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ABSTRACT

The Variable Value Environment: Auctions and Actions*
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total cost of private actions undertaken by all agents, is maximized. We
characterize the first best allocation, and propose a mechanism that yields the
first best allocation in equilibrium. This mechanism has an inefficient pooling
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1 Introduction

If an object is available for use at some future date, what is an efficient mechanism for

selling it? For example, consider a sale of a hypothetical military base that is scheduled

to close in twenty years. Waiting with the sale for twenty years and auctioning off the

base immediately before it becomes available probably creates an inefficiency, because the

winning bidder might have missed opportunities to invest in assets complementary to the

base ownership. In other words, private actions that a bidder chooses prior to the actual sale

may influence her private value. If a bidder thinks that her likelihood of winning the object

is sufficiently low, she would choose not to take costly actions that increase her valuation of

the object.1 On the other extreme, selling the base twenty years before it becomes available

seems absurd, because the expected value of the object for each bidder is likely to change

over time. Thus, efficiently allocating an object a long time before it becomes available

for use is an unlikely possibility. In other words, as long as there are privately observed

exogenous shocks to private values that are revealed over time, auctioning off the object well

in advance (before the exogenous shocks are observed) may be inefficient.

Changes in private values due to private actions and exogenous shocks are ubiquitous.

We will refer to an auction environment, where individual values may change over time as

a result of both private actions and exogenous shocks as the variable value environment.

Private actions, for instance complementary investments, change the private value of an

object; and so do exogenous shocks ranging from changes in demand and input prices to

changes in tax laws and regulatory environment. A sale of almost any object or service

available for use at some known future date is an example of the variable value environment,

ranging from leasing a building or a military base to renting a dance club for New Year’s

Eve.

A sale of an object in a market where search is important inevitably has elements of the

variable value environment. Consider the sale of house A that is scheduled to be auctioned off

in 20 days. Before house A becomes available bidders may have opportunities to buy other

1Alternatively, a bidder may be able to take a free action that increases her value for the object, but

decreases her utility from not getting the object. For example, a bidder may sign a contract that is very

profitable if the base belongs to the firm, but unprofitable otherwise. Formally, a costly action increasing the

value of the asset is equivalent to a free action that lower the reservation utility conditional on not getting

an object.
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houses, essentially removing themselves from the market. Thus, we can consider an action

consisting of “not buying some other reasonably priced house” as an action that boosts the

value of the house. A second price auction (or any other single-round auction mechanism)

is bound to be inefficient in a market with search because in the variable environment

information revelation is necessary for achieving efficiency. The model of the variable value

environment not only explains why auctions are rare in markets where search matters, the

theory of the variable value environment developed herein also offer insight into auction

design for these markets.2

One may argue that as long as there is resale opportunity the object should be auc-

tioned off as early as possible and then “the market will allocate it efficiently”. However,

this argument is flawed on two counts: First, in a generic case, there exists no efficient

resale mechanism (Myerson and Satterthwaite, 1983). Second, and most importantly for

the current analysis, selling the object early counting on the original buyer to re-allocate

the object simply moves the burden of designing an allocation mechanism from one party

to the other. To the best of our knowledge, a variable value environment has never been

introduced or investigated in the economic literature. The time dimension central for the

variable value environment is essentially absent from the auction literature. Although in

many auction models bidders use bid history for updating their beliefs, this does not in-

troduce time dimension into the auction environment. Indeed, the multi-period updating

is due to a mechanism selected for the auction, and it is the process of the auction that

influences the bidders values in these models and not the passage of time. An auction where

participants bid for packages of goods in multiple rounds is another example of an auction

where a time line is a part of the mechanism but not a part of the auction environment (for

a recent example of such a mechanism, see, e.g., Milgrom, 2000, Perry and Reny, 1998).

