
j,t+

the portfolio weight before

rebalancing but at t+ 1, and wstrategyj,t+1 the desired portfolio weight at time t+ 1 (after rebalanc-

ing). Then, turnover, which is the average percentage of wealth traded per rebalancing interval

(daily or monthly), is defined as the sum of the absolute value of the rebalancing trades across

the N available stocks and over the T − τ − 1 trading dates, normalized by the total number of

trading dates:

Turnover =
1

T − τ − 1

T−1∑
t=τ

N∑
j=1

(∣∣∣wstrategyj,t+1 − wstrategy
j,t+

∣∣∣ ) . (14)

5 Benchmark Portfolios that Do Not Use Option Prices

For robustness, we consider four benchmark portfolios that are not based on option-implied in-

formation. These are: (i) the equally-weighted (1/N) portfolio; (ii) the unconstrained minimum-

variance portfolio; (iii) the short-sale-constrained minimum-variance portfolio; and (iv) the

unconstrained minimum-variance portfolio with shrinkage of the covariance matrix. The con-

struction of these four benchmark portfolios is described below. In principle, one could also

consider the mean-variance portfolio as a benchmark but, as we discuss below, this performs

much worse than our four benchmark portfolios listed above.

For the “equally-weighted” (1/N) portfolio, one invests an equal amount of wealth across

all N available stocks each period. The reason for considering this portfolio is that DeMiguel,

Garlappi, and Uppal (2009) show that it performs quite well even though it does not rely on any

optimization; for example, the Sharpe ratio of the 1/N portfolio is more than double that of the

S&P500 over our sample period. We consider two rebalancing intervals: daily and monthly. For

the monthly rebalancing interval, we find the new set of weights daily, but hold that portfolio
17Specifically, consider two portfolios i and n, with µi, µn, σi, σn as their true means and volatilities. We

wish to test the hypothesis that the Sharpe ratio (or certainty-equivalent return) of portfolio i is worse (smaller)
than that of the benchmark portfolio n, that is, H0 : µi/σi − µn/σn 6 0. To do this, we obtain B pairs of size
T − τ of the portfolio returns i and n by simple resampling with replacement for daily returns, and by blockwise
resampling with replacement for overlapping monthly returns. We choose B = 10, 000 for both cases and the

block size equal to the number of overlaps in a series, that is, 20. If F̂ denotes the empirical distribution function
of the B bootstrap pairs corresponding to bµi/bσi−bµn/bσn, then a one-sided P-value for the previous null hypothesis

is given by p̂ = F̂ (0), and we will reject it for a small p̂. In a similar way, to test the hypothesis that the variance

of the portfolio i is greater (worse) than the variance of the benchmark portfolio n, H0 : σ2
i /σ

2
n > 1, if F̂ denotes

the empirical distribution function of the B bootstrap pairs corresponding to: σ̂2
i /σ̂

2
n, then, a one-sided P-value

for this null hypothesis is given by p̂ = 1− F̂ (1), and we will reject the null for a small p̂. For a nice discussion of
the application of other bootstrapping methods to tests of differences in portfolio performance, see Ledoit and
Wolf (2008).
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for 30 calendar days (21 trading days); therefore, this corresponds to the average of 21 daily

returns. The advantage of this approach is that it is not sensitive to the particular day on

which the portfolio is formed.

The second benchmark portfolio that we consider is the minimum-variance portfolio, wmin,

which is given in (7). To identify the portfolio weights for this strategy, we need to estimate

only the “sample covariance” matrix, that is, the realized volatilities and correlations. For daily

data we compute the conventional sample estimators of (co)variances using data over the past

750 days.18 In the existing literature, two methods have been adopted to improve the out-of-

sample performance of the minimum-variance portfolio based on the sample (co)variances. One

approach is to impose constraints on the portfolio weights, which Jagannathan and Ma (2003)

show can lead to substantial gains in performance. Thus, our third benchmark is the “con-

strained” portfolio, where we compute the short-sale-constrained minimum-variance portfolio

weights. To compute these portfolio weights, we solve the problem in (1)–(2), after imposing

the additional constraint that all weights have to be non-negative (but still setting all expected

returns to equal 1 in (3)).

Another approach to improve the out-of-sample performance of the minimum-variance port-

folio based on the sample covariance matrix is to use “shrinkage.” Our fourth benchmark con-

sists of “shrinkage” portfolios, where we compute the minimum-variance portfolio weights after

shrinking the covariance matrix.19 The sample covariance matrix for daily data and intraday

data is computed using the same approach that is described above. To shrink the covari-

ance matrix for daily returns, we then use the approach in Ledoit and Wolf (2004a,b), where

they show how one can compute the optimal shrinkage of the covariance matrix under certain

assumptions about the distribution of returns.20

In Table 1 we report the performance of these four benchmark portfolios, all of which do

not use data on option prices. In Panel A, we report the results for daily rebalancing, and

in Panel B, we report the results when the portfolio is held for a month. Two p-values are

reported in parenthesis under each performance metric. The first p-value is relative to the 1/N

benchmark and the second p-value in this table is relative to the “Sample-cov” benchmark.

Each p-value is for the one-sided null hypothesis that the portfolio being evaluated is worse
18For the realized (co)variance estimators based on intraday data we use the filtered and calendar-time aligned

transaction prices over the last 30 trading days to estimate the (co)variances. There are several issues that
have to be addressed when estimating moments from intraday data; the approach we use is consistent with
the “second-best” approach of Zhang, Mykland, and Aı̈t-Sahalia (2005), and the details of our procedure are
provided in Appendix A.

19We do not consider the norm-constrained approach of DeMiguel, Garlappi, Nogales, and Uppal (2009)
because we already consider the shortsale-constrained and shrinkage portfolios, which are particular cases of the
norm-constrained portfolios.

20For intraday data, instead of shrinkage, we use the regularization approach of Zumbach (2009) because
the distribution of intraday returns is different from that of daily returns and does not satisfy the assumptions
of Ledoit and Wolf (2004a,b). Details of the shrinkage and regularization methods we use are provided in
Appendix B, and the results for intraday data are summarized in Section 8.2.
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than the benchmark for a given performance metric (so a small p-value suggests rejecting the

null hypothesis that the portfolio being evaluated is worse than the benchmark).

From Table 1, we see that, compared to the 1/N portfolio, most of the strategies based

on the minimum-variance portfolio achieve significantly lower volatility (σ̂) out of sample. For

example, in Panel A with results for “Daily rebalancing”, we see that for the data with 561

stocks, the volatility of the 1/N portfolio is 0.1745 and that of the minimum-variance portfolio

with daily data is 0.1347, for the minimum-variance portfolio with constraints is 0.1240, and

for the minimum-variance portfolio with shrinkage is 0.1180. The first set of p-values indicate

that the volatilities of the three minimum-variance portfolios are significantly lower than that

of 1/N ; the second set of p-values indicate that the constrained and shrinkage portfolios have

a lower portfolio volatility than the portfolio based on the sample covariance. The results for

the data with 100 assets and in Panel B for “Monthly rebalancing” are similar.

However, the Sharpe Ratio (sr) and the certainty-equivalent return (ce) are typically higher

for the 1/N portfolio. The one-sided p-values again indicate that we cannot reject the null that

the Sharpe ratio of the minimum-variance portfolios is worse than that of 1/N . These results are

similar for “Monthly rebalancing” reported in Panel B for the data with 100 stocks; but for the

data with 561 stocks and monthly rebalancing, the Sharpe ratio and certainty-equivalent return

are highest for the constrained-minimum-variance portfolio rather than the 1/N portfolio.

Of the three minimum-variance portfolios, the short-sale-constrained portfolio has the lowest

turnover (which is true also in the tables that follow, where we use option-implied information).

However, the turnover of the 1/N portfolio is almost always lower than even that of the con-

strained minimum-variance portfolio portfolio.

For completeness, we also discuss briefly the results for the mean-variance portfolio portfo-

lios. Of the three variants of the mean-variance portfolio we consider, the first is based on the

sample covariance matrix, the second has short-sale constraints, and the third is computed with

shrinkage applied to the covariance matrix, as in Ledoit and Wolf (2004a,b). All three mean-

variance portfolios perform very poorly along all metrics. For example, while the volatility of

the three minimum-variance portfolios is less than 0.1350, the volatility of the corresponding

three mean-variance portfolios is at least 3 times higher. Similarly, the Sharpe ratio of the short-

sale-constrained mean-variance portfolios is less than half of that of the short-sale-constrained

minimum-variance portfolios, and it is negative for the other two mean-variance portfolios. Fi-

nally, the turnover of the short-sale-constrained mean-variance portfolio is five times that of

the minimum-variance portfolio, and that for the other two mean-variance portfolios is about

fifteen times higher. Consistent with the findings documented in the existing literature, we
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conclude that relative to the 1/N portfolio and also the minimum-variance benchmarks, the

mean-variance portfolios perform much worse across all four metrics.

6 Option-Implied Information

In this section, we explain how we compute the quantities implied by option prices that we

use in our selection of portfolios. These quantities are: (i) option-implied volatility and the

volatility risk premium; (ii) option-implied correlation; and, (iii) option-implied skewness. We

also examine the ability of option-implied volatility and option-implied correlation to predict

realized volatility and realized correlation, respectively.

6.1 Option-Implied Volatility and Volatility Risk Premium

When option prices are available, an intuitive first step is to use this information to back out

implied volatilities. In contrast to the model-specific Black-Scholes implied volatility, we use

the model-free implied volatility (MFIV), which represents a nonparametric estimate of the

risk-neutral expected stock-return volatility until the option’s expiration.

Model-free implied volatility is given by a single number and it subsumes information in the

whole Black-Scholes implied volatility smile. Theoretical and empirical research (see Jiang and

Tian (2005) and Vanden (2008)) finds that model-free implied volatility is better at predicting

the future realized volatility than the Black-Scholes implied volatility, and it is used by the

CBOE to compute VIX, which is the ticker symbol for the CBOE Volatility Index that gives

the implied volatility of S&P500 index options. To compute the model-free implied volatility,

we first calculate the option prices from the interpolated volatility surface data. We then use

these prices to find the value of the “variance contract,” following the approach in Bakshi,

Kapadia, and Madan (2003); the formula for the variance contract and the procedure used to

compute it is provided in Appendix C.21 The square root of the variance contract then gives

us the model-free implied volatility.

