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ABSTRACT

Prisoners’ Other Dilemma*

Collusive agreements and relational contracts are commonly modeled as
equilibria of dynamic games with the strategic features of the repeated
Prisoner’s Dilemma. The pay-offs agents obtain when being ‘cheated upon’ by
other agents play no role in these models. We propose a way to take these
pay-offs into account, and find that cooperation as equilibrium of the infinitely
repeated discounted Prisoner’s Dilemma is often implausible: for a significant
subset of the pay-off/discount factor parameter space, all cooperation
equilibria are strictly risk dominated in the sense of Harsanyi and Selten
(1988). We derive an easy-to-calculate critical level for the discount factor
below which this happens, also function of pay-offs obtained when others
defect, and argue it is a better measure for the ‘likelihood’ of cooperation than
the critical level at which cooperation is supportable in equilibrium. Our results
apply to other games sharing the strategic structure of the Prisoner’s Dilemma
(repeated oligopolies, relational-contracting models, etc.). We illustrate our
main result for collusion equilibria in the repeated Cournot duopoly.
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Collusive agreements among oligopolistic firms, non-verifiable financial transactions,
and relational contracts in general are usually modeled as equilibria of infinitely repeated
games with the strategic structure of a repeated Prisoner’s Dilemma. A common feature
of these models is that the conditions for an agreement being supportable in equilibrium
are independent of the payoffs agents obtain when other agents defect from the equi-
librium. After the initial description, payoffs obtained when being “cheated upon” by
other agents typically drop out of the model, as they play no role in the standard theory
of repeated games. We believe that real world agents do care about what would happen
if other agents defected from the agreed strategy profile, and that these considerations
should not be left out of our models. In this paper we propose a natural way in which
we can take these considerations into account.

Consider the following game, denoted by I', where a < %

r c d

10

c 3 3
3 a

7

a —_—

d| 1 7’
3 3

Most students in social sciences are told at some point in their curriculum the famous
story about two prisoners invented by Albert Tucker in 1950 for a seminar in the psy-
chology department in Stanford. They learn that I' is dominance solvable and that
the strategy profile D := (d,d) is the unique equilibrium point, although being strictly
Pareto-dominated by the strategy profile C' := (¢, ¢). Later on they learn that if players
are sufficiently patient, this dilemma can be overcome by a long run relationship and re-
peated interaction. The most frequently invoked model to formulate this way of “fixing
the original dilemma” is the infinitely repeated supergame with common discount factor
8, denoted by I' (§), where co-operation can be supported in subgame perfect equilibrium
as long as players’ discount factor is above the lower bound § that equalizes short run
gains and (maximal) long run losses from defecting (e.g. Friedman, 1971; Fudenberg and
Maskin, 1986; Abreu, 1988). In our example, co-operation is supportable as equilibrium
behavior in ' (§) as long as § > ¢ := +.! In applications this lower bound § is often used
as an (inverse) index of how plausible or how likely co-operation is in a given environ-
ment. The literature on renegotiation-proofness has shown that this conclusion does not
change if we require continuation strategies not to be Pareto-dominated (van Damme,
1989; Farrell and Maskin, 1989). What can one say more about such a well-understood
game?

!Then discounted payoffs from playing cooperation indefinitely, %, offset those from defecting

unilaterally and being kept at the minimax thereafter, % + %%.
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As mentioned above, the lower bound § does not depend on the parameter a of
the stage game, while we have the strong feeling that this parameter would, may or
should influence players’ propensity to cooperate. To get an immediate taste note that
if parameter a goes to —oo it appears to be most risky ever to co-operate even for a single
period. In this article we formalize the consequences of variations in the parameter a
in the infinitely repeated discounted Prisoner’s Dilemma, and in games with analogous
features. We will argue that — in contrast to what the students are taught — in many
cases (i.e. if 6 > §) the original Prisoner’s Dilemma cannot be fixed so easily by repeated
interaction since prisoners and other real players may be susceptible to strategic risk. We
characterize this problem in terms of payoff parameters and discount rates and whenever
it arises we call it Prisoners’ Other Dilemma.”

To convince the reader that stage game parameter a should be taken into account,

_u
3

and 6 = % > ¢. Suppose for the moment that players only consider the following two

and to give a hint on how this can be done in a precise way, we look at I' (§) for a =

pure strategies of the repeated stage game:
c* co-operate as long as no player defects, defect forever otherwise.
dar: Defect forever.

The so defined 2 x 2— game I'* is given by

| dr
] 9 8
C
9 0 |
o 0 7
8 7

where numbers are discounted sums of payoffs, and reflect the strategic reasoning of
players playing I" (§) but restricting attention only to these two strategies ¢* and d*.?
The game ['* is sometimes called “stag hunt” game. It has two strict pure strategy
equilibria C* := (¢*,¢*) and D* = (d*,d*) where D* is strictly payoff dominated by
C*.* 'Which of those two equilibria do we expect to be selected? While C* := (c*,c*)
is the payoff-dominant equilibrium, a cautious player might prefer to play d* to avoid
extreme losses, for example if the opponent makes mistakes. But even rational (and

never failing) players who just are not sure about their opponent’s beliefs on their own

2At a later stage in this article (section 4.1) we will learn in more detail why Prisoners’ Other
Dilemma in contrast to Prisoner’s Dilemma (note the different use of the ’) is formulated as a joint
problem. For now we just keep in mind that the original PD is generated by individual incentives while

POD will be caused by mutual strategic risk.
3Note that picking a different equilibrium corresponds to a different game I'*.
4There is another (weak) mixed equilibrium which is not of interest here.



rationality, or have any higher order doubt, may prefer d* over c¢*. Moreover, pre-play
communication does not help to coordinate in this game since a player planning to play
d* has an incentive to convince his opponent to play c*.?

