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ABSTRACT 

Performance Maximization of Actively Managed Funds 

Ratios that indicate the statistical significance of a fund’s alpha typically 
appraise its performance. A growing literature suggests that even in the 
absence of any ability to predict returns, holding options positions on the 
benchmark assets or trading frequently can significantly enhance performance 
ratios. This paper derives the performance maximizing strategy - a variant of 
buy-write - and the least upper bound on such performance enhancement, 
thereby showing that if common equity indexes are used as benchmarks, the 
potential performance enhancement from trading frequently is usually 
negligible. The enhancement from holding options can be substantial if the 
implied volatilities of the options are higher than the volatilities of the 
benchmark returns. 
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1 Introduction

Since Jensen’s (1968) seminal work, there is a growing literature1 that questions whether a
positive alpha does in fact imply a manager’s ability to select assets by predicting returns.
A number of researchers2 answer the question by pointing out, through simulation and
examples, that by investing in options, managers can generate a positive alpha relative to
a benchmark even if they cannot predict returns. However, up to this point the answers to
the question have been ad hoc, leaving the literature unclear about the significance of alpha
that can be achieved by trading frequently or holding derivative securities.

This paper delivers the theoretical answer to the question by deriving the explicit for-
mulas for the trading strategy that maximizes alpha and its significance. The performance-
maximizing strategy is shown to be a variant of a buy-write strategy, which can be im-
plemented by taking long positions in the benchmark assets and writing options on them.
The manager’s ability to generate superior performance from trading frequently or holding
derivatives is shown to be by and large negligible under the Black-Scholes model. It is easier
for him to seem successful even in the absence of superior information when the implied
volatility of derivative securities is higher than the volatility of the underlying benchmark
securities. These results provide the theoretical implications on alpha of allowing a man-
ager to trade while being evaluated with respect to a buy-and-hold portfolio of the given
benchmark.

The starting point is the consideration of a set of risky securities a fund manager can
trade. The manager aims to, and often claims to deliver superior performance. Clients,
potential clients and academics evaluate such claims based on a set of benchmark assets,
which are available to the public, including the managers’ clients and potential clients. The
challenge is to evaluate the fund’s return by asking: Could it be obtained from a portfolio
of the benchmark assets? If not, what is the increment of the evaluated return relative to
the return available in the benchmark space? How likely is the increment strictly positive?
The increment is labeled as alpha. This measure of performance is widely implemented
in practice, and financial information services report alpha for securities and funds. Some
hedge funds have even included the word “alpha” as part of their names.

If the manager delivers a series of returns which are on average higher than those obtain-
able from the benchmark assets, the evaluator may infer that the manager can outperform
the benchmark. The attribution of such out-performance to superior information, however,
may be premature because there are at least four sources for the manager’s access to a

1The literature can be traced back to Dybvig and Ingersoll (1982), Grinblatt and Titman (1989) and
Glosten and Jagannathan (1994).

2See Lo (2001), Hill et al. (2006), Goetzmann et al. (2007).
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larger space of payoffs than the space of the benchmarks. First, the manager can predict
the returns of the benchmark assets and can choose portfolio weights to reflect his predic-
tions. Second, the manager may trade securities with payoffs outside the benchmark space.
Third, the manager may trade derivatives of the benchmark assets. Fourth, the manager
may trade the benchmark assets more frequently than the evaluator observes the returns.

The last two sources only give the appearance of superior performance because they do
not depend on the manager’s access to superior information. The two sources are in fact
equivalent if derivative securities are redundant assets and their payoffs can be replicated
by judiciously trading the underlying assets. Black and Scholes (1973) and Merton (1973)
point out the equivalence between the payoff on derivatives and on such rule-based trading.
Following the literature, this paper refers to rule-based trading designed to replicate a
derivative payoff as delta trading.

The specific building blocks of the performance evaluation mechanism studied here are
familiar. The evaluator decomposes the fund’s return into two parts—the return’s linear
projection on the benchmarks and the incremental return orthogonal to the benchmarks.
The expectation of the incremental return is alpha, representing the portion of the expected
return that is not attainable by passive investment strategies in the benchmarks. The
tracking error, which is the standard deviation of the incremental return, measures the
uncertainty of alpha.

The resulting ratio of alpha to the tracking error is typically referred to as the appraisal
ratio. A high appraisal ratio is interpreted as superior performance because it indicates
a large probability of a positive return after subtracting financing costs and neutralizing
the risks associated with the benchmarks. Maximizing the appraisal ratio is necessary for
maximizing the Sharpe ratio, a widely used measure of fund performance. For a hedge
fund, the appraisal ratio of the fund is by itself the Sharpe ratio of the hedged position that
neutralizes the benchmark risk. More importantly, the appraisal ratio is the asymptotic t
statistic of the estimated alpha.

Sharpe ratios and appraisal ratios are important in practice. (See, e.g., Treyner, 2008)
Nonetheless, within a fund class, e.g., large cap long-only US equity, it is common to compare
fund performance according to the funds’ alpha rather than consider their appraisal ratios.
This practice is reasonable when the leverage is similar across the compared funds. (e.g.,
zero leverage in the large cap long-only US equity.) This practice is less reasonable when
comparing funds with different leverage or different sets of underlying assets (and therefore
different benchmarks and tracking errors). Then attention naturally turns to the Sharpe
ratio.

This paper derives the best appraisal ratio (and thus the best asymptotic t statistic
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of alpha) a manager can obtain. Section 2 sets up the general problem and describes the
benchmark space used by the evaluator and the payoff space accessible to the manager.
The fundamental results are in Theorem 1 which is in Subsection 2.1: as the number of
payoff observations becomes large, (i) the maximal appraisal ratio is the safe return times
the norm of the difference of the pricing kernels of the two spaces, and (ii) the maximal
appraisal ratio is achieved by a payoff which can be described as a function of the pricing
kernels. Subsection 2.2 discusses how constraints on the tracking error or on leverage
transform an upper bound on the appraisal ratio into an upper bound on alpha. Subsection
2.3 offers two new results, Theorems 2 and 3, which show that the performance of the
benchmark-switching schemes suggested in Goetzmann et al. (2007) deteriorates as the
observation period increase. Moreover, this subsection shows that for reasonable parameter
configurations these benchmark-switching schemes deliver on average sizable alphas - around
2% – but these alphas are too noisy to be statistically significant.

A novelty of the paper is in its examination of a complete market with multiple bench-
mark assets. In Section 3, Theorem 4 gives a simple formula of the optimal appraisal ratio
in terms of the moments of the benchmark assets. The subsequent discussion shows that
trading derivatives on the benchmark assets will deliver only a small improvement of the
Sharpe ratio and will take thousands of monthly observations to produce a statistically sig-
nificant alpha. The improvement can however be significant when less frequent observations
or a larger benchmark space are considered (e.g., by including certain additional factors).

Another novelty of the paper is in its examination of the optimal trading strategies. Sec-
tion 4 establishes that in the case of a single benchmark asset, the strategy that maximizes
the appraisal ratio consists of holding the benchmark and writing out-of-the money options
on it. Under the assumption that the Black-Scholes model governs option pricing, the best
strategy still delivers low values of the appraisal ratio if the parameters are estimated from
the equity indices. These low values of the appraisal ratio are in contrast with the practical
experience in which holding the S&P 500 and writing at-the-money call options on it has
delivered economically and statistically significant alphas. Theorem 5 offers a reconciliation
of the contradiction by showing that the optimal appraisal ratio is high if options are not
redundant assets and are priced at an implied volatility that is higher than the volatilities
of the benchmark assets.

Section 5 concludes with a discussion of the past and future research in this area.

2 Performance Maximization

In practice, a fund manager who is evaluated by his fund’s performance relative to an index
can hold the index and write options on it. (The S&P 500, Nasdaq 100 and Russell 2000
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indices are examples of indices on which options can easily be written.) The intuition for
the consequent payoff is illustrated in Figure 1, which is reprinted from Wang and Zhang
(2003). If the fund is fully invested in the index, the fund return (the dashed line) is a
linear function of the market return with zero intercept. If the manager writes call options
on the index and invests the proceeds in the safe asset, the fund return (the dotted-dashed
line) is a nonlinear function of the market return. If the fund consists of a long position in
the index and a short position in the options, the fund return (the thick line) has a nonzero
alpha in the regression of the fund’s excess return on the excess return of the index (the
dotted line).

This demonstration of the possibility of generating alpha is neither an algorithm which
generates the highest possible alpha nor a proof that the highest appraisal ratio can be
generated in this way. The first subsection introduces the paper’s basic framework, which
to a large extent Theorem 1 captures. Theorem 1 is general and to study special cases
in later sections, further assumptions are made. The second subsection applies Theorem
1 to trading strategies that have been studied in the literature and shows them to be less
attractive than it had been argued.

2.1 The optimization problem and its solution

The excess return rx on an actively managed fund is evaluated against a vector of excess
returns rm = (r1, · · · , rk)′ on k benchmark assets. The period during which the fund is
evaluated is from time 0 to time T . Let ∆t, 2∆t, · · ·, n∆t, where n∆t = T , be the equally-
spaced time grid on which the evaluator observes the returns. Denote by rxi and rmi the
observed excess returns on the fund and the benchmarks, respectively, over the time interval
from (i− 1)∆t to i∆t. The regression of the excess fund returns on the excess benchmark
returns is

rxi = α+ r′mi β + εi , (1)

where the intercept α and the vector of slope coefficients β satisfy

α = E[rx − r′m β] (2)

β = (var(rm))−1cov(rm, rx) . (3)

After hedging out the risk associated with the benchmarks by adding a short position
of β in the benchmark assets, the return of the hedged position is, rx−r′mβ, its expectation
is α, and its tracking error is

√
var(rx − r′mβ). The appraisal ratio of the hedged position

is its Sharpe ratio: the ratio of alpha to its tracking error. It is

APR =
α√

var(rx − r′m β)
. (4)
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A high appraisal ratio indicates high profitability for the hedged position. The appraisal
ratio is also the asymptotic t statistic of alpha—the limit of the t statistic multiplied by the
square-root of the number of observations in the ordinary least-square (OLS) regression (1).
Thus, a high appraisal ratio is associated with a high t statistic of alpha in that regression.

The manager of the fund who seeks to maximize the appraisal ratio should have a trading
strategy such that the fund return rx solves the following maximization problem:

max
x

E[rx − r′m β]√
var(rx − r′m β)

. (5)

The maximization problem captures the tradeoff the portfolio manager faces: to maximize
the appraisal ratio, the return should have not only a high alpha but also a low tracking
error (i.e., a low standard deviation of the residual return).