To verify whether the intuition that the model-free implied volatility is a useful predictor of

realized volatility in the future, we regress realized variances on the model-free implied variances

and compare the R2 with that when variances based on historical data are used as a predictor.

We see from Panel A of Table 2 that when regressing the 30-day realized variances in the

future on (i) 750-day historical daily variances, (ii) 30-day intraday historical variances, and

(iii) model-free implied variances, the R2 for the model-free implied variances is higher than

that for intraday historical variances, which is higher than for daily historical variances. This
21For a discussion of how to compute the model-free implied volatility, see also Dumas (1995), Carr and Madan

(1998, 2001), and Britten-Jones and Neuberger (2000).
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is true for both the dataset with 100 stocks and that with 561 stocks.22 For example, in the

case of the data with 561 stocks, the R2 for historical daily variances is 19.66%, for intraday

historical variances is 22.99%, and for model-free implied variances is 33.12%.

However, what we need for portfolio selection is not the risk-neutral implied volatilities of

stock returns but the expected volatilities under the objective distribution. We now explain

how to make a correction to the model-free implied volatilities in order to get the volatilities

under the objective measure.

The difference between the model-free implied volatility and the expected volatility is the

volatility risk premium. Bollerslev, Gibson, and Zhou (2004), Carr and Wu (2009), and others

have shown that one can use the realized volatility (instead of the expected volatility) to estimate

the volatility risk premium. Assuming that the magnitude of the variance risk premium is

proportional to the level of the variance under the actual probability measure (as it is in the

Heston (1993) model), we estimate the historical volatility risk premium (HVRP) as the square

root of the average variance risk premium for each stock on each day for the past period of T

trading days:23

HVRP2
t =

1
T −∆t

t−∆t∑
i=t−T+1

MFIV2
i,i+∆t

RV2
i,i+∆t

. (15)

In our analysis, we estimate the historical volatility risk premium on each day over the past

year (−252 days to −21 days) using the model-free implied volatility and realized volatility, each

measured over 21 trading days and each annualized appropriately. Then, assuming that in the

next period, from t to t+ ∆t, the prevailing volatility risk premium will be well approximated

by the historical volatility risk premium in (15), one can obtain the prediction of the future

realized volatility, R̂Vt:

R̂Vt,t+∆t =
MFIVt,t+∆t

HVRPt
. (16)

Panel A of Table 2 shows that for the data with 561 stocks the R2 for the regression

of the risk-premium-corrected implied volatility is equal to 31.55%, which is about the same

as the R2 for the model-free implied volatility (33.12%), suggesting that there is no additional

improvement in predictive ability from the risk premium correction; however, the risk-premium-

corrected implied volatility is expected to have smaller bias with respect to the realized volatility,

which can be seen by comparing the time series for the different volatility measures in Figure 1,

where we plot the historical volatility based on the last 750 days (dot-dashed blue line), model-

free implied volatility (dashed red line), risk-premium-corrected model-free implied volatility
22The results are similar also when we regress the 30-day intraday (high-frequency) volatilities on the same

regressors.
23Note that because HVRP2

t is calculated as the average of the ratio of MFIV2
i,i+∆t and RV2

i,i+∆t, both of
which are calculated over ∆t days, as a result we will have only T −∆t observations when computing the average.
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(solid pink line), and the 30-day realized volatility (thick black line). The figure is based on

the cross-sectional equally-weighted average volatilities across the 561 stocks at each point in

time. The figure shows that the risk-premium-corrected model-free implied volatility tracks

realized volatility quite closely. The model-free implied volatility (without any risk-premium

correction) tracks the realized volatility, but there is a distinct gap between the two. And, the

historical 750-day realized volatility does not track realized volatility very closely. Note also

that the variability of each of these volatility series is quite different.

6.2 Option-Implied Correlation

The second piece of option-implied information that we consider is implied correlation. It has

been shown by Driessen, Maenhout, and Vilkov (2009) that the risk-neutral expectation of the

correlation is higher than the expectation under the objective probability measure. Therefore,

one approach for computing implied correlation is to take the historical correlation matrix as the

proxy for the future realized correlation matrix and increase each pairwise historical correlation

by the correlation risk premium. We use the same methodology as in Buss and Vilkov (2008)

to obtain implied correlation. That is, we assume that the size of the adjustment to each

pairwise historical correlation is proportional to the distance between the calculated historical

correlation and the perfect correlation of one, which ensures that the implied correlation matrix

satisfies the necessary positive-definiteness restriction.

Having computed implied correlations using the above approach, we examine whether they

are superior at predicting realized correlations. To do this, we regress realized correlations on

(i) 750-day historical daily correlations, (ii) 750-day historical daily correlations after shrinkage,

(iii) 30-day intraday correlations, (iv) 30-day intraday correlations after regularization, and

(v) implied correlations. We report in Panel B of Table 2 that for the data with 561 stocks,

the R2 for historical daily correlations is 3.97%, for historical daily correlations with shrinkage

is 3.28%, for intraday correlations is 6.26%, for intraday correlations with shrinkage is 4.79%,

and for implied correlation is 9.32%, with the results being similar for the data with 100 stocks.

Thus, while high-frequency intraday correlations do not seem to predict realized correlations

better than historical correlations based on daily data, implied correlations are better, though

the improvement in R2 is smaller than it was for predicting realized volatilities.

In Figure 2, we plot the historical correlation based on the last 750 days (dashed blue line),

implied correlation (solid red line), and 30-day realized correlations (thick black line). Just as

in the figure for volatilities, the plot is based on the cross-sectional equally-weighted average

of average correlations across 561 stocks. There are two observations about these series: first,

implied correlation follows the level of realized correlation much more closely than historical
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correlation; two, implied correlation is much more volatile (that is, contains more noise) than

realized correlation, while historical correlation is almost a smooth function (but contains much

less of the current information).

6.3 Option-Implied Skewness

The model-free implied skewness represents a nonparametric estimate of the risk-neutral stock-

return skewness, and it is this skewness that gives rise to the Black-Scholes implied volatility

smile. Some researchers use as a simple measure of skewness the difference between the implied-

volatilities for out-of-the-money and at-the-money put options (Xing, Zhang, and Zhao, 2009);

however, that measure does not take into account the whole distribution, but rather just the left

tale. Our calculation of the model-free implied skewness (MFIS) parallels that of the model-free

implied volatility. We first calculate the option prices from the interpolated volatility surface

data. We then use these prices to determine model-free implied skewness as described by

Bakshi, Kapadia, and Madan (2003); the formula for this and the procedure used to compute

it are provided in Appendix C.

7 Portfolios that Use Option-Implied Information

In this section, we discuss the major findings of our paper about the ability of forward-looking

information in option prices to improve the out-of-sample performance of stock portfolios. As

explained above, to determine mean-variance portfolio weights, one needs to estimate for each

stock its (i) volatility, (ii) correlations with all other stocks, and (iii) expected return. Accord-

ingly, we divide our analysis into three parts. In Section 7.1, we examine how option-implied

volatilities can be used for portfolio selection. In Section 7.2, we study how option-implied

correlations can be used for portfolio selection. Finally, in Section 7.3, we investigate the per-

formance of portfolios based on expected returns adjusted by option-implied information. In

each of these sections, we obtain only one of the three moments using option-implied informa-

tion, in order to identify the magnitude of the gains from that particular source of information.

7.1 Portfolios Using Option-Implied Volatilities

Motivated by the findings in Section 6.1 about the predictive power of model-free implied

volatilities, we use them in diag(σ̂) to obtain the covariance matrix given in (9); that is, we use as

the covariance matrix: Σ̂ = diag(MFIV) Ω̂ diag(MFIV). Using this adjusted covariance matrix,

we then determine the minimum-variance portfolio in (7), along with the portfolios where short

sales are constrained, and where the shrinkage is applied to the this adjusted covariance matrix.
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In computing these portfolios, we continue to use historical correlations, and we set expected

returns on all stocks to be 1.24 Effectively, we are computing the minimum-variance portfolio

but with implied volatilities instead of historical volatilities in the covariance matrix.25

The results are reported in Table 3. This table and also all the remaining tables have two

sets of p-values: the first with respect to the 1/N portfolio, and the second with respect to the

corresponding minimum-variance benchmark portfolio in Table 1.

Table 3 shows that the optimal portfolios based on the model-free implied volatility have

a lower volatility than the 1/N portfolio, but the Sharpe ratio, certainty-equivalent return,

and turnover is better for the 1/N portfolio. Compared to the traditional minimum-variance

portfolios in Table 1 that are based on historical data, we find that replacing the estimates

of stock-return volatilities by their model-free implied counterparts always helps to reduce the

out-of-sample volatility of the portfolio, although the reduction itself is relatively small (by an

average of 1.6% for daily rebalancing and 4.7% for monthly rebalancing) and the p-values for

this reduction are significant only for the data with 100 stocks for monthly rebalancing.

There are two striking conclusions from Table 3, both of which are negative. First, the

reduction in portfolio volatility is very small. Second, and more damaging, is the observation

that the Sharpe ratios and also the certainty-equivalent returns are substantially smaller for

the portfolios in Table 3 that are based on implied-volatility, compared to those in Table 1,

which rely only on historical estimates of volatility. One reason for these negative results is that

when we derive the model-free implied volatility from options, we are getting the risk-neutral

volatility, which is the sum of the volatility risk premium and expected volatility under the

objective measure; thus, implied volatility is a biased estimator of expected volatilities under

the objective distribution. Moreover, assuming the same level of expected volatility under the

objective measure, the implied volatility is relatively higher for stocks with high volatility risk

premium than for stocks with low volatility risk premium. Hence, when we use risk-neutral

implied volatilities, we underweight the stocks with high volatility risk premium (because they

have a higher implied volatility) in comparison to the stocks with low volatility risk premium.

Given the findings of Bali and Hovakimian (2009) and Goyal and Saretto (2009) that stocks with

high volatility risk premium have higher returns, this explains the reduction in the portfolio’s

realized return, and hence, its Sharpe ratio.
24The reason for setting expected returns to be equal to 1 for all stocks in the first two steps is that using

historical estimates of expected returns leads to portfolios with very poor performance, as explained in Footnote 4
and at the end of Section 5; see also in Jagannathan and Ma (2003).