Harsanyi and Selten, in their monumental book on equilibrium selection (1988, sub-
sequently abbreviated with HS) introduce risk dominance as selection criterion and
demonstrate that in 2 x 2—games with two strict pure strategy equilibrium points the
risk dominance relation (in contrast to the payoff dominance relation) is invariant under
transformations on payoffs preserving the best reply structure. According to HS risk
dominance in these games can be evaluated by comparing the so called Nash-products
of the two equilibria. We picked these numbers for the example because I'* has made a
further career into game theory textbooks (see for example Fudenberg and Tirole 1991,
p. 21) as an example for a game where the selection criteria payoff dominance and risk
dominance conflict with each other.

Obviously, the restricted game I'* only captures a tiny part of the huge supergame
with its plethora of equilibria. In this article we investigate for which PD-type games
the “risk-dominance problem” is present for all equilibria supporting co-operation, and
label this problem Prisoners’ Other Dilemma. We characterize the set of PD-games
parameters featuring Prisoners’ Other Dilemma, and show that it is never empty (in
particular, for no given discount factor). More importantly for economists, this set in-
cludes relevant cases as the textbook example of a collusion game for Cournot-duopolists
facing a linear demand function.

We show that for players susceptible to risk dominance the lower bound ¢ is no
good indicator for the plausibility of co-operative behavior, as frequently used in the
applied literature. Within our main result, we propose an alternative lower bound 6* for
discount factors, with §* > §, to be used as a novel and better tool that also depends
on parameter a and reflects the riskiness to co-operate, besides the incentive to defect.
In particular, for asymmetric PD-games the incentive to defect may vary from player to
player, i.e. §; # 6, while 6" does not depend on the player since 6" reflects a “mutual
strategic risk”. In our introductory example, 6* = % > % =90.

Moreover, we argue that if players are susceptible to risk, an equilibrium should be
considered safe only if it is not risk dominated in any of its (out-of-equilibrium) subgames.
We name this property risk perfection, and provide sufficient conditions under which it
is satisfied for co-operation equilibria. It turns out that these conditions include the

relevant punishment strategies being used in the (theoretical and applied) literature.

5This was observed by Aumann (1990) who used exactly this example to motivate his objection

against the self enforcing nature of Nash equilibria.
6Payoff differences (incentives to switch to another strategy) for any given opponent’s behavior

remains unchanged.



Although HS favor payoff-dominance over risk dominance as selection criterion in
their book, the theoretical and experimental support towards risk dominance has in-

creased since then.”

Theoretical support has been offered by the evolutionary game
theory literature (see for example Kandori, Mailath and Rob, 1993; and Young 1993)
and by the literature on global games considering perturbations of payoff parameters
(starting with Carlsson and van Damme, 1993a). Experimental evidence also tends to
support risk and security if they conflict with the payoff criterion (see for example van
Huyck, Battalio, and Beil, 1990). We are not aware of a more systematic experimental
investigation (including payoff parameter variations) of this question which is simple and
fundamental for selection theory and seems to be overdue.

The general HS-concept of risk-dominance as pairwise comparison between two equi-
librium points relies on the so called bicentric prior and the tracing procedure and is
difficult to check. This might explain why it rarely found its way into the applied lit-
erature with the exception of the rather limited class of 2 x 2—games with two strict
equilibrium points (see HS, Ch. 3). In this article we introduce a simple notion of
risk dominance for other economically meaningful games not contained in the selection
theory of HS. While it is known that our simple notion of risk dominance — namely
comparing Nash-products within the 2 x 2—restricted game — may in general select dif-
ferently compared to the HS definition we can show that this is not the case for the
risk dominance comparison with the all-defect equilibrium in the repeated PD. While
consistent with Harsanyi and Selten our definition of ¢* is much more easy to calculate
and to apply in practice and yields immediate insights which, we believe, are difficult to
obtain otherwise.

We focus in this paper on the discounted infinitely repeated Prisoner’s Dilemma.
However, definitions and results directly apply to many other games that share its strate-
gic features, including repeated oligopoly and public good games, and implicit/relational
contracting models. We elaborate further on this in the final section applying our results

to the textbook example of a repeated Cournot-collusion game with linear demand.

Tt is noteworthy, that Harsanyi (1995) came up with an alternative selection theory where he decided
to reverse priority and favour risk dominance over payoff dominance.



1 Risk dominance

In this section we consider the following symmetric PD stage game I' characterized by

payoff parameters® a,b, c,d where b > ¢ > d > a and 2¢ > b + a,’

r c d
c b
c
c a
p a d
b d

Denote the vector of payoff parameters by A = (a, b, ¢,d) and together with a common
discount factor by s = (\,8) = (a, b, ¢,d, 6) and call T' (s) the related infinitely repeated
game with common discount factor §. We call an equilibrium ¢ that supports indefinite
co-operation as its equilibrium outcome path a co-operation equilibrium. Denote by w
the max-min equilibrium or defection equilibrium where each player plays the unique
stage game dominant strategy forever.

