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Collusive agreements and relational contracts are commonly modeled as 
equilibria of dynamic games with the strategic features of the repeated 
Prisoner’s Dilemma. The pay-offs agents obtain when being ‘cheated upon’ by 
other agents play no role in these models. We propose a way to take these 
pay-offs into account, and find that cooperation as equilibrium of the infinitely 
repeated discounted Prisoner’s Dilemma is often implausible: for a significant 
subset of the pay-off/discount factor parameter space, all cooperation 
equilibria are strictly risk dominated in the sense of Harsanyi and Selten 
(1988). We derive an easy-to-calculate critical level for the discount factor 
below which this happens, also function of pay-offs obtained when others 
defect, and argue it is a better measure for the ‘likelihood’ of cooperation than 
the critical level at which cooperation is supportable in equilibrium. Our results 
apply to other games sharing the strategic structure of the Prisoner’s Dilemma 
(repeated oligopolies, relational-contracting models, etc.). We illustrate our 
main result for collusion equilibria in the repeated Cournot duopoly. 
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Collusive agreements among oligopolistic …rms, non-veri…able …nancial transactions,

and relational contracts in general are usually modeled as equilibria of in…nitely repeated

games with the strategic structure of a repeated Prisoner’s Dilemma. A common feature

of these models is that the conditions for an agreement being supportable in equilibrium

are independent of the payo¤s agents obtain when other agents defect from the equi-

librium. After the initial description, payo¤s obtained when being “cheated upon” by

other agents typically drop out of the model, as they play no role in the standard theory

of repeated games. We believe that real world agents do care about what would happen

if other agents defected from the agreed strategy pro…le, and that these considerations

should not be left out of our models. In this paper we propose a natural way in which

we can take these considerations into account.

Consider the following game, denoted by ¡, where a < 7
3
.

¡ c d

c
3

3

10
3

a

d
a

10
3

7
3

7
3

Most students in social sciences are told at some point in their curriculum the famous

story about two prisoners invented by Albert Tucker in 1950 for a seminar in the psy-

chology department in Stanford. They learn that ¡ is dominance solvable and that

the strategy pro…le D := (d; d) is the unique equilibrium point, although being strictly

Pareto-dominated by the strategy pro…le C := (c; c). Later on they learn that if players

are su¢ciently patient, this dilemma can be overcome by a long run relationship and re-

peated interaction. The most frequently invoked model to formulate this way of “…xing

the original dilemma” is the in…nitely repeated supergame with common discount factor

±, denoted by ¡ (±), where co-operation can be supported in subgame perfect equilibrium

as long as players’ discount factor is above the lower bound ± that equalizes short run

gains and (maximal) long run losses from defecting (e.g. Friedman, 1971; Fudenberg and

Maskin, 1986; Abreu, 1988). In our example, co-operation is supportable as equilibrium

behavior in ¡ (±) as long as ± ¸ ± := 1
3
:1 In applications this lower bound ± is often used

as an (inverse) index of how plausible or how likely co-operation is in a given environ-

ment. The literature on renegotiation-proofness has shown that this conclusion does not

change if we require continuation strategies not to be Pareto-dominated (van Damme,

1989; Farrell and Maskin, 1989). What can one say more about such a well-understood

game?
1Then discounted payo¤s from playing cooperation inde…nitely, 3

1¡± , o¤set those from defecting
unilaterally and being kept at the minimax thereafter, 103 +

7
3

±
1¡± .
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As mentioned above, the lower bound ± does not depend on the parameter a of

the stage game, while we have the strong feeling that this parameter would, may or

should in‡uence players’ propensity to cooperate. To get an immediate taste note that

if parameter a goes to¡1 it appears to be most risky ever to co-operate even for a single

period. In this article we formalize the consequences of variations in the parameter a

in the in…nitely repeated discounted Prisoner’s Dilemma, and in games with analogous

features. We will argue that – in contrast to what the students are taught – in many

cases (i.e. if ± ¸ ±) the original Prisoner’s Dilemma cannot be …xed so easily by repeated
interaction since prisoners and other real players may be susceptible to strategic risk. We

characterize this problem in terms of payo¤ parameters and discount rates and whenever

it arises we call it Prisoners’ Other Dilemma.2

To convince the reader that stage game parameter a should be taken into account,

and to give a hint on how this can be done in a precise way, we look at ¡ (±) for a = ¡14
3

and ± = 2
3
> ±: Suppose for the moment that players only consider the following two

pure strategies of the repeated stage game:

c¤ : co-operate as long as no player defects, defect forever otherwise.

d¤ : Defect forever.

The so de…ned 2£ 2¡ game ¡¤ is given by

¡¤ c¤ d¤

c¤
9

9

8

0

d¤
0

8

7

7

;

where numbers are discounted sums of payo¤s, and re‡ect the strategic reasoning of

players playing ¡ (±) but restricting attention only to these two strategies c¤ and d¤.3

The game ¡¤ is sometimes called “stag hunt” game. It has two strict pure strategy
equilibria C¤ := (c¤; c¤) and D¤ = (d¤; d¤) where D¤ is strictly payo¤ dominated by
C¤.4 Which of those two equilibria do we expect to be selected? While C¤ := (c¤; c¤)
is the payo¤-dominant equilibrium, a cautious player might prefer to play d¤ to avoid
extreme losses, for example if the opponent makes mistakes. But even rational (and

never failing) players who just are not sure about their opponent’s beliefs on their own

2At a later stage in this article (section 4.1) we will learn in more detail why Prisoners’ Other
Dilemma in contrast to Prisoner’s Dilemma (note the di¤erent use of the ’) is formulated as a joint
problem. For now we just keep in mind that the original PD is generated by individual incentives while
POD will be caused by mutual strategic risk.

3Note that picking a di¤erent equilibrium corresponds to a di¤erent game ¡¤.
4There is another (weak) mixed equilibrium which is not of interest here.
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rationality, or have any higher order doubt, may prefer d¤ over c¤. Moreover, pre-play
communication does not help to coordinate in this game since a player planning to play

d¤ has an incentive to convince his opponent to play c¤.5

Harsanyi and Selten, in their monumental book on equilibrium selection (1988, sub-

sequently abbreviated with HS) introduce risk dominance as selection criterion and

demonstrate that in 2 £ 2¡games with two strict pure strategy equilibrium points the

risk dominance relation (in contrast to the payo¤ dominance relation) is invariant under

transformations on payo¤s preserving the best reply structure.6 According to HS risk

dominance in these games can be evaluated by comparing the so called Nash-products

of the two equilibria. We picked these numbers for the example because ¡¤ has made a
further career into game theory textbooks (see for example Fudenberg and Tirole 1991,

p. 21) as an example for a game where the selection criteria payo¤ dominance and risk

dominance con‡ict with each other.