25Note that when shortsales are constrained, we can no longer use the closed form expression in (7); hence, in
this case we obtain the portfolio weights by solving directly the problem in (1)–(3) after imposing the additional
constraint that all weights be nonnegative. And, because all expected returns are set equal to 1, this then implies
that µ0 = 1.
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Table 4 gives the results where volatility of stock returns is estimated from the model-free

implied volatility after it is corrected for the risk premium. Comparing the results in this table

to those in Table 3, where implied volatility is not corrected for the risk premium, we see that

using the risk-premium-corrected implied volatilities leads to a reduction in portfolio volatility,

especially for the case of 561 assets. Comparing the results in Table 4 to the traditional

minimum-variance portfolios in Table 1, we observe that the portfolios with the risk-premium-

corrected implied volatilities attain a lower out-of-sample volatility, with the difference being

around 6%–10% for monthly rebalancing and around 0–7% for daily rebalancing.

More importantly, comparing Table 4 with Table 3, we see that there is a significant im-

provement in the Sharpe ratios and certainty-equivalent returns and turnovers when using the

risk-premium-corrected implied volatilities, which confirms our motivation for correcting the

implied-volatilities for the volatility risk premium. However, the Sharpe ratios and certainty-

equivalent returns in Table 4, are still lower than those for the sample-based benchmark portfo-

lios in Table 1. And, for almost all the cases considered in Table 4, the 1/N portfolio has a higher

Sharpe ratio and certainty-equivalent return, and substantially lower turnover (the exception is

the shortsale-constrained portfolio for 561 stocks with monthly rebalancing, though the p-value

is not significant). The reason for the relatively poor Sharpe ratio and certainty equivalent

return of the portfolios based on implied volatility is that, with or without the risk-premium

correction, implied volatility is highly variable over time (see Figure 1), which increases the

instability of portfolio weights and reduces the gains from having a better predictor of realized

volatility.

7.2 Portfolios Using Option-Implied Correlations

Next, we investigate the use of option-implied correlations in portfolio selection. In order to

isolate the effect of using implied correlations, when computing portfolios we use volatilities

from historical data, and we continue to set expected returns across all assets to equal 1.

Table 5 shows that of the three minimum-variance portfolios we consider with the implied

correlations, the constrained portfolio does best; but the portfolios relying on implied correla-

tions typically perform worse than the corresponding minimum-variance benchmark portfolios

in Table 1 in terms of all four performance metrics: volatility, Sharpe ratio, certainty-equivalent

return, and turnover. One possible explanation for this poor performance is that by replacing

historical correlations by the implied correlations, we are essentially increasing the magnitude

of the off-diagonal elements of the covariance matrix, making the covariance matrix less stable,

which then leads to poor performance. Moreover, as can be seen in Figure 2, the implied cor-

relations are also much more variable than the other series; this variability is reflected also in
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Panel B of Table 2 where the p-values of the β estimated in the predictive regressions is very

low, even though the R2 is the highest when implied correlation is the predictor.26

7.3 Portfolios Using Expected Returns Adjusted by Option-Implied Infor-

mation

In the two subsections above, we set expected returns to equal 1 across all stocks, while ex-

amining the effects of using option-implied volatilities and correlations. The reason for setting

expected returns to 1 is that (i) portfolio weights are very sensitive to expected returns, and

(ii) estimates of expected returns from historical data are extremely noisy, making it difficult

to distinguish whether expected returns are really different across stocks.27 Consequently, as

discussed at the end of Section 5, portfolios based on expected returns estimated from historical

data perform very poorly.

In this subsection, we examine if it is possible to use option-implied information to adjust

the naive procedure of setting expected returns to be equal across all stocks. In Section 7.3.1,

we examine the effect of adjusting expected returns based on the volatility risk premium, and

in Section 7.3.2, we adjust expected returns based on option-implied skewness.

7.3.1 Expected returns scaled by historical volatility risk premium

Bali and Hovakimian (2009) and Goyal and Saretto (2009) have documented that assets with

high volatility risk premium tend to outperform those with low volatility risk premium.28 We

now study whether this empirical regularity can be exploited to improve portfolio performance.

To incorporate the above finding for portfolio selection, we start by setting all expected

returns to be equal to one. We then sort all the stocks into deciles using the characteristic

“historical volatility risk premium,” and then scale the expected returns of the top decile to

(1 + δ) and of the bottom decile to (1 − δ). In our empirical implementation, to give the

reader a sense of how the results change with δ, we consider two values of the scaling factor:
26In order to conserve space, we do not present the table where the portfolios are computed using implied

correlations and risk-premium-corrected implied volatilities. The table with the results for this case is available
from the authors. As one would expect, the results are a combination of the insights from Tables 4 and 5.
What one can conclude from these results is that using implied correlations and risk-premium-corrected implied
volatilities has (i) a mixed effect on portfolio volatility, reducing it in some cases but increasing it in others;
(ii) reduces Sharpe ratios and certainty-equivalent returns considerably; and (iii) usually increases turnover.
Compared to the 1/N portfolio, the portfolio using option-implied volatilities and correlations is better in terms
of portfolio volatility, but worse in terms of Sharpe ratio, certainty-equivalent return, and turnover.

27Simulations in DeMiguel, Garlappi, and Uppal (2009) suggest that more than five hundred years of data
are needed before one can estimate expected returns with sufficient precision to improve the performance of a
portfolio with fifty risky assets beyond that of the 1/N portfolio.

28See also Cremers and Weinbaum (2008) for another characteristic of options that is useful for predicting
stock returns. They find that deviations from put-call parity contain information about future stock returns.
They measure these deviations from the difference in implied volatility between pairs of call and put options and
find that stocks with relatively expensive calls outperform stocks with relatively expensive puts.
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δ1 = 0.50 and δ2 = 0.70. We then use the scaled expected returns, along with volatilities and

correlations estimated from historical data, to compute the portfolio in (8).29 The performance

of the portfolio obtained in this fashion is given in Table 6.

We see from Table 6 that the portfolios with expected returns scaled by the volatility risk

premium have a volatility that is typically lower than that of the 1/N portfolio, but higher

than that of the benchmark portfolios in Table 1, with a higher δ leading to an increase in

the portfolio volatility. However, now the Sharpe ratios and certainty-equivalent returns for

the portfolios whose expected returns have been scaled by the volatility risk premium exceed

those of 1/N for the data with 100 assets for all cases, and for the data with 561 assets for

the case where short sales are constrained (but with p-values that are not low). However, the

improvement in Sharpe ratios is accompanied by an increase in turnover. And, increasing δ

increases the Sharpe ratio but also turnover.30

One limitation of scaling expected returns is that the portfolio weights are very sensitive

to even small errors in estimates of expected returns, which then lead to high turnover. In

order to incorporate the effect of the historical volatility risk premium on portfolio weights

without a significant increase in turnover, we consider scaling stock-return volatilities instead

of expected returns. That is, we scale the sample estimate of σ̂ that we are using in the

covariance decomposition (9). To make this adjustment, we proceed as before: we first sort

stocks into deciles using the characteristic “historical volatility risk premium,” and then scale

the volatilities of the top decile to σ̂ · (1− δ) and of the bottom decile to σ̂ · (1 + δ), using the

same scaling factors as before: δ1 = 0.50 and δ2 = 0.70.

Table 7 gives the results when the estimates of the historical volatilities have been scaled,

based on the volatility risk premium for each stock. The table shows that scaling the stock return

volatilities improves performance across all four metrics compared to scaling expected returns,

as in Table 6. Moreover, the Sharpe ratio and certainty equivalent return are typically greater

than for the benchmark minimum-variance portfolios in Table 1 (the only exception are the

constrained portfolios for 561 stocks). Moreover, in all cases but that of the sample covariance

portfolio for 561 stocks, the Sharpe ratios exceed that of the 1/N portfolio (with several p-

values being below 0.10). And, the increases in Sharpe ratios are, interestingly, accompanied

by a decrease in the portfolio turnover, which are now lower than those in Table 6. Likewise,
29When shortsales are constrained, we can no longer use the closed form expression in (8); hence, in this case

we obtain the portfolio weights by solving directly the problem in (1)–(3) after imposing the additional constraint
that all weights be nonnegative. We also impose the constraint that the sum over all stocks of the product of the
weight for each stock and the scaling (perturbation) to its expected return be zero, which implies that µ0 = 1.

30Again, we do not report the results where expected returns are scaled based on the volatility risk premium
and one uses the risk-premium-corrected implied volatilities. These results are available from the authors. Not
surprisingly, compared to Table 6 portfolio volatility is now lower; Sharpe ratios and certainty-equivalent returns
improve for the unconstrained portfolios, but get worse for the short-sale-constrained portfolio and exceed those
for the 1/N portfolio for the data set with 100 stocks but not for the data set with 561 stocks; and, turnover is
lower for the unconstrained portfolios but higher for the short-sale-constrained portfolio.
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the table shows that the scaling based on the volatility risk premium always helps to increase

the out-of-sample certainty-equivalent of portfolio returns, and although the increase is not as

large as for the Sharpe ratio, it ranges from 1.5% and 6.4% for daily rebalancing and 1.3%

to 3.9% for monthly rebalancing. We also see that increasing δ reduces turnover, increases

portfolio volatility, and has a mixed effect on Sharpe ratios and certainty-equivalent returns.

We conclude from the comparison of the results in Table 7 and Table 1 that the volatility

risk premium is useful for improving portfolio performance; and from the comparison of Table 7

and Table 6, that scaling volatilities is better than scaling the expected returns.

7.3.2 Expected returns scaled by implied skewness

The final approach we consider for identifying portfolios with high out-of-sample performance

is motivated by the empirical results of Rehman and Vilkov (2009), who find that stocks with

high option-implied skewness outperform stocks with low option-implied skewness. To exploit

this feature of the data, we proceed in the same manner as in the section above.