The central question of the present inquiry is: Under which circumstances — i.e. for
which parameter constellations s — are co-operation equilibria not plausible?!’ Since
in this article we adopt risk dominance as the prime selection criterion, our first task
will be to define risk dominance within this specific class of repeated games. HS define
risk dominance only for finite games, so we cannot directly apply their definition to the
repeated PD. We proceed by introducing a simple and intuitive notion of risk dominance
applied to the pair ¢, w of equilibria for any co-operative equilibrium . This definition
is closely related to the HS-concept and specifically adjusted to the problem under
investigation and to the very nature of the game I" (§).

For this purpose we introduce, for each co-operation equilibrium ¢, the related
but much simpler game I', — subsequently called the ¢—formation of I'(6). The
¢p—formation I'y, is a substructure of I' (§) capturing the strategic considerations of play-
ers restricting their attention to the binary subset of the strategy space defined by the
two equilibria ¢ and w. More precisely, I',, is the 2 x 2—game defined by the strategy

8In section 4.1 we allow for parameter asymmetries and find that definitions and results are qualita-
tively unchanged. In order to economize on notation we use ¢, d as lables for the stage game strategies

as well as for payoff parameters as long as there is no confusion.
9The first parameter restriction restricts attention to the PD while the second restriction excludes

cases where indefinite co-operation is not efficient since patient players can improve by defecting alter-

nately.
100bviously the same question can be asked for every other equilibrium of the repeated PD game,

even for inefficient equilibria. We will demonstrate in the extensions that the essence of Prisoners’ Other

Dilemma remains the same or even aggravates by moving away from full cooperation.



space {¢;,w} where ¢ = (p;,¢,) and w = (w,w) are the equilibrium strategy profiles
for both players."! The bimatrix-form of T, is given by

I, o w
o = b+ oVs,
s a+6Viy ,
5 a+ 6V, 1%5
b+ Vi 5

where Vi for i€ € {1y, 1lw,2¢p,2w} are the equilibrium payoffs of the corresponding
continuation games.!?

Denote by 1) = (1, 9) the 'grim-trigger’- or "Nash reversion’-punishment co-operation
equilibrium where every player responds to a deviation from co-operation by defecting
forever.

For 6 < ¢ := f)’%fl the co-operation equilibrium set is empty since

od c
> = - -
b+ 6V, >b+6Vy =b+ —5>1—6’

and even the most severe punishment cannot support indefinite co-operation as equilib-
rium point of I' (s). To rule out these uninteresting cases and cases where co-operation

can only be supported by weak equilibria let us assume from now 6 > ¢ and denote the

respective parameter space by
S:={s=(a,bc,d,6)|b>c>d>a,2c>b+aandd<d<1}.

Definition 1 Let ® denote the set of co-operation equilibria such that the p— formation

game I', has two strict pure-strategy equilibrium points, i.e.

u; () :1i6—6—5%w>0 and

d
'Ul<g0) . :m—a—5%¢>o,
fori=1,2.

Lemma 1 Let ¢ be a co-operation equilibrium that is not in ®. Then ¢ is a weak
equilibrium. In particular, some player i is indifferent between his equilibrium strategy
@; and defecting forever w.

UTn the defect equilibrium both players use the same strategy. As long as this does not cause confusion

we identify the strategy and the corresponding equilibrium profile with the same symbol w.

12Since continuation payoffs are always 755 or lf 5 if both players pick ¢ or w we simplify the notation.

For example Vi, is the continuation payoff of player 1 playing strategy w if player 2 plays ¢,

7



Proof. By definition of ® we get ¢ ¢ ® = wu;(p) < 0 or v; (¢) < 0 for some
i. In order to be an equilibrium ¢ must satisfy wu; (@) 0 for ¢+ = 1,2. Further,
Vie < 1%5 < % (% — a) implies v; (¢) > 0 for i = 1,2. This together with ¢ ¢ ® yields
u; (p) =0 < 7% = b+ 0V, for somei. W

From here we restrict attention to the set ® of strict co-operation equilibria since

<
>

weak equilibria are even more “risky” in the sense to be defined now. To see that & is
always non-empty note that the corresponding maximal payoff-differences u () ,v ()
for the grim-trigger-punishment do not depend on ¢ and for our parameter restrictions

are always strictly positive since

o ds  6(b—d)—(b—c)
u(y) = 1—5_b_1—6_ 15 >0 and
d déd
U(w) = m—a—m—d—a>0

Now we are ready to define risk dominance.

Definition 2 We call a co-operation equilibrium ¢ € ® “strictly risk dominated” by the

defection equilibrium w iff

uy (@) uz (p) < v1 (@) vz (@) .

Correspondingly, for the weak inequality we use the notion (weak) risk dominance.

Harsanyi and Selten sometimes call u; () us () and v; (@) vo (p) 'Nash-products’ of
the corresponding equilibria. While HS have shown that for 2 x 2—games with two strict
equilibria this concept coincides with their general concept of risk dominance it is well
known that for more complicated games the two definitions can lead to different results
(see van Damme and Hurkens 1998, 1999; and Carlsson and van Damme 1993b). For
example, it may well be the case that the best reply against the so called bicentric prior
puts some positive weight on a third strategy which is not among the two equilibria
under comparison. Consequently, one might wonder if our concept of risk dominance
reflects players’ concerns about mutual strategic risk as explained in the introduction.
The following lemma shows that in the repeated PD this kind of problem is irrelevant

and that we are in line with the HS concept of risk dominance.

Lemma 2 Risk dominance applied to the repeated PD as defined here is equivalent to

risk dominance defined by means of the bicentric prior and the tracing procedure as in
Harsanyi and Selten (1988).