Obviously, the restricted game ¡¤ only captures a tiny part of the huge supergame
with its plethora of equilibria. In this article we investigate for which PD-type games

the “risk-dominance problem” is present for all equilibria supporting co-operation, and

label this problem Prisoners’ Other Dilemma. We characterize the set of PD-games

parameters featuring Prisoners’ Other Dilemma, and show that it is never empty (in

particular, for no given discount factor). More importantly for economists, this set in-

cludes relevant cases as the textbook example of a collusion game for Cournot-duopolists

facing a linear demand function.

We show that for players susceptible to risk dominance the lower bound ± is no

good indicator for the plausibility of co-operative behavior, as frequently used in the

applied literature. Within our main result, we propose an alternative lower bound ±¤ for
discount factors, with ±¤ > ±; to be used as a novel and better tool that also depends
on parameter a and re‡ects the riskiness to co-operate, besides the incentive to defect.

In particular, for asymmetric PD-games the incentive to defect may vary from player to

player, i.e. ±1 6= ±2 while ±¤ does not depend on the player since ±¤ re‡ects a “mutual
strategic risk”. In our introductory example, ±¤ = 11

12
> 1

3
= ±.

Moreover, we argue that if players are susceptible to risk, an equilibrium should be

considered safe only if it is not risk dominated in any of its (out-of-equilibrium) subgames.

We name this property risk perfection, and provide su¢cient conditions under which it

is satis…ed for co-operation equilibria. It turns out that these conditions include the

relevant punishment strategies being used in the (theoretical and applied) literature.

5This was observed by Aumann (1990) who used exactly this example to motivate his objection
against the self enforcing nature of Nash equilibria.

6Payo¤ di¤erences (incentives to switch to another strategy) for any given opponent’s behavior
remains unchanged.
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Although HS favor payo¤-dominance over risk dominance as selection criterion in

their book, the theoretical and experimental support towards risk dominance has in-

creased since then.7 Theoretical support has been o¤ered by the evolutionary game

theory literature (see for example Kandori, Mailath and Rob, 1993; and Young 1993)

and by the literature on global games considering perturbations of payo¤ parameters

(starting with Carlsson and van Damme, 1993a). Experimental evidence also tends to

support risk and security if they con‡ict with the payo¤ criterion (see for example van

Huyck, Battalio, and Beil, 1990). We are not aware of a more systematic experimental

investigation (including payo¤ parameter variations) of this question which is simple and

fundamental for selection theory and seems to be overdue.

The general HS-concept of risk-dominance as pairwise comparison between two equi-

librium points relies on the so called bicentric prior and the tracing procedure and is

di¢cult to check. This might explain why it rarely found its way into the applied lit-

erature with the exception of the rather limited class of 2 £ 2¡games with two strict
equilibrium points (see HS, Ch. 3). In this article we introduce a simple notion of

risk dominance for other economically meaningful games not contained in the selection

theory of HS. While it is known that our simple notion of risk dominance – namely

comparing Nash-products within the 2£ 2¡restricted game – may in general select dif-
ferently compared to the HS de…nition we can show that this is not the case for the

risk dominance comparison with the all-defect equilibrium in the repeated PD. While

consistent with Harsanyi and Selten our de…nition of ±¤ is much more easy to calculate
and to apply in practice and yields immediate insights which, we believe, are di¢cult to

obtain otherwise.

We focus in this paper on the discounted in…nitely repeated Prisoner’s Dilemma.

However, de…nitions and results directly apply to many other games that share its strate-

gic features, including repeated oligopoly and public good games, and implicit/relational

contracting models. We elaborate further on this in the …nal section applying our results

to the textbook example of a repeated Cournot-collusion game with linear demand.

7It is noteworthy, that Harsanyi (1995) came up with an alternative selection theory where he decided
to reverse priority and favour risk dominance over payo¤ dominance.
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1 Risk dominance

In this section we consider the following symmetric PD stage game ¡ characterized by

payo¤ parameters8 a; b; c; d where b > c > d > a and 2c > b+ a;9

¡ c d

c
c

c

b

a

d
a

b

d

d

:

Denote the vector of payo¤ parameters by ¸ = (a; b; c; d) and together with a common

discount factor by s = (¸; ±) = (a; b; c; d; ±) and call ¡ (s) the related in…nitely repeated

game with common discount factor ±. We call an equilibrium ' that supports inde…nite

co-operation as its equilibrium outcome path a co-operation equilibrium. Denote by !

the max-min equilibrium or defection equilibrium where each player plays the unique

stage game dominant strategy forever.

The central question of the present inquiry is: Under which circumstances – i.e. for

which parameter constellations s – are co-operation equilibria not plausible?10 Since

in this article we adopt risk dominance as the prime selection criterion, our …rst task

will be to de…ne risk dominance within this speci…c class of repeated games. HS de…ne

risk dominance only for …nite games, so we cannot directly apply their de…nition to the

repeated PD. We proceed by introducing a simple and intuitive notion of risk dominance

applied to the pair '; ! of equilibria for any co-operative equilibrium '. This de…nition

is closely related to the HS-concept and speci…cally adjusted to the problem under

investigation and to the very nature of the game ¡ (±).

For this purpose we introduce, for each co-operation equilibrium ', the related

but much simpler game ¡' – subsequently called the '¡formation of ¡ (±). The

'¡formation ¡' is a substructure of ¡ (±) capturing the strategic considerations of play-
ers restricting their attention to the binary subset of the strategy space de…ned by the

two equilibria ' and !. More precisely, ¡' is the 2 £ 2¡game de…ned by the strategy
8In section 4.1 we allow for parameter asymmetries and …nd that de…nitions and results are qualita-

tively unchanged. In order to economize on notation we use c; d as lables for the stage game strategies
as well as for payo¤ parameters as long as there is no confusion.