We start by setting all expected returns to be equal to one. We then sort all the stocks in

the data set by the characteristic “model-free implied skewness” into deciles, and then scale the

expected returns of the top decile to (1 + δ) and of the bottom decile to (1 − δ). We consider

two values of the scaling factor: δ1 = 0.30 and δ2 = 0.50.31 We then use the scaled expected

returns, along with volatilities and correlations estimated from historical data, to compute the

optimal portfolios as in (4). The results for the portfolio weights obtained in this fashion are

given in Table 8.

We see from Table 8 that the portfolios with expected returns scaled by implied skewness

perform very favorably compared to the 1/N portfolio: the portfolios with scaled expected

returns usually have lower volatility for the case of δ1 = 0.30, along with higher Sharpe ratios

and certainty-equivalent returns (with these differences being statistically significant for daily

rebalancing in Panel A for both the data with 100 stocks and that with 561 stocks). How-

ever, this is accompanied by substantially higher turnover. Compared to the other benchmark

portfolios in Table 1, the differences in Sharpe ratios and certainty-equivalent returns are even

greater, though the benchmark portfolios have lower portfolio volatility and turnover. Increas-

ing δ increases the Sharpe ratio and certainty equivalent return, but also increases turnover and

portfolio volatility.

In an effort to reduce portfolio turnover, we again consider scaling volatilities instead of

expected stock returns. To scale the volatilities in the covariance decomposition (9), we first
31Note that we use smaller values of δ than for the scaling based on the volatility risk premium in the previous

section. This is because the model-free implied skewness has a stronger effect on the portfolio’s out-of-sample
performance.
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sort stocks into deciles using the characteristic “model-free implied skewness” and then scale

the volatilities of the top decile to σ̂ · (1−δ) and for the bottom decile to σ̂ · (1+δ). We consider

the same two values for the scaling factor: δ1 = 0.30 and δ2 = 0.50.

Comparing Table 9 to Table 8 shows that scaling the stock-return volatilities rather than

expected returns reduces turnover without worsening performance in terms of volatility, Sharp

ratio, and certainty-equivalent return (except for the short-sale-constrained portfolio). Com-

paring Table 9 to the benchmark portfolios in Table 1, we see that using the option-implied

skewness leads to a significant increase in the out-of-sample Sharpe ratio, which ranges between

30% and 400% for daily rebalancing, and between 11% and 87% for monthly rebalancing. How-

ever, this is accompanied by a considerable increase in turnover.

Comparing Table 9 to Table 7, we see that the Sharpe ratios obtained from using implied

skewness are higher than those from using the volatility risk premium. The main difference

between the results obtained with the scaling based on the model-free implied skewness and

that based on the historical volatility risk premium is the effect on portfolio turnover. While

the adjustment based on implied skewness increases Sharpe ratio but also leads to a much

higher turnover, the adjustment based on the volatility risk premium achieves improvement

in Sharpe ratios while often reducing the portfolio turnover. The reason for this is that the

historical volatility risk premium estimator has much lower estimation variance than the model-

free implied skewness. This is because the model-free implied skewness is estimated purely from

current option prices,32 and therefore is based on the market’s expectations about the future,

while the historical volatility risk premium is computed from historical return data as well as

historical model-free implied volatilities, and therefore, is more stable.

Overall, the empirical evidence demonstrates that using information in the volatility risk

premium and model-free implied skewness can lead to a substantial improvement in the out-of-

sample portfolio Sharpe ratios and certainty-equivalent returns, with the main challenge being

how to control turnover. And, using the volatility risk premium and model-free implied skewness

to scale volatilities as opposed to expected returns leads to a smaller increase in turnover.

8 Robustness Tests

In this section, we describe the various tests that we have undertaken to verify the robustness

of the results from our empirical analysis.
32In order to reduce variability of implied skewness, we use its average value over the last five days but it is

still quite variable.
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8.1 Different Datasets

Ideally, one would like to study more than a single dataset. We are limited in our desire to

consider additional datasets because we have option prices only for U.S. stocks. To overcome

this limitation, we have reported results for two datasets, where the second dataset is a subset

of the first. The first consists of the entire 561 stocks in our dataset, and the results for this

dataset are reported in the last four columns of each table. The second dataset consists of

100 stocks out of the 219 for which data are available for all dates, where these 100 stocks

are selected by first sorting the 219 stocks with respect to the security identifier code of the

IvyDB data base, and then selecting the first 100. The results for this dataset are reported in

Columns 2–4 of each table. In addition to the results reported for these two samples, we have

also evaluated the performance of the different portfolios for 20 additional samples, where the

first 10 samples are constructed by randomly choosing 100 stocks from the 219-stock dataset,

and the second set of 10 samples are constructed by randomly choosing 250 stocks from the

561 stock dataset. The results from these additional samples confirm the findings reported in

the tables regarding the relative improvement in Sharpe ratios of the option-implied portfolios

relative to the benchmark portfolios.

8.2 Different Data Frequencies

We consider both daily stock returns from the CRSP daily file and intraday stock-price data

from the NYSE’s Trades-And-Quotes (TAQ) database. Results for the daily data are reported

in the tables. Results for the high-frequency transaction data are not reported in order to

conserve space, and can be obtained from the authors. The main insight from intraday data

is that using high-frequency data to compute the covariance estimators rarely improves the

out-of-sample performance of resulting portfolios, and in our analysis the intraday data give

significantly better results relative to daily data only for the sample covariance matrix for 561

assets when neither shrinkage is applied to the covariance matrix nor short-sale constraints are

imposed on the portfolio weights.

8.3 Different Rebalancing Frequencies

We consider two rebalancing frequencies in our analysis: daily rebalancing, the results for which

are given in Panel A of each table, and monthly rebalancing, the results for which are given in

Panel B of each table. We find that the results are in the same direction for the two holding

periods, though Sharpe ratios and certainty equivalent returns are higher for daily rebalancing,

while turnover is lower for monthly rebalancing.
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8.4 Different Benchmark Portfolios

We consider four benchmark portfolios, all of which are listed in Table 1. The first is the

equally-weighted (1/N) portfolio in which one invests an equal amount of wealth across all

N available stocks each period. As DeMiguel, Garlappi, and Uppal (2009) have shown, this

portfolio performs extremely well. For example, its Sharpe ratio over our sample period exceeds

0.90, while that for the S&P500 index over the corresponding period is only 0.35. The second

benchmark portfolio is the minimum-variance portfolio using daily data to compute the sample

covariance matrix. The third benchmark portfolio is the minimum-variance portfolio with

shortsale constraints, which is motivated by the finding in Jagannathan and Ma (2003) that

imposing short-selling constraints can lead to substantial gains in performance. The fourth

benchmark portfolio is the minimum-variance portfolio with “shrinkage”, using the approach

in Ledoit and Wolf (2004a,b) for daily data, and with regularization using the approach of

Zumbach (2009) for intraday data.

Note that we do not consider the mean-variance portfolio as one of the benchmark portfolio,

because the performance of this portfolio is quite poor, as already documented extensively in

the literature; see, for instance, DeMiguel, Garlappi, and Uppal (2009). For completeness, the

performance of the mean-variance portfolio for daily returns is discussed at the end of Section 5.

8.5 Different Objective Functions

In our analysis, our objective has been either mean-variance optimization or minimum-variance

optimization (when all expected returns are set equal to 1). However, one could have used a

utility function instead. When we use the log utility function (that is, the power utility function

with risk aversion γ equal to 1), we find for the data with 100 assets that the optimal portfolio

has extreme weights and it performs extremely poorly, just as the mean-variance portfolio.

In order to compare the weights with those from the optimization of the minimum-variance

objective function, we “demean” the returns and set expected returns on all assets to be equal

to 1. We then repeat the maximization of the log utility function and find that the weights are

virtually identical to the minimum-variance weights.

When maximizing log utility, we also consider scaling expected returns based on the histor-

ical volatility risk premium and the option-implied skewness to scale expected returns (just as

we did above, by adjusting the top and bottom deciles of assets); we find that the weights are

too sensitive to these adjustments to expected returns. We then consider scaling the volatilities

of stock returns by multiplying the returns with the same scaling factor, δ, that we used for

the mean-variance analysis in Tables 7 and 9. We find a distinct improvement in portfolio

performance, and the scaling works in the same direction as reported in these tables.
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8.6 Risk exposures of the option-implied portfolios

To investigate the exposures of the option-implied portfolios to different risk factors, we es-

timated the betas of the portfolio returns with respect to the Fama and French (1993) and

Carhart (1997) momentum factors. Compared to the corresponding betas of the benchmark

portfolios, we find only a small increase in the size beta for the returns on portfolios where

expected returns and standard deviations are scaled by historical volatility premium and for

the returns on portfolios with expected returns scaled by implied skewness. The value beta

decreases slightly and the momentum beta increases slightly for the option-implied portfolios.

Overall, the difference in the exposure to systematic factors between the benchmark portfolios

and the portfolios where expected returns have been “scaled” based on option-implied informa-

tion lies mainly in the exposure to the market factor, which is very small on average.33

9 Conclusion

Mean-variance portfolios depend on estimates of volatilities, correlations, and expected returns

of stocks. In this paper, we have studied how information implied in prices of stock options can

be used to estimate these three moments in order to improve the out-of-sample performance

of portfolios with a large number of stocks. Performance is measured in terms of portfolio

volatility, Sharpe ratio, certainty-equivalent return, and turnover, with the benchmarks being

the 1/N portfolio and three types of minimum-variance portfolios based on historical data: the

first based on the sample covariance matrix, the second with short sale constraints, and the

third with shrinkage applied to the covariance matrix.

We find that using the option-implied volatilities, even after correcting for the volatility-risk

premium, does not improve portfolio performance significantly. The benefits from using option-

implied correlations are even smaller. The reason for the small improvement in performance is

that the estimates of implied volatilities and implied correlations are highly variable and give

poorly behaved and unstable covariance matrices that lead to highly-variable weights that fail

to outperform the benchmarks.