Proof. See Appendix. B



Definition 3 We call p (s, ) the “riskiness” of co-operation equilibrium ¢ in T'(s),
where

p(s,p) = (p)v2(p) —ur () uz (¢)

d d
= <m—a—5vw) (m—“—mw)
C C
(o) (o).

The condition p(s,p) > 0 then exactly characterizes all strictly risk dominated

co-operation equilibria. For any given co-operation equilibrium ¢ of a discounted PD-
supergame I (s) definition 3 can be easily applied to verify whether the equilibrium is
risk dominated. The same can be done for co-operation equilibria of other discounted

supergames with analogous strategic features.

2 Characterization of Prisoners’ Other Dilemma

Since ¢ > d, any co-operation equilibrium ¢ payoff-dominates defection w. Our previous
definition shows that risk-dominance may point to the opposite direction for a particular
co-operation equilibrium. Our task in this section is to characterize the set of all strict
co-operation equilibria where payoff dominance and risk dominance point to opposite

directions and vice versa. We begin by establishing an important benchmark.

Proposition 1 There exists no co-operation equilibrium ¢ € ® which is less risky than

the grim trigger equilibrium 1. Formally,
p(s,9) = p(s) :=nfp(s,¢).

Proof. No co-operation equilibrium ¢ can be less risky than infp (s, ). First, note
©

that for any ¢ € ® the upper bound for the continuation payoff of a player who plays a

co-operation equilibrium strategy against a player who always defects is

d

7
‘/up_l_67

and that continuation payoffs of players who always defect are bounded by

d b
— <V, < —.
1—5—V“” 1—

Q'a

Next, to consider strict co-operation equilibria in ® imposes additional boundaries on V;,,
and Vj, given by V;, < % (—5 — a) and V,, < = ( ) Only the second inequality

9



is binding, hence together with the boundaries for I' (§) we obtain

d
1-9¢

d 1 c
<V hl _
-5 = V;‘”<5(1—5 b)’

-0
% < % (1%5 — a) and 1%6 > % (1%6 — b). Then continuation
payoffs must satisfy V;, < 1%5 and Vj, > 1%. For the grim-trigger strategy equilibrium

Vie < and

since b > ¢ > d > a implies

1 both conditions are binding and hold with equality. This yields

pls) = nfp(s,¢)

|
It is now time to state our theorem, the main result of this paper. In order to be

more precise about parameters, we introduce the following notation.

Definition 4 Let S¥ denote the set of repeated PD-games where all strict co-operation

equilibria are strictly risk dominated by the defection equilibrium, i.e.
S¥:={s e S|w strictly risk dominates p Vo € ® (s)} C S.

Conversely, let S¥ denote the set of repeated PD-games where no strict co-operation

equilibrium is strictly risk dominated by the defection equilibrium, i.e.
S¥ :={s € S|y risk dominates w Yo € ®(s)} C S.
The following theorem characterizes these parameter sets.

Theorem 1 (i) For 6 < 6, with §* := b_”b%(;_d) > 6, all co-operation equilibria of the
repeated PD-game T (s) are strictly risk dominated, hence S¥ = {s € S |6 < 6*}.
(i1) There exist no parameters s € S such that no co-operation equilibrium is strictly

risk dominated, hence S¥ = ().

Proof. A little calculation shows that the interval (¢, ) is never empty

(d—a)(c—d) > 0<
b—a—c+d b—c
b—a b—d*
o > §.

10



This implies that for 6 € (8, 6)

b—a—c+d
g b—a
c d
d d \? c d \?
<1—5_“_51—5) ~ (1—5_ _51—5) <
p(s,) = p(s)>0

Since all implications hold in both directions this implies claim (i) of the theorem. To

prove claim (ii), define similarly as in proposition (1)
p(s) :=supp (s, ¢)
%)

as the lowest upper bound on the riskiness among all co-operation equilibria. It remains
to show that p(s) is strictly positive Vs € S. By the boundaries given in the proof of

proposition (1) we know that

. c C
12f(1_5—b—6V1w> <1_6—b—5V2w> =0

and that

d d , (d—a\?
o (5 -0 00) (1255 o) e [u-or (£5) ]

This together yields
_ d d
1% (S) = Sl(:;p (]_——6 —a — 5‘/1<p> <1——6 —a — 6‘/2(p>

. c c
—lgf <1——6 —b-— (5‘/10_,) (1——6 —b— (5‘/20_,)

(d—a)>—0>0.

v

|

As already mentioned in the introduction we label Prisoners’ Other Dilemma the
problem that incentive compatible co-operative behavior (6 > ¢§) may be considered
too risky to “fix Prisoner’s (original) Dilemma”. The theorem tells us exactly when
prisoners susceptible to risk dominance are unable to overcome the original dilemma by
building up a “co-operative relationship”. The theorem also tells us that there exists
no discounted repeated PD-game for which this “other dilemma” disappears altogether.

There are always some risky co-operation equilibria. Intuitively, one obtains the more

11



risky co-operation equilibria by letting players be more “forgiving”, i.e. try to start co-
operative behavior although the opponent defected in the past. In equilibrium, however,
this cannot be done too frequently.

The following corollary follows immediately from the theorem. It points to stage

game parameter constellations where Prisoners’ Other Dilemma tends to be most serious.