9The …rst parameter restriction restricts attention to the PD while the second restriction excludes
cases where inde…nite co-operation is not e¢cient since patient players can improve by defecting alter-
nately.
10Obviously the same question can be asked for every other equilibrium of the repeated PD game,

even for ine¢cient equilibria. We will demonstrate in the extensions that the essence of Prisoners’ Other
Dilemma remains the same or even aggravates by moving away from full cooperation.
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space f'i; !g where ' = ('1; '2) and ! = (!; !) are the equilibrium strategy pro…les

for both players.11 The bimatrix-form of ¡' is given by

¡' '2 !

'1

c
1¡±

c
1¡±

b+ ±V2!

a+ ±V1'

!
a+ ±V2'

b+ ±V1!

d
1¡±

d
1¡±

;

where Vi» for i» 2 f1'; 1!; 2'; 2!g are the equilibrium payo¤s of the corresponding

continuation games.12

Denote by Ã = (Ã; Ã) the ’grim-trigger’- or ’Nash reversion’-punishment co-operation

equilibrium where every player responds to a deviation from co-operation by defecting

forever.

For ± < ± := b¡c
b¡d the co-operation equilibrium set is empty since

b+ ±Vi! ¸ b+ ±VÃ = b+ ±d

1¡ ± >
c

1¡ ± ,

and even the most severe punishment cannot support inde…nite co-operation as equilib-

rium point of ¡ (s). To rule out these uninteresting cases and cases where co-operation

can only be supported by weak equilibria let us assume from now ± > ± and denote the

respective parameter space by

S := fs = (a; b; c; d; ±) jb > c > d > a, 2c > b+ a and ± < ± < 1g .

De…nition 1 Let © denote the set of co-operation equilibria such that the '¡formation
game ¡' has two strict pure-strategy equilibrium points, i.e.

ui (') : =
c

1¡ ± ¡ b¡ ±Vi! > 0 and

vi (') : =
d

1¡ ± ¡ a¡ ±Vi' > 0,

for i = 1; 2.

Lemma 1 Let ' be a co-operation equilibrium that is not in ©. Then ' is a weak

equilibrium. In particular, some player i is indi¤erent between his equilibrium strategy

'i and defecting forever !.

11In the defect equilibrium both players use the same strategy. As long as this does not cause confusion
we identify the strategy and the corresponding equilibrium pro…le with the same symbol !.
12Since continuation payo¤s are always c

1¡± or
d
1¡± if both players pick ' or ! we simplify the notation.

For example V1! is the continuation payo¤ of player 1 playing strategy ! if player 2 plays '2
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Proof. By de…nition of © we get ' =2 © ) ui (') · 0 or vi (') · 0 for some

i. In order to be an equilibrium ' must satisfy ui (') ¸ 0 for i = 1; 2. Further,

Vi' · d
1¡± <

1
±

¡
d
1¡± ¡ a

¢
implies vi (') > 0 for i = 1; 2. This together with ' =2 © yields

ui (') = 0, c
1¡± = b+ ±Vi! for some i.

From here we restrict attention to the set © of strict co-operation equilibria since

weak equilibria are even more “risky” in the sense to be de…ned now. To see that © is

always non-empty note that the corresponding maximal payo¤-di¤erences u (Ã) ; v (Ã)

for the grim-trigger-punishment do not depend on i and for our parameter restrictions

are always strictly positive since

u (Ã) =
c

1¡ ± ¡ b¡
d±

1¡ ± =
± (b¡ d)¡ (b¡ c)

1¡ ± > 0 and

v (Ã) =
d

1¡ ± ¡ a¡
d±

1¡ ± = d¡ a > 0:

Now we are ready to de…ne risk dominance.

De…nition 2 We call a co-operation equilibrium ' 2 © “strictly risk dominated” by the
defection equilibrium ! i¤

u1 (')u2 (') < v1 (') v2 (') :

Correspondingly, for the weak inequality we use the notion (weak) risk dominance.

Harsanyi and Selten sometimes call u1 (')u2 (') and v1 (') v2 (') ’Nash-products’ of

the corresponding equilibria. While HS have shown that for 2£2¡games with two strict
equilibria this concept coincides with their general concept of risk dominance it is well

known that for more complicated games the two de…nitions can lead to di¤erent results

(see van Damme and Hurkens 1998, 1999; and Carlsson and van Damme 1993b). For

example, it may well be the case that the best reply against the so called bicentric prior

puts some positive weight on a third strategy which is not among the two equilibria

under comparison. Consequently, one might wonder if our concept of risk dominance

re‡ects players’ concerns about mutual strategic risk as explained in the introduction.

The following lemma shows that in the repeated PD this kind of problem is irrelevant

and that we are in line with the HS concept of risk dominance.

Lemma 2 Risk dominance applied to the repeated PD as de…ned here is equivalent to
risk dominance de…ned by means of the bicentric prior and the tracing procedure as in

Harsanyi and Selten (1988).

Proof. See Appendix.
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De…nition 3 We call ½ (s; ') the “riskiness” of co-operation equilibrium ' in ¡ (s) ;

where

½ (s; ') : = v1 (') v2 (')¡ u1 (') u2 (')
=

µ
d

1¡ ± ¡ a¡ ±V1'
¶µ

d

1¡ ± ¡ a¡ ±V2'
¶

¡
µ

c

1¡ ± ¡ b¡ ±V1!
¶µ

c

1¡ ± ¡ b¡ ±V2!
¶
:

The condition ½ (s; ') > 0 then exactly characterizes all strictly risk dominated

co-operation equilibria. For any given co-operation equilibrium ' of a discounted PD-

supergame ¡ (s) de…nition 3 can be easily applied to verify whether the equilibrium is

risk dominated. The same can be done for co-operation equilibria of other discounted

supergames with analogous strategic features.

2 Characterization of Prisoners’ Other Dilemma

Since c > d, any co-operation equilibrium ' payo¤-dominates defection !. Our previous

de…nition shows that risk-dominance may point to the opposite direction for a particular

co-operation equilibrium. Our task in this section is to characterize the set of all strict

co-operation equilibria where payo¤ dominance and risk dominance point to opposite

directions and vice versa. We begin by establishing an important benchmark.

