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ABSTRACT 

Rotten Kids with Bad Intentions 

We examine a "Rotten Kid" model (Becker 1974) where a player with social 
preferences interacts with an egoistic player. We assume that social 
preferences are intention-based rather than outcome-based. In a very general 
multi-stage setting we show that any equilibrium must involve mutually unkind 
behavior of both players, endogenously generating negative emotions rather 
than positive altruism. In a large class of two-stage games that includes 
principal-agent and gift-giving games, this prevents equilibrium from being 
materially Pareto efficient. Compared to the subgame-perfect equilibrium 
without social preferences, efficiency is still generally increased. On the other 
hand, the materialistic player has lower whereas the reciprocal player has 
higher material payoffs, so that reciprocity does not increase equity: For 
sufficiently strong reciprocity concerns, the materialistic player ends up with a 
negligible share of the gains from trade. 
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1 Introduction

One of the earliest and best-known results in the theory of social preferences is Gary Becker’s
Rotten Kid Theorem (Becker 1974, 1981). Becker considers a framework where an egois-
tic player (the “rotten kid”) can take an action that increases joint (“family”) income, but
reduces his own income, before an altruistic player (the “parent”) makes a transfer to the
kid. According to the Rotten Kid Theorem, such one-sided altruism can induce efficient
behavior of the kid (provided its consumption is a normal good from the parent’s point of
view.)1 While the original specification based on altruism is well-suited to describe inter-
actions within the family, the belief that social preferences can have beneficial effects by
facilitating interactions is much more general. For example, Fehr, Gächter, and Kirchsteiger
(1997) provide experimental evidence showing that social preferences can be exploited to
motivate workers and to enforce contracts that would otherwise be infeasible. In other situ-
ations, social preferences tend to work in favor of fair (equitable) allocations, sometimes at
the cost of lower economic efficiency (Fehr and Schmidt 1999; Bolton and Ockenfels 2000).
In a more recent paper, Benjamin (2008) presents the most benign view according to which
both efficiency and equity are fostered by the existence of one-sided social preferences. His
model is cast as a gift-exchange game where a profit-maximizing firm pays a wage to a worker
who then chooses efforts. Under plausible (and sufficiently strong) social preferences such as
inequity-aversion (Fehr and Schmidt 1999), both efficiency and equity will emerge.

What the above discussed models have in common is the assumption of outcome-based
social preferences. Experimental evidence, however, suggests that social preferences exhibit
a strong intention-based component (Charness and Rabin 2002; Falk, Fehr and Fischbacher
2003a,b; Falk and Fischbacher 2006). In this paper, we examine the impact of intention-
based reciprocity concepts (Rabin 1993; Dufwenberg and Kirchsteiger 2004) in the rotten
kid framework.

This setting, where one materialistic and one reciprocal player interact, appears natural,
for example, when the relation between profit-maximizing firms and their employees is mod-
eled. Before examining such specific applications, however, we first consider a general game
with finitely many stages, with observed actions and without nature. As in Rabin (1993)
or Dufwenberg and Kirchsteiger (2004), the reciprocal player benefits from rewarding kind
behavior of the other player with kind behavior and from punishing unkind behavior with
unkind behavior, where kindness is defined relative to a reference point. A (sequential) inten-
tions equilibrium (IE) consists of strategies and correct first- and second-order beliefs such
that, in each subgame, the materialistic player maximizes his payoffs given his first-order

1See also Bergstrom (1989) for the role of transferability of utility.
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beliefs about the other player’s strategy, whereas the reciprocal player maximizes his utility
given his first-order beliefs about the material player’s strategy and his second-order beliefs
about the material player’s first-order beliefs. We prove a fundamental result for this general
set-up. In every IE of the game, under very weak restrictions on the kindness concept and,
in particular, on the reference point, behavior of both agents must be weakly unkind, and
with mild additional restrictions, it must be strictly unkind. Positive kindness is impossible
in the rotten kid setup with one-sided intention-based social preferences, because an egoistic
player who maximizes own material payoffs does never have good intentions.

To explore the equilibrium properties further, we then concentrate on a two-stage “action-
reaction” setting as in Becker (1974) and Benjamin (2008), where the materialistic player
moves first, followed by the reciprocal player. The first player’s material payoff is decreas-
ing in own actions (“wages”) and increasing in those of the second player (“efforts”). The
reciprocal player’s material payoff is increasing in the first player’s action. This setting en-
compasses, for instance, standard principal-agent and gift-giving games. As it turns out,
mutual unkindness generally prevents equilibrium from being materially Pareto efficient in
this framework.

We then compare the material equilibrium outcomes in IE with those in the standard
subgame-perfect equilibrium (SPE), where both players are materialistic. The first striking
result is that the materialistic player always suffers from the reciprocity of the other player:
His payoffs are lower in any IE than in any SPE. This contrasts sharply with results obtained
for altruism or inequity aversion, where the egoist generally benefits from the other player’s
social preferences.

In a large class of games, the wages paid in IE tend to be larger than in SPE, as could also
be expected with outcome-based social preferences. However, they are not paid to trigger the
return of a benevolent gift, but to prevent the second player from punishing the first player’s
bad intentions too strongly. Hence the payoff implications are fundamentally different. As a
consequence of the higher wages, the reciprocal player obtains higher material payoffs. Note
the irony of this result: Even though the reciprocal player is relatively less concerned with
material payoffs than without reciprocity, he ends up with higher material payoffs.

The positive effects of reciprocity on wages are very robust: Essentially, as wages in-
crease, (i) the materialistic player becomes kinder and the reciprocal player feels less need
to punish him, and (ii) punishment becomes less effective, because when the materialistic
player pays higher wages, he loses less material payoffs from effort reductions. The effects of
reciprocity on equilibrium efforts are more subtle. In the most general setting, there are two
countervailing effects: On the one hand, effort reacts more strongly to wage increases than
in the SPE, giving the materialistic player incentives to induce higher efforts. On the other
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hand, as the materialistic player has to pay higher wages to induce any given effort level, he
will benefit less from an increase in efforts. However, in several quite familiar examples of
the general action-reaction framework, we obtain a positive effect of reciprocity on efforts.

These findings have interesting implications for efficiency and distribution. In the ex-
amples that we examine, greater effort is desirable from an efficiency perspective. Thus,
reciprocity is indeed efficiency-enhancing compared to the subgame-perfect equilibrium, but
is not able to achieve Pareto efficiency. The distributional consequences are, however, quite
surprising. The player who benefits is the reciprocator, while the egoist loses. In the moral
hazard application, for example, this implies that a firm should have little interest in hiring
workers with intention-based social preferences. Also, reciprocity does not lead to greater
equity. First, obviously, if the second player has higher material payoffs in the SPE than
the first player, then reciprocity reinforces this inequality. Second, if the reciprocal player
has lower material payoffs in the SPE than the materialistic player, reciprocity only leads to
more equity as long as it is not too pronounced. We are able to show that, when the agent’s
materialistic concerns become negligible, the agent eventually obtains almost the entire gains
from trade, resulting in the strongest possible inequality.

An important technical aspect of the paper concerns the multiplicity of equilibria. Even
though this is arguably a smaller problem when there is only one reciprocal player, multiple
equilibria are still pervasive when reciprocity is strong enough. It is therefore remarkable
that several of our results on the comparison between SPE and IE hold for all of these
equilibria. The paper is organized as follows. Section 2 contains a discussion of related
literature. Section 3 introduces the general framework. In Section 4, we provide our general
“bad intentions” result. Section 5 deals with the action-reaction model in detail and Section
6 illustrates the ideas with concrete examples. Section 7 contains a critical discussion of our
results, and Section 8 concludes. Some proofs are relegated to the Appendix.

2 Related Literature

Among the papers discussed in the previous section, Benjamin (2008) provides the most
general analysis for outcome-based social preferences against which our results can be com-
pared. The material payoff functions reflect a gift-exchange setup, which is a special case of
our action-reaction model. In an application with Fehr-Schmidt preferences, the equilibrium
wage offer is Pareto efficient if and only if the aversion against treating the principal unfairly
is sufficiently strong, because the worker will exert more efforts as the wage increases. Also,
inequity aversion necessarily works towards equity. This distributional effect of social prefer-
ences differs from our framework with reciprocity. In our framework, even though the player
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with social preferences benefits (in a material sense) from having such preferences and the
player with material preferences loses, redistribution will be excessive in the sense that, for
strong reciprocity, the material player has much lower payoffs than the reciprocal player.

Dur and Glazer (2008) study optimal incentives when a worker envies the employer.
While the employer is risk-neutral and has purely materialistic preferences (as in our model),
the agent is risk-averse and envious, with utility depending negatively on the difference be-
tween the principal’s profit and wages. The agent’s preferences are therefore again outcome-
based. The main results are as follows: As in our model, profits decline as social preferences
become more important. Also, the bonus payment is positively affected by envy. The effects
on wages (base salaries) and efforts are ambiguous.2 Hence our results for intention-based
preferences are closer to those for models of envy rather than for models of altruism or
inequity-aversion. Interestingly, this occurs endogenously in our framework of reciprocity
that a priori allows for both positive (altruism-type) or negative (envy-type) emotions.

Few papers have attempted to model intentions in contractual environments. Englmaier
and Leider (2008) is closely related to our contribution in that the authors consider the
interaction between a materialistic principal and a reciprocal agent. Their set-up differs
from ours in several respects. To understand the most important difference, in the central
result of our analysis (that the equilibrium is characterized by mutually unkind behavior)
we essentially allow for arbitrary reference points except those that are at the extremes of
the Pareto frontier. Contrary to our approach, Englmaier and Leider (2008) specify the
reference point as one of the extremes. They consider a payoff for the agent as equitable if
he obtains his outside option. This leads to very different implications. Most importantly,
the principal benefits from reciprocity.3 By construction, he can never be unkind, and as
soon as he offers more to the agent than the outside option, the agent responds by behaving
kindly. A similar assumption underlies the results in Dufwenberg and Kirchsteiger (2000).
Here, a profit-maximizing firm generates positive reciprocity effects from its employee by
not hiring an outside worker at a lower wage. This is only possible, however, because there
are just two wage levels, with the lower wage being too unkind as to make it a profitable
offer. The conclusions from this strand of literature are hence largely in line with Fehr,
Gächter, and Kirchsteiger (1997): Incentive schemes should make use of reciprocal motives

2The authors apply their model to argue that workers should be given stock options in spite of risk
aversion, that stock options for the CEO have the additional cost that they increase worker envy, and to
explain why the public sector (and non-profit organizations more generally) pay lower wages and use incentive
pay less than the private sector.

3The differences between the frameworks imply that different issues are pursued otherwise. Englmaier
and Leider (2008) say nothing about the optimal effort level. However, they can address the question of
whether efforts should optimally be induced with relatively flat incentives (appealing to reciprocity) or with
steep, strongly outcome-dependent incentives.
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to improve the outcome, because firms can benefit from gift-exchange effects. Our analysis
provides further support for the efficiency-enhancing role of reciprocity, but questions the
potential benefits for employers.

Finally, Falk and Fischbacher (2006) develop a theory that combines intention- and
outcome-based components. Their modeling of intentions differs, however, from the ap-
proach by Rabin (1993) and Dufwenberg and Kirchsteiger (2004), which we adopt here. We
will compare their result for the gift-exchange game to our findings in Section 6.