Before presenting the solution to the maximization problem, it is necessary to describe
the payoff space and the pricing function. The space of payoffs attainable by the manager in
a given period by trading in the securities available to him, denoted by Xa, is the attainable
space. The payoffs are assumed to have finite second moments, that is Xa ⊂ L2(P,Ω),
where Ω is a sample space and P is a probability measure, and L2(P,Ω) is the set of all
measurable functions with second moments. For any x ∈ L2(P,Ω), the square-root of its
second moment is the norm of x, denoted by ‖x‖ = E[x2]1/2. The assumption of finite
second moment is a minimal requirement to ensure that the sample estimates of linear
regressions converge to their population counterparts.

The assumptions on the attainable space are standard and flexible, allowing the market
to be incomplete because the space Xa is allowed to be a strict subset of L2(P,Ω). The
dimension of Xa may be infinite. This is important because a payoff space that contains
options with infinitely many strike prices and maturities has an infinite dimension. The only
restriction is the linearity of the payoff space, which excludes the presence of constraints or
frictions that a fund manager may face in the market.

The linear space of payoffs spanned by the benchmark assets, denoted by Xb, is the
benchmark space. The number of benchmark assets is typically small and the dimension of
Xb is assumed to be k + 1. Let {xj}j=0,···,k be the payoffs of the k + 1 independent assets
that span Xb. For simplicity and practical applications, the first benchmark payoff x0 is
assumed to be the constant payoff of a safe asset. If the payoffs in Xb do not exhaust the
set of payoffs attainable by the manager, then Xb is a strict subset of Xa. A fund has
abnormal return relative to the benchmarks if and only if its return or payoff falls outside
the benchmark space.

Let v : Xa 7→ < be the pricing function, where < is the set of real numbers. Assume
that the law of one price holds, and thus v is linear. A stochastic discount factor for Xa is a
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random variable m ∈ L2(P,Ω) such that v(x) = E[xm] for all x ∈ Xa. Denote the set of all
stochastic discount factors for Xa by Ma. By the Riesz representation theorem, there exists
some ma ∈ Xa such that v(x) = E[xma] for all x ∈ Xa, i.e., ma ∈ Xa ∩Ma. It follows that
ma has the smallest norm among all the stochastic discount factors in Ma (see chapter V of
Riesz and Sz.-Nagy (1955)). Since the price function also applies to the set of benchmark
assets, the set of the stochastic discount factors for Xb is Mb = {m ∈ L2(P,Ω) : v(x) =
E[mx] for all x ∈ Xb}, and there exists a smallest-norm discount factor mb ∈ Xb ∩Mb.

A trading strategy of the fund corresponds to a payoff x ∈ Xa. To obtain excess returns,
assume that the payoff of the safe asset is x0 = 1 and its price is v(1) > 0. The return
on the safe asset is R0 = 1/v(1). The excess return on the fund is rx = x − v(x)R0,
and the excess return on the jth benchmark is rj = xj − v(xj)R0 (for j = 1, · · · , k). Let
rm = (r1, · · · , rk)′. Based on the observations of (rx, r′m) over n time intervals of equal
length, the sample estimates of alpha (denoted by α̂n) and appraisal ratio (denoted by
ÂPRn) are obtained in the OLS regression (1). The sample estimate of the appraisal ratio
is in fact the t statistic of α̂n multiplied by

√
n. As n→ ∞, the sample estimate converges

to their population counterparts, i.e., lim α̂n = α and lim ÂPRn = APR, where α and APR
are defined in equations (2) and (4), respectively. The alpha and appraisal ratio depend on
the fund’s strategy x, and therefore are denoted by α(x) and APR(x).

The optimization problem is to find a strategy x ∈ Xa that maximizes APR(x). The
maximal appraisal ratio is denoted by

APRmax = max{APR(x) : x ∈ Xa} . (6)

The solution to the optimization problem (6) is similar in spirit to the construction of the
mean-variance frontier in Hansen and Richard (1987) and Huberman and Kandel (1987),
starting with the observation that any payoff can be decomposed into three components
with uncorrelated payoffs. The first component accounts for beta and is alpha-neutral;
the second one accounts for alpha and is beta-neutral; the third component is alpha- and
beta-neutral and only adds variance. Therefore the best tradeoff between alpha and the
variance of the regression residual is achieved for those returns in which only the first two
components are present. The solution to (6) is characterized in the following theorem.

Theorem 1 The alpha of any payoff x ∈ Xa is:

α(x) = R0E[rx(mb −ma)] . (7)

The maximal appraisal ratio over all the payoffs in Xa is

APRmax = R0‖mb −ma‖ , (8)
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and the maximum is achieved for any payoff x of the form:

x = z + θ(mb −ma) (9)

for some z ∈ Xb and θ > 0.

The proofs of the theorems are relegated to the Appendix.

Theorem 1 is closely linked to earlier analyses of payoff spaces. This should not surprise
a reader familiar with the interpretation of asset payoffs as elements of Hilbert spaces.
Numerous papers have studied asset payoffs in that context. The closest earlier pieces
appear to be Chamberlain and Rothschild (1983), Hansen and Richard (1987), and Hansen
and Jagannathan (1991, 1997).

Hansen and Jagannathan (1997) apply the properties of L2 norms to the comparison
of asset-pricing models. The right-hand side of equation (8) is the product of R0 and
the L2 norm of mb −ma; the latter term can also be interpreted as the the Hansen and
Jagannathan’s (HJ) distance of mb from the set of discount factors that price all payoffs in
Xa. The HJ distance is

δ = min {‖mb −m‖ : m ∈Ma} . (10)

Any discount factor m ∈Ma can be written as m = ma+(m−ma) with E[(m−ma)x] = 0
for all x ∈ Xa. It follows from mb −ma ∈ Xa that

‖mb −m‖2 = ‖mb −ma‖2 + ‖m−ma‖2 . (11)

The minimum of ‖mb − m‖ over m ∈ Ma is achieved when ‖m − ma‖ = 0, and thus
APRmax = R0δ. In this interpretation,mb is understood as a given asset-pricing model, and
δ measures the misspecification of the model.

The maximal appraisal ratio is related to the variance bounds derived by Hansen and
Jagannathan (1991). With R0 denoting the safe rate, equation (8) reduces to:

APRmax = R0

√
var(ma) − var(mb) (12)

because E[mbma] = ‖mb‖2 and E[mb] = E[ma] = 1/R0. According to Hansen and Ja-
gannathan, var(ma) is the greatest lower bound of the variance of the stochastic discount
factors in Ma, and the same statement holds for var(mb) and Mb. It then follows from
equation (12) that the square root of the difference between the two variance bounds gives
the maximal squared appraisal ratio discounted by R0.

The maximal appraisal ratio is also related to the Sharpe ratios of the payoff spaces Xb

and Xa, which are

SHPi = max{E[rx]/var(rx)1/2 : x ∈ Xi} for i = a, b. (13)
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According to Hansen and Jagannathan (1991), the Sharpe ratio of a payoff space is the
standard deviation of the smallest-norm discount factor scaled by the safe return, i.e.,

SHPi = R0

√
var(mi) for i = a, b , (14)

which imply

APRmax =
√

SHP2
a − SHP2

b . (15)

Therefore, as one enlarges the payoff space from Xb to Xa, the improvement in the squared
Sharpe ratio is the squared maximal appraisal ratio APRmax. The relation between the
appraisal ratio and the Sharpe has appeared in the literature under various specialized
assumptions. Goeztmann et al. (2007) derive this relation for the case where security prices
are discrete (see equation 7 in that paper) and markets are complete. In the case that
Xa consists of payoffs of the benchmarks and a set of additional assets, APRmax = 0 if
and only if the efficient frontier of Xa is spanned by Xb, as discussed by Huberman and
Kandel (1987). The simplest version of equation (15), in which Xb consists of only the
market return and Xa includes an additional stock return, can be traced back to Treynor
and Black (1973).

In summary, Theorem 1 covers or implies multiple existing results in the literature.
Besides its generality, the theorem allows novel applications, which will appear in Sections
3 and 4, in the analysis of maximal performance ratio and derivative trading.

2.2 Maximizing alpha

Theorem 1 maximizes the appraisal ratio, which is linked to the significance of alpha, but
does not maximize alpha itself. Indeed, because alpha scales with leverage, if there is a
zero price payoff with nonzero alpha, then there are payoffs with arbitrarily large alphas.
In practice, such large alphas may not be attainable at least for two reasons: limits on risk
and collateral requirements, which both imply constraints on leverage.

First, money managers may not exceed a certain level of risk. A typical risk management
mandate entails that the tracking error, defined as the standard deviation of the hedged
payoff, be lower than a certain upper bound TE:

√
var(rx − r′mβ) ≤ TE

Thus, a manager with such a mandate will choose a payoff of the form:

x = z + TE
mb −ma√

var(mb) − var(ma)

8



where z is an arbitrary payoff in the benchmark space. Such a choice scales a payoff with
maximum appraisal ratio to the maximum tracking error TE allowed, obtaining a maximum
alpha equal to the maximum appraisal ratio, times the maximum tracking error:

αmax = APRmaxTE = R0

√
var(mb) − var(ma)TE

Second, managers face collateral requirements, which depend on the riskiness of the
total position3, and effectively limit their leverage. Assume, as an approximation, that a
zero-price payoff requires a margin proportional to its standard deviation, and denote by
c the margin required for a unit standard deviation. Thus, the manager will concentrate
capital on the position which maximizes alpha per unit of standard deviation, and this
position is precisely mb −ma. If the manager’s capital is w, the alpha-maximizing position
is:

x =
w

c

mb −ma√
var(mb)− var(ma)

and the corresponding maximum alpha is directly proportional to the available capital w,
and inversely proportional to the margin requirement c:

αmax = APRmax
w

c
= R0

√
var(mb) − var(ma)

w

c

In summary, the maximal alpha that can be achieved in practice is limited by institutional
constraints, which imply directly or indirectly leverage bounds. With such bounds, the
optimal strategy is to invest the maximum allowed amount in the payoff maximizing the
appraisal ratio.

2.3 Exposure-switching strategies

The standard approach to performance evaluation entails the estimation of the regressions
of the managed portfolio’s excess returns on the benchmark excess returns. Can time- and
performance-dependent variation in the exposure of the managed portfolio to the benchmark
enhance estimated performance? Ideally, if benchmark excess returns are not predictable,
switching exposure between periods should not generate alpha.