Proposition 1 There exists no co-operation equilibrium ' 2 © which is less risky than
the grim trigger equilibrium Ã. Formally,

½ (s; Ã) = ½ (s) := inf
'
½ (s; ') :

Proof. No co-operation equilibrium ' can be less risky than inf
'
½ (s; '). First, note

that for any ' 2 © the upper bound for the continuation payo¤ of a player who plays a
co-operation equilibrium strategy against a player who always defects is

Vi' · d

1¡ ± ,

and that continuation payo¤s of players who always defect are bounded by

d

1¡ ± · Vi! ·
b

1¡ ± .

Next, to consider strict co-operation equilibria in © imposes additional boundaries on Vi'
and Vi! given by Vi' < 1

±

¡
d
1¡± ¡ a

¢
and Vi! < 1

±

¡
c
1¡± ¡ b

¢
. Only the second inequality

9



is binding, hence together with the boundaries for ¡ (±) we obtain

Vi' · d

1¡ ± and
d

1¡ ± · Vi! <
1

±

µ
c

1¡ ± ¡ b
¶
;

since b > c > d > a implies d
1¡± <

1
±

¡
d
1¡± ¡ a

¢
and b

1¡± >
1
±

¡
c
1¡± ¡ b

¢
. Then continuation

payo¤s must satisfy Vi' · d
1¡± and Vi! ¸ d

1¡± . For the grim-trigger strategy equilibrium

Ã both conditions are binding and hold with equality. This yields

½ (s) = inf
'
½ (s; ')

=

µ
d

1¡ ± ¡ a¡ ±
d

1¡ ±
¶2
¡
µ

c

1¡ ± ¡ b¡ ±
d

1¡ ±
¶2

= (d¡ a)2 ¡
µ

c

1¡ ± ¡ b¡ ±
d

1¡ ±
¶2

= ½ (s; Ã) :

It is now time to state our theorem, the main result of this paper. In order to be

more precise about parameters, we introduce the following notation.

De…nition 4 Let S! denote the set of repeated PD-games where all strict co-operation
equilibria are strictly risk dominated by the defection equilibrium, i.e.

S! := fs 2 S j! strictly risk dominates ' 8' 2 © (s)g ½ S:
Conversely, let S' denote the set of repeated PD-games where no strict co-operation

equilibrium is strictly risk dominated by the defection equilibrium, i.e.

S' := fs 2 S j' risk dominates ! 8' 2 ©(s)g ½ S:
The following theorem characterizes these parameter sets.

Theorem 1 (i) For ± < ±¤, with ±¤ := b¡a¡(c¡d)
b¡a > ±, all co-operation equilibria of the

repeated PD-game ¡ (s) are strictly risk dominated, hence S! = fs 2 S j± < ±¤g.
(ii) There exist no parameters s 2 S such that no co-operation equilibrium is strictly

risk dominated, hence S' = ;.
Proof. A little calculation shows that the interval (±; ±¤) is never empty

(d¡ a) (c¡ d) > 0,
b¡ a¡ c+ d

b¡ a >
b¡ c
b¡ d ,

±¤ > ±.

10



This implies that for ± 2 (±; ±¤)

± <
b¡ a¡ c+ d

b¡ a ,

d¡ a >
c

1¡ ± ¡ b¡ ±
d

1¡ ± ,µ
d

1¡ ± ¡ a¡ ±
d

1¡ ±
¶2

>

µ
c

1¡ ± ¡ b¡ ±
d

1¡ ±
¶2
,

½ (s; Ã) = ½ (s) > 0.

Since all implications hold in both directions this implies claim (i) of the theorem. To

prove claim (ii), de…ne similarly as in proposition (1)

¹½ (s) := sup
'
½ (s; ')

as the lowest upper bound on the riskiness among all co-operation equilibria. It remains

to show that ¹½ (s) is strictly positive 8s 2 S. By the boundaries given in the proof of
proposition (1) we know that

inf
'

µ
c

1¡ ± ¡ b¡ ±V1!
¶µ

c

1¡ ± ¡ b¡ ±V2!
¶
= 0

and that

sup
'

µ
d

1¡ ± ¡ a¡ ±V1'
¶µ

d

1¡ ± ¡ a¡ ±V2'
¶
2
"
(d¡ a)2 ;

µ
d¡ a
1¡ ±

¶2#
:

This together yields

¹½ (s) = sup
'

µ
d

1¡ ± ¡ a¡ ±V1'
¶µ

d

1¡ ± ¡ a¡ ±V2'
¶

¡inf
'

µ
c

1¡ ± ¡ b¡ ±V1!
¶µ

c

1¡ ± ¡ b¡ ±V2!
¶

¸ (d¡ a)2 ¡ 0 > 0.

As already mentioned in the introduction we label Prisoners’ Other Dilemma the

problem that incentive compatible co-operative behavior (± > ±) may be considered

too risky to “…x Prisoner’s (original) Dilemma”. The theorem tells us exactly when

prisoners susceptible to risk dominance are unable to overcome the original dilemma by

building up a “co-operative relationship”. The theorem also tells us that there exists

no discounted repeated PD-game for which this “other dilemma” disappears altogether.

There are always some risky co-operation equilibria. Intuitively, one obtains the more

11



risky co-operation equilibria by letting players be more “forgiving”, i.e. try to start co-

operative behavior although the opponent defected in the past. In equilibrium, however,

this cannot be done too frequently.

The following corollary follows immediately from the theorem. It points to stage

game parameter constellations where Prisoners’ Other Dilemma tends to be most serious.

Corollary 1 For a very large payo¤-di¤erence b¡ a or a very small di¤erence c¡ d all
co-operation equilibria are risk-dominated for any discount factor ± < 1. Formally,

lim
b¡a!1

±¤ = lim
c¡d!0

±¤ = 1.

One might think regarding the theorem that after all the risk dominance problem

tends to disappear for very patient players. The following proposition has the ‡avor of

an ’anti-Folk theorem for risk-dominance’ and shows that for any discount factor ± < 1

and appropriately chosen payo¤ parameters all co-operation equilibria are strictly risk

dominated. Even worse, by choosing the payo¤ parameter a su¢ciently low the riskiness

of all co-operation equilibria can be made arbitrarily large.