3 General Notation and Definitions

We first introduce a general set-up that follows closely Dufwenberg and Kirchsteiger (2004),
with one major difference to be emphasized below.

Game and Strategies. As Dufwenberg and Kirchsteiger (2004), we consider a multi-stage
game with finitely many stages, observed actions and without nature. We restrict attention
to two player games. H denotes the set of histories, where each history is a list of previous
actions profiles. Each history corresponds to an information set for each player, and is also
the root of a subgame. The symbol ∅ ∈ H represents the root of the complete game. We
let Ai be the set of pure strategies for player i, with elements ai ∈ Ai that are mappings
from H to available actions at the corresponding information set. Given ai ∈ Ai and h ∈ H,
we denote by ah

i the updated strategy that coincides with ai except that we use player i’s
(pure) actions that would potentially lead to h instead of actions that are inconsistent with
h. In particular, a∅i = ai.4

Beliefs. We denote by bij ∈ Aj player i’s beliefs about player j’s strategy, and by ciji ∈ Ai

player i’s beliefs about player j’s beliefs (about player i’s strategy). Again, given a belief
bij and a history h, let bh

ij be the new belief updated from the belief bij by presuming that
player j chooses his actions from h. Analogously, ch

iji is the second order belief updated from
ciji using player i’s actions that lead to h. We again have b∅ij = bij and c∅iji = ciji.

Material Payoffs. Let A = A1 × A2. We define player i’s material payoffs πi directly on
the set of strategy profiles A, so that πi(ai, aj) is player i’s payoff if the strategy profile is
(ai, aj). Further, for any history h ∈ H, let πi(ai, aj|h) = πi(a

h
i , a

h
j ) be the payoff of player

i if the updated profile (ah
1 , a

h
2) is played instead of (a1, a2). In Section 7, we will suggest a

4This should not be confused with ai(h′) or ah
i (h′), which is the action that the strategies ai and ah

i ,
respectively, prescribe in information set h′.
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straightforward generalization of the model in which πi is interpreted as player i’s outcome-
based payoff, which could already contain non-pecuniary components.

Kindness. Based on any collection (ai, bij, ciji)i,j=1,2, i 6=j, we can now assign measures of
kindness and beliefs about them to every information set h ∈ H. We denote by kij(ai, bij|h)

the kindness of i to j in information set h.5 We let λiji(bij, ciji|h) denote player i’s belief
about how kind j is to him in information set h. The definition of kij and λiji will make use of
the concept of a player i’s equitable payoff, which is the payoff that player j considers as the
norm for judging the payoff that he gives to i by choice of the own strategy. Specifically, for
any h ∈ H, the equitable payoff for this information set and player i is denoted by πe

i (ai|h).
Then, the kindness terms are defined to be

kij(ai, bij|h) = πj(bij, ai|h)− πe
j (bij|h)

and
λiji(bij, ciji|h) = πi(ciji, bij|h)− πe

i (ciji|h),

so that positive (negative) kindness arises if a player is given a larger (smaller) material
payoff than equitable.

It remains to be specified exactly how the equitable payoff is calculated. Here, we will
deviate from Dufwenberg and Kirchsteiger (2004) and adopt the approach by Rabin (1993)
instead. Let Πi(ai|h) = {(πi(a

h
i , aj), πj(aj, a

h
i ))|aj ∈ Aj} be the set of payoff pairs that can be

achieved if player i plays strategy ah
i while player j plays an arbitrary strategy. Let ΠE

i (ai|h)

be the Pareto efficient payoff pairs in Πi(ai|h), i.e. it contains those payoff pairs from Πi(ai|h)

for which there is no other payoff pair in Πi(ai|h) with a strictly larger payoff for one and a
payoff at least as large for the other player. We will then require the equitable payoff πe

i to
correspond to an interior element of ΠE

i (ai|h). Dufwenberg and Kirchsteiger (2004) proceed
analogously but invoke a different definition of efficiency. We follow Rabin (1993) in defining
efficiency conditional on the strategy ai chosen by player i. This assumption is important,
and we will discuss it in greater detail in Section 7.

Earlier papers have used (variants of) the average between player i’s largest and smallest
payoff within the efficient set ΠE

i (ai|h) as player i’s equitable payoff. We will indeed use this
specific form in our later examples, but some results can be proven based on much weaker
requirements. We only impose the following minimal requirements for every player, strategy,
and history:

5Actually, kij should be called player i’s belief about how kind he is to player j, because it is based on
the belief bij .
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(A1) (i) Whenever ΠE
i (ai|h) has more than one element, there exist (π′i, π

′
j) ∈ ΠE

i (ai|h) and
(π′′i , π

′′
j ) ∈ ΠE

i (ai|h) with π′i < πe
i (ai|h) < π′′i .

(ii) If ΠE
i (ai|h) = {(π′i, π′j)}, then πe

i (ai|h) = π′i.

According to (i), the equitable payoff πe
i (ai|h) does not correspond to an extreme point

within ΠE
i (ai|h). This encompasses, for example, specifications where πe

i (ai|h) is the average
between the largest and the smallest payoff of player i in ΠE

i (ai|h), as in earlier contributions.6

Our formulation is more general, however, and would even allow the equitable payoff to
depend on how costly it is for the opponent to give player i a larger payoff within ΠE

i (ai|h).
In addition, we also require the following:

(A2) (i) πe
i (ai|h) = πe

i (a
h
i |h) for both players and all strategies and histories.

(ii) πe
i (ai|h) = πe

i (ai|h′) if ah
i = ah′

i for a player i, strategy ai, and histories h 6= h′.

Intuitively, properties (A2)(i) and (A2)(ii) ensure that the equitable payoff only depends
on the set of efficient payoffs that are achievable at a history h when player i plays ai, but
not on the deviations of player i from ai that were made to reach h. Hence (A2)(i) and
(A2)(ii) are trivially satisfied when the equitable payoff depends on the achievable payoffs
only, e.g. when it is defined as the average between the largest and the smallest payoff for
player i in ΠE

i (ai|h). (A2) also guarantees that along the equilibrium path, the equitable
payoff remains unchanged.

Utility. To specify the complete utility functions that players strive to maximize, we start
with a very general approach. Let F : R2 → R be a function that assigns a psychological
utility score F (kij, λiji) to each combination of kindness kij and belief about reciprocated
kindness λiji. Throughout we assume that F (kij, 0) is independent of kij, i.e. player i’s
kindness has no impact on own psychological utility if i expects to be treated neutrally.
We also assume that F (kij, λiji) is strictly increasing in kij whenever λiji > 0 and strictly
decreasing if λiji < 0. We do not impose any assumptions about curvature, continuity, or
even differentiability of F .7 In Dufwenberg and Kirchsteiger (2004), F (kij, λiji) = kijλiji.
Rabin (1993) imposes F (kij, λiji) = λiji(1 + kij). In contrast, our more general formulation
would allow for decreasing marginal psychological utility, i.e. the F is not necessarily linear.
Finally, we let yi ≥ 0 denote the relative weight that player i assigns to psychological payoffs.

6Observe that (A1)(i) does not require that πe
i (ai|h) is itself the payoff of player i in an element of

ΠE
i (ai|h).
7Some combination of such assumptions will, of course, become necessary to guarantee equilibrium exis-

tence, but several general results can be proven without them.
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Then, for every information set h ∈ H and player i, let

Ui(ai, bij, ciji|h) = πi(ai, bij|h) + yiF (kij(ai, bij|h), λiji(bij, ciji|h)) (1)

be player i’s utility in information set h, which is based on material payoffs from updated
strategies, and contains the (updated) reciprocity term added with a weight of yi.

Equilibrium. Following Dufwenberg and Kirchsteiger (2004) or Battigalli and Dufwen-
berg (2009), we require sequential rationality, that is, each player must maximize Ui in each
information set h ∈ H. To distinguish our approach from the sequential reciprocity equi-
librium by Dufwenberg and Kirchsteiger (2004), due to the differences discussed above, we
refer to equilibria as “intentions equilibria”.

Definition 1. A strategy profile (â1, â2) ∈ A is an intentions equilibrium (IE) if for i = 1, 2,
j 6= i, and all h ∈ H,

(i) âi ∈ arg maxai∈Ai
Ui(ai, bij, ciji|h),

(ii) bij = âj, and
(iii) ciji = âi.

4 The Intentions of Rotten Kids

From now on, and for the rest of the paper, we will assume that player 1 is materialistic
(y1 = 0) while player 2 is motivated by reciprocal concerns (y2 > 0). In this setting, we
provide the general result that behavior is never kind in any intentions equilibrium.

Proposition 1. Suppose (A1) and (A2) hold and y2 > y1 = 0. Then, in any IE (â1, â2),
it holds that kij(âi, âj|h) ≤ 0 for i = 1, 2, i 6= j and any h ∈ H that is reached on the
equilibrium path. The inequalities for kij are strict if |ΠE

j (âj|∅)| ≥ 2.

Proof. See Appendix A.1.

The Proposition states that, with reciprocity concerns and one materialistic player, any
equilibrium must necessarily involve negative emotions, in every subgame that is reached,
including, of course, the complete game starting from history h = ∅. It is remarkable at
what level of generality this result holds. Specifically, it holds for any (two-player, finite
stage, observed actions, no nature) game under only minimal assumptions (A1) and (A2) on
equitable payoffs and no additional assumptions on F .

To understand the intuition, first consider the perspective of player 1. Since y1 = 0, the
optimality condition for player 1 from Definition 1 simplifies to â1 ∈ arg maxa1∈A1 π1(a1, â2|h),
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where b12 = â2 (condition (ii) in Definition 1) has been substituted. Given any strategy of
player 2, player 1 will choose the strategy that maximizes his material payoffs. Thus, when-
ever there is a conflict of interest between the two players concerning the (materially Pareto
efficient) allocations that player 1 can induce, he will avoid leaving more material payoff on
the table than necessary, which is unkind behavior.8 Player 2 in turn does not expect to be
treated kindly and does not benefit from being kind to player 1 either.

This result is in stark contrast to the original Rotten Kid intuition. With altruism on the
side of the parent, a rotten kid anticipates monetary rewards for increasing family income.
Maximizing joint income then becomes the kid’s self-interest. But acts motivated by self-
interest are not kind, such that an analogous argument fails with intention-based preferences.
As we will discuss in greater detail in Section 5, the resulting IE share quite a few properties
with equilibria under envy preferences (Dur and Glazer 2008), rather than altruism. This
is interesting as our model allows for both positive and negative emotions a priori, and
envy-type behavior arises endogenously.

From this different perspective, Proposition 1 could also be interpreted as an equilibrium
selection result. As already emphasized by Rabin (1993), intention-based preferences gener-
ally imply a multiplicity of equilibria, some of them with kind, others with unkind behavior.
While Rabin (1993) has proven that an equilibrium with negative kindness always exists in
his setup, we show that making one of the players materialistic eliminates any possibility for
positive equilibrium kindness, so that only unkindness survives.

We could even strengthen our result as follows. From the above arguments it is clear
that player 1 chooses a strategy that gives player 2 minimal material payoffs among the
efficient payoff combinations for given a2. This is stronger than just being unkind: it means
player 1 is as unkind as possible, without violating Pareto efficiency. The same then holds
for player 2, who obtains increasing psychological utility from decreasing player 1’s material
payoff. Formally, in any IE (â1, â2), if a′1 ∈ A1 and (π1(a

′
1, â2), π2(â2, a

′
1)) ∈ ΠE

2 (â2|∅), then
π2(â2, a

′
1) ≥ π2(â2, â1), and analogously for the other player.