An exposure-switching managed portfolio policy may lead to a biased estimation of the
portfolio’s risk (beta) which in turn renders the regression misspecified. A misspecification
of the regression can lead to a positive estimate of the regressions intercept which even in
the absence of the ability to trade in anticipation of future returns would lead to the false
inference that the portfolio manager has superior performance.

3As an example, since April 2007 the CBOE calculates the daily collateral requirement of a position
in options with the same underlying as the maximum loss on the total position, assuming changes in the
underlying asset ranging from -8% to +6% for a broad-based index and from -10% to 10% for a non broad-
based index. See http://www.sec.gov/rules/sro/cboe/2006/34-54919.pdf
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In a simulation, Goetzmann at al. (2007) report that switching exposure to a single-
index benchmark can generate the appearance of an alpha although the benchmark returns
are identically and independently distributed (IID). Under the assumption of IID returns,
this section establishes a limit on the ability to bolster the fund performance by switching
benchmark exposure between observation periods, and explains the alphas reported in the
simulation by Goetzmann at al.

Two cases are considered in this section. In the first case the observation interval is
fixed (e.g., a month), and the number of observations is very large, implying a very long
time horizon T . It will be shown that switching risk exposure results in a lower appraisal
ratio than the maximal one covered in Theorem 1. In the second case the time horizon T is
fixed but the observation interval ∆t is very small. It will be shown that alpha generated
by switching risk exposure deteriorates as the time horizon T gets longer.

Consider a fund manager seeking to enhance the performance of a trading strategy
by cleverly changing benchmark exposures over time. Let rmi be the excess benchmark
return during the time period [(i− 1)∆t, i∆t], with mean η and variance δ2. The sequence
{rmi}i=1,···,n is assumed IID. Let rzi be the excess return of any payoff z ∈ Xa for the time
period [(i− 1)∆t, i∆t]. Assume that the sequence {rzi}i=1,···,n is IID, and, without loss of
generality, that the excess return rzi is uncorrelated with the benchmark returns. Denote
the mean of rzi by a and its variance by h2. The appraisal ratio of this strategy is a/h, and,
by Theorem 1 is no greater than APRmax.

This subsection studies an attempt to further enhance the appraisal ratio of the strategy
z by combining it with a strategy with time- and performance-dependent exposure to the
benchmark. Thus, the total excess return of the fund takes the form of rxi = βirmi+rzi, with
βi as a function of the past realizations of {βj}j=1,···,i−1, {rmj}j=1,...,i−1, and {rzj}j=1,...,i−1.

With n periods of observed returns, the OLS regression of rxi on rmi produces an
estimated alpha (denoted by α̂n), an estimated beta (denoted by β̂n), and the appraisal
ratio (denoted by ÂPRn), which is the ratio of α̂n to the estimated tracking error σ̂n. The
next theorem proves that in the long run switching benchmark exposures only increases
tracking error, thereby worsening, not enhancing the appraisal ratio or the Sharpe ratio.

Theorem 2 Assume that rmi has a finite fourth moment and that limn→∞
1
n

∑n
i=1 β

k
i exists

for k ≤ 4 and positive for k = 2, 4. Then, as n approaches to infinity, the alpha and the
appraisal ratio converge to

lim
n→∞

α̂n = a (16)

lim
n→∞

ÂPRn =
a√(

1 + η2

δ2

)
(h2 + ρ(η2 + δ2))

(17)
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where ρ is given as

ρ = lim
n→∞

1
n

n∑

i=1

(βi − β̄n)2 with β̄n =
1
n

n∑

i=1

βi . (18)

The theorem implies that lim ÂPRn < a/h, where a/h is in fact the appraisal ratio of the
payoff z. This inequality shows that it is impossible to improve long-run performance by
switching the benchmark exposure between observation periods if each period has fixed
length ∆t (e.g., a month or a quarter).

At variance with the preceding result, benchmark exposure switching can lead to the
appearance of superior performance if the time horizon T is fixed and the observation
interval ∆t is very short, as it will be demonstrated in the next theorem. Suppose the price
of the benchmark asset follows a geometric Brownian motion:

St = S0e
(µ−0.5σ2)t+σBt , (19)

where Bt is a Brownian motion. It follows from Ito’s lemma that the asset’s instantaneous
return, dXt = dSt/St, follows the diffusion process

dXt = µdt + σdBt . (20)

If βt is the benchmark exposure of the fund at time t, the instantaneous fund return satisfies

dYt = βtdXt (21)

Let n be the number of times to observe the excess returns of the benchmark and the
fund and ∆t = T/n be the length of time between two observations. Regression of the
observed fund return on the observed benchmark returns gives the intercept α̂n and slope
β̂n. The next theorem shows how to choose βt to maximize α̂n asymptotically.

Theorem 3 Consider all the strategies with benchmark exposures βt bounded between βmin

and βmax. Their maximal expected asymptotic alpha is

maxE
[

lim
n→∞

α̂n
]

=
√

2
9πT

σ(βmax − βmin) . (22)

The maximum is achieved by a strategy that switches its benchmark exposure β∗t between
the lower and upper bounds:

β∗t =

{
βmin , if Bt ≥ 0
βmax , if Bt < 0 .

(23)
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The strategy with the exposure β∗t in equation (23) is a simple bang-bang strategy: choose
the lowest feasible exposure to the benchmark when the cumulative excess return to date
is positive, and the highest feasible exposure to the benchmark when the cumulative return
is negative. The maximum expected asymptotic alpha in Theorem 3 is proportional to the
volatility of the benchmark and the range of exposures. This is intuitive; higher volatility
and range of exposures allow a larger payoff space to be generated from dynamic strategies.

The apparent similarity of Theorem 3 and Theorem 1 notwithstanding, they are different
in several ways. Indeed, if the optimal strategy in Theorem 1 is achieved by delta trading,
the strategy has dynamic exposure to the benchmark, similar to the strategy in Theorem 3.
However, trading occurs at the same frequency of the observations in Theorem 3, whereas
in Theorem 1 trading can be more frequent than observations. In addition, the observation
interval ∆t in Theorem 1 is fixed, whereas it shrinks to zero in Theorem 3. Moreover, the
maximum expected asymptotic alpha in Theorem 3 is inversely proportional to the square-
root of the time horizon T . As the time horizon increases, the alpha generated by switching
benchmark exposure is pushed toward zero.

A strategy similar to Theorem 3 is devised by Goetzmann et al (2007). Choosing
µ = 10%, σ = 20%, βmin = 0.5, βmax = 1.5, and T = 5 years, they report an average alpha
of 2.05% in 10,000 simulation runs. The average Sharpe ratio of their dynamic strategy is
0.673, slightly larger than the Sharpe ratio of 0.6 delivered by a simple investment strategy
in the benchmark. Applying the same set of parameters to the right hand side of equation
(22) gives

maxE[ lim
n→∞

α̂n] =
5.32%√

T
=

5.32%√
5

= 2.38% , (24)

which is not much higher than the average alpha obtained by Goetzmann at al., suggesting
that their alpha is close to the maximum that can be generated by switching beta. Indeed,
although the strategy in (23) is only optimal with continuous trading, its performance
with discrete trading can be easily evaluated through simulation. Using the same monthly
increments as in Goetzmann et al. (2007), from 100,000 simulation runs we obtain an
average alpha of 2.33 percent (and a 95 percent confidence interval of (2.31, 2.35)), which
confirms that continuous time asymptotics offer an accurate approximation for monthly
observations, at least for typical parameter configurations. Thus, Theorem 3 indicates that
the alpha in equation (24) cannot be expected for time horizons much longer than five years.
For example, when T = 10, the alpha should be expected to be below 5.32%/

√
10 = 1.68%

on average.

This subsection demonstrates that exposure-switching strategies can create non-trivial
alpha and that the strategy proposed by Goetzmann et al (2007) comes close to achieving the
maximum alpha of the exposure-switching strategy. The following sections derive explicit
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formulas for the alpha- and appraisal ratio-maximizing policies.

3 Maximal Performance in a Complete Market

This Section studies the implications of Theorem 1 under the standard assumption that the
benchmark assets follow a geometric Brownian motion. The first subsection offers explicit
formulas for the maximal Sharpe and appraisal ratios in general, and then approximates
these results for the limiting case that the observation interval is small. The intuition of
this limiting case is transparent. The second subsection offers numerical examples, demon-
strating that under the Black Scholes assumptions it would typically take a long time for
a manager who has no superior information to produce a significantly positive alpha by
augmenting his portfolio with options.

3.1 Theoretical results

As shown in equation (15), the maximal appraisal ratio can be calculated from the Sharpe
ratios of Xa and Xb. The calculation of the Sharpe ratio of Xb is straightforward from the
moments of the benchmark returns because

SHPb =
√
E[r′m][var(rm)]−1E[rm] . (25)

Similarly, if the attainable space Xa is spanned by a finite number of observable asset
returns, it is straight forward to calculate the Sharpe ratio SHPa from the moments of asset
returns in Xa. The maximal appraisal ratio APRmax then follows from equation (15) as the
square-root of the difference between SHP2

a and SHP2
b .

As the space Xa may contain infinitely many security payoffs, the Sharpe ratio of Xa is
more difficult to obtain than that ofXb. In this section, for a given benchmark space Xb, the
attainable space Xa is assumed to be the set of all L2-integrable functions of the benchmark
payoffs. That is,Xa = L2(P,Ω), where L2(P,Ω) is the set of all squared-integrable functions
of the benchmarks. In this case, the market of Xa is said to be complete, and ma is the
minimum-norm stochastic discount factor in L2(P,Ω).

An important practical issue is the analysis of the payoff space which can be generated
from trading derivatives on the benchmark assets. It is taken up next under the assumption
that the prices of the benchmark assets follow a multivariate geometric Brownian motion.
If the vector of the instantaneous annualized expected returns on the benchmark assets
is µ = (µ1, · · · , µk)′, under the assumption of geometric Brownian motion, the price of
benchmark asset j at time t is

Sj,t = Sj,0e
(µj−0.5σ2

j)t+σBjt 1 ≤ j ≤ k . (26)
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where Bjt is a Brownian motion, σj is its annualized volatility, and Sj0 is the price at t = 0.
The Brownian motions can be correlated. Let the correlation between Bjt and Blt be ρij.
Then, Bt = (B1t, · · · , Bkt)′ ∼ N(0k, tΣ), where the covariance matrix Σ has ρjlσjσl as the
element on the jth row and lth column and is assumed positive-definite. During the time
interval [t , t + ∆t], where time is measured in years, the return on benchmark asset j is
Rj = Sj,t+∆t/Sj,t. If the instantaneous annualized safe rate is denoted by r, the return on
the safe asset during the same time interval is

R0 = er∆t . (27)

The parameters of the geometric Brownian motion are restricted by the moments of
the benchmark excess returns. Since the jth benchmark excess return is rj = Rj − R0, its
expectation satisfies

E[rj] = er∆t
(
e(µj−r)∆t − 1

)
, j = 1, · · · , k . (28)

The variance of the jth benchmark excess return satisfies

var(rj) = e2r∆te2(µj−r)∆t
(
eσ

2
j∆t − 1

)
, j = 1, · · · , k . (29)

The covariance between rj and rl satisfies

cov(rj, rl) = e2r∆te[(µj−r)+(µl−r)]∆t
(
eρjlσjσl∆t − 1

)
(30)

for j, l = 1, · · · , k; j 6= l .