2Even a sale of consumer items via Internet auction houses may have a variable value component. A

consumer who considers bidding for an object on an auction that ends in five days may take private actions

that influence her private value of the object. For example, a consumer considering bidding for some item

may forego opportunities to bid for other similar or complimentary items. Possibly, Internet auction houses

such as e-Bay and Amazon incorporated features that allow bidders to buy an object instantly at a sufficiently

high price (set by the seller) in order to avoid some of the inefficiencies of using second price auction in the

variable value environment. Of course, the use of Buy-It-Now feature in Internet auctions might, perhaps, be

explained by factors other than variable value features of the environment. Still, this seems to be a natural

explanation.
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Auctions with entry costs are related to the variable value environments: Mathematically,

decision to pay for costly entry into an auction is equivalent to an action that boosts the

private value of the agent. However, there is a number of significant differences. Most

importantly, an entry fee is a feature of the mechanism, rather than of the environment. In

contrast, ability of agents to take actions influencing the value of the object is a feature of the

environment. Entry costs are investigated in various contexts by Milgrom (1981), McAfee

and McMillan (1987), Riordan and Sappington (1987), Levin and Smith (1994), Fullerton

and McAfee (1999), and Lixin Ye (2000).

The present work attempts to offer insight into auction design for the variable value

environment. We start by proposing a formal model of the variable value environment with

three periods. In the first period, each party receives a private signal s about its private

value for the object. In the second period, a party can take a private, unobservable action

at cost c (cost) that increases the value of the object by b (benefit). In the third period,

bidders receive independent exogenous shocks t to their private values of the object. For ith

bidder, the final reservation price for the object is a function of signals (si and ti) regarding

the value obtained in the first and third periods plus the benefit b from taking an action

if the bidder took the action (V (si, ti) + b − c). Otherwise, the private value of the object
is V (si, ti). The identity of the bidder with the highest value can only be established after

the third period signals ti are observed. Thus, an efficient allocation mechanism requires

that the ownership of the object is assigned after the third period. Conducting a second

price auction after the third period is not efficient (in a world where first period signals are

privately observed), since it forces agents to take decisions regarding second period actions

in ignorance of the expected private values of other agents. The following example illustrates

this simple but essential point.

Example. Let the number of participants be N = 2, assume that si are privately observed

signals independently drawn from the uniform distribution on [0, 1]. For simplicity, assume

that there is no third period signal, ti ≡ 0.3 In a symmetric equilibrium with no revelation of
3In the special case of all ti’s equal to zero, an efficient allocation rule can be implemented by assigning

the ownership of the object by conducting a Vickrey auction at the end of the first period after si’s are

privately learned. Also note that for any non-degenerate distribution of third-period signals, assigning the

ownership of the object at the end of the first period is no longer efficient. Of course, the inefficiency of

allocating the object at the end of the third period demonstrated by the example does not go away when

ti’s are not equal to zero.
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the first-period signals, each agent acts if her probability of winning conditional on her own

type is higher than c
b
. That is, agent i acts if si ≥ s∗ = c

b
. If s∗ = 3

4
, then with probability

1
16
both agents act (which is inefficient), and with probability 9

16
no agent acts (which is

inefficient as well). Therefore, on average there are too few actions (1
2
instead of 1). If

s∗ = 1
4
, the situation is reverse: with probability 9

16
both agents act, and with probability

1
16
no agent acts. On average, there are too many actions (3

2
instead of 1). This is hardly

surprising: without signaling, there are too few actions, when actions are relatively costly

(c
b
= 3

4
), and there are too many actions, when actions are relatively cheap (c

b
= 1

4
).

We consider a problem of designing an efficient mechanism for allocating the object in

the environment where signals about bidder’s private values (si, and ti) are private signals.

First, the concept of allocation needs to be generalized for the variable value environment.

For the variable value environment an allocation is defined as the identity of the bidder who

receives the object and the list of private actions taken by bidders. The objective of the

social planner is to implement an efficient allocation, i.e. to maximize the social surplus,

which equals to the expected sum of all bidder’s surpluses net of the cost of actions. After

the social planner observes the first-period signals si obtained by bidders, she has to decide

which bidders should act in the second period and which should abstain from actions. Since

the exogenous shock of the third period is not known in the second period (when decisions

to take actions are made), it may be efficient to have more than one bidder taking an action

or to have no bidders at all taking actions.4 Theorem 1 establishes that if the social planner

orders an agent with the first-period value si to act, then she also orders all agents with

value greater than si to act.

Of course, an all-knowing and well-intentioned social planner is rarely available in the

real world. What happens if there is no social planner but all the information is common

knowledge, i.e. signals obtained by a bidder about her private value are observed by all

players? Theorem 2 establishes that the efficient allocation can be achieved in a decentralized

case. (This is the same first-best allocation that can be achieved by the social planner.)