We then adjust our estimates of expected returns on stocks using two sources of option-

implied information. One, we use the volatility risk premium of each stock motivated by the

empirical finding that stocks with high volatility risk premium tend to outperform those with

low volatility risk premium. We start by setting expected returns across all stocks to be equal

to one, while volatilities and correlations are estimated from historical data. Then, we rank

all stocks according to their volatility risk premium and increase the estimate of expected
33The tables with details of these risk exposures are available from the authors.
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returns by a factor for those stocks that are in the top decile of volatility risk premium and

decrease it by the same factor for those in the bottom decile. Our empirical evidence shows

that the portfolios where expected returns have been scaled using the volatility risk premium

outperform the traditional portfolios in terms of Sharpe ratio and certainty-equivalent return,

but with an increase in turnover. Two, we use the model-free option-implied skewness, to scale

expected returns in the same manner as for the volatility risk premium. We find that portfolios

based on implied skewness outperform even more strongly the traditional portfolios in terms of

Sharpe ratio and certainty-equivalent return, but this increase is accompanied by an increase in

turnover and portfolio volatility. We show that one way of reducing the impact on turnover is

to use the volatility risk premium and implied skewness to scale stock-return volatilities rather

than expected returns.

Based on our empirical analysis, we conclude that prices of stock options contain information

that can be used to improve the out-of-sample performance of mean-variance portfolios. In this

paper, we have explored only very simple ways of incorporating information implied by option

prices into static portfolios; more sophisticated ways of incorporating this information should

lead to even larger gains in out-of-sample performance.
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A Computing (Co)variances from Intraday Data

Consistent with the literature on estimating moments from intraday data (see, for example,

Brown (1990), Zhou (1996), and Corsi, Zumbach, Müller, and Dacorogna (2001)), we assume

that instead of the true price, Xi(t), we observe Yi(t), which is contaminated with noise; that

is, Yi(t) = Xi(t)+εi(t), where the noise process εi is assumed to be i.i.d and independent also of

Xi. A common estimator for the integrated (co)variance of the efficient price process 〈Xi, Xj〉
is given by the Realized (Co)Variance (RV/RC):

̂〈Yi, Yj〉
(∆)

=
n∑
k=1

ri(k∆) · rj (k∆) , (A1)

where the sampling frequency n is defined as n = T/∆, and ri(t) denotes the observed stock

return for a time interval of length ∆; that is, ri(t) = Yi(t)− Yi(t−∆).

In the absence of microstructure noise, this estimator is consistent as the sampling frequency

n increases (Jacod, 1994; Jacod and Protter, 1998). However, it is inconsistent under real market

conditions where there is noise and asynchronous trading (Barndorff-Nielsen and Shephard,

2002; Zhang, Mykland, and Aı̈t-Sahalia, 2005).34 To mitigate this problem, we use the “second-

best” estimator from Zhang, Mykland, and Aı̈t-Sahalia (originally derived to estimate the

realized variances) and apply it to realized (co)variances. The idea underlying this estimator is

to compute the realized (co)variance estimator in (A1) at a low frequency in order to mitigate

the problems induced by microstructure noise and non-synchronicity. When we sample at

lower frequencies, we discard some observations and to overcome this problem Zhang, Mykland,

and Aı̈t-Sahalia suggest computing the realized (co)variance estimator in (A1) over different

subsamples and then averaging the estimators obtained for these subsamples. The “second-

best” estimator is given by:

̂〈Yi, Yj〉
(avg,K)

=
1
K

K∑
k=1

̂〈Yi, Yj〉
(∆,k)

. (A2)

We introduce one more averaging step to eliminate the chance of choosing the wrong sam-

pling frequency by calculating the estimator (A2) over several frequencies and taking the mean.

As our sample also includes less frequently traded stocks, especially early in the sample period,

we choose relatively low sampling frequencies from 240 to 390 minutes (which corresponds to

the number of minutes in a typical trading day) with a step size of 10 minutes for the estimator
34The non-synchronicity of the data induces an additional bias, known as the Epps effect (Epps (1979)), which

drives covariances to zero as the sampling frequency increases.
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(A2) to get the final realized (co)variance estimator:

̂〈Yi, Yj〉
(avg,K̄)

=
1

dim(K̂)

dim(K̄)∑
s=1

̂〈Yi, Yj〉
(avg,K̄(s))

. (A3)

B Shrinkage and Regularization of Covariance Matrix

We consider a sample with a large number of stocks (100 and 561); therefore, sample covari-

ance matrices estimated from a limited history of daily stock returns are likely to be poorly

behaved. To improve the sample covariance estimate for daily returns, we apply the shrinkage

methodology of Ledoit and Wolf (2004a,b):

Σ̂Shrunk = (1− φ)Σ̂ + φS, (B1)

where we shrink the sample estimate of the covariance matrix Σ̂ toward a diagonal matrix with

the cross-sectional average variance on the diagonal, defined as the target S.35 We minimize

the Frobenius norm between the shrinkage estimator and the true covariance matrix in order

to find the optimal shrinkage intensity parameter φ, using the time series of 750 points; details

can be found in Ledoit and Wolf (2004a,b).

The asymptotic properties of intraday data are different from the asymptotic properties of

daily data, as shown by Zhang, Mykland, and Aı̈t-Sahalia (2005) among others, and the intraday

data do not satisfy the distributional assumptions of Ledoit and Wolf (2004a,b). Therefore,

to improve the properties of the covariance matrix estimated for intraday returns, we apply

regularization of the inverse covariance proposed by Zumbach (2009). He uses the spectral

decomposition of the covariance matrix estimator Σ̂, which is:

Σ̂ =
N∑
n=1

λnVnV
′
n, (B2)

where {λ1, ..., λN} are eigenvalues and {V1, ..., VN} are eigenvectors (pairwise orthogonal) for

the set of N stocks. We order the eigenvalues by decreasing values, such that λ1 is the largest

eigenvalue. The inverse square root covariance can then be written as:

Σ̂−1/2 =
N∑
n=1

1√
λn
VnV

′
n, (B3)

35We also used the cross-sectional average covariances matrix as the target, but the first target performs better
out of sample.
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where one can see that for λn ≈ 0 the singularity problem arises. To overcome this problem,

we define

Σ̃−1/2 =
k∑

n=1

1√
λn
VnV

′
n +

1√
λk+1

N∑
n=k+1

VnV
′
n, (B4)

and use Σ̃ as the estimator of the covariance matrix. This approach allows us to maintain the

covariance structure by keeping all eigenvectors {V1, ..., VN} and to eliminate the singularity

problem by substituting all eigenvalues that are smaller than λk+1 by λk+1 6= 0. We choose the

parameter k so that the first k eigenvalues explain 75% of the overall variance.

C The Construction of the Risk-Neutral Implied Moments

The formulas in this appendix follow closely Bakshi, Kapadia, and Madan (2003) and are

reproduced here only for completeness; for more details, please refer to the original paper.

Let S(t) be the stock price at time t, R(t, τ) be the τ -period return (seen at time t + τ)

given by the log-price relative:

R(t, τ) ≡ lnS(t+ τ)− lnS(t). (C1)

Let r be the interest rate, C(t, τ ;K) and P (t, τ ;K) the prices of call and put options written

on the stock with current price S(t), τ the time to maturity, and K the strike price.

Let V (t, τ) ≡ E∗t {e−rτR(t, τ)2}, W (t, τ) ≡ E∗t {e−rτR(t, τ)3}, and X(t, τ) ≡ E∗t {e−rτR(t, τ)4}
represent the fair value of the variance, cubic, and quartic contracts, respectively. Then, the

price of the variance contract is given by

V (t, τ) =
∫ ∞
S(t)

2
(

1− log
(

K
S(t)

))
K2

· C(t, τ ;K)dK (C2)

+
∫ S(t)

0

2
(

1− log
(

K
S(t)

))
K2

· P (t, τ ;K)dK,

the price of the cubic contract is

W (t, τ) =
∫ ∞
S(t)

6 log
(

K
S(t)

)
− 3

(
log
(

K
S(t)

))2

K2
· C(t, τ ;K)dK

−
∫ S(t)

0

6 log
(

K
S(t)

)
+ 3

(
log
(

K
S(t)

))2

K2
· P (t, τ ;K)dK, (C3)
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and the price of the quartic contract is

X(t, τ) =
∫ ∞
S(t)

12
(
ln[ K

S(t) ]
)2
− 4

(
ln[ K

S(t) ]
)3

K2
· C(t, τ ;K)dK

+
∫ S(t)

0

12
(
ln[S(t)

K ]
)2

+ 4
(
ln[S(t)

K ]
)3

K2
· P (t, τ ;K)dK. (C4)

Define

µ(t, τ) = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ).

Then, the τ -period model-free implied volatility (MFIV) can be calculated as

MFIV(t, τ) =
(
V (t, τ)

)1/2
, (C5)

and the τ -period model-free implied skewness (MFIS) as

MFIS(t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2(µ(t, τ))3

(erτV (t, τ)− (µ(t, τ))2)
3
2

. (C6)

To calculate the integrals in (C2), (C3) and (C4) precisely, we need a continuum of option

prices. We discretize the respective integrals and approximate them using the available options.

As mentioned earlier, we normally have 13 out-of-the-money call and put implied volatilities for

each maturity. Using cubic splines, we interpolate them inside the available moneyness range,

and extrapolate using the last known (boundary for each side) value to fill in a total of 1001

grid points in the moneyness range from 1/3 to 3.36 Then we calculate the option prices from

the interpolated volatilities using the known interest rate for a given maturity, and use these

prices to compute the model-free implied volatility and model-free implied skewness as in (C5)

and (C6), respectively.

36The reason for choosing such a wide grid is that our simulation studies have shown that with a narrower
grid we may not be estimating the skew and kurtosis of the risk-neutral distribution well enough. Decreasing
the number of points in the grid also leads to a deterioration in accuracy.
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Table 1: Benchmark portfolios that do not use option-implied information
In this table, we evaluate the performance of various benchmark portfolios that are based on historical returns
and do not rely on prices of options. The 1/N portfolio is the equally-weighted strategy where one invests an
equal amount of wealth across all N available stocks each period. The “Sample cov” portfolio is based on the
sample covariance matrix; “Constrained” is the portfolio based on the sample covariance matrix but with short
sales constrained; and, “Shrinkage” is the portfolio where shrinkage has been applied to the sample covariance
matrix using the Ledoit and Wolf (2004a,b) methodology. We report two p-values in parenthesis, the first with
respect to the 1/N portfolio, and the second with respect to the “Sample cov” portfolio, with the null hypothesis
being that the portfolio being evaluated is worse than the benchmark (so a small p-value suggests rejecting the
null hypothesis that the portfolio being evaluated is worse than the benchmark).