If the moments of the excess returns are given, equations (27)–(30) can be used to obtain the
parameters in the geometric Brownian motion. The converse also holds: if the parameters
of the geometric Brownian motion are given, these equations can be used to calculate the
first two moments of rm and then be substituted into equation (25) to obtain the Sharpe
ratio of Xb.

Under the assumptions of geometric Brownian motion, which implies complete market,
the maximal appraisal ratio can be obtained from equation (15) as derived in the Appendix.
The result is as follows.

Theorem 4 If the prices of the benchmark assets follow the geometric Brownian motion
(26), the Sharpe ratio generated from derivatives or delta trading strategies is

SHPa =
√
e(µ−r1k)′Σ−1(µ−r1k)∆t − 1 . (31)

Once the Sharpe ratios of Xb and Xa are calculated, the maximal appraisal ratio can be
obtained from equation (15), which becomes

APRmax =
√
e(µ−r1k)′Σ−1(µ−r1k)∆t −E[r′m][var(rm)]−1E[rm]− 1 , (32)
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where E[rm] and var(rm) can be calculated from equations (28)–(30). An important feature
of the APRmax in equation (32) is that it approaches to zero if the observation interval ∆t
shrinks to zero or if the vector of risk premiums µ− r1k drops to zero.

To see the exact relationship between the maximal appraisal ratio and the risk premium,
the expression (32) is simplified. Without loss of generality, the benchmark excess returns
can be chosen orthogonal to each other. In this case, ρjl = 0 for all j 6= l. Denote the
annualized Sharpe ratio of the jth benchmark by sj , which equals (µj − r)/σj, and let
s = (s1, · · · , sk)′. The maximal appraisal ratio becomes

APRmax =

√√√√√e(s′s)∆t −
k∑

j=1

e−2sjσj∆t(esjσj∆t − 1)2(eσ
2
j∆t − 1)−1 − 1 . (33)

The first-order approximation of (33) in terms of ∆t is

APRmax =
{
s′[Σ + 2Diag(µ− r1k)]s+ (s′s)2

}1/2 ∆t√
2

+ O(∆t2) , (34)

where Diag(µ−r1k) is the k×k diagonal matrix in which the jth diagonal element is µj−r.
In the case of a single benchmark (setting k = 1 and dropping off the subscripts of µ1, σ1

and s1), the formula of the maximal appraisal ratio simplifies to

APRmax =
√
es

2∆t − e−2sσ∆t(esσ∆t − 1)2(eσ2∆t − 1)−1 − 1 , (35)

and its first-order approximation is

APRmax = (µ− r + s2)
∆t√

2
+ O(∆t2) . (36)

According to the approximation, the maximal appraisal ratio is positively associated with
the annualized risk premium µj −r and the annualized Sharpe ratio sj of each benchmark.4

It is also positively associated with time interval between the evaluator’s two consecutive
observations. This is reasonable because a longer observation period increases the manager’s
attainable space by delta trading or, equivalently, allows to more effectively exploit the non-
linearity associated with the option payoffs.

The previous formulas remain valid in the presence of additional securities other than
the benchmarks, which carry additional unpriced idiosyncratic risk. Put differently, using
options on single securities cannot improve the significance of alpha, if the risk factors are
already carried by the benchmarks, and the options on the benchmarks are used optimally.

4Figure 1 helps understand the relation between the appraisal ratio and the risk premium. Holding all
other parameters fixed, an increase in the risk premium implies an increase in the slope of the dashed line
representing the index return as well as an increase in the Sharpe ratio. Therefore the intercept of the dotted
regression line will increase, thus showing a higher alpha. Since other parameters are being held constant,
it follows that a higher alpha is associated with a higher appraisal ratio.
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To see this fact, consider a market where, in addition to the k lognormal benchmarks
Sj,t for 1 ≤ j ≤ k, there are n securities with excess returns ri for k + 1 ≤ i ≤ n + k, given
by:

ri =
k∑

j=1

βijrj + εi

where εi for k + 1 ≤ i ≤ n + k are independent of the benchmarks and of each other, and
E[εi] = 0. In other words, these securities carry unpriced specific idiosyncratic risks.

The discount factors ma and mb are the same as in the market with the benchmarks
alone. To see this, it suffices to note that both discount factors price all the additional
securities. This true for mb because E[εi] = 0, and for ma because εi is also uncorrelated
with the benchmarks.

3.2 Numerical results

In performance evaluation the benchmark payoffs are often the factors used in the studies of
the linear asset pricing models. The first factor is usually the market factor (MKT), which
is the excess return on the value-weighted aggregate equity index compiled by the Center of
Research on Security Prices (CRSP). Three additional factors are used by researchers, e.g.,
Fama and French (1993, 1996), to explain average stock returns: the firm-size factor (SMB)
captures the firm-size premium documented by Banz (1981), the book-to-market factor
(HML) captures the value premium presented by Stattman (1980), and the momentum
factor (MOM) captures the profit of momentum trading strategy reported by Jegadeesh
and Titman (1993). The monthly observations of these factors are available at Kenneth
French’s web site which also provides the returns on one-month Treasury bills (TBL). The
sample of monthly excess returns on the factors from January of 1963 to December of
2006 are displayed in panel A of Table 1. Panel B reports the geometric Brownian motion
parameters that are consistent with the sample moments. These parameters are solved from
equations (27)–(30).

Consider three benchmark spaces: (1) XCA
b is the benchmark space spanned by the

MKT factor (CA alludes to the CAPM) and the safe return; (2) XFF
b is the benchmark

space spanned by the MKT, SMB and HML factors and the safe return; (3) XMM
b is

the benchmark space spanned by the MKT, SMB, HML and MOM factors and the safe
return. The Sharpe ratios of these benchmark spaces can be calculated using equation (25)
based on the parameters in Table 1 and various assumptions on the time interval ∆t of
observations. Column B of Table 2 reports the Sharpe ratios of the benchmark spaces for
monthly (∆t = 1/12), quarterly (∆t = 1/4) and semiannual (∆t = 1/2) observations. As
expected, a larger benchmark space or a longer observation period are associated with higher
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Sharpe ratios. For example, the Sharpe ratio of XMM
b is 0.631 for quarterly observation,

higher than the ratio for monthly observation, which is 0.367. The quarterly Sharpe ratio
of XMM

b is also higher than the Sharpe ratio of XFF
b for the same quarterly observation

frequency, which is 0.463.

Let X i
a be the payoff space that contains all the functions (with finite second moment)

of the benchmarks in X i
b, for i = CA, FF, and MM. In the absence of derivative securities

on these factors, the payoffs in XCA
a , XFF

a XMM
a must be achieved by delta trading. The

Sharpe ratios of the payoff spaces can be calculated using equation (31) and the parameters
in Table 1. Column C of Table 2 reports the Sharpe ratios of the attainable spaces for
monthly, quarterly and semi-annual observations. Again as expected, a larger attainable
space or a longer observation period are associated with higher Sharpe ratios, and the Sharpe
ratio of an attainable space is always higher than its corresponding benchmark space. For
quarterly observations, as an example, the Sharpe ratio of XMM

a is 0.708, higher than the
Sharpe ratio of XFF

b , which is 0.631.

By equation (15), the squared difference between the Sharpe ratios of the benchmark and
attainable spaces gives the maximal appraisal ratio (namely, APRmax), which is reported
in the column D of Table 2. In each observation frequency, the maximal appraisal ratio
increases at least four fold when the SMB and HML factors are added to the benchmark
space. When the MOM factor is further added to the benchmark space, the maximal
appraisal ratio is nearly doubled. For example, in quarterly observations, APRmax is 0.037
when the benchmark space is XCA

b but increases to 0.171 when the benchmark space is
enlarged to XFF

b . It goes up to 0.322 when the MOM factor is added.

The t statistic of alpha can be approximated by the product of APRmax and the square-
root of the number of observations n. A significant t statistic at 95% confidence level
requires

√
n × APRmax > 1.96. Then, n = (1.96/APRmax)2 is approximately the minimum

number of observations to obtain a significant t statistic. These numbers are reported in
column E of Table 2.

Two patterns emerge from Table 2: as the benchmark space increases and as the ob-
servation period increases the appraisal ratio increases (and therefore the minimal number
of years to obtain a significant t statistic decreases). The appraisal ratio increases because
the risk premium and Sharpe ratio of the benchmark space increase as more indices are
added to the benchmark space. Table 1 shows that HML and MOM factors have relatively
high growth rates. Table 2 shows that inclusion of HML and MOM evidently increases the
Sharpe ratio. As indicated by Theorem 4 and equation (36), the appraisal ratio is positively
related to the risk premia of benchmark assets and the Sharpe ratio of the benchmark space.

Wang and Zhang (2003) anticipate these observations. Studying the frequency and
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magnitude with which pricing kernels associated with certain benchmarks take on negative
values, they note that such negative values are relatively rare and small when the benchmark
space is spanned by the market portfolio but become increasingly more frequent and larger
as SMB and HML are added as benchmark portfolios. Negativity of the pricing kernel
suggests that by trading options one can outperform the returns spanned in the benchmark
space.

4 Performance Enhancement through Option Writing

Figure 1 suggests that the most intuitive way to appear to be out-performing is by writing
options. This section explores this intuition, arguing that one can deliver the optimal policy
exclusively by writing options. The next subsection applies Theorem 1 to describe the
optimal option writing strategy. The relation between the pricing of the options and the
process generating the benchmark returns is important for the assessment of the appraisal
ratio that the optimal policy is likely to generate.