Corollary 1 For a very large payoff-difference b — a or a very small difference ¢ — d all
co-operation equilibria are risk-dominated for any discount factor 6 < 1. Formally,
lim 6" = lim 6" = 1.
b—a—o00 c—d—0

One might think regarding the theorem that after all the risk dominance problem
tends to disappear for very patient players. The following proposition has the flavor of
an ’anti-Folk theorem for risk-dominance’ and shows that for any discount factor § < 1
and appropriately chosen payoff parameters all co-operation equilibria are strictly risk
dominated. Even worse, by choosing the payoff parameter a sufficiently low the riskiness

of all co-operation equilibria can be made arbitrarily large.

Proposition 2 For every 6 < 1 there exist payoff parameters A with s = (X, 6) € S¥
such that all co-operation equilibria of T' (s) are strictly risk dominated. Moreover, for
any given riskiness p > 0 there exist payoff parameters X with s = (\,6) € S such that
all co-operation equilibria have at least riskiness p.

Proof. Payoff parameter a is not bounded from below. Hence

p) = af — (155 -0 -opts)

goes to infinity for @ — —oo. This implies both statements of the proposition. W

3 Risk perfection

The idea that in a repeated Prisoner’s Dilemma game I (s) players might consider a
co-operation equilibrium as ’too risky’ — although it Pareto-dominates other equilibria
— carries over in a natural way to the subgames of I'(s). If players are susceptible
to risk dominance, they are so at all nodes of the game, hence a risk undominated
equilibrium path supported by risk dominated out-of-equilibrium (punishment) may not
be considered a ’safe’ equilibrium. Players who are concerned about risk will find these

concerns confirmed after having observed deviations.

12



A subgame I' (s) of T'(s) is characterized by a history h € H specifying the path
of stage game actions up to the period where the subgame starts. Risk-dominance
of a co-operation equilibrium ¢" and riskiness p" (s, ¢) restricted to I'* (s) are defined
equivalently by comparing Nash-products in the corresponding formation FZ) (s), hence

we can introduce the following refinement.

Definition 5 A co-operation equilibrium ¢ € ® (s) is called risk perfect iff its restriction

to any subgame is not strictly risk dominated wherever this is defined. Formally:
p"(s,0) <0 Vhe H.

It is easy to recognize that the grim trigger equilibrium 1 is risk perfect whenever
it is not strictly risk dominated. After any deviation 1 the stage game equilibrium is
played forever, which is perfectly safe at any later instant. Hence, the condition 6 > 6"
also guarantees that at least one risk perfect co-operation equilibrium exists.

Which other equilibria are risk perfect? To give sufficient conditions for risk perfec-
tion we restrict attention to simple strategies as defined by Abreu (1988). In the 2-player
repeated Prisoner’s Dilemma a simple strategy for player ¢ is specified by 3 paths, the
initial path 7° and a punishment path 7/ for every player j = 1,2. A punishment
path specifies what is played if player j deviates from the initial path or any ongoing
punishment path. If no player deviates or both players deviate simultaneously a simple
strategy specifies to proceed along the ongoing path.'? As Abreu showed, every perfect

equilibrium outcome can be supported by a perfect equilibrium in simple strategies.

Definition 6 We call a punishment path 7 of a simple strategy in the repeated Pris-
oner’s Dilemma a monotonous restitution if (i) no player ever switches from ¢ to d
along the path (monotony) and (ii) the punishing party i # j never switches from d to ¢
before the reneging party j does (restitution).

A monotonous restitution after a deviation of, say, player 1 always takes the form

= (d,d),...(d,d) , (¢, d),...,(c,d) ,(c,e),(c,c),...
———

~ J/ N

TV TV
punishment phase: 77 periods restitution phase: 71 periods co-operation phase

In a monotonous punishment path a player who starts to co-operate will co-operate
forever. For example, the path 7' = ((d,d),(c,d), (d,d), (c,¢c), (c,c),...) is clearly not

monotonous, and 7t = ((d,d),(d,c),(c,c),...) is not a restitution since the deviating

13To avoid introducing further notation we do not provide a formal definition of simple strategies and

optimal penal codes. The details are well known, and we do not need them here; see Abreu (1988).
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player 1 starts co-operating later, gaining again instead of (weakly) recompensing his op-
ponent. Monotonous restitutions include most punishments used in applications, among

which:

e Grim trigger, T; = oc:

((d,d),(d,d),...)

7l =n?
e Tit for tat, T, = 0,7; = 1:

™ = ((¢,d),(c,¢),(cc),...)
™ = ((d,c),(cc),(cc),...)

e T-periods “defection wars” or O-restitution, 7' > 0, 7; = O:

== |(d,d),..,(d,d),(cc),(cc),..
N e

T periods

e Renegotiation-proof “repentance” strategies, T'=0,7; > 0:

= | (¢d),...,(c,d),(cc),(cc),..
N———— —

T periods

™ = |(dc),..(dc)(cc)(cc),..
N —

T periods
We can now state the following.

Theorem 2 Consider the discounted infinitely repeated Prisoner’s Dilemma T (s). Let
@ be a subgame perfect risk undominated co-operation equilibrium in simple strategies

with monotonous restitution punishment paths. Then @ is risk perfect.

Proof. To see that a subgame perfect risk undominated simple strategy equilibrium
¢ with monotonous restitution punishment paths is risk perfect we take advantage of
the simple strategy concept. The subgame starting from any period in any future co-
operation phase is equivalent to the initial path 7%. Hence assuming that on the initial
path 70 it is p (s, ) < 0, we only need to verify that the same holds for all subgames
I‘Z) (s) starting within the monotonous restitution punishment paths 7. To do this, we

first identify some “critical” subgames, such that if p (s, ) < 0 for that subgame, then

14



p(s,) < 0 for all other subgames beginning in 7¢. Then we verify risk dominance for
the critical subgames.