The above mentioned results rely on bidders’ private values being common knowledge. A

more realistic case, where bidders privately observe their valuations, is of primary interest.

4Indeed, for a given distribution of the third-period exogenous shock, it becomes inefficient for anybody

to undertake an action as the cost of action approaches the benefit. On the other extreme, if the cost of

action approaches zero it becomes efficient for more than one agent to undertake an action.
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Can an efficient allocation be achieved in that case? It is straightforward that an efficient

allocation can not be attained without revelation of bidders’ private signals (si) prior to

the second period. If the object is allocated to the bidder with the highest value following

the third period (using, say, a second price sealed bid auction) adding a cheap talk stage

following the first period will not result in any information revelation and thus would lead

to an inefficient outcome (allocation).5 In the cheap talk stage each bidder would claim to

be ‘the high type’ because the higher is the perceived type of a bidder, the less likely are the

other bidders to undertake actions and thus the lower are the subsequent bids for the object

by other players. Theorem 3 and Theorem 5 show that there exists an efficient mechanism,

where private information is revealed in the first round and the object is assigned in the

second round. The first round takes place after private signals si are received by agents. In

the first round bidders reveal their private signals si by making payments (we show that the

higher is the private signal si, the higher is the agent’s willingness to pay for reporting to

other agents that the value of her private signal si is high). The second round consists of a

second price sealed bid auction conducted after signals ti are received.

As long as private signals si are truthfully revealed in the first round, the subgame

corresponding to the second round is identical to the complete information game. Theorem

3 establishes that the mechanism described above has an efficient separating equilibrium.

Unfortunately, this mechanism also has an inefficient pooling equilibrium. To rule out the

pooling equilibrium, we propose a class of mechanisms that force players to coordinate on the

separating equilibrium. We refer to mechanisms from this class as “ε−efficient mechanisms.”
We prove that one can always choose an ε−efficient mechanism which yields an efficient

allocation with probability arbitrarily close to one. An ε−efficient mechanism consists of

two rounds. The first round takes place after private signals si are received by agents: a

non-transferable discount for amount ε is sold via a sealed-bid all-pay auction. After the

all-pay auction all bids are made public. The ε discount can only be used in the second

round auction. In the second round the object is sold using a Vickrey auction (if the winner

of the Vickrey auction is a holder of the ε discount, she pays the second highest bid minus

5The condition that the object is allocated to the bidder with the highest value following the third period

is a necessary, but not sufficient condition for efficient allocation in the variable value environment. This is

because efficiency of an allocation depends on the set of players that take actions in the second period. As

we mentioned before, the winning bidder might have forgone investment opportunities enhancing the value

of the object.
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ε). Note that for ε = 0 this mechanism is identical to the efficient mechanism described

above. Theorem 6 shows that an arbitrarily small positive ε forces agents to coordinate on a

separating equilibrium that yields an efficient allocation with probability converging to one as

ε converges to zero. In spirit, this mechanism is very close to virtual implementation, a pure

theoretical concept in mechanism design (e.g., Maskin and Sjostrom, 1999). The proposed

mechanism could easily be used in real large-stake auctions, so it gives a first example of a

real-world implementable virtual implementation mechanism.

The rest of the paper is organized as follows. In Section 2, we introduce the formal

model of the variable value environment. In Section 3, an efficient mechanism that has a

fully separating Bayesian-Nash equilibrium is described. Section 4 introduces the ε−efficient
mechanism and establishes that it has a unique robust equilibrium. Section 5 concludes.

The Appendix contains mathematical details and proofs.

2 The Environment

The variable value environment is an environment, where bidders’ expected value of the

object changes stochastically over time. This paper focuses on a three period model: it is

the simplest possible model that exhibits essential features of the variable value environment,

and offers insights into auction design in such an environment. There are N identical agents.

In the first and the third periods, agents receive independent signals about their private

values of the object. In the second period, each agent has an opportunity to take a costly

action that increase her private value of the object.

Timing

Period 1. Each agent receives a signal si ≥ 0 about her private values, drawn independently
from the same atomless distribution.

Period 2. Each agent i has an opportunity to take an unobservable action, i.e. choose

ai ∈ {0, 1}, which increases the agent’s private value by bai and costs cai ≥ 0 (obviously,
only the case of b > c is of interest). When ai = 1 we say that the agent i undertakes the

action or simply ‘acts’; if ai = 0 we say the agent i abstains from acting or skips the action.