Subsection 4.1 studies these maximal appraisal ratios under the assumption that the
S&P 500, Nasdaq 100 and Russell 2000 indices follow a geometric Brownian motion and
that therefore the Black-Scholes formula correctly prices options on these indices with the
volatility of the underlying geometric Brownian motion process. Under these assumptions
it turns out that a fund manager who cannot predict future returns is unlikely to generate
a statistically reliable alpha by trading derivatives.

Departures from geometric Brownian motion price evolution and the associated Black-
Scholes option pricing have been studied, e.g., in Jones (2006) and Broadie, Chernov and
Johannes (2007). Subsection 4.2 relaxes the geometric Brownian motion assumption and
allows options to be priced at the actual implied volatility rather than at the volatility of
the stochastic process governing the underlying asset. In this set up option payoffs cannot
necessarily be replicated by delta trading and therefore options are not redundant assets. In
this more general case it is possible to generate a statistically reliable alpha. A comparison
between this more general case and the preceding one indicates that an alpha is likely to
emerge even for the manager who cannot predict future returns not because of the non-linear
nature of the payoff on the options but because of market incompleteness, i.e., because the
option prices reflect departures from the assumptions in the Black-Scholes model.

4.1 When physical and implied volatilities coincide

Under the assumption of geometric Brownian motion, the solutions to the performance
maximization problem (6) are combinations of the benchmark payoffs and the variable
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mb − ma, which is a nonlinear function of the benchmark payoff. When the benchmark
space consists of only one risky asset (in addition to the safe asset), the expression of the
optimal payoff as function of the benchmark return Rm can be derived.

Theorem 5 Assume that the benchmark space consists of only one risky asset and its
price follows a geometric Brownian motion with growth rate µ and volatility σ. Assume the
continuously-compounded safe rate is r. Then for any numbers γ and φ and any positive
number θ the payoff satisfying

x = γ + φRm − θf(Rm) , (37)

where

f(Rm) = cR−b
m with b = (µ− r)/σ2 ; c = e[−r+0.5b(µ+r−σ2)]∆t , (38)

solves the optimization problem (6).

The payoff of the optimal strategy in equation (37) is a non-linear function of Rm
because the function f is non-linear. Notice that the first derivative of the function is
negative (f ′ < 0) and its second derivative is positive (f ′′ > 0). To show the nonlinear
nature of the optimal strategies, panel A of Figure 2 displays the excess return on one-
dollar investment in the strategy as a function of the rate of return on the benchmark
index. The parameters in the stochastic process of the index are µ = 11.43%, σ = 14.98%
and r = 5.59% per annum, which are the estimates for the market factor and T-bills rate
in Table 1. The parameter θ is set to 1. The parameter φ is chosen so that the strategy’s
delta with respect to the benchmark is 1. To make x a return on one-dollar investment, γ
is chosen so that the value of the strategy is 1. All the returns in the figure are annualized
by setting ∆t = 1.

Panel B of Figure 2 displays the excess return on one-dollar investment in the optimal
strategy that is benchmark-neutral. In the benchmark-neutral strategy, φ is chosen so that
its delta with respect to the benchmark is zero, implying cov(rx, rm) ≈ 0. The parameter θ
is again set to 1, and γ is chosen so that the value of the hedged strategy is 1. Notice that
the excess return on the hedged strategy stays positive as long as the rate of return on the
benchmark is between −13% and 17%. This means that the hedged strategy is profitable
as long as the benchmark stays within the range around the current level. In practice, the
profitable range should be narrower due to transaction costs and borrowing rates that are
higher than the safe return. Losses will occur when the benchmark rises or drops outside
of the range.

The optimal strategy can be implemented by writing options on the benchmarks because
the nonlinear part f(Rm) can be replicated by a portfolio of call and put options. In fact,
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integration by parts shows that for any K > 0 and any twice differentiable function f ,

f(Rm) = f(K) + f ′(K)(Rm −K)

+
∫ K

0
f ′′(k)(k− Rm)+dk+

∫ ∞

K
f ′′(k)(Rm − k)+dk . (39)

The first and second integrations in equation (39) sum the payoffs of long positions in
put and call options, respectively. Equations (37) and (39) indicate that the strategy that
achieves the highest appraisal ratio involves writing a set of options.

If K = 1 and θ = 1, the payoff of the performance maximizing strategy is

x̂ = γ̂ + φ̂Rm −
∫ 1

0
f ′′(k)(k−Rm)+dk −

∫ ∞

1
f ′′(k)(Rm − k)+dk (40)

where γ̂ = γ+ (b− 1)c and φ̂ = φ+ bc. The first integration of equation (40) is over payoffs
of out-of-the-money put options, and the second integration is over payoffs of out-of-the-
money call options. Therefore, the optimal strategy can even be implemented by writing
out-of-the-money options on the benchmark.

The strategy in equation (40) can be approximated by taking positions in options with
discrete grids of moneyness k. For example, let ∆k = 1% and ki = i∆k. In this strategy
the position in the call or put options out of the money by 100|1−ki| percent is −f ′′(ki)∆k
units. For one-dollar investment in the strategy and the same parameters used in Figure
2, panel A of Figure 3 displays −f ′′(ki)∆k. Notice that it is an increasing function of ki.
Thus, the strategy of equation (40) shorts more puts than calls. Also, the strategy shorts
more puts when they are more out of the money. In contrast, the strategy shorts fewer calls
that are more out of the money.

In the strategy in equation (40) the value of the short position on an option decreases
fast as the option moves further out of the money. Use h(k) to denote the price of a call
(put) options on Rm with strike price k ≥ 1 (k < 1) and maturity ∆t. Then, h(ki)f ′′(ki)∆k
is the premium collected from writing the call or put option that is out of the money by
100|1 − ki| percent. If the parameters are chosen so that the value of the payoff x̂ is one
dollar, then −h(ki)f ′′(k)∆k is the portfolio weight on the options with moneyness ki. The
portfolio weights are plotted in panel B of Figure 3 which shows that in terms of option
premiums collected, the strategy writes more options near the money than the options far
out of the money.

The short leg of the performance-ratio maximization strategy implies that its delta, the
sensitivity of the strategy’s value to the index price, decreases as the time passes or as the
index price rises. The delta of the strategy decreases as time passes because the delta of
each call or put option is an increasing function of the time to maturity. Since each call
or put option has a positive gamma, which is the sensitivity of delta to the index price,
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the strategy has a negative gamma, implying that its delta is a decreasing function of the
index price. Figure 4 illustrates the delta of the performance-ratio maximization strategy
for different levels of the index price and different time to maturity.

The maximal performance ratios relative to the S&P 500 (SPX), Nasdaq 100 (NDX),
and Russell 2000 (RUT) indices are examined next because these indices often serve as
benchmarks for evaluation of actively managed funds and options on these indices are
actively traded. The daily realized index returns from February 23, 1985 to April 30, 2007,
are used to estimate the relevant parameters. The resultant Sharpe ratios of the benchmark
spaces and of the attainable spaces are reported in Table 3. The maximal appraisal ratios
of the payoff spaces that contain all the derivatives on the benchmarks as well as the
approximate number of years required to attain significant expected t statistics are also
provided.

The attainable payoff spaces underlying the reported calculations are larger than the
actual available derivative payoff spaces in that the calculations assume the availability of all
derivatives. Actual index options are not available at all strike prices. Thus, the estimated
Sharpe ratios of the attainable spaces and the appraisal ratio are biased upwards.

The expected alphas of the Sharpe ratio-maximizing strategies analyzed here are pos-
itive. Table 3, however, suggests that it should be difficult to generate significant alpha
from trading options on the S&P 500, Nasdaq 100 and Russell 2000 indices. The results for
MKT in Table 2 and those for SPX in Table 3 are similar because the two returns of the two
indices are highly correlated. More generally, the messages of Tables 2 and 3 are similar. It
will take thousands of years to generate significant alpha if the actively managed funds are
evaluated with monthly returns. For example, with the SPX as the benchmark, 1803 years
is the expected minimum time required to obtain a significant alpha by writing options on
the SPX. It they are evaluated with quarterly or semiannual returns, it takes hundreds of
years to generate significant alpha by trading derivatives. Therefore, the attempt to gen-
erate statistically significant alpha by trading index options is unlikely to succeed, so long
as the benchmark assets follow a multivariate geometric Brownian motion and options are
priced accordingly.

4.2 When physical and implied volatilities differ

The results reported in subsection 4.1 appear to be inconsistent with the practical experience
in generating alpha by writing index options. Lo (2001) reports a high Sharpe ratio from a
strategy which entails holding the S&P 500 index and writing put options. In a similar vein,
Hill et al. (2006) report that a large alpha can be obtained from the strategy of buying the
S&P 500 index and writing index call options. The attractiveness of the strategy led the
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Chicago Board of Options Exchange (CBOE) to create the BuyWrite monthly index (BXM)
to track the return from the strategy of writing one-month at-the-money call options every
month. Indeed, the regression of monthly excess returns on the BXM index with respect to
the S&P 500 delivers significant t statistics for the period from January 1990 to December
2005 (see Table 4). The performance of the BXM index is especially good in the first
sub-period.

The results reported in Table 4 are based on actual option prices as oppose to theoret-
ical Black-Scholes prices. Empirical evidence against the Black-Scholes model highlights a
number of stylized facts. First, the implied volatility index VIX is consistently higher than
the realized volatility of the underlying. Second, the implied volatility is higher for options
more out-of-the-money (the so-called volatility “smile”) and for lower strikes (the volatil-
ity “skew”). Third, both implied and realized volatilities exhibit significant time-variation
across different strikes and maturities. The deviations from the Black-Scholes model as
well as the nonlinearity of the payoffs may account for the excess performance of the BXM
index. The rest of this subsection will show that the first stylized fact (i.e., the implied
volatility being higher than the realized volatility) alone can account for a large part of the
excess performance of the BXM index.

To apply the framework developed in this paper to the performance of the BXM index,
one needs to identify the pricing kernels mb and ma. For simplicity, assume here a single
risky benchmark asset whose return has a log-normal distribution. Options on it are priced
according to the Black-Scholes formula, but possibly with a different implied volatility.
Only options with single one-period maturity are considered and therefore there is no room
for a term structure of implied volatilities. Moreover, all options of the same maturity are
assumed to have the same implied volatility, thus abstracting from the volatility smile and
skew. With the options having implied volatility different from that of the underlying asset,
it is in general not possible to replicate the option payoffs by delta trading. Put differently,
with these assumptions it is also assumed that the the benchmark assets do not complete
the market, and therefore options are not redundant assets.