5 Action-Reaction Games

5.1 A Class of Two-Stage Games

To explore the implications of Proposition 1, we now consider a structure analogous to the
original Rotten Kid model, where the materialistic player 1 moves first, followed by the

8Observe that, off the equilibrium path, kind behavior is compatible with equilibrium, as will be illustrated
in Section 5.
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reciprocal player 2 (“action-reaction games”). Specifically, in the root (h = ∅) player 1

chooses a “wage” from some set W . This wage becomes observable and player 2 reacts by
choosing an “effort” from a set E. We can thus simplify notation and write a1 ∈ A1 = W

and a2 : W → E, with A2 = EW being the set of all such functions. The set of histories can
be written as H = {∅} ∪W .9

We write π̃1(w, e) and π̃2(e, w) to denote the players’ payoffs defined on action profiles,
such that the above introduced payoffs πi on strategy profiles are π1(a1, a2) = π̃1(a1, a2(a1))

and π2(a2, a1) = π̃2(a2(a1), a1). Also, since we always assume that player 1 is materialistic
(y1 = 0), we denote player 2’s reciprocity intensity by y, skipping the player index.

According to Definition 1, player 1’s strategy has to be optimal (only) in h = ∅, i.e. the
equilibrium wage must maximize π̃1(w, â2(w)), because y1 = 0 and b12 = â2 in equilibrium.
Player 2 must best-respond to every history w ∈ W , which implies that U2(a2, b21, c212|w)

must be maximized for every w ∈ W . Under (A2), we can substitute the updated belief
bw
21 = w for b21 in the equitable payoff πe

1(b21|w) and simplify notation to πe
1(w) ≡ πe

1(w|w).
Observing that aw

2 = a2, ∀w ∈ W , we can analogously simplify to k21(e, w) ≡ π̃1(w, e) −
πe

1(w). Since cw
212 = c212, ∀w ∈ W , the equitable payoff πe

2(c212|w) must be independent of
w under (A2) and can be simplified to πe

2(c212). This, finally, makes it possible to simplify
λ212(w, c212) ≡ π̃2(c212(w), w)− πe

2(c212), and we can summarize:

Lemma 1. Suppose (A2) holds. A strategy profile (â1, â2) ∈ A is an IE of the action-reaction
game if and only if
(i) â1 ∈ arg maxw∈W π̃1(w, â2(w)), and
(ii) â2(w) ∈ arg maxe∈E π̃2(e, w) + yF (k21(e, w), λ212(w, â2)) for all w ∈ W .

Observe that, in condition (ii), maximization is over effort levels e ∈ E, so that â2 on
the RHS is treated as fixed.

We now specify further assumptions. First, we assume that both W and E are compact
subsets of R, denoted by [w,w] and [e, e] whenever convex. The payoff functions π̃i are
assumed to be continuously differentiable on every open subset of their domain. The following
assumptions specify the economic substance of the game.

(A3) (i) π̃1(w, e) is strictly decreasing in w and strictly increasing in e.
(ii) π̃2(w, e) is strictly increasing in w.
(iii) For each w ∈ W , there is a unique effort level that maximizes π̃2(e, w) on E.

9To be precise, these simplifications fit into the general framework introduced in section 3 by assuming
that both players move in both periods, i.e. after all histories, but their action sets are singletons whenever
they do actually not play. The set of histories is simplified correspondingly, by recording only actions that
arise from actual choice.
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Parts (i) and (ii) capture a conflict of interest with respect to the wage w. Also, player
1 always prefers a larger effort level of player 2. Part (iii) is less strict: it allows for the
possibility that player 2 himself finds some effort materially desirable, as will be the case in
the following moral hazard application for positive incentive wages. Finally, for the rest of
the paper we will assume that assumptions (A1) and (A2) hold, without further mention.
We conclude this section by introducing two main examples for our setup.

Example 1: Gift Exchange.

In a gift exchange game, W = [0, w], E = [0, e], π̃1(w, e) = e − w and π̃2(e, w) = v(w) − e

for some continuously differentiable, strictly increasing and strictly concave function v.

Example 2: Moral Hazard.

(a) Assume player 2 (the agent) chooses an unobservable effort level from E = [0, 1], which
is interpreted as the probability of completing a project successfully. The success of the
project is observable, with project payoffs V > 0 in case of success and zero otherwise.
Player 1 (the principal) offers a wage (or bonus) from W = [0, V ] to be paid in case
of success. Hence expected payoffs are π̃1(w, e) = e(V − w) and π̃2(e, w) = ew − d(e),
where d is a strictly increasing and strictly convex effort cost function.10

(b) Several insights can already be gained in a binary version of the model, where E =

{0, p} for some p ∈ (0, 1).11

In the following section, we will present general results for the class of action-reaction
games. We return to the above examples in Section 6.

5.2 Equilibrium Inefficiency

First we want to examine whether intention-based social preferences foster the emergence
of materially Pareto efficient outcomes as in the models discussed in Section 2. Benjamin
(2008) distinguishes between material and utility efficiency, where the latter also takes into
account utility from social comparisons. With intentions-based preferences, the concept of
overall utility efficiency, which includes the psychological utility component, is problematic.
Knowing the outcome of an interaction is not sufficient to derive psychological utility, because

10Strictly speaking, these payoff functions do not satisfy assumption (A3), because for e = 0, π̃1 is only
weakly decreasing and π̃2 is only weakly increasing in w. For w = V , π̃1 is only weakly increasing in e. None
of this, however, will constitute a problem in the following.

11Again, assumption (A3)(iii) is not exactly satisfied in the binary model, because at wage w = (d(p) −
d(0))/p player 2 will be indifferent between the effort levels.
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it depends on the way the outcome was achieved. Hence we cannot derive a utility Pareto
frontier a priori, and then compare equilibrium outcomes to this frontier. For that reason,
we refrain from analyzing utility Pareto efficiency and focus on material efficiency only.

Under assumption (A3)(iii), player 2 has a unique material best-response to any wage
w. Then, let ã2 denote the best-response function defined by ã2(w) = arg maxe∈E π̃2(e, w),
∀w ∈ W . As an initial step, we are going to show under which conditions player 2 does indeed
deviate from his material best reply to punish player 1 for being unkind in equilibrium.12

Lemma 2. In any IE (â1, â2) it holds that â2(â1) ≤ ã2(â1), with strict inequality if |ΠE
2 (â2)| ≥

2 and ã2(â1) ∈ intE.

Proof. Fix any IE (â1, â2). By Lemma 1,

â2(â1) ∈ arg max
e∈E

π̃2(e, â1) + yF (π̃1(â1, e)− πe
1(â1), λ), (2)

where λ = λ212(â1, â2) is independent of e and satisfies λ ≤ 0 according to Proposition 1, with
strict inequality if |ΠE

2 (â2)| ≥ 2. Also, ã2(â1) by definition maximizes π̃2(e, â1), the first term in
(2). Then, if λ = 0, we must have â2(â1) = ã2(â1), because F (k21, 0) is independent of k21, so that
the reciprocity term can be omitted in (2). If λ < 0, the reciprocity term yF (π̃1(â1, e)− πe

1(â1), λ)

is strictly decreasing in e, which immediately implies â2(â1) ≤ ã2(â1). If ã2(â1) ∈ intE, then
ã2(â1) satisfies the necessary first order condition ∂π̃2(ã2(â1), â1)/∂e = 0, so that the objective (2)
is strictly decreasing in e at e = ã2(â1), implying â2(â1) < ã2(â1).

The lemma states that player 2 responds to the IE wage â1 with weakly less effort than
would be optimal from a purely materialistic perspective. Whenever |ΠE

2 (â2)| ≥ 2, so that
player 1 is strictly unkind in equilibrium (see Proposition 1), and the materially optimal
effort level is not a corner solution, then the equilibrium effort is strictly lower.13 Since
player 1 suffers from reduced effort, this is equivalent to saying that player 2 punishes player
1 at an own material cost. From this argument we obtain the following immediate corollary.

Corollary 1. Any IE (â1, â2) with |ΠE
2 (â2)| ≥ 2 and ã2(â1) ∈ intE is materially Pareto

inefficient.

So whenever there are indeed conflicts of interest (|ΠE
2 (â2)| ≥ 2) and punishment is viable

(ã2(â1) ∈ intE), there is no hope to obtain an efficiency result in the spirit of the Rotten
Kid Theorem for the case of intention-based social preferences.

12The expression ΠE
2 (â2) stands short for ΠE

2 (â2|∅) in the following lemma.
13The qualification that ã2(â1) must be an interior solution is necessary (i) to insure that reducing effort

below ã2(â1) is actually possible, and (ii) because â2(â1) might remain an upper corner solution if ã2(â1) is
one.
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5.3 The Materialistic Player Suffers

From now on, we want to compare the outcome of IE (when player 2 is reciprocal) to that of
subgame-perfect equilibria (SPE) when both players are materialistic. For y1 = y2 = 0 our
definition of IE becomes the standard SPE definition, as is obvious from Lemma 1. We will
still use the different terms IE and SPE to avoid confusion. In any SPE, player 2 must clearly
play the strategy ã2. Player 1 could still have more than one best reply ã1, making multiple
SPE possible. We can now use the insights from Lemma 2 to compare the materialistic
player’s payoff in SPE and IE.

Proposition 2. For any SPE (ã1, ã2) and IE (â1, â2) it holds that π1(â1, â2) ≤ π1(ã1, ã2),
with strict inequality if â2(â1) < ã2(â1).

Proof. We have that π1(â1, â2) = π̃1(â1, â2(â1)) ≤ π̃1(â1, ã2(â1)) = π1(â1, ã2), because â2(â1) ≤
ã2(â1) according to Lemma 2 and because π̃1 is increasing in e. The inequality is strict whenever
â2(â1) < ã2(â1). To obtain a contradiction, first assume π1(ã1, ã2) < π1(â1, â2). Together with the
above inequality this implies π1(ã1, ã2) < π1(â1, ã2), which contradicts ã1 ∈ arg maxw∈W π1(w, ã2)

and hence that (ã1, ã2) is an SPE. If â2(â1) < ã2(â1), we obtain an analogous contradiction under
the assumption that π1(ã1, ã2) ≤ π1(â1, â2).

Proposition 2 shows that the materialistic player does not profit from facing an opponent
who is reciprocal. His equilibrium payoff in any IE must necessarily be weakly smaller than
in any SPE, and strictly so whenever punishment actually takes place in the IE, which,
according to Lemma 2, will be the case except if there are common interests. This result
stands in stark contrast to results obtained with outcome-based preferences. For complete-
ness, the following proposition confirms this claim within an altruism model that is similar
in generality to our intention-based model. We assume that player 1 still maximizes ma-
terial payoffs π1(a1, a2). Player 2 is altruistic, maximizing π2(a2, a1) + G(π1(a1, a2)), where
G is an arbitrary but strictly increasing function of player 1’s payoff. We are interested in
subgame-perfect equilibria (ā1, ā2) of the action-reaction game with altruism, which we refer
to as altruism equilibria (AE).

Proposition 3. For any SPE (ã1, ã2) and AE (ā1, ā2) it holds that π1(ã1, ã2) ≤ π1(ā1, ā2),
with strict inequality if ã2(ã1) ∈ intE.