Consider the monotonous restitution

! = (d,d),...,(d,d) , (e d),...,(c,dl , (¢, 0), (c, c),..;
N—— ~ \
punishment phase: 77 periods restitution ph:l’SC: T1 periods co—opcra?i,on phase

where after 77 > 0 periods of mutual non-co-operation the formerly defecting party
“reimburses” the punishing party by unilaterally co-operating for 7; periods, with 7; >
0. We called the first phase “punishment phase” and the second one “restitution phase”.
We now distinguish between the two cases (i) strict restitution: 79 > 1 and (ii) 0-
restitution: 71 = 0.

Case (i) “Strict restitution”: For 71 > 1 the critical subgame starts at the beginning
of the restitution phase in period T} + 1 of the monotonous restitution 7. To see this,
note that in subgames starting within the punishment phase sticking to equilibrium
strategies is strictly less risky than in subgames starting during the restitution phase,
since playing d involves no risk and players discount future (risk). Now note that the
risk for player 1 involved in playing ¢ at the beginning of the restitution phase (7' + 1)
is at least as large as in subsequent periods (77 + 2) to (71 + 71). Therefore, for 71 > 1
it remains to show that the risk dominance property is satisfied in the critical subgame
beginning period T3 + 1 of the monotonous restitution 7', denoted by T’ (s). By our
definition of risk dominance we have to look at the 2 x 2—formation I’} (s) of It (s)

M and wi™ (play

where each player 7 only compares playing the equilibrium strategy ¢
always d). By subgame perfection this formation again must have two equilibria *™
and w*™ induced by ¢ and w. Next, note that a strict restitution phase 7; > 1 prescribes

*hi player 1 starts to reimburse player 2. If player 1, however, plays wihl and

that in ¢
fails to do so, both players obtain the same payoff as in equilibrium w*™ of the formation
[ (s). Hence, w* is a weak equilibrium since player 2 is indifferent between @3 and
w3™ if player 1 plays wj™. This implies that the Nash product of w** is 0 and therefore
is ¢*™ not risk dominated.

Case (ii): “O-restitution phase”: For the same reason as in the strict restitution phase
the critical subgame is the one that starts at the beginning of the co-operation phase in
the period T} +1 of the monotonous restitution 7!. But this subgame is equivalent to the
initial game starting in 7° where the equilibrium ¢ is not risk dominated by assumption.
This concludes the proof. W

Hence, for most punishment strategies used in the literature (monotone restitutions),
checking that the initial equilibrium path is not risk dominated (p (s, ¢) < 0) is sufficient

to guarantee risk perfection (p” (s, ) <0 Vh € H). Regarding other equilibria, one has
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to check case by case. Consider, for example, an equilibrium in non-simple strategies
where the first deviation from the equilibrium outcome path is punished differently than
further deviations. Let ¢ be a co-operation equilibrium where punishment paths after
the first deviation of player j, denoted by ﬂ{, are given by

1 _
T =T

*=1(d,d),..(d,d),(cc),(cc),..|,
————

T1 periods

with 7' > 1. Now let k(h) be the number of previous deviations from equilibrium
behavior in history h, and suppose equilibrium strategies prescribe, for any further
deviation k > 1,

Wi:ﬂ'i: (d,d),(c,c),(c,c),... |,

Tk=1

i.e. defecting just once before returning to co-operation. Riskiness at the start of the
game can be kept small by increasing T, while the subgame starting after these 7
periods of punishment is subject to higher risk. It is easy to check that 7" > 1 implies
p(s,¢) < pk(s,¢p) for k > 1. Hence, if parameters are such that p(s,¢) < 0 < p* (s, )
the equilibrium is risk undominated but not risk perfect (it is risk perfect iff p* (s, ¢) <
0).

4 Extensions

4.1 Parameter Asymmetries

In many applications — for example in models of customer-client or employer-employee

relationships — the PD-game under consideration is asymmetric in payoff parameters or

even in discount factors. While the qualitative structure of all our results remains unaf-

fected by asymmetry, the analysis of this more general case yields additional structure.

Moreover, for applications the more general formula for 6* can be of practical value.
Consider the stage game I' given by

r c d
Co b2
c
C1 ai )
d (05} d2
by dy
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with b; > ¢; > d; > a; fori = 1,2 and ¢;+¢y > max [by + ag, a; + bg]. Denote accordingly
by s = (a1, by, c1,dy, 01, az, by, ca, da, O2) the set of exogenous parameters for the infinitely
repeated discounted game I (s) where discount factors and payoffs may depend on the
player.'* Similarly, define the related parameter space supporting strict co-operation

equilibria of T (s) as

b; >c¢; >d; >a; fori=1,2 and
S:= (5| ¢+ ¢y >max|[b + ag,a; + by] and
b =bmb <5< 1fori=1,2

As before the condition

p(s):(dl—al)(dg—@)—( A5 )( 2 )>o

- 1—61_ ]_—51 1—52_ 1—52

for the lower bound on the riskiness of all co-operation equilibria characterizes the subset
Sv={ses ‘ p(s) > 0} of parameters within S such that all co-operation equilibria are
strictly risk dominated.