In the market considered here investment is made at time t and the return is received
at time t+ ∆t. The continuously-compounded safe rate is r. The return on the risky asset
follows a log-normal distribution, i.e., the return is

Rm = e(µ−0.5σ2)∆t+σ
√

∆tψ . (41)

where ψ is a standard normal random variable under the physical probability measure P .
The parameters µ and σ are the physical growth rate and the physical volatility of the risky
asset, respectively. It is important to notice the assumption of (41) does not imply that the
asset price follows a geometric Brownian motion.
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Derivative securities are also available in this market. The volatility according to which
they are priced is the implied volatility, denoted by σ̂. It is different from the physical
volatility σ. Let λ = σ̂/σ. Assume that all derivatives on the asset price with time-
to-maturity ∆t are priced by the implied volatility σ̂. Then, the risk-neutral probability
measure Q satisfies

EQ[Rm] = er∆t , (42)

varQ(logRm) = σ̂2∆t . (43)

Let the benchmark payoff space Xb be spanned by the safe return and the return on the
risky asset. To evaluate the performance generated from trading derivatives, let Xa be
the payoff space spanned by Xb and its derivative securities, i.e., Xa is spanned by all the
functions f(Rm) with finite second moments. The assumed completeness of Xa implies that
ma is the unique SDF and thus has the smallest-norm.

Theorem 6 Under the assumptions in equations (41)–(43), if 0 < λ <
√

2, then the
maximal appraisal ratio is

APRmax(λ) =
[
λ−1(2− λ2)−1/2eδ

2(2−λ2)−1∆t

− e−2sσ∆t(esσ∆t − 1)2(eσ
2∆t − 1)−1 − 1

]1/2
. (44)

where s = (µ− r)/σ and δ = s+ σ(λ2 − 1)/2.

When the implied volatility equals the physical volatility (i.e., λ = 1), the above equation
reduces to equation (35). As the time interval ∆t approaches zero, the maximum appraisal
ratio approaches

lim
∆t→0

APRmax(λ) =

√
1

λ
√

2− λ2
− 1 . (45)

The above limit is 0 if λ = 1 and is an increasing function of λ for λ ∈ [1,
√

2). Therefore,
when the implied volatility is higher than the actual volatility, trading derivatives can lead
to a high appraisal ratio even when the observation interval is very short. It is however
difficult to accomplish this when the implied and physical volatilities are the same.

Table 5 shows that the relatively high implied volatility during 1990–2005 offered an
opportunity for the derivative trading strategy to perform well. During this period, the
historical volatility estimated from the daily S&P 500 index is 16%, whereas the average
VIX is 19%, giving λ = 1.21. Using equation (44) of Theorem 6, the maximal appraisal ratio
of monthly returns during the period is

√
192× APRmax = 5.77. This is much higher than

the realized performance ratio of 2.20 reported in Table 4 for the BXM index, but it points
in the right direction. Various explanations for the discrepancy between the theoretical and
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actual performance ratios are readily available. First, the strategy in BXM—buying S&P
500 index and selling at-the-money call options—does not necessarily achieve the maximal
performance, whereas the strategy underlying the numbers in Table 5 is optimal. Second,
the theoretical analysis ignores temporal variations in the implied and physical volatilities.
Third, the realized performance is based on a finite sample instead of an infinite sample as
assumed for APRmax. These discrepancies between the assumptions in Theorem 6 and the
data could lead to the difference between the numbers reported in Tables 4 and 5.

One pattern is common to Tables 4 and 5, namely that performance of the strategy
was stronger in the earliest sub-period and deteriorated subsequently. Table 5 also shows
that the opportunity offered by the high implied volatility declined over time. The ratio
of implied-to-physical volatility was high (λ = 1.39) in the first five years of the sample
in the table, and fell in later sub-periods. Correspondingly, the maximal appraisal ratio
drops from 14.01 in the first sub-period to 1.48 in the last sub-period. The decline of the
implied volatility relative to the physical volatility might have contributed to the weaker
performance of the BXM during the last two sub-periods. Possibly the decline in the
difference between implied and actual volatility reflects the entrance of speculators who
sought to profit from this difference.

5 Concluding Remarks

The evaluation of actively managed funds amounts to addressing the following question: are
the returns on the funds unusually good in comparison with those available by a portfolio of
a given benchmark assets? Asset pricing theory states that if the space of payoffs spanned by
the benchmark assets satisfies certain regularity conditions, then the question is equivalent
to the question, are the returns on funds unusually good by the standard of the stochastic
discount factor (SDF) which prices all the assets in the benchmark space?

This paper’s original motivation is the observation that some commonly used SDFs take
on negative values in some circumstances. Thus, they may price correctly the benchmark
assets, but will price incorrectly derivative securities on the benchmark assets—even assign
them negative prices. (A simple example is a security which pays one dollar when the SDF
is negative and zero otherwise. Priced by the SDF, its price must be negative, which cannot
be because the security entails no liability to its holder.)

This criticism is well known for linear asset pricing models. Typically, a linear pricing
model delivers period-by-period arbitrage-free pricing of existing assets (and portfolios of
these assets), given the factor structure of their returns. Dybvig and Ingersoll (1982) note
the possible negativity of the SDF of the CAPM and study some of its implications. Grin-
blatt and Titman (1989) point out that the nonlinear value function distorts Jensen’s alpha
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in the CAPM. They argue that valuation models should have positive state price densities.

Trading existing assets and derivatives on them are closely related. Famously, Black and
Scholes (1973) and Merton (1973) show that trading of existing securities can replicate the
payoffs of options on these securities. Therefore, one should be careful in interpreting excess
returns of actively managed funds estimated from linear models because such funds trade
rather than hold on to the same portfolios. Examples of interpretations of asset management
techniques as derivative securities include Merton (1981) who argues that market-timing
strategies are akin to option trading, Fung and Hsieh (2001) who report that hedge funds
using trend-following strategies behave like a look-back straddle, and Mitchell and Pulvino
(2001) who report that merger arbitrage funds behave like an uncovered put.

Motivated by the challenge of evaluating rule-based trading strategies, Glosten and Ja-
gannathan (1994) suggest replacing the linear factor models with the Black-Scholes model.
Wang and Zhang (2003) study the problem extensively and develop an econometric method-
ology to identify the problem in factor-based asset pricing models. They show that a linear
model with many factors is likely to have large pricing errors over actively managed funds,
because empirically the model delivers an SDF that allows for arbitrage over derivative-like
payoffs.

Lo (2001) devotes a section to dynamic risk analysis in which he offers a series of
numerical examples of how a fund can write options or equivalently trade the benchmark
asset and thereby appear to have superior performance. Goetzmann et al. (2007) also study
the ability of money managers to manipulate performance measures, and conclude that “a
manager that seeks to manipulate many of the more popular measures can indeed produce
very impressive performance statistics.”

This paper considers a general problem of performance evaluation, focusing primarily
on three closely related quantities: the appraisal ratio, the improvement of the Sharpe
ratio relative to the highest Sharpe ratio from a static strategy which invests only in the
benchmark assets, and the reliability of the estimated alpha (its t statistic).

The paper’s basic result establishes: (i) a formula for the maximal appraisal ratio, as-
suming a constant investment opportunity set and an identical investment strategy across
the observation intervals, a strategy which may include derivatives on the benchmark as-
sets; (ii) the strategy which produces the maximal appraisal ratio. This formula shows
the relation between the maximal improvement in the Sharpe ratio and the SDFs of the
benchmark space and the larger space from which the manager picks his strategy’s payoffs.
The set of payoffs which delivers that maximal improvement in the Sharpe ratio is given in
terms of the two SDFs.

The paper studies the possible magnitude of the maximum appraisal ratio by assuming
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that the manager has no private information and can trade only in the benchmark assets
(as often as he wishes) and derivatives on them. Applying the basic result to a set-up in
which the benchmark asset prices follow a geometric Brownian motion with parameters
matching those estimated from familiar index returns (e.g., the S&P 500 returns), a money
manager who uses options optimally will only minimally enhance the measured Sharpe
ratio of his fund if the options are priced according to the Black-Scholes model. Another
aspect of the basic result is that the alpha generated by this manager will be statistically
indistinguishable from zero unless he is followed by the evaluator for many years.

Options with prices which are at variance with the Black-Scholes model may open the
possibility of enhancing the Sharpe and appraisal ratios. But this is due not merely to the
non-linear nature of the options payoff, but to the violation of the assumption of geometric
Brownian motion which is necessary for the validity of the Black-Scholes formula.

A Appendix

A.1 Proof of Theorem 1

As shown in Hansen and Jagannathan (1991) the stochastic discount factor mb satisfies

mb =
1
R0

− 1
R0
E[r′m](var(rm))−1(rm − E[rm]) . (A1)

It follows from equations (2), (3) and (A1) that the asymptotic alpha can be written as
α(x) = E[rxmb]R0, which gives equation (7) in Theorem 1 because E[rxma] = 0.

Being projected on rm and mb −ma, the return rx can be decomposed as

rx = γ + r′m β + (mb −ma)θ + ε (A2)

where ε is the residual of the projection. It follows that E[ε] = E[(mb − ma)ε] = 0 and
E[rmε] = 0k. Since mb −ma and rm are uncorrelated, β satisfies equation (3). In view of
equation (7), the decomposition gives

α(x) = R0E[(γ + r′m β + θ(mb −ma) + ε)(mb −ma)]

= θ‖mb −ma‖2R0 . (A3)

Once ‖mb −ma‖ is nonzero, α(x) is positive if and only if θ > 0.

The decomposition in equation (A2) also gives

var(rx − r′m β) = θ2‖mb −ma‖2 + ‖ε‖2 . (A4)

It then follows from equations (4), (A3) and (A4) that the appraisal ratio is

APR(x) =
θ ‖mb −ma‖2R0√
θ2‖mb −ma‖2 + ‖ε‖2

. (A5)

26



It has an upper bound ‖mb −ma‖ because

|θ| · ‖mb −ma‖2R0√
θ2‖mb −ma‖2 + ‖ε‖2

≤ ‖mb −ma‖R0 . (A6)

The upper bound is achieved when ‖ε‖ = 0. For any z ∈ Xb and θ > 0, the payoff
x = z + θ(mb − ma) has zero residual in projection (A2) and thus its appraisal ratio
APR(x) achieves the upper bound. This gives equation (9) in Theorem 1. It follows that
max{APR(x) : x ∈ Xa} = ‖mb −ma‖R0, which is equation (8) in Theorem 1.