Proof. Arguing as in the proof of Lemma 2, it immediately follows that ã2(ã1) ≤ ā2(ã1), with strict
inequality if ã2(ã1) ∈ intE. But then π1(ã1, ã2) = π̃1(ã1, ã2(ã1)) ≤ π̃1(ã1, ā2(ã1)) = π1(ã1, ā2),
with strict inequality if ã2(ã1) < ā2(ã1). Since ā1 ∈ arg maxa1∈A1 π1(a1, ā2) by definition of AE, we
obtain π1(ã1, ā2) ≤ π1(ā1, ā2), which completes the proof.
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Propositions 2 and 3 together show that reciprocity and altruism have completely opposite
effects concerning player 1’s payoff. Depending on the specific application, this can have quite
important implications. For example, we could conclude that a profit-maximizing principal
should try to hire altruistic agents but stay away from reciprocators, because he can exploit
the social preferences of the first but not those of the latter.

5.4 Equilibrium Wages and Efforts

We now examine how reciprocity affects the equilibrium actions. To do so, we invoke some
additional conditions. The upshot of the analysis will be that reciprocity typically has a
positive effect on wages and a more ambiguous effect on efforts.

Our analysis in the following will be based on the standard psychological utility score
F (kij, λiji) = kij ·λiji. Player 2’s optimality condition from Lemma 1 thus becomes â2(w) ∈
arg maxe∈E π̃2(e, w) + y · (π̃1(w, e)− πe

1(w)) · λ212(w, â2) for all w ∈ W . We will also assume
convexity of both W and E, i.e. W = [w, w] and E = [e, e]. Second, some additional but
standard assumptions on payoff functions will be used, which are satisfied in both Example
1 (gift-exchange) and Example 2 (moral hazard).

(A4) (i) π̃1(w, e) is submodular on W × E.
(ii) π̃2(e, w) is supermodular on E ×W .
(iii) π̃1(w, e) is (weakly) concave in e.

The following proposition again compares IE to SPE. For sake of clarity, it applies only
to the simplified case when there is a unique SPE (ã1, ã2), i.e. a unique value ã1 ∈ W

that maximizes π̃1(w, ã2(w)). The result is readily generalizable to allow for multiple SPE,
with its conclusion becoming a comparison between largest and/or smallest wages across
equilibria. The proposition does, however, not require IE to be unique.

Proposition 4. Suppose that (A3) and (A4) hold. Then ã1 ≤ â1 holds for any IE (â1, â2)

in which ∆(w) ≡ ã2(w)− â2(w) is weakly decreasing in w on [w, ã1] or [â1, w] (or both).

Proof. See Appendix A.2.

The proposition applies to all those IE in which the punishment ∆(w) is decreasing over
a suitable range of wages. In a sense, these are equilibria that preserve some properties
of the SPE, namely that increasing the wage increases player 2’s payoffs, hence reduces
unkindness, and leads player 2 to punish less. We will show in Section 6 that, in several
standard applications, any equilibrium exhibits this property.

14



To grasp the intuition for the result, focus on the condition that ∆(w) is decreasing on
[w, ã1] and observe that there are three effects of reciprocity on equilibrium wages, under
the assumptions of the proposition. First, we already know that player 2 responds with
lower effort (than materially optimal) to the equilibrium wage and, in fact, to any unkind
wage offer. Because player 1 is expecting lower effort, he wants to give higher wages by
submodularity (A4)(i). The second effect is more subtle: because π̃1 is concave in efforts by
(A4)(iii), a lower value of effort makes it more attractive for player 1 to induce more effort
by further increasing his wage offer. Finally, consider the third effect: the assumption that
∆(w) is decreasing in the range [w, ã1] implies that for all wages smaller than the SPE wage
ã1, the wage-sensitivity of effort is larger in the IE than in the SPE. This again strengthens
player 1’s incentive to increase wages.

The proposition thus tells us that we can indeed expect reciprocity to have a positive
impact on the level of transfers from player 1 to player 2, as in the standard rotten kid model
or other previously discussed models with outcome-based social preferences. In our model,
the reason for such increased transfers is of course player 1’s attempt to reduce punishment
by player 2, rather than the hope to trigger a benevolent gift in return. Thus it needs to be
pointed out that, because both outcome- and intention-based models have some predictions
in common, the empirical occurrence of such phenomena does not yet lend support to purely
outcome-based models.

The results so far suggest an ambiguous relation between reciprocity and effort. On the
one hand, we already know by Lemma 2 that IE efforts are lower than the material best
response of player 2 to the IE equilibrium wage, due to punishment taking place. On the
other hand, under the assumptions of Proposition 4, wages in IE will be higher than in SPE,
which, with upward-sloping reaction functions, suggests higher efforts. This ambiguity is
confirmed by a closer look at the economic intuition. Recall the following properties:

(a) (A4) requires π̃1 (w, e) to be submodular.

(b) By Lemma 2, efforts at IE wages are lower with IE reaction functions than with the
SPE reaction function. The same can be shown (and actually has been shown in the
proof of Proposition 4) to be true at SPE wages.

(c) We have argued (and will show in our examples) that, in regions with negative kindness,
the wage-sensitivity of effort should be higher in the IE than in the SPE.

The first two properties together suggest that, near the SPE effort, the benefits of inducing
higher effort are lower with reciprocal players than with materialistic players: By (b), near
the SPE and IE efforts, reciprocity concerns increase the wage level required to reach a desired
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effort level. By (a), at these higher wage levels, inducing higher efforts has a smaller effect
on player 1’s payoffs, because a greater part of the benefits accrues to player 2. Property
(c), however, suggests that the costs of inducing higher efforts are also lower, because player
2 reacts more strongly to wage increases. The net effect of these countervailing forces is
unclear at this level of generality. However, in all the examples in Section 6 where there is
a change in effort at all, the cost-reduction effect dominates.

6 Examples

6.1 Gift Exchange

Gift exchange games have served as example both in theoretical and in experimental work
(see Falk and Fischbacher (2006) and the discussion therein). Therefore, we briefly examine
the implications of one-sided reciprocity in our gift exchange game as a starting point.
Assuming an interior solution, the efficient gift w∗ ∈ (0, w̄) is characterized by the condition
v′(w∗) = 1. We also immediately obtain ã2(w) = 0 for all w, which implies that there is a
unique SPE (ã1, ã2) = (0, ã2) where no gift is given and no transfer is paid. An analogous
statement holds for IE.

Proposition 5. In the gift exchange game, any IE (â1, â2) satisfies â1 = 0 and â2(â1) = 0.

Proof. Lemma 2 implies â2(â1) ≤ ã2(â1) = 0, so that â2(â1) = 0 because â2(â1) ∈ [0, ē].
Then, if â1 > 0, we have π̃1(â1, â2) = 0− â1 < 0 ≤ â2(0)− 0 = π̃1(0, â2), a contradiction.

Proposition 5 tells us that intention-based preferences, in contrast to outcome-based
altruism, do not help to solve the inefficiency problem in the simple gift exchange game.
Falk and Fischbacher (2006, p. 305) present a result according to which gift and transfer
are strictly positive even if only player 2 has social preferences.14 In their model, outcome-
and intention-based components are intertwined in the definition of social preferences. Our
above result indicates that any deviation from the SPE must be due to the outcome-based
component.

6.2 Moral Hazard

6.2.1 The Binary Model

We now turn to the richer moral hazard game, and first examine its binary version in greater
detail. Despite its simplicity, there is a variety of interesting insights to be learned from it.

14Falk and Fischbacher (2006) use the slightly different material payoff functions π̃1(w, e) = ve − w and
π̃2(e, w) = w − αe2.
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Without loss of generality, we normalize d(0) = 0 and write d(p) = d > 0. Furthermore,
we assume that pV > d, which implies that the large effort e = p is the efficient action. For
the reciprocity part of preferences we use the standard functional form F (kij, λiji) = kijλiji.
We calculate the equitable payoff πe

i (ai) as the mean between the largest and smallest payoff
of player i within the efficient set ΠE

i (ai), in line with previous models.15 Formally, let
πl

i(ai) = inf {πi|(πi, πj) ∈ ΠE
i (ai)} and πh

i (ai) = sup {πi|(πi, πj) ∈ ΠE
i (ai)}, and define

πe
i (ai) = (πl

i(ai) + πh
i (ai))/2.

The binary game has a unique SPE (ã1, ã2) in which ã2 is of a cut-off form: for any
w < d/p we must have ã2(w) = 0, while ã2(w) = p for all d/p ≤ w.16 Player 1 then pays
a wage of ã1 = d/p and player 2 supplies effort. We can compare this outcome with the
outcomes of IE, which are characterized in the following proposition.

Proposition 6. Consider the binary moral hazard game with pV > d. There exist two values
wl and wh with d/p < wl < wh < V , such that
(i) any IE (â1, â2) satisfies â1 ∈ [wl, wh] and â2(â1) = p, and
(ii) for any ŵ ∈ [wl, wh] there exists an IE (â1, â2) with â1 = ŵ and â2(â1) = p.

Proof. See Appendix, Section A.3.

According to the proposition, the wage paid in any IE must be from the interval [wl, wh],
and it actually induces the high effort. Conversely, there is such an IE for any wage ŵ ∈
[wl, wh]. The equilibria we construct to prove the second claim are of the same cut-off form
as the SPE: player 2 supplies effort only for wages w ≥ ŵ. It is worth pointing out, however,
that not all IE are necessarily cut-off equilibria. Player 2 could supply effort at wage ŵ but
not at some higher wage w′. If player 1, who anticipates this, actually offers wage w′, he
must be considered especially unkind because he intends to induce zero effort and give player
2 a payoff of zero. This can make it optimal from player 2’s perspective to punish player 1

by indeed supplying no effort.17 Such equilibria are rather counterintuitive, and we want to
emphasize that no such construction is used to prove statement (ii) in Proposition 6.

The proposition illustrates some of our general results from Sections 4 and 5. Consider
any IE (â1, â2), where â1 ∈ [wl, wh] must hold according to statement (i). Then, as shown in
the proof of the proposition, player 2’s (correct) belief about player 1’s equilibrium kindness
is given by λ212(â1, â2) = −(p/2)(V − â1), which is strictly negative even in the IE with
largest possible equilibrium wage wh < V . That is what Proposition 1 predicts. On the

15As argued before, we can omit conditioning on the history in our two-stage action-reaction game.
16At a wage of d/p, player 2 is indifferent between both effort levels. An equilibrium with ã2(d/p) =

0 cannot exist, however, because a best-response of player 2 would not exist for such a strategy. This,
essentially, is the reason why the violations of Assumption A(3) that we discussed earlier are innocuous.

17This artefact has already been observed by Falk, Fehr, and Fischbacher (2003b, p. 294f).
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other hand, even the lowest possible equilibrium wage wl is still larger than d/p, i.e. the
wage paid in the unique SPE. These two facts together are rather surprising: player 1 pays a
higher wage in any IE than in the SPE, but this does not imply he is considered kind: after
all, player 1 is still a rotten kid with bad intentions.