Figure 1 is a projection of S“ on discount factors 01, 65 for asymmetric payoff param-
eters. The diagonal represents the case of symmetric discount factors 6 = 6; = 6, and
contains the intersection with S where all co-operation equilibria of I' (s) are strictly
risk dominated. For the latter case of asymmetric payoff parameters and symmetric

discount rates 6" solves the quadratic equation p (s) = 0 and ¢ and 6" are then given by

5 = max{bl_cl bz—Cz}’

by —dy’ by — do
oo Y2, <Y+Z>2_£,
2W 2W W
where
X = (dy—a1)(dy—az)— (by —c1) (b — c2),
Y = (dy—ay)(de—az) — (by —dy) (bs — ¢2),
Z = (dy—ay)(dy —ag) — (by — 1) (by — ds), and

W = (dl - CL1> (dg — CLQ) — (bl — dl) (bg — d2> .

4We do not study here the consequences of trading effects among players with different discount
factors. It is well known (see for example Lehrer and Pauzner 1999) that there are positive gains from
trade between an impatient and a patient player that enhance the set of equilibrium payoffs. Therefore,
the co-operation equilibrium is not neccessarily the most efficient equilibrium and is not neccessarily
the "natural candidate” to compare with all-defect for assessing risk. However, in this section we only
compare co-operation equilibria for expositional convenience. In the following section we will see that

comparing other efficient equilibria tends to aggravate the risk dominance problem.
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A1)
S

|

Figure 1: S for a; = —5,&2 = —20,d1 = 6,d2 = 5,01 = 7, Cy = 8,61 = 8,62 =10

The asymmetric case reveals in particular that risk dominance is a genuinely bilateral
phenomenon, to be distinguished carefully from individual risk. If, for example, d; —
a; for one player, say player 1, then the riskiness of co-operation equilibria goes to
0.1 In that case player 1 is not subject to risk when choosing to co-operate. Since
both players are aware of the fact that one player risks nothing by picking the Pareto-
superior equilibrium, the sort of mutual doubt underlying risk dominance considerations
disappears altogether. This is for example the case in the “trust game” — a sequential one-
sided Prisoner’s Dilemma where only one player can cheat. The truly bilateral essence
of risk dominance can also be appreciated by noting that even in the asymmetric case
there are unique values of p and 6" identical for both players, while generically ¢, # 9,

and (in the absence of payoff transfers) one has to take the max {9,,6,} to identify ¢.

4.2 Risk dominated efficient equilibria

Does Prisoners’ Other Dilemma aggravate or alleviate for other efficient equilibria, i.e.
when payoffs are distributed asymmetrically among players on the Pareto frontier? Con-
sider our symmetric PD supergame I'(s), and denote by 6 (z) the efficient equilibrium

yielding averaged asymmetric per-period payoffs ¢ — x, c+ %x with c—d > x > 0. The

5Note that if d; = a; for a player, the set ® of strict cooperation equilibria is empty by definition
since v; = 0.
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following proposition is a reformulation of proposition 2 for these equilibria.

Proposition 3 For every § < 1 there exist payoff parameters X\ with s = (A, 6) € S such
that all equilibria 0 (x) supporting the same payoffs are strictly risk dominated. Moreover,
for any given riskiness p > 0 there exist payoff parameters A with s = (\,0) € S such

that all equilibria 0 (z) have at least the riskiness p.

Proof. The riskiness of § = 6 (x) is given by
p(s.0) + =wvi(0)vz(0) —ui(6)uz(0)

d d
= <i5—a—5‘/1¢) (?—G—CS‘/QQP)

o
c—=z C—i—i’%fl:v
_<1_6_b_5v1w) (Té—b—é%w>

implying that p(s,0) — oo for a - —oco. W

The following proposition shows that moving away from symmetric co-operation
along the Pareto frontier increases the riskiness if off-equilibrium punishments are kept

constant and symmetric (as, for example, in ‘grim trigger’ and ‘tit for tat’).

Proposition 4 Let ¢ be a co-operation equilibrium, and 0 (x) be an equilibrium on the
Pareto frontier yielding averaged asymmetric per-period payoffs ¢ — x,c + Em, with
c—d>x >0, supported by the same off-equilibrium punishments as ¢. Assume further
that punishments are symmetric for defecting players Va, = Vi,,. Then 6 (x) is more
risky than ¢ and riskiness increases with x:

p(s,0(x)) —p(s,¢) >0 and%(p(s,f)(@)—p(s,s&)) >0

Proof.

p(5,0) —p(s,0) = v1(0)va(0) —u1(0)uz(0) — (vi(p)v2(p) —ur () uz (¢))
= uy () uz (¢) — uy (0) uz (0)

C C
- <1_5—b—5‘4w) (m—b—%>

since2c>b+az>1—i’%>0. [ |

a
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4.3 Application: Repeated Cournot duopoly

In this section we apply previous results to a textbook example, the repeated Cournot
duopoly with a linear demand function P (Q) = o — 5Q, where Q = ¢ + ¢ is total
quantity and symmetric constant marginal costs are denoted by C. While this is a
continuous strategy stage game, some relevant strategic aspects are captured by a sub-
structure similar to a Prisoner’s Dilemma.! Hence we consider a reduced stage game

assuming that duopolists restrict their attention to
e choosing Cournot-quantities ¢¢ = % (defect) or
e choosing symmetric joint monopoly quantities ¢¢ = % (collude).