A.2 Proof of Theorem 2

The assumption in the theorem implies the existence of number b satisfying equation (18)
and

lim
n→∞

1
n

n∑

i=1

βi = b (A7)

lim
n→∞

1
n

n∑

i=1

β2
i = b2 + ρ . (A8)

Let σ̂n be the estimated tracking error, which is the product of
√
n and the standard error

of the estimated alpha. To prove the theorem, it is sufficient to derive

lim
n→∞

α̂n = a (A9)

lim
n→∞

σ̂n =

(
1 +

η2

δ2

)
(h2 + ρ(η2 + δ2)) (A10)

because equation (17) will follow immediately from (A9) and (A10), since ÂPRn = αn/σ̂n.

To show equation (A9), the following limits are shown first:

lim
n→∞

1
n

n∑

i=1

rmi = η (A11)

lim
n→∞

1
n

n∑

i=1

r2mi = η2 + δ2 (A12)

lim
n→∞

1
n

n∑

i=1

rxi = a+ bη (A13)

lim
n→∞

1
n

n∑

i=1

rmirxi = aη + b(η2 + δ2) . (A14)

These equations give

lim
n→∞

β̂n =
1
n

∑n
i=1 rmirxi − ( 1

n

∑n
i=1 rmi)(

1
n

∑n
i=1 rxi)

1
n

∑n
i=1 r

2
mi − ( 1

n

∑n
i=1 rmi)2

=
b(η2 + δ2) − η2b

η2 + δ2 − η2
= b . (A15)
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Equation (A9) can then be obtained from equations (A11), (A13) and (A15) as

lim
n→∞

α̂n = lim
n→∞

(
1
n

n∑

i=1

rxi − β̂n
1
n

n∑

i=1

rmi

)

= (a+ bη)− bη = a . (A16)

Note that equations (A11) and (A12) immediately follow from the law of large numbers.
The derivation of equation (A13) applies a Lemma from Section 12.14 in Williams (1991),
which is a version of the strong law of large numbers for martingales:

Lemma: Let (Mn)n≥0 be a square-integrable martingale, and denote by An =
∑n
i=1Ei−1[(Mi −Mi−1)2]. If An ↑ ∞ a.s., then Mn/An → 0 a.s.

To derive equation (A13), consider

1
n

n∑

i=1

rxi =
1
n

n∑

i=1

βirmi +
1
n

n∑

i=1

rzi

=
1
n

n∑

i=1

βi(rmi − η) + η
1
n

n∑

i=1

βi +
1
n

n∑

i=1

rzi . (A17)

The second term converges to bη by equation (A7), and the last one converges to a by
the law of large numbers. For the first term, observe that Mn =

∑n
i=1 βi(rmi − η) is an

L2 martingale, and that An =
∑n
i=1Ei−1[(Mi −Mi−1)2] = δ2

∑n
i=1 β

2
i . Hence, the lemma

implies limn→∞Mn/An = 0. Since

lim
n→∞

Mn

An
= lim

n→∞

∑n
i=1 βi(rmi − η)
δ2
∑n
i=1 β

2
i

= lim
n→∞

1
n

n∑

i=1

βi(rmi − η) lim
n→∞

1
δ2 1

n

∑n
i=1 β

2
i

, (A18)

it follows from equation (A8) that

lim
n→∞

1
n

n∑

i=1

βi(rmi − η) = 0 . (A19)

In a similar fashion, one can obtain equation (A14) by writing

1
n

n∑

i=1

rmirxi =
1
n

n∑

i=1

βi(r2mi −E[r2mi]) + (η2 + δ2)
1
n

n∑

i=1

βi +
1
n

n∑

i=1

rmirzi , (A20)

which employed E[r2mi] = η2 + δ2. The second term converges to b(η2 + δ2), and the third
one converges to aη by the law of large numbers and the assumption that rmi and rzi are
uncorrelated. The assumption of a finite fourth moment ensures that the martingale in the
first term is square integrable. Thus, it converges to zero by the lemma.
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Now turn to equation (A10), which requires calculating the limit of

σ̂2
n =

∑n
i=1(rxi − α̂n − β̂nrmi)2

n− 2

1
n

∑n
i=1 r

2
mi

1
n

∑n
i=1 r

2
mi − ( 1

n

∑n
i=1 rmi)2

. (A21)

For the second factor, (A11) and (A12) imply that:

lim
n→∞

1
n

∑n
i=1 r

2
mi

1
n

∑n
i=1 r

2
mi − ( 1

n

∑n
i=1 rmi)2

=

(
1 +

η2

δ2

)
. (A22)

For the sum of squared regression residuals, write:

1
n

n∑

i=1

(rxi − α̂n − β̂nrmi)2

=
1
n

n∑

i=1

(α̂2
n − 2α̂nrxi + 2α̂nβ̂nrmi + r2xi + β̂2

nr
2
mi − 2β̂nrmirxi)

= α̂2
n − 2α̂n

1
n

n∑

i=1

rxi + 2α̂nβ̂n
1
n

n∑

i=1

rmi

+ β̂2
n

1
n

n∑

i=1

r2mi − 2β̂n
1
n

n∑

i=1

rmirxi +
1
n

n∑

i=1

r2xi . (A23)

By the previously established limits, the first term converges to a2, the second to −2a(a+bη),
the third to 2abη, the fourth to b2(η2 + δ2) and the fifth to −2b(aη + b(η2 + δ2)). For the
sixth term, one has

lim
n→∞

1
n

n∑

i=1

r2xi = a2 + h2 + 2abη+ (η2 + δ2)(ρ+ b2) . (A24)

To see this, expand it as:

1
n

n∑

i=1

r2xi =
1
n

n∑

i=1

r2zi + 2
1
n

n∑

i=1

βiE[rmirzi] +
1
n

n∑

i=1

β2
iE[r2mi]

+
1
n

n∑

i=1

2βi(rmirzi − E[rmirzi]) +
1
n

n∑

i=1

β2
i (r

2
mi − E[r2mi]) . (A25)

The last two terms converge to zero by the lemma. The first term converges to a2 + h2 by
the law of large numbers. The second term converges to bηa, and the third term converges
to (η2 + δ2)(b2 + ρ). Summing up, it follows that

lim
n→∞

1
n

n∑

i=1

(rxi − αn − βnrmi)2 = h2 + ρ(η2 + δ2) , (A26)

which gives equation (A10).
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A.3 Proof of Theorem 3

The benchmark and portfolio returns during the time interval [(i− 1)∆t, i∆t] are

xi = µ∆t + σ(Bi∆t −B(i−1)∆t) (A27)

yi =
∫ i∆t

(i−1)∆t
βtdXt . (A28)

The estimated beta in the OLS regression of yi on xi is

β̂n =
∑n
i=1 xiyi − ( 1

n

∑n
i=1 xi)(

∑n
i=1 yi)∑n

i=1 x
2
i − ( 1

n

∑n
i=1 xi)(

∑n
i=1 xi)

, (A29)

and the estimated alpha is

α̂n =
1
n

n∑

i=1

yi − β̂n
1
n

n∑

i=1

xi . (A30)

Let αT = limn→∞ α̂n and βT = limn→∞ β̂n. The first task is to show

β̂T =
1
T

∫ T

0
βtdt (A31)

α̂T =
σ

T

(∫ T

0
βtdt− BT β̂T

)
. (A32)

It follows from equations (A27) and (A28) that
∑n
i=1 xi = 1

n(µT + BT ), and 1
n

∑n
i=1 xi

converges to zero as n increases to infinity. By the same token,
∑
yi converges to

∫ T
0 µβtdt+∫ T

0 βtσdBt and 1
n

∑n
i=1 yi converges to zero. One also has

lim
n→∞

1
n

n∑

i=1

x2
i = lim

n→∞

n∑

i=1

(µ∆t + σ(Bi∆t − B(i−1)∆t))
2 = σ2T (A33)

and, similarly,

lim
n→∞

1
n

n∑

i=1

xiyi = σ2
∫ T

0
βtdt . (A34)

Applying these results to equation (A29) proves equation (A31). When n → ∞, the esti-
mated alpha in equation (A29) gives

α̂T =
YT
T

− β̂T
XT

T
= σ

(
1
T

∫ T

0
βtdBt − β̂T

BT
T

)
, (A35)

which implies equation (A32).

The expected alpha of a trading strategy is given by:

E[α̂T ] = − σ

T 2
E

[∫ T

0
βtBTdt

]
= − σ

T 2

∫ T

0
E[βtBT ]dt = − σ

T 2

∫ T

0
E[βtBt]dt (A36)

30



Thus, to maximize this quantity while leaving βt ∈ [βmin, βmax] at all times, one needs to
minimize E[βtBt]. This is the same as cov(βt, Bt) since Bt has zero mean. This minimum
is attained for

β̂s =

{
βmin if Bs ≥ 0
βmax if Bs < 0

, (A37)

and therefore
E[βtBt] = βminE[Bt|Bt > 0]/2 + βmaxE[Bt|Bt < 0]/2 . (A38)

Since

E[Bt|Bt > 0] = 2
∫ ∞

0
u
e−

u2

2t

√
2πt

du =
√

2t
π
, (A39)

it follows that

E[βtBt] = −(βmax − βmin)
√

t

2π
(A40)

and hence

E[α̂T ] =
σ

T 2

∫ T

0
(βmax − βmin)

√
t

2π
dt =

σ√
T

(βmax − βmin)
1
3

√
2
π
, (A41)

which proves equation (22).

A.4 Proof of Theorem 4

Under the assumption of geometric Brownian motion, the unique (and hence the smallest-
norm) discount factor ma is the discounted Radon-Nikodym density of the risk-neutral
probability Q with respect to the physical probability:

ma = e−[r+0.5(µ−r1k)′Σ−1(µ−r1k)] ∆t−(µ−r1k)′Σ−1∆B , (A42)

where ∆B is the change of the Brownian motion from t to t+∆t, and 1k is a k-dimensional
vector with all components equal to 1 (see Karatzas and Shreve, 1998, section 1.5). Equation
(A42) is the key to the solution of the fund manager’s maximization problem. With this
equation, the variance of the stochastic discount factor is calculated as

var(ma) = e−2r∆t
(
e(µ−r1k)′Σ−1(µ−r1k)∆t − 1

)
. (A43)

A substitution this equation into (14) implies that the Sharpe ratio of Xa is

R0

√
var(ma) , (A44)

which gives equation (31).
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A.5 Proof of Theorem 5

Under the assumption of geometric Brownian motion, the solutions to the performance
maximization problem (6) are linear combinations of the benchmark payoffs and the variable
mb − ma. The expression of the optimal solution can be derived in the case of a single
benchmark return Rm. In this case, the stochastic discount factor is

ma = e−[r+0.5(µ−r)2/σ2]∆t−[(µ−r)/σ2 ]σ∆B

= e−[(µ−r)/σ2]{[µ−0.5σ2]∆t+σ∆B}+{−r∆t+0.5(µ−r)(µ+r−σ2)/σ2}∆t . (A45)

It follows from equations (26) and (A45) that ma = f(Rm) where f(Rm) is defined in
(38). The optimal strategy also involves mb, which must be a linear function of Rm, i.e.,
mb = a + amRm for some constants a and am. It follows from equation (9) in Theorem 1
that the payoff in equation (37) is an optimal strategy to the maximization problem (6).