Player 2 is faced with the following trade-off. For wages d/p ≤ w, supplying the high
effort e = p is the unique action that induces a Pareto efficient payoff pair. This implies that
supplying effort is not a kind action from point of view of player 2, but it is simply neutral
(k21(p, w) = 0). Strictly positive kindness would require the sacrifice of own payoffs in favor
of player 1. Then, since F (kij, λiji) = kijλiji, the reciprocity term is irrelevant for player 2’s
evaluation of high effort, so that only material payoffs matter for him. On the other hand,
if he decides to supply no effort (e = 0), his material payoffs are zero and only psychological
utility matters. Hence, to induce effort, player 1 needs to make effort sufficiently attrac-
tive from a purely material perspective, relative to the psychologically appealing option of
punishment. Higher wages help on both sides: they make effort materially more reward-
ing, and they reduce player 1’s potential payoff and therefore decrease player 2’s scope for
punishment.18

The fact that the high effort e = p is supplied both in the SPE and in any IE is also
of interest. First, it makes it possible to compare material equilibrium payoffs simply by
comparing equilibrium wages. Proposition 6 therefore confirms Proposition 2’s prediction
that player 1 is worse off in any IE then in the SPE. Analogously, player 2 is strictly better
off. On the other hand, both the SPE and all IE are materially Pareto efficient due to high
effort. The reason that this is true for IE is, of course, the (artificial) restriction to binary
actions, which implies that ã2(â1) /∈ intE and makes Corollary 1 inapplicable. We will
return to this issue in the next subsection when discussing a richer moral hazard model.

Finally, we can examine the boundary values wl and wh more closely. As shown in the
proof of Proposition 6, they are implicitly defined by

y
[
(p/2)(V − wl)

]
=

pwl − d

p(V − wl)
, and (3)

y
[
(p/2)(V + wh)− d

]
=

pwh − d

p(V − wh)
. (4)

We can explicitly write them as functions of the parameters y, V and d and derive compar-
ative static effects.

18We would also want to point out that ã1 ≤ â1 for any IE also follows from our general Proposition 4.
The punishment function ∆(w) = ã2(w) − â2(w) is constant and equal to zero for all wages w ∈ [0, d/p],
which makes the proposition applicable.
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Proposition 7. The values wl(y, V, d) and wh(y, V, d) are strictly increasing in y, V and d,
with limy→∞ wl(y, V, d) = limy→∞ wh(y, V, d) = V .

Proof. See Appendix, Section A.4.

The boundary values are strictly increasing in all three parameters. For the effort cost
d, this effect is standard: If supplying effort becomes more expensive, player 2 demands a
higher wage, i.e. both the largest and the smallest equilibrium wage increases. The same
comparative statics effect does hold for the SPE wage ã1. The SPE wage is independent of
V , however: If player 2 cares only for own material payoffs, the surplus left to player 1 is
irrelevant in his effort decision. This is no longer the case with intention-based preferences.
For a given wage, increasing the project payoff V makes the option of punishment more
attractive, because player 2 can deprive player 1 of higher payoffs by not supplying effort. In
this sense, a larger project value V implies a larger potential for sabotage, and the reciprocal
player wants to be compensated for not using this option.

This finding could again have interesting implications for job design. On the one hand we
should expect jobs with more responsibility to be paid better, even if they require exactly the
same skills. On the other hand, employers could benefit from systematically structuring jobs
so as to minimize what we have called potential for sabotage, even if destructive behavior is
never observed in equilibrium.

The positive effect of the degree of reciprocity y on wl and wh is now also obvious. As
psychological payoffs become more important, larger material payoffs are required to still
supply effort to the unkind player 1. More interesting is the statement that, as y →∞, both
wl and wh converge to V . This implies that player 2’s material payoffs become larger and he
eventually reaps the complete gains from trade as he cares less and less for material payoffs.

6.2.2 A Continuous Model

We now modify the principal-agent example to make the following two points. First, we
show the robustness of the key insights from the binary model. Second, in the new example
the effects of reciprocity are not merely distributionary; instead, efforts and hence efficiency
will be affected positively compared to the SPE, while material Pareto efficiency is at least
not generally attainable.

We modify the previous example by assuming that E = [0, 1] and d(e) = e2, which
results in monetary payoffs π̃1 (w, e) = e (V − w) and π̃2 (e, w) = ew − e2. Analogous to the
assumption pV > d in the previous section, we will assume V > 2 which implies that full
effort e = 1 is efficient. Then it is immediate to show that ã2(w) = min{w/2, 1} is player 2’s
material best response, and player 1 will offer the wage ã1 = min{V/2, 2} in the (unique)
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SPE. We are now first interested whether there are still IE (â1, â2) of the cut-off form, i.e.
equilibria where

â2(w) =

{
1 if ŵ ≤ w,

0 if w < ŵ,

for some ŵ ∈ [0, V ], and â1 = ŵ. Such equilibria are interesting for at least reasons. First,
they are materially Pareto efficient. Second, the possibility that a discontinuity emerges in
an otherwise completely continuous model is of its own interest.

Proposition 8. Consider the continuous moral hazard game with V > 2 and d(e) = e2.
(i) IE of the cut-off form exist if and only if

y ≥ δ(V ) ≡ 2

(V − 1)3/2 − (V − 1)
. (5)

(ii) If (5) is satisfied, then there exist two values wl and wh with 2 < wl ≤ wh < V such that
a cut-off profile is an IE if and only if ŵ ∈ [wl, wh].

Proof. See Appendix, Section A.5.

Condition (5) can be used to describe the parameter region in (V, y)-space for which
cut-off equilibria exist (see Figure 1). High values of V and y (above the downward sloping
line) are conducive to existence. As the size of the surplus grows (V becomes sufficiently
large), small levels of reciprocity suffice to guarantee existence. Intuitively, cut-off equilibria
need a sufficiently strong reciprocity effect for existence, to render credible the threat of
supplying zero effort for small wages. As argued before, this is the case if either y or V are
large enough.

The boundaries wl and wh described in statement (ii) are characterized by conditions
similar to those in the binary moral hazard model (see equations (16) and (17) in Appendix
A.5), and they exhibit the same properties as those described in Proposition 7. Specifically,
as y → ∞, they converge to V . Since ã1 ≤ 2 but 2 < wl ≤ ŵ = â1 holds, we again have
that the wage in any cut-off IE is larger than the SPE wage.19 An example for the case
where V = 3 is given in Figure 2. According to (5), cut-off equilibria then exist whenever
y ≥ 1/(

√
2 − 1) ≈ 2.41. The first equilibrium that emerges (for y = 1/(

√
2 − 1)) has the

cutoff ŵ = 1/(
√

2 − 1). Several equilibria exist for larger values of y, but both the largest
and the smallest equilibrium are strictly increasing, their cut-offs are larger than ã1 = 1.5,
and they converge towards a situation where the agent obtains the entire project payoff.

19To apply Proposition 4, observe that ∆(w) is constant on [â1, w] in any cut-off IE, because ã1(w) =
â1(w) = 1 in this region.
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Figure 1: Existence of Cut-off Equilibria

Now whenever V < 4 so that ã1 < 2 and ã2(ã1) < 1, the effort in any cut-off IE is
strictly larger than in the SPE. In fact, the efficient effort is chosen in any such IE. Note
however that this requires a relatively strong concern for reciprocity. At V = 4 the existence
condition (5) becomes y ≥ 1/(

√
27− 3) ≈ 0.91. Hence whenever the IE has the potential to

outperform the SPE (V < 4), this still requires player 2 to put about at least equal weights
on material and on psychological payoffs.

The quadratic model also has additional equilibria that are not of the cut-off form. The
goal for the remainder of the section will be to illustrate such equilibria and discuss interesting
properties. We should point out, however, that we do not attempt a complete equilibrium
analysis, but construct equilibria as follows.20 First, given some second-order belief c212,
player 2’s optimization yields a unique best effort response to any offered wage. The best
response of player 1 to this best-response function can then also be determined. Under
the (potentially restrictive) assumption that player 2’s material payoff is increasing in the
wage in equilibrium, his equitable payoff can then be calculated as the average between his
equilibrium payoff and the payoff obtained for wage w = V . Then, the fixed point condition
â2 = c212 can be invoked to determine IE. It can now be shown that, as y increases from
0, we pass through the following equilibrium regions (see Table 1 for the numerical results
when V = 3).

(i) For very low values of y2 (e.g., y2 = 0.1), the reaction function of player 2 is zero up
to some threshold after which it becomes positive and is strictly increasing. Eventu-

20The details can be found in Appendix A.6.
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Figure 2: Cut-off Boundaries

y 0 1 1.5 2 5 7 9

Type O O O O O+C O+C C
Lowest wage 1.5 2.22 2.33 2.38 2.54 2.59 2.63
Highest wage 1.5 2.22 2.33 2.38 2.71 2.79 2.84
Effort 0.75 0.95 1 1 1 1 1
π1 1.13 0.75 0.67 0.62 0.46 0.41 0.37
π2 0.56 1.21 1.33 1.38 1.54 1.59 1.63

Table 1: Numerical Results. C = cut-off equilibrium, O = other equilibrium.

ally, a point where the agent supplies full effort is reached. The reaction function is
continuous, and the offered equilibrium wage is too low to induce full effort.

(ii) For larger values of y the equilibrium has similar properties except that, at the threshold
below which the reaction function is zero, there is an upward jump to an effort level
between 0 and 1. As long as y is not too large (e.g., y2 = 1), player 1 will not find it
optimal to induce full effort. For higher values (y2 ≥ 1.5), player 1 pays an equilibrium
wage that induces full effort.

Equilibria of the described type cease to exist if y is larger than some critical value
(between 8 and 9 if V = 3). Figure 3 illustrates the equilibrium strategies of player 2 for
different values of y. Hence, there is a parameter region where the last type of equilibrium
coexists with cut-off equilibria. Several other observations are worth mentioning:
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Figure 3: Other Equilibria

(i) Where cut-off equilibria co-exist with the above derived equilibrium, the wage in the
latter corresponds to the lowest wage in a cut-off equilibrium.

(ii) The relation between y2 and both the lowest and the highest equilibrium wage is
monotone: As the reciprocity parameter increases, so does the equilibrium wage and
the equilibrium effort.

(iii) The material payoff of player 1 decreases with reciprocity, while the material payoff of
player 2 increases with reciprocity.

(iv) As y2 approaches infinity, the equilibrium wage approaches V , so that the agent receives
the entire surplus.

6.2.3 A General Limit Result

We conclude the moral hazard example by providing a general limiting result for the case
when y → ∞. It applies to the continuous moral hazard model for any differentiable (and
strictly increasing and convex) effort cost function d(e), provided that V > d′(0), i.e. that
some effort provision is efficient. Let A (y) denote the set of IE for reciprocity parameter
y, and assume A (y) 6= ∅ for all y ∈ R+. Then, let a∗ : R+ → A1 × A2 be an arbitrary
equilibrium selection function, i.e. a∗(y) = (a∗1(y), a∗2(y)) ∈ A (y) for all y ∈ R+. We denote
the value of a∗2(y) at a wage w by a∗2(y)(w).
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Proposition 9. Consider the continuous moral hazard game where d(e) is differentiable and
V > d′(0). Then any equilibrium selection function a∗ satisfies limy→∞ a∗1(y) = V .

Proof. See Appendix, Section A.7.

Proposition 9 establishes in general what the previous examples have illustrated: as
player 2’s concern for material payoffs becomes negligible relative to psychological payoffs,
he eventually reaps the entire gains from trade, i.e. the equilibrium wage converges to the
full project payoff V . This result is perfectly robust, in the sense that it holds for every
conceivable equilibrium selection.