Period 3. Agents receive independent signals ti ≥ 0 about their private values. We assume
that a higher first-period signal si makes a higher second-period ti more likely. Formally, if

7



si > s
0
i, then the distribution of ti conditional on si stochastically dominates the distribution

of ti conditional on s0i.
6

Agent’s i private value of the object equals Vi = V (si, ti), which depends on her first and

third period signals plus the benefit from taking an action. Thus the utility of the agent is

given by:

Ui =

½
V (si, ti) + (b− c)ai − pi, if the agent i wins the object
−cai − pi, otherwise,

where pi denotes the total amount of payments made by the agent i within a mechanism (i.e.

not including c).7 Note that pi need not be equal to zero for loosing bidders. We assume

that V (si, ti) is continuous and increases in both arguments.

To explore possibilities of efficiently allocating the object within the model, we need

to extend the concepts of allocation, efficiency, and social surplus to the variable value

environment. Social surplus is the value of the object to the agent that gets the object

minus the cost of actions taken by all agents: S = V (sj, tj) + baj −
PN

i=1 cai, where j is the

identity of the agent that receives the object. An allocation is a vector consisting of the list of

agents who took actions and the identity of the agent who received the object. An allocation

needs to specify the identities of agents who took actions because actions affect the social

surplus. An equilibrium strategy profile of a mechanism (e.g., an auction) is referred to as

an allocation rule. If a mechanism has multiple equilibria, each equilibrium strategy profile

defines an allocation rule.

Any allocation rule induces a probability distribution over values of social surplus induced

by a mechanism or by a social choice rule adopted by the social planner. Allocation rules

can be ranked in terms of efficiency by comparing corresponding expected values of the

social surplus. An allocation rule is efficient (first-best), if it yields the same expected social

surplus as the maximum expected social surplus that can be achieved by the social planner,

who observes all signals received by agents, orders agents to take or not to take actions, and,

finally, assigns the object.

6For instance, this condition holds if random variables si and ti are affiliated (Milgrom and Weber, 1982),

which includes independent variables as a particular case.
7It is possible to extend our model to the case when the utility function takes the form Ui(si, ti, ai), where

ai is continuous, and higher values of ai makes a higher third-period signal ti more likely. However, it would

make exposition much more complex, while providing no new insight.
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3 Efficient Mechanism in the Variable Value Environ-

ment

In this section, we study mechanism design in the variable value environment. We start with

considering a benchmark case of the efficient mechanism for allocating the object that can be

achieved by a social planner who knows all the private information available to bidders. Then

we consider a mechanism that allocates the object efficiently in the incomplete information

case.

3.1 The Social Planner’s Problem

Let us start by characterizing the solution to the social planner problem. After observing the

first period signals, the social planner decides which agents should act in the second period.

Formally, there is a mapping of a vector of the first period signals into a vector of the second

period actions a∗ = a∗(s).8 At the end of the third period the social planner assigns the

object, thus mapping a triplet of vectors (s, a, t) into a number between 1 and N . The

final assignment of the object is easily characterized. The social surplus maximization calls

for assigning the object to the agent with the highest ex-post private value: if the efficient

allocation assigns the object to the agent j, then for any i 6= j, we have V (sj, tj) + baj ≥
V (si, ti) + bai. Thus, assigning the object before agents have learned their final values of

the object is likely to be inefficient. Obviously, in the variable value environment, giving

the object to the agent with the highest ex-post value is necessary, but not sufficient for

efficiency. It remains to characterize the function a∗(s) that describes the second period

actions needed to maximize the expected social surplus, given s. So, the social planner’s

problem might be written as follows:

max
a
Et[S|s,a] = max

a

(
Evmax

i
{V (si, ti) + bai}− c

NX
j=1

aj

)
.

Before proceeding to general results, let us illustrate this problem with a simple example.

Example. This is essentially a continuation of the Example from the introduction. Suppose

that N ≥ 2. If there is no third-period uncertainty (ti ≡ 0), then the social planner chooses
8In the most general case, the social planner may assign mixed strategies to the agents. We show later

that almost surely, the social planner problem has a unique pure strategy solution. Consequently, we focus

on pure strategies of the social planner.
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exactly one agent to act — the one with the highest first-period signal. On the other extreme,

if there is no first-period signal (si ≡ 0), and the cost of action is sufficiently cheap, then the
social planner would assign all agents to act.