A.6 Proof of Theorem 6

The smallest-norm discount factor mb is given by (A1) and satisfies

var(mb) = e−2(µ+r)∆t(eµ∆t − er∆t)2(eσ
2∆t − 1)−1 . (A46)

The unique stochastic discount factor (SDF) in Xa is the Radon-Nikodym density of the
risk-neutral probability Q with respect to the physical probability P , divided by the safe
return. The expression for the SDF is

ma = λ−1e−r∆t+0.5ψ2−0.5λ−2(ψ+δ
√

∆t)2 ,

where δ = (µ− r)/σ + 0.5σ(λ2 − 1) . (A47)

This is also the smallest-norm discount factor in Xa. The variance of ma is finite and
satisfies

var(ma) = e−2r∆t
(
λ−1(2− λ2)−1/2eδ

2∆t/(2−λ2) − 1
)
, (A48)

provided that λ ≤
√

2. It follows by equation (12) that the maximal appraisal ratio is (44).
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B Tables and Figures

B.1 Tables

Table 1: Estimated Parameters for the Factors. Panel A reports the sample means, standard
deviations, covariances, correlations and Sharpe ratios of the monthly excess returns on the
MKT, SMB, HML, and MOM factors from January of 1963 to December of 2006. It
also reports the average monthly Treasury bill rates. Variable definitions are in the text.
The data of the monthly excess returns are from the web site of Kenneth French. Panel
B presents the geometric Brownian motion parameters consistent with the sample means
and covariances of the monthly returns. These parameters are annualized and solved from
equations (27)–(30).

A. Sample Moments of Monthly Returns
TBL MKT SMB HML MOM

Mean 0.47% 0.49% 0.25% 0.47% 0.82%
Standard deviation 1.26% 0.93% 0.83% 1.15%
Sharpe ratio 0.112 0.077 0.162 0.205
Correlation MKT 0.301 -0.409 -0.064

SMB -0.280 0.022
HML -0.115

B. Parameters in Geometric Brownian Motion
TBL MKT SMB HML MOM

Mean 0.47% 0.49% 0.25% 0.47% 0.82%
Standard deviation 1.26% 0.93% 0.83% 1.15%
Sharpe ratio 0.112 0.077 0.162 0.205
Correlation MKT 0.301 -0.409 -0.064

SMB -0.280 0.022
HML -0.115
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Table 2: Performance with Factors as Benchmarks. Three sets of benchmark assets (and
their corresponding payoff spaces) are considered: (i) the safe asset and MKT, (ii) the
safe asset, MKT, SML and HML, and (iii) the safe asset, MKT, SML, HML and MOM.
Variable definitions are in the text. Three observation frequencies are considered: monthly,
quarterly and semi-annual. Using the data and parameters in Table 1, for each benchmark
set and each observation period, the following are estimated: Sharpe ratio of the benchmark
space, Sharpe ratio of the space generated by the benchmark space and delta trading on its
members, the maximal appraisal ratio of the space according to Theorem 4, the approximate
minimum number of years it would take to obtain a significantly positive alpha t-statistics
in the regression of the returns of the optimal delta trading strategy on returns of the
benchmark assets, and the annualized maximal alpha when constraining the annualized
tracking error to be no more than 10 percent.

A B C D E F
Factors

spanning the
benchmark space

Sharpe
ratio of the
benchmark

Sharpe
ratio of the
attainable

Maximal
appraisal

ratio

 Minimal
years for

significance

 Maximal
alpha

(annualized)

MKT 0.112 0.113 0.012 2084 0.43%
MKT, SMB, HML 0.269 0.275 0.056 103 1.93%
MKT, SMB, HML, MOM 0.367 0.381 0.103 30 3.56%

MKT 0.193 0.197 0.037 694 0.74%
MKT, SMB, HML 0.463 0.494 0.171 33 3.42%
MKT, SMB, HML, MOM 0.631 0.708 0.322 9 6.44%

MKT 0.271 0.281 0.074 346 1.05%
MKT, SMB, HML 0.649 0.739 0.354 15 5.00%
MKT, SMB, HML, MOM 0.883 1.120 0.689 4 9.75%

Monthly Observations

Quarterly Observations

Semi-annual Observations
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Table 3: Performance Ratios with Market Indices as Benchmarks. Three sets of benchmark
assets (and their corresponding payoff spaces) are considered: (i) the safe asset and SPX (the
S&P 500) (ii) the safe asset, SPX, NDX (the Nasdaq 100), and (iii) the safe asset, SPX,
NDX, and RUT (Russell 2000). Variable definitions are in the text. Three observation
frequencies are considered: monthly, quarterly and semi-annual. For each benchmark set
and each observation period, the following are estimated: Sharpe ratio of the benchmark
space, Sharpe ratio of the space generated by the benchmark space and delta trading on its
members, the maximal appraisal ratio of the space according to Theorem 4, the approximate
minimum number of years it would take to obtain a significantly positive alpha t-statistics
in the regression of the returns of the optimal delta trading strategy on returns of the
benchmark assets, and the annualized maximal alpha when constraining the annualized
tracking error to be no more than 10 percent. The data of the indices are from Bloomberg.

A B C D E F
Indices

spanning the
benchmark space

Sharpe
ratio of the
benchmark

Sharpe
ratio of the
attainable

Maximal
appraisal

ratio

 Minimal
years for

significance

 Maximal
alpha

(annualized)

SPX 0.1174 0.1182 0.0133 1803 0.46%
SPX, NDX 0.1257 0.1268 0.0167 1148 0.58%
SPX, NDX, RUT 0.1276 0.1288 0.0174 1052 0.60%

SPX 0.2022 0.2061 0.0400 600 0.80%
SPX, NDX 0.2157 0.2214 0.0500 384 1.00%
SPX, NDX, RUT 0.2187 0.2249 0.0522 352 1.04%

SPX 0.2835 0.2946 0.0802 299 1.13%
SPX, NDX 0.3009 0.3170 0.0997 193 1.41%
SPX, NDX, RUT 0.3047 0.3220 0.1041 177 1.47%

Monthly Observations

Quarterly Observations

Semi-annual Observations
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Table 4: The Alpha of the BXM Index, 1990-2005. The alpha and the corresponding t-
statistic of the BXM index are estimated by OLS regression of the monthly excess returns
of the BXM index on the monthly excess returns of the S&P 500 index. The data of the
monthly indices are from Bloomberg.

Period

Annualized
average
return of
S&P 500

Annualized
average
return of

BXM

Annualize
alpha of

BXM over
S&P 500

t Statistics
of alpha of
BXM over
S&P 500

1990.01 - 2005.12 7.07%        6.82%        2.66% 2.20
1990.01 - 1994.12 4.50%        6.55%        4.11% 2.59
1995.01 - 1999.12 21.36%        14.32%        2.41% 0.90
2000.01 - 2005.12 -2.70%        0.80%        2.53% 1.22
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Table 5: Maximal Appraisal Ratios with Implied Volatility Possibly Greater than Realized
Volatility. The maximal appraisal ratios are calculated from equation (44). The historical
volatility is estimated from the daily observations of the S&P 500 index for the each of the
periods indicated in the table. The estimated implied volatility is the daily average of VIX
for the corresponding period. The ratio of estimated implied volatility to the estimated
historical volatility is the λ used in equation (44). The maximal alpha are computed under
the constraint that the tracking error cannot exceed 10 percent. The data of the S&P 500
index and VIX are from Bloomberg.

Period
Historical
volatility

of S&P 500

Implied
volatility

(VIX)

Ratio of
implied to
historical

Maximal
appraisal

ratio

Maximal
alpha

1990.01 - 2005.12 16% 19% 1.21          5.77          4.16%   
1990.01 - 1994.12 12% 17% 1.39          14.01          18.08%   
1995.01 - 1999.12 16% 20% 1.27          7.96          10.28%   
2000.01 - 2005.12 19% 21% 1.11          1.48          1.75%   
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B.2 Figures

Figure 1: Generating Positive Alpha by Writing Options. A fund which is completely
invested in the market index has a return equal to the market’s return (the dashed line)
and zero intercept. A fund which writes an index call option and invests the proceeds in
the safe asset will have a return which is sensitive to the market’s return in a nonlinear
fashion (the dotted-dashed line). A fund which invests in the index and writes call options
will also have a return which is sensitive to the market’s return in a nonlinear fashion (the
thick line). That return has a positive intercept in its regression on the market’s return
(the dotted line). Figure reprinted from Wang and Zhang (2003).
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Figure 2: The Nonlinear Returns on Optimal Strategy. Panel A displays the excess return
on one-dollar investment in the optimal strategy in equation (37) as a function of the rate
of return on the benchmark. Panel B displays the excess return on one-dollar investment
in the hedged optimal strategy. The parameters in the stochastic process of the benchmark
are µ = 11.43%, σ = 14.98% and r = 5.59% per annum. The parameter θ is set to 1. In the
unhedged strategy, φ is chosen so that the strategy’s delta with respect to the benchmark
is 1, whereas in the hedged strategy φ is chosen so that its delta is zero. In each strategy, γ
is chosen so that the value of the strategy is 1. All the returns in the figure are annualized
by setting ∆t = 1.
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Figure 3: Options Position which Maximizes the Appraisal Ratio. For one-dollar investment
in the optimal strategy in equation (40), panel A displays the positions in the options of
each 1% of moneyness k. Panel B displays the portfolio weight on the options of each 1% of
moneyness k. The parameters in the stochastic process of the benchmark are µ = 11.43%,
σ = 14.98% and r = 5.59% per annum, same as those used in Figure 2.
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Figure 4: Delta of the Options in the Optimal Strategy. Each of the curves from bottom to
top is the number of shares in the underlying asset, as a function of the asset price itself, at
one month, three months, six months and one year before expiration. Original asset price
is normalized to 1.
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