Proposition 2 For every ± < 1 there exist payo¤ parameters ¸ with s = (¸; ±) 2 S!
such that all co-operation equilibria of ¡ (s) are strictly risk dominated. Moreover, for

any given riskiness ½ > 0 there exist payo¤ parameters ¸ with s = (¸; ±) 2 S! such that
all co-operation equilibria have at least riskiness ½.

Proof. Payo¤ parameter a is not bounded from below. Hence

½ (s) = (d¡ a)2 ¡
µ

c

1¡ ± ¡ b¡ ±
d

1¡ ±
¶2

goes to in…nity for a! ¡1. This implies both statements of the proposition.

3 Risk perfection

The idea that in a repeated Prisoner’s Dilemma game ¡ (s) players might consider a

co-operation equilibrium as ’too risky’ – although it Pareto-dominates other equilibria

– carries over in a natural way to the subgames of ¡ (s). If players are susceptible

to risk dominance, they are so at all nodes of the game, hence a risk undominated

equilibrium path supported by risk dominated out-of-equilibrium (punishment) may not

be considered a ’safe’ equilibrium. Players who are concerned about risk will …nd these

concerns con…rmed after having observed deviations.

12



A subgame ¡h (s) of ¡ (s) is characterized by a history h 2 H specifying the path

of stage game actions up to the period where the subgame starts. Risk-dominance

of a co-operation equilibrium 'h and riskiness ½h (s; ') restricted to ¡h (s) are de…ned

equivalently by comparing Nash-products in the corresponding formation ¡h' (s), hence

we can introduce the following re…nement.

De…nition 5 A co-operation equilibrium ' 2 © (s) is called risk perfect i¤ its restriction
to any subgame is not strictly risk dominated wherever this is de…ned. Formally:

½h (s; ') · 0 8h 2 H:

It is easy to recognize that the grim trigger equilibrium Ã is risk perfect whenever

it is not strictly risk dominated. After any deviation Ã the stage game equilibrium is

played forever, which is perfectly safe at any later instant. Hence, the condition ± ¸ ±¤
also guarantees that at least one risk perfect co-operation equilibrium exists.

Which other equilibria are risk perfect? To give su¢cient conditions for risk perfec-

tion we restrict attention to simple strategies as de…ned by Abreu (1988). In the 2-player

repeated Prisoner’s Dilemma a simple strategy for player i is speci…ed by 3 paths, the

initial path ¼0 and a punishment path ¼j for every player j = 1; 2. A punishment

path speci…es what is played if player j deviates from the initial path or any ongoing

punishment path. If no player deviates or both players deviate simultaneously a simple

strategy speci…es to proceed along the ongoing path.13 As Abreu showed, every perfect

equilibrium outcome can be supported by a perfect equilibrium in simple strategies.

De…nition 6 We call a punishment path ¼j of a simple strategy in the repeated Pris-
oner’s Dilemma a monotonous restitution if (i) no player ever switches from c to d

along the path (monotony) and (ii) the punishing party i 6= j never switches from d to c

before the reneging party j does (restitution).

A monotonous restitution after a deviation of, say, player 1 always takes the form

¼1 =

0@ (d; d); :::; (d; d)| {z }
punishment phase: T1 periods

; (c; d); :::; (c; d)| {z }
restitution phase: ¿1 periods

; (c; c); (c; c); :::| {z }
co-operation phase

1A .
In a monotonous punishment path a player who starts to co-operate will co-operate

forever. For example, the path ¼1 = ((d; d) ; (c; d) ; (d; d); (c; c); (c; c); :::) is clearly not

monotonous, and ¼1 = ((d; d) ; (d; c); (c; c); :::) is not a restitution since the deviating

13To avoid introducing further notation we do not provide a formal de…nition of simple strategies and
optimal penal codes. The details are well known, and we do not need them here; see Abreu (1988).
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player 1 starts co-operating later, gaining again instead of (weakly) recompensing his op-

ponent. Monotonous restitutions include most punishments used in applications, among

which:

² Grim trigger, Ti =1:

¼1 = ¼2 = ((d; d) ; (d; d); :::)

² Tit for tat, Ti = 0; ¿ i = 1:

¼1 = ((c; d) ; (c; c); (c; c); :::)

¼2 = ((d; c) ; (c; c); (c; c); :::)

² T -periods “defection wars” or 0-restitution, T > 0; ¿ i = 0:

¼1 = ¼2 =

0@(d; d); :::; (d; d)| {z }
T periods

; (c; c); (c; c); :::

1A
² Renegotiation-proof “repentance” strategies, T = 0; ¿ i > 0:

¼1 =

0@(c; d); :::; (c; d)| {z }
¿ periods

; (c; c); (c; c); :::

1A
¼2 =

0@(d; c); :::; (d; c)| {z }
¿ periods

; (c; c); (c; c); :::

1A .
We can now state the following.

Theorem 2 Consider the discounted in…nitely repeated Prisoner’s Dilemma ¡ (s). Let
' be a subgame perfect risk undominated co-operation equilibrium in simple strategies

with monotonous restitution punishment paths. Then ' is risk perfect.

Proof. To see that a subgame perfect risk undominated simple strategy equilibrium

' with monotonous restitution punishment paths is risk perfect we take advantage of

the simple strategy concept. The subgame starting from any period in any future co-

operation phase is equivalent to the initial path ¼0. Hence assuming that on the initial

path ¼0 it is ½ (s; ') · 0; we only need to verify that the same holds for all subgames
¡h' (s) starting within the monotonous restitution punishment paths ¼

i. To do this, we

…rst identify some “critical” subgames, such that if ½ (s; ') · 0 for that subgame, then

14



½ (s; ') · 0 for all other subgames beginning in ¼i. Then we verify risk dominance for
the critical subgames.

Consider the monotonous restitution

¼1 =

0@ (d; d); :::; (d; d)| {z }
punishment phase: T1 periods

; (c; d); :::; (c; d)| {z }
restitution phase: ¿1 periods

; (c; c); (c; c); :::| {z }
co-operation phase

1A
where after T1 ¸ 0 periods of mutual non-co-operation the formerly defecting party

“reimburses” the punishing party by unilaterally co-operating for ¿1 periods, with ¿1 ¸
0. We called the …rst phase “punishment phase” and the second one “restitution phase”.