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Minimum-variance portfolios (i.e., expected returns equal across all assets)
Sample cov 0.1217 0.8089 0.0911 0.0849 0.1347 0.4737 0.0547 0.5360

(0.00) (0.67) (0.87) (0.00) (0.78) (0.86)
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

Constrained 0.1242 0.7557 0.0862 0.0262 0.1240 0.9701 0.1126 0.0376
(0.00) (0.83) (0.96) (0.00) (0.15) (0.53)
(0.93) (0.63) (0.60) (0.00) (0.03) (0.05)

Shrinkage 0.1205 0.8514 0.0953 0.0745 0.1180 0.6142 0.0655 0.3046
(0.00) (0.61) (0.86) (0.00) (0.66) (0.84)
(0.00) (0.05) (0.09) (0.00) (0.06) (0.20)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Minimum-variance portfolios (i.e., expected returns equal across all assets)
Sample cov 0.1221 0.7903 0.0891 0.1762 0.1296 0.4768 0.0534 0.7785

(0.00) (0.74) (0.91) (0.00) (0.82) (0.91)
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

Constrained 0.1207 0.7632 0.0848 0.0545 0.1180 1.0135 0.1126 0.0690
(0.00) (0.84) (0.97) (0.00) (0.07) (0.49)
(0.37) (0.58) (0.62) (0.01) (0.00) (0.01)

Shrinkage 0.1211 0.8280 0.0930 0.1602 0.1196 0.5842 0.0627 0.4979
(0.00) (0.69) (0.89) (0.00) (0.73) (0.90)
(0.13) (0.03) (0.05) (0.00) (0.09) (0.17)
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Table 2: Prediction of variances and correlations

In Panel A of this table, we report the results of variance prediction regressions RV = α + β dRV , where we

regress the 30-days realized variance (RV ) on the variance predictors (dRV ). In Panel B, we show the results
of the correlation prediction regressions corr = α+ β dcorr, where we regress the 30-days realized correlation on
the correlation predictors ( dcorr). We use 750 days of data to calculate the historical predictors. For covariances
based on daily data, shrinkage is applied using the Ledoit and Wolf (2004a,b) methodology; for covariances based
on intraday data, regularization is applied using the methodology in Zumbach (2009). In both cases, we infer the
correlations from the covariances to which shrinkage/regularization has been applied. In parenthesis we report
the p-values for the two-sided null hypotheses: α = 0 and β = 1.

100 stocks 561 stocks
Predictor α β R2 α β R2

Panel A: Prediction of variances

Historical daily 0.0369 0.6795 0.2031 0.0520 0.6515 0.1966
(0.03) (0.05) (0.10) (0.09)

Historical intraday 0.0616 0.5075 0.2308 0.0717 0.5667 0.2299
(0.95) (0.01) (0.94) (0.06)

Implied variance 0.0214 0.7460 0.3334 0.0164 0.7793 0.3312
(0.98) (0.19) (0.97) (0.21)

Implied variance (HVRP corrected) 0.0372 0.8189 0.3222 0.0435 0.8735 0.3155
(0.97) (0.31) (0.96) (0.31)

Panel B: Prediction of correlations

Historical daily 0.2007 0.0821 0.0238 0.2548 -0.1761 0.0397
(0.84) (0.02) (0.80) (0.07)

Shrinkage daily 0.1987 0.0988 0.0245 0.2501 -0.0814 0.0328
(0.84) (0.03) (0.80) (0.04)

Historical intraday 0.1703 0.2312 0.0680 0.1776 0.1880 0.0626
(0.87) (0.00) (0.86) (0.00)

Shrinkage intraday 0.1899 1.4419 0.0419 0.2014 1.2203 0.0479
(0.85) (0.38) (0.84) (0.37)

Implied correlation 0.1130 0.3528 0.0826 0.1116 0.3503 0.0932
(0.91) (0.00) (0.91) (0.01)
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Table 3: Portfolios using implied volatilities, historical correlations, and equal
means

In this table, we evaluate the performance of various portfolios that use the model-free implied volatility calculated
from option prices, but with correlations estimated from historical data, and with expected returns set equal
across assets. The “Sample cov” portfolio is based on the sample covariance matrix but where historical volatility
is replaced by the option-implied volatility; “Constrained” is the portfolio based on the same covariance matrix
as above, but where short sales are constrained; and, “Shrinkage” is the portfolio based on the same covariance
matrix as above, but with shrinkage applied to the covariance matrix using the Ledoit and Wolf (2004a,b)
methodology. We report two p-values in parenthesis, the first with respect to the 1/N portfolio, and the second
with respect to the corresponding minimum-variance benchmark portfolio in Table 1, with the null hypothesis
being that the portfolio being evaluated is worse than the benchmark (so a small p-value suggests rejecting the
null hypothesis that the portfolio being evaluated is worse than the benchmark).

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Sample cov 0.1212 0.3724 0.0378 0.5801 0.1307 0.4792 0.0541 1.5504
(0.00) (0.98) (0.99) (0.00) (0.81) (0.89)
(0.39) (0.99) (0.99) (0.19) (0.49) (0.50)

Constrained 0.1210 0.6339 0.0694 0.2312 0.1240 0.6458 0.0724 0.2743
(0.00) (0.94) (0.99) (0.00) (0.65) (0.85)
(0.02) (0.81) (0.83) (0.46) (0.92) (0.92)

Shrinkage 0.1188 0.4174 0.0425 0.5154 0.1156 0.3953 0.0390 1.1032
(0.00) (0.98) (0.99) (0.00) (0.90) (0.96)
(0.14) (0.99) (1.00) (0.17) (0.84) (0.85)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Sample cov 0.1139 0.5566 0.0569 0.6168 0.1251 0.5051 0.0555 1.6359
(0.00) (0.96) (0.99) (0.00) (0.85) (0.94)
(0.02) (0.94) (0.96) (0.23) (0.46) (0.49)

Constrained 0.1143 0.6745 0.0705 0.2402 0.1159 0.7628 0.0817 0.2832
(0.00) (0.96) (1.00) (0.00) (0.41) (0.84)
(0.01) (0.80) (0.87) (0.36) (0.92) (0.93)

Shrinkage 0.1132 0.5930 0.0607 0.5508 0.1161 0.4546 0.0461 1.1763
(0.00) (0.94) (0.99) (0.00) (0.92) (0.98)
(0.02) (0.96) (0.97) (0.24) (0.79) (0.80)
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Table 4: Portfolios using risk-premium-corrected implied volatilities, historical cor-
relations, and equal means

In this table, we evaluate the performance of various portfolios that use the risk-premium-corrected model-free
implied volatility calculated from option prices. Correlations are estimated from historical data, and expected
returns are set equal across assets. The “Sample cov” portfolio is based on the sample covariance matrix but
where historical volatility is replaced by the risk-premium-corrected option-implied volatility; “Constrained”
is the portfolio based on the same covariance matrix as above, but where short sales are constrained; and,
“Shrinkage” is the portfolio based on the same covariance matrix as above, but with shrinkage applied to the
covariance matrix using the Ledoit and Wolf (2004a,b) methodology. We report two p-values in parenthesis,
the first with respect to the 1/N portfolio, and the second with respect to the corresponding minimum-variance
benchmark portfolio in Table 1, with the null hypothesis being that the portfolio being evaluated is worse than
the benchmark (so a small p-value suggests rejecting the null hypothesis that the portfolio being evaluated is
worse than the benchmark).

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Sample cov 0.1215 0.7735 0.0866 0.4782 0.1246 0.6837 0.0775 1.1788
(0.00) (0.72) (0.90) (0.00) (0.58) (0.78)
(0.46) (0.58) (0.58) (0.03) (0.23) (0.27)

Constrained 0.1226 0.7990 0.0904 0.2139 0.1180 0.6903 0.0745 0.2433
(0.00) (0.73) (0.93) (0.00) (0.58) (0.82)
(0.17) (0.39) (0.42) (0.16) (0.86) (0.89)

Shrinkage 0.1185 0.7787 0.0853 0.4183 0.1107 0.6047 0.0608 0.8444
(0.00) (0.72) (0.91) (0.00) (0.72) (0.91)
(0.12) (0.67) (0.69) (0.00) (0.53) (0.58)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Sample cov 0.1136 0.9282 0.0990 0.5133 0.1191 0.7368 0.0807 1.2480
(0.00) (0.53) (0.85) (0.00) (0.50) (0.79)
(0.04) (0.20) (0.31) (0.07) (0.11) (0.16)

Constrained 0.1155 0.8509 0.0916 0.2231 0.1089 0.8863 0.0907 0.2496
(0.00) (0.69) (0.94) (0.00) (0.20) (0.73)
(0.10) (0.26) (0.34) (0.12) (0.74) (0.83)

Shrinkage 0.1119 0.9104 0.0956 0.4529 0.1126 0.6549 0.0674 0.9062
(0.00) (0.56) (0.89) (0.00) (0.67) (0.92)
(0.01) (0.27) (0.44) (0.09) (0.31) (0.40)
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Table 5: Portfolios using historical volatilities, implied correlations, and equal
means

In this table, we evaluate the performance of various portfolios that use option-implied correlations, as computed
in Buss and Vilkov (2008). Volatilities are estimated from historical data, and expected returns are set equal
across assets. The “Sample cov” portfolio is based on the sample covariance matrix but where option-implied
correlations are used; “Constrained” is the portfolio based on the same covariance matrix as above, but where
short sales are constrained; and, “Shrinkage” is the portfolio based on the same covariance matrix as above,
but with shrinkage applied to the covariance matrix using the Ledoit and Wolf (2004a,b) methodology. We
report two p-values in parenthesis, the first with respect to the 1/N portfolio, and the second with respect to
the corresponding minimum-variance benchmark portfolio in Table 1, with the null hypothesis being that the
portfolio being evaluated is worse than the benchmark (so a small p-value suggests rejecting the null hypothesis
that the portfolio being evaluated is worse than the benchmark).