7 Discussion

Our model with one-sided reciprocity is not supposed to deliver a comprehensive picture
of bilateral interactions. First, many interactions (e.g. among experiment participants)
will naturally involve social preferences on both sides. As Rabin (1993) has already shown,
positive kindness is then compatible with equilibrium. Other interactions, such as between
a profit-maximizing firm and an employee, are more in line with our setup. Second, and
more importantly, substantial evidence for the simultaneous presence of both intention- and
outcome-based social preferences has been accumulated by now (Falk, Fehr, and Fischbacher
2003b). Still, we believe that our approach is valuable for at least two reasons.

1. We have chosen to focus on intention-based preferences for conceptual clarity. As
a result, we have been able to show that existing results for purely outcome-based
preferences are changed considerably. Our approach makes it possible to isolate the
effects of intention-based preferences, which would be hard if not impossible in a model
that combines different types of social preferences. Similarly, the role of the reference
point against which kindness is measured has been clarified. Our results rest on the
assumption of interior reference points. From a different perspective, our findings
therefore imply that positive equilibrium kindness necessarily requires the use of a
reference point that is on an extreme point of the efficiency frontier.

2. While we described πi as player i’s material payoff throughout the paper, a more
appropriate name would actually be outcome-based payoff. Assuming that πi includes
nonpecuniary utility components such us altruism or envy is compatible with our model
as long as they can be derived from outcomes only. Hence many of the effects that we
have derived will still exist in addition to possible outcome-based effects. In particular,
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this holds for the bad intentions result, which requires essentially no assumptions on
the payoff functions πi.

Utikal and Fischbacher (2009) report on an experiment where individuals were asked to
evaluate the intentions behind actions of a profit-maximizing firm: one treatment involved
positive and one negative externalities on a third party. They find that, when the firm is in a
dominant position and positive externalities are small, positive externalities are perceived as
unintentional while negative externalities are perceived as fully intentional. The effect is no
longer present when the firm has small economic status. While the overall approach is not
fully comparable to our model, for example because the person to judge and punish is not
the one experiencing the externality, these results still confirm earlier findings according to
which negative reciprocity, as in our model, seems to be the more widespread phenomenon
(see Utikal and Fischbacher (2009) for a detailed discussion).

Finally, we have already emphasized in Section 3 that our definition of equitable payoff
rests on an efficiency concept adopted from Rabin (1993) rather than Dufwenberg and Kirch-
steiger (2004). This is indeed crucial for our results. The concept of sequential reciprocity
equilibrium due to Dufwenberg and Kirchsteiger (2004) would require to define ΠE

i (ai|h) as
the payoff pairs achievable when player j 6= i can play any efficient strategy aj. A strategy
aj is efficient except if there exists another strategy a′j that always yields the same and
sometimes higher payoffs (to both players), where “always” refers to all histories and all
strategies of player i. With this concept, the set ΠE

i (ai|h) would become substantially larger
and include payoff pairs that are in fact Pareto dominated when h and ai are fixed. As a
result, equilibrium kindness would become possible even with one-sided reciprocity. In the
binary moral hazard game, for instance, paying a wage below the agent’s threshold ŵ would
be efficient. Given the agent’s actual strategy, the resulting outcome is Pareto inefficient.
There are, however, non-equilibrium strategies of the agent for which the low wage would
induce a Pareto efficient outcome, in which the principal would obtain very large payoffs.
Hence the principal could be considered kind when offering ŵ, even though he knows the
agent’s actual equilibrium strategy and in fact does not sacrifice own payoffs in favor of the
agent.

8 Conclusions

This paper has shown that, when materialistic and reciprocal players interact, both will
typically display unkind behavior in equilibrium. This result, which requires only weak as-
sumptions, stands in stark contrast to familiar findings that materialistic players (“rotten
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kids”) benefit from outcome-based social preferences of others, such as altruism and inequity
aversion. We explore the implications of our general result in standard principal-agent games.
Compared to the subgame-perfect equilibrium, the intentions equilibrium usually displays
higher wages and higher efforts. While the reciprocal player obtains higher material payoffs
thanks to the higher wages even though he chooses higher efforts, the materialistic player
loses, because the higher effort does not compensate for higher wage costs. When reciprocity
concerns are sufficiently pronounced, the gains from trade may accrue fully to the recipro-
cal player. Thus, contrary to inequity aversion, reciprocity works towards a more unequal
distribution.

Our analysis has several interesting applications. First, most directly, firms may not
want to employ reciprocal workers. Even compared to the alternative of purely materialistic
workers, the employers are typically worse off with reciprocal agents. Second, materialistic
workers can benefit from being perceived as reciprocators, in the sense that firms who are
prepared to employ them will pay higher wages than to materialistic agents. However, in
view of the first conclusion they must be concerned that firms may shy away from employing
them in the first place. Third, we obtain a rationale for paying higher wages to employees
with higher responsibility, as measured by the difference in payoffs that workers’ actions
can make. Suppose the worker has a strong potential for sabotage by choosing low effort,
because high effort may lead to a substantial increase in social surplus. Contrary to the
corresponding model with purely materialistic agents, our model predicts a higher wage.

While these implications follow more or less directly from our model, we are also confident
that suitable extensions can be used to obtain further interesting results on organizational
design. For instance, experimental observations suggests that, if a principal gives the control
rights for unpopular decisions to third parties, he may benefit because he is perceived as
less unkind than when he takes such decisions himself (Bartling and Fischbacher 2008). It
would be interesting to see whether such behavior is consistent with our framework. Finally,
an extension of our paper to a model with multiple agents would seem suitable to shed new
light on the longstanding debate on the boundaries of the firm: Changes in the numbers of
employees working on related projects may affect their potential for sabotage and thus the
potential adverse consequences of reciprocal behavior.
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A Appendix

A.1 Proof of Proposition 1

Step 1. Consider any history h that is reached on the equilibrium path, i.e. that satisfies âh
i = âi

for i = 1, 2. We then have that πi(âi, âj |h) = πi(âi, âj |∅) = πi(âi, âj), ΠE
i (âi|h) = ΠE

i (âi|∅) and
πe

i (âi|h) = πe
i (âi|∅) for i = 1, 2, i 6= j, the latter by (A2). Therefore, the following arguments for

h = ∅ apply unaltered to any history on the equilibrium path.
Step 2. We now show that k12(â1, â2|∅) ≤ 0, with strict inequality if |ΠE

2 (â2|∅)| ≥ 2. To
obtain a contradiction, assume first that |ΠE

2 (â2|∅)| ≥ 2 but k12(â1, â2|∅) ≥ 0. There are now
two subcases. First, (π1(â1, â2), π2(â2, â1)) ∈ ΠE

2 (â2|∅) may hold. Then, under (A1), there exists
a strategy a′1 ∈ A1 such that (π1(a′1, â2), π2(â2, a

′
1)) ∈ ΠE

2 (â2|∅) and π2(â2, a
′
1) < πe

2(â2|∅) ≤
π2(â2, â1), where the second inequality follows from the assumption that k12(â1, â2|∅) ≥ 0. Pareto
efficiency of the elements in ΠE

2 (â2|∅) then implies that π1(a′1, â2) > π1(â1, â2), which contradicts
that â1 ∈ arg maxa1∈A1 π1(a1, â2). Second, (π1(â1, â2), π2(â2, â1)) /∈ ΠE

2 (â2|∅) may hold. Then, all
(π′1, π

′
2) ∈ ΠE

2 (â2|∅) must satisfy π′2 > π2(â2, â1). Assume to the contrary that π′2 ≤ π2(â2, â1) for
some (π′1, π

′
2) ∈ ΠE

2 (â2|∅). Since â1 ∈ arg maxa1∈A1 π1(a1, â2), π′1 ≤ π1(â1, â2) must also hold. But
then, if (π′1, π

′
2) ∈ ΠE

2 (â2|∅), (π1(â1, â2), π2(â2, â1)) ∈ ΠE
2 (â2|∅) must also hold, a contradiction.

Now we immediately obtain π2(â2, â1) < πe
2(â2|∅) under (A1), and hence k12(â1, â2|∅) < 0.

Assume then that |ΠE
2 (â2|∅)| = 1 and denote ΠE

2 (â2|∅) = {(π′1, π′2)}, so that πe
2(â2|∅) = π′2

under (A1). Then, unique Pareto efficiency of (π′1, π
′
2) implies that π2(â2, â1) ≤ π′2, which in turn

implies k12(â1, â2|∅) ≤ 0. This completes step 2.
Step 3. Now consider player 2. In any IE, we have that b21 = â1 and c212 = â2 according

to Definition 1, so that λ212(b21, c212|h) = k12(â1, â2|h) ≤ 0 at any history h ∈ H on the equi-
librium path, including h = ∅. Hence U2(a2, â1, c212|∅) is (weakly) decreasing in π1(â1, a2|∅).
We can now go through the same cases as for player 1, repeating analogous arguments. First, if
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|ΠE
1 (â1|∅)| ≥ 2 and (π1(â1, â2), π2(â2, â1)) ∈ ΠE

1 (â1|∅), we obtain a contradiction to weakly pos-
itive kindness because ∃a′2 ∈ A2 such that π1(â1, a

′
2) < π1(â1, â2) and π2(a′2, â1) > π2(â2, â1). If

(π1(â1, â2), π2(â2, â1)) /∈ ΠE
1 (â1|∅), on the other hand, all profiles (π′1, π

′
2) ∈ ΠE

1 (â1|∅) must satisfy
π′1 > π1(â1, â2). Otherwise, if π′1 ≤ π1(â1, â2) held for some (π′1, π

′
2) ∈ ΠE

1 (â1|∅), π′2 > π2(â1, â2)

would have to be true, because (π′1, π
′
2) is Pareto efficient but (π1(â1, â2), π2(â2, â1)) is not. Then,

player 2 would prefer the strategy inducing (π′1, π
′
2) over â2. But then again π1(â1, â2) < πe

1(â1|∅).
Finally, if |ΠE

1 (â1|∅)| = 1, it again follows immediately that k21(â2, â1|∅) ≤ 0.

A.2 Proof of Proposition 4

Step 1. First we show that â2(ã1) ≤ ã2(ã1) must hold. To obtain a contradiction, assume
â2(ã1) > ã2(ã1). Then, π1(ã1, ã2) = π̃1(ã1, ã2(ã1)) < π̃1(ã1, â2(ã1)) under (A3)(i). Since â1 ∈
arg maxw∈W π̃1(w, â2(w)) according to Lemma 1, π̃1(ã1, â2(ã1)) ≤ π̃1(â1, â2(â1)) = π1(â1, â2) must
hold, which implies π1(ã1, ã2) < π1(â1, â2) and contradicts Proposition 2.

Step 2. To prove the proposition, we are going to show that, for any w ∈ [w, ã1), it holds
that π̃1(ã1, ã2(ã1)) − π̃1(w, ã2(w)) ≤ π̃1(ã1, â2(ã1)) − π̃1(w, â2(w)). The LHS of this inequality is
strictly positive by definition of ã1 as the unique maximizer of π̃1(w, ã2(w)). Then, if the inequality
holds, the RHS must also be strictly positive. But π̃1(ã1, â2(ã1))− π̃1(â1, â2(â1)) cannot be strictly
positive, again because â1 maximizes π̃1(w, â2(w)). We then know that â1 /∈ [w, ã1), which is the
desired conclusion.