We now distinguish between the two cases (i) strict restitution: ¿1 ¸ 1 and (ii) 0-

restitution: ¿1 = 0.

Case (i) “Strict restitution”: For ¿ 1 ¸ 1 the critical subgame starts at the beginning
of the restitution phase in period T1 + 1 of the monotonous restitution ¼1. To see this,

note that in subgames starting within the punishment phase sticking to equilibrium

strategies is strictly less risky than in subgames starting during the restitution phase,

since playing d involves no risk and players discount future (risk). Now note that the

risk for player 1 involved in playing c at the beginning of the restitution phase (T + 1)

is at least as large as in subsequent periods (T1 + 2) to (T1 + ¿ 1). Therefore, for ¿ 1 ¸ 1
it remains to show that the risk dominance property is satis…ed in the critical subgame

beginning period T1 + 1 of the monotonous restitution ¼1, denoted by ¡h1' (s). By our

de…nition of risk dominance we have to look at the 2 £ 2¡formation ¡¤h1' (s) of ¡h1' (s)

where each player i only compares playing the equilibrium strategy '¤h1i and !¤h1i (play

always d). By subgame perfection this formation again must have two equilibria '¤h1

and !¤h1 induced by ' and !. Next, note that a strict restitution phase ¿ 1 ¸ 1 prescribes
that in '¤h1 player 1 starts to reimburse player 2. If player 1, however, plays !¤h11 and

fails to do so, both players obtain the same payo¤ as in equilibrium !¤h1 of the formation
¡¤h1' (s). Hence, !¤h1 is a weak equilibrium since player 2 is indi¤erent between '¤h12 and

!¤h12 if player 1 plays !¤h12 . This implies that the Nash product of !¤h1 is 0 and therefore
is '¤h1 not risk dominated.
Case (ii): “0-restitution phase”: For the same reason as in the strict restitution phase

the critical subgame is the one that starts at the beginning of the co-operation phase in

the period T1+1 of the monotonous restitution ¼1: But this subgame is equivalent to the

initial game starting in ¼0 where the equilibrium ' is not risk dominated by assumption.

This concludes the proof.

Hence, for most punishment strategies used in the literature (monotone restitutions),

checking that the initial equilibrium path is not risk dominated (½ (s; ') · 0) is su¢cient
to guarantee risk perfection (½h (s; ') · 0 8h 2 H). Regarding other equilibria, one has

15



to check case by case. Consider, for example, an equilibrium in non-simple strategies

where the …rst deviation from the equilibrium outcome path is punished di¤erently than

further deviations. Let ' be a co-operation equilibrium where punishment paths after

the …rst deviation of player j, denoted by ¼j1, are given by

¼11 = ¼
2
1 =

0B@(d; d); :::; (d; d)| {z }
T1 periods

; (c; c) ; (c; c); :::

1CA ;
with T 1 > 1: Now let k(h) be the number of previous deviations from equilibrium

behavior in history h, and suppose equilibrium strategies prescribe, for any further

deviation k > 1;

¼1k = ¼
2
k =

0@(d; d)| {z }
Tk=1

; (c; c) ; (c; c); :::

1A ;
i.e. defecting just once before returning to co-operation. Riskiness at the start of the

game can be kept small by increasing T 1, while the subgame starting after these T 1

periods of punishment is subject to higher risk. It is easy to check that T 1 > 1 implies

½ (s; ') < ½k (s; ') for k > 1. Hence, if parameters are such that ½ (s; ') · 0 < ½k (s; ')
the equilibrium is risk undominated but not risk perfect (it is risk perfect i¤ ½k (s; ') ·
0).

4 Extensions

4.1 Parameter Asymmetries

In many applications – for example in models of customer-client or employer-employee

relationships – the PD-game under consideration is asymmetric in payo¤ parameters or

even in discount factors. While the qualitative structure of all our results remains unaf-

fected by asymmetry, the analysis of this more general case yields additional structure.

Moreover, for applications the more general formula for ±¤ can be of practical value.
Consider the stage game ¡ given by

¡ c d

c
c2

c1

b2

a1

d
a2

b1

d2

d1

;
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with bi > ci > di > ai for i = 1; 2 and c1+c2 > max [b1 + a2; a1 + b2]. Denote accordingly

by s = (a1; b1; c1; d1; ±1; a2; b2; c2; d2; ±2) the set of exogenous parameters for the in…nitely

repeated discounted game ¡ (s) where discount factors and payo¤s may depend on the

player.14 Similarly, de…ne the related parameter space supporting strict co-operation

equilibria of ¡ (s) as

S :=

8><>:s
¯̄̄̄
¯̄̄ bi > ci > di > ai for i = 1; 2 and

c1 + c2 > max [b1 + a2; a1 + b2] and

±i ´ bi¡ci
bi¡di < ±i < 1 for i = 1; 2

9>=>; .
As before the condition

½ (s) = (d1 ¡ a1) (d2 ¡ a2)¡
µ

c1
1¡ ±1 ¡ b1 ¡ ±1

d1
1¡ ±1

¶µ
c2

1¡ ±2 ¡ b2 ¡ ±2
d2

1¡ ±2

¶
> 0

for the lower bound on the riskiness of all co-operation equilibria characterizes the subset

S! =
©
s 2 S ¯̄½ (s) > 0ª of parameters within S such that all co-operation equilibria are

strictly risk dominated.