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Sample cov 0.1462 0.2161 0.0209 0.4535 0.1302 0.3780 0.0407 0.4957
(0.00) (0.99) (0.99) (0.00) (0.86) (0.91)
(1.00) (0.99) (0.98) (0.07) (0.61) (0.63)

Constrained 0.1311 0.9001 0.1094 0.2109 0.1525 0.8086 0.1117 0.1044
(0.00) (0.55) (0.83) (0.00) (0.28) (0.59)
(1.00) (0.15) (0.10) (1.00) (0.79) (0.52)

Shrinkage 0.1357 0.3509 0.0384 0.2286 0.1344 0.2743 0.0278 0.3354
(0.00) (0.98) (0.99) (0.00) (0.92) (0.95)
(1.00) (0.99) (0.97) (1.00) (0.88) (0.85)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Sample cov 0.1455 0.1660 0.0135 0.5098 0.1448 0.2666 0.0280 0.5825
(0.20) (0.99) (1.00) (0.02) (0.90) (0.93)
(1.00) (1.00) (1.00) (0.95) (0.80) (0.78)

Constrained 0.1231 0.8009 0.0910 0.2284 0.1450 0.8488 0.1125 0.1445
(0.00) (0.81) (0.96) (0.00) (0.07) (0.46)
(0.71) (0.41) (0.36) (1.00) (0.81) (0.50)

Shrinkage 0.1428 0.2545 0.0261 0.2820 0.1504 0.1441 0.0102 0.4188
(0.12) (1.00) (1.00) (0.06) (0.95) (0.96)
(1.00) (1.00) (1.00) (1.00) (0.97) (0.95)
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Table 6: Portfolio using historical volatilities, historical correlations, and expected
returns scaled by volatility risk premium
In this table, we evaluate the performance of portfolios computed with expected returns that have been scaled
by the volatility risk premium using the following procedure. We first set expected returns for all assets equal
to 1. We then sort all stocks by the characteristic “volatility risk premium” into deciles, and then change
the expected returns of the top decile to (1 + δ) and of the bottom decile to (1 − δ), with δ1 = 0.50 and
δ2 = 0.70. The “Sample cov” portfolio is based on the sample covariance matrix and the scaled expected returns;
“Constrained” is based on the same expected returns and covariance matrix but where short sales are constrained;
and, “Shrinkage” is based on the same expected returns but with shrinkage applied to the sample covariance
matrix. We report two p-values in parenthesis, the first with respect to the 1/N portfolio, and the second with
respect to the corresponding minimum-variance benchmark portfolio in Table 1, with the null hypothesis being
that the portfolio being evaluated is worse than the benchmark.

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Sample cov: δ1 0.1504 1.1289 0.1585 0.2648 0.1883 0.1908 0.0182 1.5386
(0.00) (0.27) (0.34) (1.00) (0.93) (0.92)
(1.00) (0.06) (0.01) (1.00) (0.86) (0.79)

Sample cov: δ2 0.1706 1.1448 0.1807 0.3411 0.2214 0.1314 0.0047 1.9668
(0.99) (0.28) (0.24) (1.00) (0.94) (0.91)
(1.00) (0.10) (0.01) (1.00) (0.87) (0.80)

Constrained: δ1 0.1392 1.0921 0.1423 0.0407 0.1297 0.9469 0.1144 0.0400
(0.00) (0.23) (0.43) (0.00) (0.15) (0.52)
(1.00) (0.03) (0.01) (1.00) (0.56) (0.47)

Constrained: δ2 0.1393 1.1004 0.1436 0.0420 0.1270 0.9759 0.1159 0.0517
(0.00) (0.22) (0.42) (0.00) (0.15) (0.50)
(1.00) (0.03) (0.01) (0.95) (0.49) (0.44)

Shrinkage: δ1 0.1432 1.1696 0.1573 0.2272 0.1506 0.3117 0.0356 0.8830
(0.00) (0.23) (0.34) (0.00) (0.88) (0.90)
(1.00) (0.06) (0.01) (1.00) (0.91) (0.82)

Shrinkage: δ2 0.1606 1.1889 0.1780 0.2924 0.1722 0.2287 0.0246 1.1268
(0.47) (0.23) (0.23) (0.34) (0.91) (0.91)
(1.00) (0.09) (0.01) (1.00) (0.93) (0.84)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Sample cov: δ1 0.1504 0.9612 0.1333 0.4012 0.1945 0.2015 0.0203 1.9049
(0.40) (0.47) (0.48) (0.93) (0.95) (0.93)
(1.00) (0.18) (0.04) (1.00) (0.91) (0.80)

Sample cov: δ2 0.1714 0.9522 0.1485 0.5136 0.2320 0.1484 0.0076 2.4532
(0.95) (0.49) (0.37) (1.00) (0.96) (0.93)
(1.00) (0.24) (0.05) (1.00) (0.91) (0.81)

Constrained: δ1 0.1375 1.0237 0.1314 0.0695 0.1368 0.9047 0.1144 0.0754
(0.03) (0.36) (0.51) (0.00) (0.16) (0.45)
(1.00) (0.08) (0.02) (1.00) (0.80) (0.46)

Constrained: δ2 0.1372 1.0283 0.1318 0.0706 0.1336 0.9374 0.1163 0.0816
(0.03) (0.37) (0.52) (0.00) (0.15) (0.43)
(1.00) (0.08) (0.02) (1.00) (0.72) (0.42)

Shrinkage: δ1 0.1433 1.0042 0.1336 0.3515 0.1634 0.3026 0.0362 1.1481
(0.16) (0.42) (0.49) (0.30) (0.93) (0.93)
(1.00) (0.17) (0.04) (1.00) (0.93) (0.81)

Shrinkage: δ2 0.1614 0.9971 0.1479 0.4472 0.1897 0.2303 0.0259 1.4623
(0.79) (0.44) (0.37) (0.87) (0.95) (0.93)
(1.00) (0.23) (0.04) (1.00) (0.94) (0.82)
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Table 7: Portfolios using historical volatilities scaled by volatility risk premium,
historical correlations, and equal means
In this table, we evaluate the performance of portfolios computed with historical volatilities that have been scaled
by the volatility risk premium using the following procedure. We sort all stocks by the characteristic “volatility
risk premium” into deciles, and then change the volatility of the top decile to (1 − δ) and of the bottom decile
to (1 + δ), with δ1 = 0.50 and δ2 = 0.70. Correlations are estimated from historical data and expected returns
for all assets are set equal to 1. The “Sample cov” portfolio is based on the adjusted sample covariance matrix
with volatilities scaled as described above; “Constrained” is based on the same adjusted covariance matrix but
where short sales are constrained; and, “Shrinkage” is based on the same adjusted covariance matrix but with
shrinkage applied to the sample covariance matrix. We report two p-values in parenthesis, the first with respect
to the 1/N portfolio, and the second with respect to the corresponding minimum-variance benchmark portfolio
in Table 1, with the null hypothesis being that the portfolio being evaluated is worse than the benchmark.

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Sample cov: δ1 0.1400 1.2109 0.1598 0.1213 0.1343 0.7288 0.0889 0.4248
(0.00) (0.13) (0.26) (0.00) (0.54) (0.76)
(1.00) (0.03) (0.01) (0.44) (0.18) (0.18)

Sample cov: δ2 0.1442 1.1922 0.1616 0.0876 0.1354 0.7624 0.0941 0.2492
(0.00) (0.13) (0.24) (0.00) (0.47) (0.74)
(1.00) (0.06) (0.02) (0.57) (0.18) (0.17)

Constrained: δ1 0.1384 0.9465 0.1214 0.0470 0.1480 0.9401 0.1282 0.0358
(0.00) (0.45) (0.72) (0.00) (0.03) (0.25)
(1.00) (0.09) (0.04) (1.00) (0.55) (0.29)

Constrained: δ2 0.1398 1.0049 0.1307 0.0326 0.1492 0.8680 0.1184 0.0343
(0.00) (0.32) (0.58) (0.00) (0.08) (0.43)
(1.00) (0.05) (0.01) (1.00) (0.70) (0.41)

Shrinkage: δ1 0.1378 1.2269 0.1596 0.1092 0.1299 0.7648 0.0909 0.2750
(0.00) (0.11) (0.26) (0.00) (0.47) (0.76)
(1.00) (0.03) (0.01) (1.00) (0.27) (0.21)

Shrinkage: δ2 0.1431 1.2049 0.1622 0.0808 0.1344 0.7797 0.0958 0.1673
(0.00) (0.11) (0.23) (0.00) (0.43) (0.74)
(1.00) (0.06) (0.02) (1.00) (0.28) (0.20)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Sample cov: δ1 0.1381 1.0961 0.1419 0.1841 0.1371 0.7447 0.0928 0.5157
(0.04) (0.28) (0.39) (0.00) (0.48) (0.71)
(0.99) (0.07) (0.02) (0.82) (0.09) (0.07)

Sample cov: δ2 0.1416 1.0993 0.1457 0.1368 0.1370 0.7903 0.0990 0.3068
(0.08) (0.26) (0.35) (0.00) (0.38) (0.65)
(1.00) (0.08) (0.03) (0.83) (0.07) (0.06)

Constrained: δ1 0.1323 0.9444 0.1162 0.0809 0.1469 0.8935 0.1204 0.0819
(0.00) (0.48) (0.77) (0.00) (0.01) (0.22)
(1.00) (0.12) (0.04) (1.00) (0.75) (0.37)

Constrained: δ2 0.1340 1.0177 0.1274 0.0677 0.1492 0.8708 0.1187 0.0813
(0.00) (0.31) (0.59) (0.00) (0.01) (0.24)
(1.00) (0.07) (0.02) (1.00) (0.79) (0.40)

Shrinkage: δ1 0.1359 1.1119 0.1419 0.1699 0.1371 0.7507 0.0936 0.3585
(0.02) (0.25) (0.39) (0.00) (0.46) (0.71)
(0.99) (0.08) (0.03) (1.00) (0.16) (0.09)

Shrinkage: δ2 0.1406 1.1088 0.1461 0.1295 0.1393 0.7803 0.0990 0.2245
(0.07) (0.24) (0.33) (0.00) (0.41) (0.66)
(1.00) (0.11) (0.04) (1.00) (0.14) (0.07)
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Table 8: Portfolios using historical volatilities, historical correlations, and expected
returns scaled by implied skewness
In this table, we evaluate the performance of various portfolios computed with expected returns that have been
scaled by option-implied skewness using the following procedure. We first set expected returns for all assets
equal to 1. We then sort all the stocks by the characteristic “model free implied skewness” into deciles, and then
change the expected returns of the top decile to (1 + δ) and of the bottom decile to (1− δ), with δ1 = 0.30 and
δ2 = 0.50. The “Sample cov” portfolio is based on the sample covariance matrix and the scaled expected returns;
“Constrained” is based on the same expected returns and covariance matrix, but with short sales constrained;
and, “Shrinkage” is based on the same expected returns but with shrinkage applied to the sample covariance
matrix. We report two p-values in parenthesis, the first with respect to the 1/N portfolio, and the second with
respect to the corresponding minimum-variance benchmark portfolio in Table 1, with the null hypothesis being
that the portfolio being evaluated is worse than the benchmark.