The above inequality can be rearranged to π̃1(ã1, ã2(ã1)) − π̃1(ã1, â2(ã1)) ≤ π̃1(w, ã2(w)) −
π̃1(w, â2(w)). Now, π̃1(ã1, ã2(ã1)) − π̃1(ã1, â2(ã1)) ≤ π̃1(w, ã2(ã1)) − π̃1(w, â2(ã1)) holds due to
w < ã1, â2(ã1) ≤ ã2(ã1) from step 1, and submodularity of π̃1 (assumption (A4)(i)). Supermodular-
ity of π̃2 (assumption (A4)(ii)) implies that ã2(w) ≤ ã2(ã1). Then, concavity of π̃1 in e (assumption
(A4)(iii)) implies that π̃1(w, ã2(ã1))− π̃1(w, â2(ã1)) ≤ π̃1(w, ã2(w))− π̃1(w, â2(ã1)− ã2(ã1)+ ã2(w)).
Now observe that â2(w) ≤ â2(ã1) − ã2(ã1) + ã2(w), which follows immediately from the fact
that ∆(w) is decreasing in w ∈ [w, ã1]. Thus π̃1(w, ã2(w)) − π̃1(w, â2(ã1) − ã2(ã1) + ã2(w)) ≤
π̃1(w, ã2(w))−π̃1(w, â2(w)). Combining all these inequalities yields π̃1(ã1, ã2(ã1))−π̃1(ã1, â2(ã1)) ≤
π̃1(w, ã2(w))− π̃1(w, â2(w)), which is the desired result.

Step 3. The proof for the interval [â1, w] is analogous.

A.3 Proof of Proposition 6

Statement (i). Fix any IE (â1, â2).
Step 1. We will first derive the kindness terms k21 = π̃1(w, e) − πe

1(w) for all w ∈ [0, V ]. For
w < d/p it holds that ΠE

1 (w) = {(0, 0), (p(V −w), pw − d)}, because pw − d < 0 < p(V −w). This
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implies πe
1(w) = (p/2)(V − w) and

k21(e, w) =

{
(p/2)(V − w) if e = p,

−(p/2)(V − w) if e = 0.

For d/p ≤ w we have ΠE
1 (w) = {(p(V − w), pw − d)}. This implies πe

1(w) = p(V − w) and

k21(e, w) =

{
0 if e = p,

−p(V − w) if e = 0.

Step 2. We can now show that â2(V ) = p must hold. Indeed, from the above results we have
k21(e, V ) = 0 for both e ∈ {0, p}. Hence â2(V ) = ã2(V ) = p according to Lemma 1.

Step 3. Next, we show that ∃w′ < V with â2(w′) = p. To obtain a contradiction, assume
â2(w) = 0 for all w ∈ [0, V ). Then ΠE

2 (â2) = {(pV − d, 0)}, πe
2(â2) = pV − d and

λ212(w, â2) =

{
0 if w = V,

−(pV − d) if w < V.

Consider any wage w ∈ [d/p, V ). According to Lemma 1, optimality of effort â2(w) = 0 requires
π̃2(0, w) + yk21(0, w)λ212(w, â2) ≥ π̃2(p, w) + yk21(p, w)λ212(w, â2). Using the above derived terms
this can be rearranged to

yp(V − w) ≥ pw − d

pV − d
.

But as w → V , the LHS of this condition goes to zero while the RHS goes to 1, so it must be
violated for sufficiently large wages w < V , which precludes the possibility of (â1, â2) being an IE.

Step 4. Given â2, let W0 = {w ∈ W |â2(w) = 0} and Wp = {w ∈ W |â2(w) = p}. We know from
step 3 that |Wp| ≥ 2. Since any w ∈ W0 induces material payoffs π̃1(w, â2(w)) = π̃2(â2(w), w) = 0,
while for w = V we have π̃1(V, â2(V )) = 0 and π̃2(â2(V ), V ) = pV −d > 0 according to step 2, wages
w ∈ W0 induce Pareto inefficient payoffs. For wages w ∈ Wp, π̃1(w, â2(w)) = p(V − w) is strictly
decreasing and π̃2(â2(w), w) = pw−d is strictly increasing in w, which implies ΠE

2 (â2) = Wp. From
Lemma 1 we can also conclude that â1 = minWp, so that â1 < V and â2(â1) = p. Player 2’s
equitable payoff can then be expressed as πe

2(â2) = (p/2)(V + â1) − d, because w = â1 yields his
smallest and w = V yields his largest among Pareto efficient payoffs. As for the kindness term λ212,
we obtain

λ212(w, â2) =

{
pw − (p/2)(V + â1) if w ∈ Wp,

d− (p/2)(V + â1) if w ∈ W0.

Step 5. Since â1 ∈ Wp we have that λ212(â1, â2) = (p/2)(â1−V ) < 0. This implies that d/p ≤ â1

must be true, since otherwise, â2(â1) = p 6= 0 = arg maxe∈{0,p} π̃2(e, â1) + yk21(e, â1)λ212(â1, â2),
for both material and reciprocity motives. Since â1 = minWp, we obtain d/p ≤ w for all w ∈ Wp

as a corollary.
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Step 6. For (â1, â2) to be an IE it needs to hold that π̃2(p, w)+yk21(p, w)λ212(w, â2) ≥ π̃2(0, w)+

yk21(0, w)λ212(w, â2) for all w ∈ Wp. Using the above derived expressions for the case d/p ≤ w,
this can be simplified to

y [(p/2)(V + â1)− pw] ≤ pw − d

p(V − w)
. (6)

Since the LHS of (6) is strictly decreasing in w and the RHS is strictly increasing, this is satisfied
∀w ∈ Wp iff it is satisfied at â1 = min Wp:

y [(p/2)(V − â1)] ≤ pâ1 − d

p(V − â1)
. (7)

Since the LHS of (7) is decreasing and the RHS is increasing in â1, condition (7) implicitly defines
a lower bound wl for â1 given by

y
[
(p/2)(V − wl)

]
=

pwl − d

p(V − wl)
, (8)

such that (â1, â2) can be an IE only if wl ≤ â1. To see that d/p < wl, observe that the RHS of (8)
becomes zero if wl = d/p, while the LHS is still positive. As the LHS is decreasing and the RHS is
increasing in wl we must have d/p < wl.

Step 7. For (â1, â2) to be an IE, it also needs to hold that π̃2(0, w) + yk21(0, w)λ212(w, â2) ≥
π̃2(p, w) + yk21(p, w)λ212(w, â2) for all w ∈ W0. For w ∈ W0 with d/p ≤ w < â1 (which exist since
d/p < wl ≤ â1), this can be rearranged to

y [(p/2)(V + â1)− d] ≥ pw − d

p(V − w)
.

Since the RHS is continuous and increasing in w, this is satisfied for all d/p ≤ w < â1 iff it is
satisfied at â1, i.e.

y [(p/2)(V + â1)− d] ≥ pâ1 − d

p(V − â1)
. (9)

Both the LHS and the RHS of (9) are increasing in â1. We can calculate the derivative of the LHS
w.r.t. â1 as (p/2)y and the derivative of the RHS as (V − d/p)/(V − â1)2. The condition that
(p/2)y < (V − d/p)/(V − â1)2 can be rearranged to

y [(p/2)(V − â1)] <
pV − d

p(V − â1)
,

which is satisfied whenever (7) is satisfied. Thus (9) defines the upper bound wh by

y
[
(p/2)(V + wh)− d

]
=

pwh − d

p(V − wh)
, (10)

and (â1, â2) is an IE only if â1 ≤ wh. Arguments analogous to step 6 reveal that d/p < wh < V .
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To show that wl < wh, it suffices to show that

y
[
(p/2)(V − wh)

]
< y

[
(p/2)(V + wh)− d

]
. (11)

If (11) holds and wh solves (10), then for wl = wh the LHS of (8) is smaller than the RHS of (8),
which implies the desired result wl < wh. But inequality (11) is equivalent to d/p < wh, which is
true.

Statement (ii). For any ŵ ∈ [wl, wh] we construct an IE (â1, â2) with â1 = ŵ and the cut-off
strategy

â2(w) =

{
p if ŵ ≤ w,

0 if w < ŵ

for player 2, so that â2(â1) = â2(ŵ) = p.
Step 1. Given â2, the fact that ŵ (uniquely) maximizes π̃1(w, â2(w)) as required by Lemma 1

is immediate.
Step 2. Since wl ≤ ŵ, the argument in step 6 for statement (i) immediately implies that

â2(w) = p is indeed a best-response for player 2 to any w ∈ Wp = [ŵ, V ].
Step 3. Analogously, the argument in step 7 above implies that â2(w) = 0 is a best response

for player 2 to any w ∈ [d/p, ŵ). Since W0 = [0, ŵ), it only remains to be checked that â2(w) = 0

is also a best response to wages w ∈ [0, d/p). But the corresponding payoff comparison can easily
be rearranged to (pw − d)/2 ≤ y which is always satisfied because pw − d < 0 in that range. Thus
whenever ŵ ∈ [wl, wh], the above defined cut-off profile (â1, â2) is an IE.

A.4 Proof of Proposition 7

Step 1. Consider wl first. Equation (3) can be rearranged to

wl − (d/p)− (yp/2)(V − wl)2 = 0. (12)

Implicit differentiation of (12) yields

∂wl

∂y
=

(p/2)(V − wl)2

1 + yp(V − wl)
> 0

due to wl < V . Next,
∂wl

∂V
=

yp(V − wl)
1 + yp(V − wl)

> 0,

and
∂wl

∂d
=

1/p

1 + yp(V − wl)
> 0.
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Step 2. As for wh, (4) can be rearranged to

wh − (d/p)− (yp/2)(V + wh)(V − wh) + yd(V − wh) = 0. (13)

From (13) we obtain
∂wh

∂y
=

(V − wh)
[
(p/2)(V + wh)− d

]

1 + y(pwh − d)
> 0

because d/p < wh < V . Next,
∂wh

∂V
=

y(pV − d)
1 + y(pwh − d)

> 0

and
∂wh

∂d
=

(1/p)− y(V − wh)
1 + y(pwh − d)

. (14)

The condition that (14) is strictly positive can be rearranged to y < (1/p(V − wh)) and, by mul-
tiplying both sides with pwh − d, to y(pwh − d) < (pwh − d)/(p(V − wh)). In this expression, the
RHS (pwh − d)/(p(V −wh)) is equal to the RHS of (4), but the LHS y(pwh − d) is strictly smaller
than the LHS of (4), because wh < V . Since (4) holds as an equality, we can conclude ∂wh/∂d > 0.
Step 3. Rewrite (12) as

y
(p

2

)
=

wl − d/p

(V − wl)2
. (15)

As y → ∞, the LHS of (15) goes to infinity, and so must the RHS, immediately implying that
wl → V because d/p < wl < V . Since wl < wh < V , the same limit statement must hold for wh.

A.5 Proof of Proposition 8

Step 1. As in the proof of Proposition 6, we first derive the kindness terms k21(e, w). Since
ã2(w) = min{w/2, 1} maximizes player 2’s material payoffs π̃2(e, w) = ew − e2, which are strictly
concave in e, we obtain ΠE

1 (w) =
{(

e(V − w), ew − e2
) |e ∈ [min{w/2, 1}, 1]

}
. The equitable payoff

when w ∈ [0, 2] is thus πe
1(w) = (1/2)(V −w)((w/2) + 1), and πe

1(w) = V −w whenever w ∈ (2, V ].
We then obtain the kindness term

k21(e, w) =





(V − w)(e− 1) if w ∈ (2, V ],

(V − w)
(
e− (w/2)+1

2

)
if w ∈ [0, 2].