Figure 1 is a projection of S! on discount factors ±1; ±2 for asymmetric payo¤ param-

eters. The diagonal represents the case of symmetric discount factors ± ´ ±1 = ±2 and
contains the intersection with S! where all co-operation equilibria of ¡ (s) are strictly

risk dominated. For the latter case of asymmetric payo¤ parameters and symmetric

discount rates ±¤ solves the quadratic equation ½ (s) = 0 and ± and ±¤ are then given by

± = max

½
b1 ¡ c1
b1 ¡ d1 ;

b2 ¡ c2
b2 ¡ d2

¾
;

±¤ =
Y + Z

2W
+

sµ
Y + Z

2W

¶2
¡ X

W
,

where

X = (d1 ¡ a1) (d2 ¡ a2)¡ (b1 ¡ c1) (b2 ¡ c2) ,
Y = (d1 ¡ a1) (d2 ¡ a2)¡ (b1 ¡ d1) (b2 ¡ c2) ;
Z = (d1 ¡ a1) (d2 ¡ a2)¡ (b1 ¡ c1) (b2 ¡ d2) ; and
W = (d1 ¡ a1) (d2 ¡ a2)¡ (b1 ¡ d1) (b2 ¡ d2) :

14We do not study here the consequences of trading e¤ects among players with di¤erent discount
factors. It is well known (see for example Lehrer and Pauzner 1999) that there are positive gains from
trade between an impatient and a patient player that enhance the set of equilibrium payo¤s. Therefore,
the co-operation equilibrium is not neccessarily the most e¢cient equilibrium and is not neccessarily
the ”natural candidate” to compare with all-defect for assessing risk. However, in this section we only
compare co-operation equilibria for expositional convenience. In the following section we will see that
comparing other e¢cient equilibria tends to aggravate the risk dominance problem.
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Figure 1: S! for a1 = ¡5; a2 = ¡20; d1 = 6; d2 = 5; c1 = 7; c2 = 8; b1 = 8; b2 = 10

The asymmetric case reveals in particular that risk dominance is a genuinely bilateral

phenomenon, to be distinguished carefully from individual risk. If, for example, di !
ai for one player, say player 1, then the riskiness of co-operation equilibria goes to

0.15 In that case player 1 is not subject to risk when choosing to co-operate. Since

both players are aware of the fact that one player risks nothing by picking the Pareto-

superior equilibrium, the sort of mutual doubt underlying risk dominance considerations

disappears altogether. This is for example the case in the “trust game” – a sequential one-

sided Prisoner’s Dilemma where only one player can cheat. The truly bilateral essence

of risk dominance can also be appreciated by noting that even in the asymmetric case

there are unique values of ½ and ±¤ identical for both players, while generically ±1 6= ±2
and (in the absence of payo¤ transfers) one has to take the max f±1; ±2g to identify ±.

4.2 Risk dominated e¢cient equilibria

Does Prisoners’ Other Dilemma aggravate or alleviate for other e¢cient equilibria, i.e.

when payo¤s are distributed asymmetrically among players on the Pareto frontier? Con-

sider our symmetric PD supergame ¡(s); and denote by µ (x) the e¢cient equilibrium

yielding averaged asymmetric per-period payo¤s c¡x; c+ b¡c
c¡ax with c¡d ¸ x ¸ 0. The

15Note that if di = ai for a player, the set © of strict cooperation equilibria is empty by de…nition
since vi = 0.
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following proposition is a reformulation of proposition 2 for these equilibria.

Proposition 3 For every ± < 1 there exist payo¤ parameters ¸ with s = (¸; ±) 2 S such
that all equilibria µ (x) supporting the same payo¤s are strictly risk dominated. Moreover,

for any given riskiness ½ > 0 there exist payo¤ parameters ¸ with s = (¸; ±) 2 S such
that all equilibria µ (x) have at least the riskiness ½.

Proof. The riskiness of µ = µ (x) is given by

½ (s; µ) : = v1 (µ) v2 (µ)¡ u1 (µ) u2 (µ)
=

µ
d

1¡ ± ¡ a¡ ±V1'
¶µ

d

1¡ ± ¡ a¡ ±V2'
¶

¡
µ
c¡ x
1¡ ± ¡ b¡ ±V1!

¶Ã
c+ b¡c

c¡ax

1¡ ± ¡ b¡ ±V2!
!

implying that ½ (s; µ)!1 for a! ¡1.
The following proposition shows that moving away from symmetric co-operation

along the Pareto frontier increases the riskiness if o¤-equilibrium punishments are kept

constant and symmetric (as, for example, in ‘grim trigger’ and ‘tit for tat’).

Proposition 4 Let ' be a co-operation equilibrium, and µ (x) be an equilibrium on the

Pareto frontier yielding averaged asymmetric per-period payo¤s c ¡ x; c + b¡c
c¡ax; with

c¡ d ¸ x > 0; supported by the same o¤-equilibrium punishments as '. Assume further
that punishments are symmetric for defecting players V2! = V1!: Then µ (x) is more

risky than ' and riskiness increases with x:

½ (s; µ (x))¡ ½ (s; ') > 0 and @

@x
(½ (s; µ (x))¡ ½ (s; ')) > 0

Proof.

½ (s; µ)¡ ½ (s; ') = v1 (µ) v2 (µ)¡ u1 (µ) u2 (µ)¡ (v1 (') v2 (')¡ u1 (')u2 ('))
= u1 (') u2 (')¡ u1 (µ) u2 (µ)
=

µ
c

1¡ ± ¡ b¡ ±V1!
¶µ

c

1¡ ± ¡ b¡ ±V2!
¶

¡
µ
c¡ x
1¡ ± ¡ b¡ ±V1!

¶Ã
c+ b¡c

c¡ax

1¡ ± ¡ b¡ ±V2!
!

=

·
c

1¡ ± ¡ b¡ ±V2! ¡
b¡ c
c¡ a

µ
c

1¡ ± ¡ b¡ ±V1!
¶¸

x

1¡ ±
=

µ
c

1¡ ± ¡ b¡ ±V1!
¶µ

1¡ b¡ c
c¡ a

¶
x

1¡ ±
> 0

since 2c > b+ a) 1¡ b¡c
c¡a > 0.
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4.3 Application: Repeated Cournot duopoly

In this section we apply previous results to a textbook example, the repeated Cournot

duopoly with a linear demand function P (Q) = ® ¡ ¯Q, where Q = q1 + q2 is total

quantity and symmetric constant marginal costs are denoted by C. While this is a

continuous strategy stage game, some relevant strategic aspects are captured by a sub-

structure similar to a Prisoner’s Dilemma.16 Hence we consider a reduced stage game

assuming that duopolists restrict their attention to

² choosing Cournot-quantities qd = ®¡C
3¯

(defect) or

² choosing symmetric joint monopoly quantities qc = ®¡C
4¯

(collude).