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Sample cov: δ1 0.1416 1.4957 0.2018 0.8217 0.1765 1.3157 0.2167 3.5401
(0.00) (0.03) (0.07) (0.67) (0.06) (0.06)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Sample cov: δ2 0.1710 1.6974 0.2756 1.3684 0.2350 1.4775 0.3196 5.9327
(0.99) (0.01) (0.00) (1.00) (0.03) (0.01)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Constrained: δ1 0.1706 1.4907 0.2398 0.3609 0.1506 1.3195 0.1874 0.3373
(1.00) (0.00) (0.00) (0.00) (0.00) (0.02)
(1.00) (0.00) (0.00) (1.00) (0.05) (0.01)

Constrained: δ2 0.1710 1.5013 0.2421 0.3567 0.1584 1.3557 0.2022 0.3158
(1.00) (0.00) (0.00) (0.00) (0.00) (0.00)
(1.00) (0.00) (0.00) (1.00) (0.03) (0.00)

Shrinkage: δ1 0.1367 1.5020 0.1960 0.6957 0.1435 1.5803 0.2165 2.0959
(0.00) (0.02) (0.08) (0.00) (0.01) (0.03)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Shrinkage: δ2 0.1607 1.7152 0.2627 1.1549 0.1799 1.8332 0.3136 3.4775
(0.47) (0.01) (0.00) (0.88) (0.00) (0.00)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Sample cov: δ1 0.1491 1.1166 0.1555 0.8796 0.1625 0.9437 0.1403 3.6817
(0.33) (0.24) (0.26) (0.26) (0.23) (0.26)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Sample cov: δ2 0.1823 1.1821 0.1993 1.4402 0.2158 1.0027 0.1934 6.1276
(1.00) (0.18) (0.05) (1.00) (0.18) (0.06)
(1.00) (0.01) (0.00) (1.00) (0.01) (0.00)

Constrained: δ1 0.1657 1.0494 0.1602 0.3754 0.1656 0.8551 0.1278 0.3546
(0.98) (0.23) (0.10) (0.22) (0.23) (0.26)
(1.00) (0.04) (0.00) (1.00) (0.86) (0.27)

Constrained: δ2 0.1657 1.0580 0.1617 0.3723 0.1817 0.8828 0.1440 0.3404
(0.98) (0.19) (0.08) (0.93) (0.15) (0.09)
(1.00) (0.04) (0.00) (1.00) (0.80) (0.15)

Shrinkage: δ1 0.1431 1.1456 0.1538 0.7503 0.1421 1.1094 0.1477 2.2062
(0.12) (0.19) (0.26) (0.00) (0.07) (0.16)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Shrinkage: δ2 0.1702 1.2215 0.1937 1.2201 0.1764 1.2357 0.2026 3.6091
(0.97) (0.13) (0.05) (0.69) (0.03) (0.01)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)
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Table 9: Portfolios using historical volatilities scaled by implied skewness, historical
correlations, and equal means
In this table, we evaluate the performance of portfolios computed with historical volatilities that have been
scaled by the option-implied skewness using the following procedure. We sort all stocks by the characteristic
“model free implied skewness” into deciles, and then change the volatility of the top decile to (1− δ) and of the
bottom decile to (1 + δ), with δ1 = 0.30 and δ2 = 0.50. Expected returns for all assets are set equal to 1. The
“Sample cov” portfolio is based on the adjusted sample covariance matrix with volatilities scaled as described
above; “Constrained” is based on the same adjusted covariance matrix but where short sales are constrained; and,
“Shrinkage” is based on the same adjusted covariance matrix but with shrinkage applied to the sample covariance
matrix. We report two p-values in parenthesis, the first with respect to the 1/N portfolio, and the second with
respect to the corresponding minimum-variance benchmark portfolio in Table 1, with the null hypothesis being
that the portfolio being evaluated is worse than the benchmark.

100 stocks 561 stocks
Strategy bσ sr ce trn bσ sr ce trn

Panel A: Daily rebalancing

1/N 0.1609 0.9286 0.1365 0.0129 0.1745 0.7489 0.1155 0.0144

Sample cov: δ1 0.1417 1.6164 0.2190 0.6574 0.1410 1.4079 0.1886 1.8965
(0.00) (0.00) (0.01) (0.00) (0.01) (0.04)
(1.00) (0.00) (0.00) (0.99) (0.00) (0.00)

Sample cov: δ2 0.1663 1.7304 0.2740 0.7509 0.1543 1.4576 0.2130 1.5829
(0.96) (0.00) (0.00) (0.00) (0.00) (0.00)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Constrained: δ1 0.1439 1.1196 0.1507 0.2108 0.1651 0.8075 0.1197 0.0300
(0.00) (0.05) (0.22) (0.00) (0.11) (0.32)
(1.00) (0.01) (0.00) (1.00) (0.79) (0.42)

Constrained: δ2 0.1517 1.2464 0.1776 0.2683 0.1653 0.7923 0.1173 0.0491
(0.00) (0.02) (0.05) (0.00) (0.22) (0.42)
(1.00) (0.00) (0.00) (1.00) (0.80) (0.44)

Shrinkage: δ1 0.1394 1.6156 0.2155 0.5788 0.1319 1.5254 0.1926 1.2677
(0.00) (0.00) (0.01) (0.00) (0.00) (0.02)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Shrinkage: δ2 0.1647 1.7379 0.2727 0.6838 0.1527 1.5133 0.2194 1.1407
(0.89) (0.00) (0.00) (0.00) (0.00) (0.00)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Panel B: Monthly rebalancing

1/N 0.1531 0.9402 0.1322 0.0595 0.1708 0.7339 0.1107 0.0673

Sample cov: δ1 0.1454 1.1664 0.1592 0.6949 0.1448 1.0174 0.1370 1.9612
(0.18) (0.13) (0.17) (0.00) (0.08) (0.20)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Sample cov: δ2 0.1682 1.1906 0.1864 0.7791 0.1653 1.0349 0.1576 1.6204
(0.97) (0.07) (0.02) (0.24) (0.04) (0.04)
(1.00) (0.01) (0.00) (1.00) (0.00) (0.00)

Constrained: δ1 0.1401 1.0323 0.1348 0.2381 0.1628 0.7662 0.1114 0.0806
(0.00) (0.15) (0.42) (0.00) (0.12) (0.43)
(1.00) (0.03) (0.00) (1.00) (0.91) (0.51)

Constrained: δ2 0.1499 1.0601 0.1477 0.2919 0.1617 0.8249 0.1203 0.0982
(0.24) (0.13) (0.16) (0.00) (0.01) (0.09)
(1.00) (0.03) (0.00) (1.00) (0.85) (0.39)

Shrinkage: δ1 0.1427 1.1856 0.1591 0.6159 0.1432 1.0670 0.1426 1.3281
(0.08) (0.09) (0.15) (0.00) (0.04) (0.13)
(1.00) (0.00) (0.00) (1.00) (0.00) (0.00)

Shrinkage: δ2 0.1662 1.2104 0.1876 0.7124 0.1705 1.0499 0.1647 1.1787
(0.96) (0.04) (0.01) (0.49) (0.02) (0.02)
(1.00) (0.01) (0.00) (1.00) (0.01) (0.00)
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Figure 1: Volatilities: Realized, historical, implied, and risk-premium-corrected
implied

In this figure, we plot the historical volatility based on the past 750 days (dot-dashed blue line), model-free implied
volatility (dashed red line), risk-premium-corrected model-free implied volatility (solid pink line), and the 30-day
realized volatility (thick black line). The figure is based on the cross-sectional equally-weighted average volatilities
across 561 stocks. The figure shows that risk-premium-correct implied volatility tracks realized volatility quite
closely. The model-free implied volatility (without any risk-premium correction) tracks realized volatility, but
there is a distinct gap between the two. And, the historical 750-day volatility does not track realized volatility
closely. Note also that all these volatility series have different levels of variability: the implied and risk-premium-
corrected implied volatilities are slightly more variable than the realized volatility, while historical volatility is
the smoothest.
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Figure 2: Correlations: Realized, historical, and implied

In this figure, we plot the historical correlation based on the past 750 days (dashed blue line), implied correlation
(solid red line), and 30-day realized correlations (thick black line). The plot is based on the cross-sectional equally-
weighted average of average correlations across 561 stocks. There are two observations about these series: first,
implied correlation follows the level of realized correlation much more closely than historical correlation; two,
implied correlation is much more volatile than realized correlation, while historical correlation is even smoother.
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MacKinlay, A. C., and Ľ. Pástor, 2000, “Asset Pricing Models: Implications for Expected
Returns and Portfolio Selection,” Review of Financial Studies, 13, 883–916.

Markowitz, H. M., 1952, “Mean-Variance Analysis in Portfolio Choice and Capital Markets,”
Journal of Finance, 7, 77–91.

43



Merton, R. C., 1971, “Optimum Consumption and Portfolio Rules in a Continuous-Time
Model,” Journal of Economic Theory, 3, 373–413.

Merton, R. C., 1973, “Theory of Rational Option Pricing,” Bell Journal of Economics and
Management Science, 4, 141–183.

Merton, R. C., 1980, “On Estimating the Expected Return on the Market: An Exploratory
Investigation,” Journal of Financial Economics, 8, 323–361.

Panigirtzoglou, N., and G. Skiadopoulos, 2004, “A New Approach to Modeling the Dynamics
of Implied Distributions: Theory and Evidence From the S&P 500 Options,” Journal of
Banking and Finance, 28.
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