According to our earlier notation, we denote the unique Nash equilibrium of this PD
stage game — the Cournot-equilibrium — by w = (qd, qd). Calculating the reaction func-
tions and related profits yields payoff parameters A\ = (a, b, ¢,d) = (54X, 81X, 72X ,64X)
with X = (0;;(%)2. Normalizing demand parameters so that X = 1 we obtain the follow-
ing bi-matrix form for the reduced Cournot PD-stage game

c qd

72 81
72 o4

o4 64
81 64

q

The theorem shows that for § € (8,6%) = (&, 22) =~ (.53,.7) there exists no collusive
equilibrium of the discounted repeated Cournot duopoly PD-game that is not strictly
risk dominated; and that for §* < § < 1 there always exist some collusive equilibria that

are strictly risk dominated by the Cournot-Nash equilibrium.

5 Appendix

Lemma 2: Risk dominance applied to the repeated PD as defined here is equivalent to
risk dominance defined by means of the bicentric prior and the tracing procedure as in
Harsanyi and Selten (1988).

Proof. Although the basic notions of the “bicentric prior” and the “tracing procedure”

will be explained within this proof a full understanding requires some familiarity with

16 A relevant difference is the possibility to punish more severely in the continuous strategy repeated
game. This enlarges the feasable range of differentiating continuation payoffs which — as we pointed out
in the previous section — can mitigate the problem.
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the HS theory for equilibrium selection. Some potential problems have to be addressed.
First, since the repeated PD is infinite the HS definition for risk dominance has to be
extended. Second, the repeated PD obviously is not an unanimity game, therefore HS’s
technique of the so called Nash product theorem (HS pp 214-) does not offer a direct
clue how to proceed. Both difficulties turn out not to be too troublesome, since we do
not compare two arbitrary equilibria of the repeated PD game. Rather, we compare
a co-operation equilibrium ¢ with the particular and salient all-defection equilibrium
w. Loosely speaking, the bicentric prior is a mixed strategy profile reflecting players’
initial beliefs on which of two equilibria under comparison should be played. More
precisely, say, player —i attaches subjective probability (z,1 — z) to strategies ¢_;, w_;.
Since player 7 has no idea of player j’s subjective probability HS invoke the principle of
insufficient reason and let player ¢’s bicentric prior p;, 1 —p; be defined as a best response
on the mixture (Z,1 — Z) where Z is a random variable uniformly distributed over [0, 1].
Since generally the bicentric prior is not an equilibrium in itself HS define the tracing
procedure such as to readjust beliefs to obtain the risk-dominant equilibrium. More
precisely (we don’t do it in full rigor here), define the payoffs of a parametrized family
of auxiliary games denoted by I' (s, p) as follows. Consider strategy profile £ = (£, &,)
of ' (s). Let player i assume that player —: plays his bicentric prior abbreviated by p_;

with probability (1 —¢) and _, with probability ¢ such that player i obtains

U =1 —t) U (&,p—s) + tU; (gwg—z) :

The so defined game I (s, p) can be interpreted as a convex combination of the original
game ['(s) and the trivial game where each player plays against his bicentric prior.
Denote by G = {(¢,£)|¢ is an equilibrium for I (s,p) } the graph of the equilibrium
correspondence for the t—parametrized family of games I'* (s, p). For generic finite games
it can be shown that G contains a unique distinguished curve connecting the best reply
(which is the equilibrium) of T'° (s, p) equilibrium with one of the two given equilibria
(either ¢ or w) in T (s,p) for almost any prior p. For our comparison we will see that
there is generically a unique best reply to the bicentric prior that is independent of
t which means that the tracing procedure is constant and therefore well defined. We
proceed by applying these definitions to the equilibria ¢ and w in our specific game. First
note that the best reply against mixtures between these equilibrium strategies is always
either all defect w or grim trigger denoted by 1. There is no potential gain in playing
anything else since grim trigger is payoff-equivalent with all other co-operation strategies
against another co-operation strategy but is better than any other co-operation strategy
against all defect. Compute player i’s bicentric prior by defining expected payoffs of

responding to the joint mixture zp_, + (1 — 2) w_; by either of the pure strategies 1, or
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Wi

¢ (2) - :U(wi,zgo_i—ir(l—z)w,i):1Z_05—|—(1—z) (a—irél%dé).
d; (2) - :U(wi,zgo_i+(1—z)w_i):z(b—i—&‘/;w)%—(l—z)li&

Now compare these expected payoffs making use of u; (¢) = % — b — 0Vj, and v; () =

d d _ g .
—a—bi5=d—a:

1-6
z(ui(0) v (V) = v(Y) =
5 > v@(w)
T oui (@) i (¥)

Player ¢’s bicentric prior probabilities are given by the lengths of the subintervals [z, 1]
and [0, z]:

b)) — u; (i) an
P = T ) ™
(W) = vi (V)

Pilw) = )

Now we turn to the tracing procedure. At the starting point ¢ = 0 player i picks a
best response to his bicentric prior p_; := p_;t0_, + (1 —p_;)w_;. For any ¢ € (0,1)
responding to p_; by playing ¢, or w; yields the payoff comparison

Ui (wi,p—i) > Uil(ppp-i) &
vi () v_i (p) u; (@) u—i (p)
u_; () + v (V) u_; () +v_; (¥)
vi (P)vi(p) > wi(p)u_i(p)

This shows in the language of HS that U; (w;, p—;) > U; (¢;, p—i) for i = 1,2 iff w’s Nash
product is strictly larger than ¢’s. In this case an equilibrium in I (s, p) contains no
positive weight on ¢ for any ¢ € (0, 1) since w outperforms ¢ against the bicentric prior
p and the tracing procedure yields w as the risk dominant equilibrium in the sense of
HS. The converse holds for U; (p;,p—;) > U; (w;, p—;). Since this corresponds exactly to
our definition we have completed the claim of the lemma. B
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