According to our earlier notation, we denote the unique Nash equilibrium of this PD

stage game – the Cournot-equilibrium – by ! =
¡
qd; qd

¢
. Calculating the reaction func-

tions and related pro…ts yields payo¤ parameters ¸ = (a; b; c; d) = (54X; 81X; 72X; 64X)

with X = (®¡C)2
576¯

. Normalizing demand parameters so that X = 1 we obtain the follow-

ing bi-matrix form for the reduced Cournot PD-stage game

qc qd

qc
72

72

81

54

qd
54

81

64

64

:

The theorem shows that for ± 2 (±; ±¤) = ¡
9
17
; 19
27

¢ ¼ (:53; :7) there exists no collusive

equilibrium of the discounted repeated Cournot duopoly PD-game that is not strictly

risk dominated; and that for ±¤ · ± < 1 there always exist some collusive equilibria that
are strictly risk dominated by the Cournot-Nash equilibrium.

5 Appendix

Lemma 2: Risk dominance applied to the repeated PD as de…ned here is equivalent to
risk dominance de…ned by means of the bicentric prior and the tracing procedure as in

Harsanyi and Selten (1988).

Proof. Although the basic notions of the “bicentric prior” and the “tracing procedure”

will be explained within this proof a full understanding requires some familiarity with
16A relevant di¤erence is the possibility to punish more severely in the continuous strategy repeated

game. This enlarges the feasable range of di¤erentiating continuation payo¤s which – as we pointed out
in the previous section – can mitigate the problem.
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the HS theory for equilibrium selection. Some potential problems have to be addressed.

First, since the repeated PD is in…nite the HS de…nition for risk dominance has to be

extended. Second, the repeated PD obviously is not an unanimity game, therefore HS’s

technique of the so called Nash product theorem (HS pp 214-) does not o¤er a direct

clue how to proceed. Both di¢culties turn out not to be too troublesome, since we do

not compare two arbitrary equilibria of the repeated PD game. Rather, we compare

a co-operation equilibrium ' with the particular and salient all-defection equilibrium

!. Loosely speaking, the bicentric prior is a mixed strategy pro…le re‡ecting players’

initial beliefs on which of two equilibria under comparison should be played. More

precisely, say, player ¡i attaches subjective probability (z; 1¡ z) to strategies '¡i; !¡i.
Since player i has no idea of player j’s subjective probability HS invoke the principle of

insu¢cient reason and let player i’s bicentric prior pi; 1¡pi be de…ned as a best response
on the mixture (Z; 1¡ Z) where Z is a random variable uniformly distributed over [0; 1].
Since generally the bicentric prior is not an equilibrium in itself HS de…ne the tracing

procedure such as to readjust beliefs to obtain the risk-dominant equilibrium. More

precisely (we don’t do it in full rigor here), de…ne the payo¤s of a parametrized family

of auxiliary games denoted by ¡t (s; p) as follows. Consider strategy pro…le » = (»1; »2)

of ¡ (s). Let player i assume that player ¡i plays his bicentric prior abbreviated by p¡i
with probability (1¡ t) and »¡i with probability t such that player i obtains

U ti (») = (1¡ t)Ui (»i; p¡i) + tUi
¡
»i; »¡i

¢
:

The so de…ned game ¡t (s; p) can be interpreted as a convex combination of the original

game ¡ (s) and the trivial game where each player plays against his bicentric prior.

Denote by G = f(t; ») j» is an equilibrium for ¡t (s; p)g the graph of the equilibrium
correspondence for the t¡parametrized family of games ¡t (s; p). For generic …nite games
it can be shown that G contains a unique distinguished curve connecting the best reply

(which is the equilibrium) of ¡0 (s; p) equilibrium with one of the two given equilibria

(either ' or !) in ¡1 (s; p) for almost any prior p. For our comparison we will see that

there is generically a unique best reply to the bicentric prior that is independent of

t which means that the tracing procedure is constant and therefore well de…ned. We

proceed by applying these de…nitions to the equilibria ' and ! in our speci…c game. First

note that the best reply against mixtures between these equilibrium strategies is always

either all defect ! or grim trigger denoted by Ã. There is no potential gain in playing

anything else since grim trigger is payo¤-equivalent with all other co-operation strategies

against another co-operation strategy but is better than any other co-operation strategy

against all defect. Compute player i’s bicentric prior by de…ning expected payo¤s of

responding to the joint mixture z'¡i+ (1¡ z)!¡i by either of the pure strategies Ãi or
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!i:

~ci (z) : = U
¡
Ãi; z'¡i + (1¡ z)!¡i

¢
=

zc

1¡ ± + (1¡ z)
µ
a+ ±

d

1¡ ±
¶
:

~di (z) : = U
¡
!i; z'¡i + (1¡ z)!¡i

¢
= z (b+ ±Vi!) + (1¡ z) d

1¡ ±
Now compare these expected payo¤s making use of ui (') = c

1¡± ¡ b¡ ±Vi! and vi (Ã) =
d
1¡± ¡ a¡ ± d

1¡± = d¡ a :

~ci (z) ¸ ~di (z),
z (ui (') + vi (Ã)) ¸ vi (Ã),

z ¸ vi (Ã)

ui (') + vi (Ã)
:

Player i’s bicentric prior probabilities are given by the lengths of the subintervals [z; 1]

and [0; z]:

pi (Ãi) =
ui (')

ui (') + vi (Ã)
and

pi (!i) =
vi (Ã)

ui (') + vi (Ã)
:

Now we turn to the tracing procedure. At the starting point t = 0 player i picks a

best response to his bicentric prior p¡i := p¡iÃ¡i + (1¡ p¡i)!¡i. For any t 2 (0; 1)
responding to p¡i by playing 'i or !i yields the payo¤ comparison

Ui (!i; p¡i) > Ui ('i; p¡i),
vi (') v¡i (')

u¡i (') + v¡i (Ã)
>

ui (')u¡i (')
u¡i (') + v¡i (Ã)

,
vi (') v¡i (') > ui (') u¡i (')

This shows in the language of HS that Ui (!i; p¡i) > Ui ('i; p¡i) for i = 1; 2 i¤ !’s Nash
product is strictly larger than '’s. In this case an equilibrium in ¡t (s; p) contains no

positive weight on ' for any t 2 (0; 1) since ! outperforms ' against the bicentric prior
p and the tracing procedure yields ! as the risk dominant equilibrium in the sense of

HS. The converse holds for Ui ('i; p¡i) > Ui (!i; p¡i). Since this corresponds exactly to
our de…nition we have completed the claim of the lemma.
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