Step 2. Lemma 1 now implies that, in any IE (â1, â2), overall utility ew−e2+yk21(e, w)λ212(w, â2)

must be maximized by e = â2(w) for every w ∈ [0, V ]. It is easily verified that the objective is
strictly concave in e (for any fixed w). The first-order condition is identical for the cases w ∈ [0, 2]

and w ∈ (2, V ] and characterizes the following effort level:

e∗(w) =
w

2
+

yλ212(w, â2)(V − w)
2

.
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Concavity implies that â2(w) = e∗(w) whenever e∗(w) ∈ [0, 1], and â2(w) = 1 (= 0) whenever
e∗(w) > 1 (< 0).

Step 3. Now consider a cut-off profile (â1, â2) with cut-off value ŵ. Arguing as for Proposition
6, we obtain ΠE

2 (â2) = {(w − 1, V − w)|ŵ ≤ w} and πe
2(â2) = ((V + ŵ)/2)− 1. This implies

λ212(w, â2) =

{
w − (

V +ŵ
2

)
if ŵ ≤ w,

1− (
V +ŵ

2

)
if w < ŵ.

Optimality of â2(w) = 1 for all ŵ ≤ w now requires e∗(w) ≥ 1 for all those wages, i.e.

y

[(
V + ŵ

2

)
− w

]
≤ w − 2

V − w

after substitution of λ212 and some rearrangements. Arguing as for Proposition 6, this yields a lower
bound wl for ŵ, implicitly defined by

y

[(
V − wl

2

)]
=

wl − 2
V − wl

. (16)

Analogously, the condition for â2(w) = 0 to be optimal for all w ∈ [0, ŵ) yields an upper bound
given by

y

[(
V + wh

2

)
− 1

]
=

wh

V − wh
. (17)

Step 5. The fact that 2 < wl < V and wh < V is shown as for Proposition 6. Thus is remains to
be shown under which conditions wl ≤ wh holds, so that the requirements for equilibrium existence
can be met simultaneously.

Fix wh as defined in (17) and suppose we evaluate (16) at the value wh instead of wl. Then the
LHS of (16), (y/2)(V − wh), is (weakly) smaller than the RHS, (wh − 2)/(V − wh), if and only if
wl ≤ wh. Dividing the LHS of (17) by (y/2)(V −wh) and the RHS by (wh − 2)/(V −wh) we then
obtain the equivalent condition

V + wh − 2
V − wh

≤ wh

wh − 2
,

which in turn is equivalent to 1 +
√

V − 1 ≤ wh. Hence wl ≤ wh if and only if 1 +
√

V − 1 ≤ wh.
Suppose first that wl ≤ wh, so that 1 +

√
V − 1 ≤ wh. (17) can be rearranged to

y =
2wh

(V − wh)(V + wh − 2)
. (18)

Since the RHS of this expression is increasing in wh for values 1 < wh, we can replace wh by
1 +

√
V − 1 to obtain the inequality

y ≥ 2
[
1 +

√
V − 1

]
[
(V − 1)−√V − 1

] [
(V − 1) +

√
V − 1

] =
2

(V − 1)
[√

V − 1− 1
] ,
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which is condition (5). Conversely, if (5) is satisfied, then 1 +
√

V − 1 ≤ wh must hold, because the
RHS of (18) is too small at wh = 1 +

√
V − 1, but increasing. This implies wl ≤ wh.

A.6 Numerical Example

We search for equilibria that exhibit the properties that (i) the equilibrium effort is interior, â2(â1) ∈
(0, 1), and (ii) the monetary payoff of player 2 is increasing in wages.

Consider player 1. If he induces an interior effort level, he chooses the wage according to

â′2 (w) (V − w)− â2 (w) = 0, (19)

provided â2 (w) is differentiable in the relevant region. Assuming that a solution of this equation
exists, denote it as wm and write em = â2 (wm). If the monetary payoff of player 2 is increasing
in the wage, wm leads to the minimum payoff for player 2 among the Pareto-efficient choices given
â2 (w): Any lower wage will make both players worse off, and any higher wage will make player 1

worse off. Also, â2(V ) = 1 must always hold, because k21(e, V ) as derived in the proof of Proposition
8 is independent of e, so that â2(V ) = ã2(V ). We thus obtain

πe
2 (â2) =

emwm − (em)2 + V − 1
2

. (20)

Using the kindness terms derived in the proof of Proposition 8, we obtain the payoff of player 2 as

U2 (e, w, â2) =





ew − e2 + y (V − w) (e− 1)
(
â2(w)w − (â2(w))2 − πe

2 (â2)
)

if w ∈ (2, V ]

ew − e2 + y (V − w)
(
e− (w/2)+1

2

)(
â2(w)w − (â2(w))2 − πe

2 (â2)
)

if w ∈ [0, 2]
.

(21)
The function U2(e, w, â2) is strictly concave in e and yields the first order condition

∂U2

∂e
= w − 2e + y (V − w)

(
â2(w)w − (â2(w))2 − πe

2 (â2)
)

= 0.

Using (20) and the fixed point condition e = â2(w), we obtain

w − 2â2(w) + y (V − w)

(
â2(w)w − (â2(w))2 −

(
emwm − (em)2 + V − 1

2

))
= 0. (22)

Then, by implicit differentiation we can determined the slope of â2(w) as

â′2(w) = −y(â2(w))2 − 1
2y − 1

2y (em)2 + 1
2V y + V yâ2(w)− 2ywâ2(w) + 1

2ywmem + 1
V yw − yw2 − 2V yâ2(w) + 2ywâ2(w)− 2

. (23)

If equilibrium wages and efforts are wm and em, then the following requirements need to be
fulfilled. First, (19) has to hold with â′2(w) replaced by the right-hand side of (23) evaluated at
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w = wm and â2(wm) = em. Second, (22) has to hold for wm and em. These two requirements give

V − wm − 2em − ywm − 6y (em)2 + V y +
3
2
ywm (em)2 +

1
2
ywmem + 3V yem +

1
2
V y (em)2 − 3

2
V ywmem = 0. (24)

and

wm − 2em + y (V − wm)

(
emwm − (em)2 −

(
emwm − (em)2 + 2

2

))
= 0.

The last two equations can be used to calculate candidate equilibrium actions for given parameter
values, provided an interior solution exists. It remains to be checked that, along the reaction curve,
the equilibrium payoff of player 2 increases; but this turns out to be true in the examples.

To derive â2 at wage levels other than wm, one has to start from (22). Except for small values
of y, the curve described by this equation has no solution for low values of w. Thus a boundary
solution emerges. Because ∂U2/∂e < 0 and ∂2U2/∂e2 < 0, the boundary solution is â2 (w) = 0.
To the immediate right of the critical wage level where a solution of (22) emerges, there is a region
where it is solved by two effort levels, only one of which is an original best response. At the critical
level, the reaction curve jumps upwards to this effort level. For higher wage levels, (22) yields a
solution larger than 1. At such wage levels, ∂U2/∂e > 0 and ∂2U2/∂e2 < 0 imply â2 (w) = 1.

For y > 1.5 it turns out that the solution derived in the above fashion is no longer in the strategy
space, because it would involve e > 1. Then one has to modify the above procedure by taking the
candidate effort level e = 1. Choosing w as the solution of (22) for e = em = 1, one arrives at a
candidate equilibrium. Going through similar procedures as above one obtains a reaction function
with similar properties up to parameter values including y = 8. For higher parameter values, e.g.
y = 9, the upward-sloping part of (22) no longer lies in the strategy space, so that solutions of the
type described here no longer exist.

A.7 Proof of Proposition 9

Step 1. To obtain a contradiction, assume the limit statement is not true, i.e. ∃ε > 0 such that
∀y ∈ R+, ∃y′ > y with a∗1(y

′) ≤ V − ε. This includes the possibility that a∗1 converges to a value
other than V and that a∗1 does not converge. We keep ε with the above property fixed for the rest
of the proof.

Step 2. We then claim that ∃ȳ such that, for all y > ȳ, a∗2(y)(a∗1(y)) = 0 whenever a∗1(y) ≤
V − ε. To prove this claim, observe that e = a∗2(y)(w) maximizes U2(e, w) = ew − d(e) +

yk21(e, w)λ212(w, a∗2(y)) according to Lemma 1, for any w ∈ [0, V ]. Since k21(e, V ) = π̃1(V, e) −
πe

1(V ) = −πe
1(V ) is independent of e, we must have a∗2(y)(V ) = ã2(V ). Then, since π̃2(e, w) is

strictly increasing in w, we obtain πh
2 (a∗2(y)) = π̃2(ã2(V ), V ). We also must have πl

2(a
∗
2(y)) ≥
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π̃2(a∗2(y)(a∗1(y)), a∗1(y)), which implies

πe
2(a

∗
2(y)) ≥ π̃2(ã2(V ), V ) + π̃2(a∗2(y)(a∗1(y)), a∗1(y))

2
.

Then, since λ212(w, a∗2(y)) = π̃2(a∗2(y)(w), w)− πe
2(a

∗
2(y)), we obtain

λ212(a∗1(y), a∗2(y)) ≤ 1
2

[π̃2(a∗2(y)(a∗1(y)), a∗1(y))− π̃2(ã2(V ), V )] .

Furthermore, it holds that

1
2

[π̃2(a∗2(y)(a∗1(y)), a∗1(y))− π̃2(ã2(V ), V )] ≤ 1
2

[π̃2(ã2(V − ε), V − ε)− π̃2(ã2(V ), V )] ≡ η

if a∗1(y) ≤ V − ε, so that λ212(a∗1(y), a∗2(y)) ≤ η < 0. Now consider the derivative of player 2’s utility
function w.r.t. e for given w = a∗1(y):

∂U2(e, a∗1(y))
∂e

= a∗1(y)− d′(e) + yλ212(a∗1(y), a∗2(y))(V − a∗1(y)).

Using the above results, it then holds that

∂U2(e, a∗1(y))
∂e

≤ (V − ε) + yηε.

Hence whenever y > ȳ ≡ −(V − ε)/(εη), we have that U2(e, a∗1(y)) is strictly decreasing in e ∈ [0, 1],
which implies a∗2(y)(a∗1(y)) = 0.

Step 3. Steps 1 and 2 together imply that ∃y′ > ȳ such that a∗1(y
′) ≤ V −ε and a∗2(y

′)(a∗1(y
′)) = 0.

This implies π̃1(a∗1(y
′), a∗2(y

′)(a∗1(y
′))) = 0. We now claim that ∃w′ < V such that a∗2(y

′)(w′) > 0.
Consider again the derivative ∂U2(e, w)/∂e = w− d′(e) + y′λ212(w, a∗2(y

′))(V −w). As w → V , the
reciprocity term goes to zero (because λ212(w, a∗2(y

′)) is bounded), so ∂U2(0, w)/∂e → V −d′(0) > 0,
implying a∗2(y

′)(w′) > 0 for some sufficiently large w′ < V . But then π̃1(w′, a∗2(y
′)(w′)) > 0 =

π̃1(a∗1(y
′), a∗2(y

′)(a∗1(y
′))), which contradicts that a∗(y′) = (a∗1(y

′), a∗2(y
′)) ∈ A (y′).
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