It is useful to introduce a function Gi(s,a−i) representing the difference in the expected

social surplus that results from the agent i acting and not acting (keeping the actions of

other agents unchanged):

Gi(s, a−i) = Et[S|s,a−i, ai = 1]−Et[S|s,a−i, ai = 0]. (1)

Since the social planner maximizes social surplus, the expected surplus in the above formula

should be computed under assumption that after the third period, the social planner allocates

the object to the agent with the highest value. The social planner faces the following trade-

off: each additional agent’s act increases the expected private value of the agent who receives

the object, but is associated with the cost of c. Let a(m) = a(m, s) denote the vector of

actions, where the agents with the highest m first-period signals act, while the other N −m
agents skip action.

Theorem 1 For a given vector of the first-period private signals s, there exists a threshold

r∗ = r∗(s) such that the social planner assigns agents with the highest r∗ first-period signals

to act.9

Proof. To prove Theorem 1, we need to establish the following Lemma (a proof is relegated

to the Appendix).

Lemma 1. Consider vectors of actions a and a0 such that
P

i ai =
P

i a
0
i, ai = a

0
i for all

i 6= j, k, and let aj = 1, ak = 0, a0j = 0, and a0k = 1. If sj ≥ sk, then the expected social
surplus from a is greater than that from a0.

This Lemma shows that a vector of actions maximizing the expected social surplus must

be of the form a(m) for some m, 0 ≤ m ≤ N. Since there is a finite number of possible m’s,
there exists some r∗ such that a(r∗) is the global maximizer of the expected social surplus.

This completes the proof of Theorem 1.¥

Definition of Gi(s,a−i) implies that an action vector maximizing the social surplus must

satisfy Gi(s,a−i) ≥ 0 when ai = 1 and Gi(s,a−i) ≤ 0 when ai = 0.
9r∗ is determined almost uniquely: The event that the expected social surplus is maximized by more than

one action vector of the form a(r∗) and a(r∗∗) where r∗ 6= r∗∗ has zero probability.
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3.2 Complete Information

Now we turn to a world without an all-knowing and well-intentioned social planner. We

consider the case, where agents act non-cooperatively, given that the first-period signals are

common knowledge. This is an essential step towards mechanism design for the incomplete

information case.

One might expect that in the decentralized case too many or too few players may take

actions, since they may not fully internalize the effect of their private actions on other players.

We show that an efficient allocation can be achieved in a decentralized case, when bidders

know each other’s first-period signals. Theorem 2 states that in this case there exists an

equilibrium outcome of a second price auction conducted at the end of the third period that

yields an efficient allocation, the same allocation as the first best obtained by the social

planner.

Theorem 2 If first-period signals s are public knowledge, there exists a socially efficient

Subgame Perfect Bayesian-Nash equilibrium of a second price sealed bid auction conducted

at the end of the third period. In this equilibrium, agents take unobservable actions as if they

were assigned by the social planner resulting in the allocation rule characterized in Theorem

1.

The basic intuition is as follows: the expected increase in an agent’s utility from taking

an action is exactly equal to the change in the expected social surplus due to her action.10

Then the fact that a(r∗) is the social planner’s optimal choice ensures that a(r∗) is an

equilibrium vector of actions in the non-cooperative game.

Proof of Theorem 2. We introduce a function gi(s, a−i) defined as the change in the

expected utility of the agent i as a result of taking an action instead of skipping it, and

prove the following assertion (a proof is in the Appendix).

Lemma 2. gi(s,a−i) = Gi(s, a−i).

Now observe that if a is a solution to the social planner’s problem, then Gi(s, a−i) ≥ 0
when ai = 1 and Gi(s, a−i) ≤ 0 when ai = 0. Indeed, if Gi(s, a−i) < 0 when ai = 1,

the agent’s i switch from acting to non-acting would strictly increase the expected social

surplus, contradicting the choice of a. Similarly, Gi(s,a−i) ≤ 0 when ai = 0. Then Lemma
10The logic behind the result is similar to the one that insures efficient entry in McAfee and McMillan

(1987) and Levin and Smith (1994).
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2 asserts that for the change in private benefits we have gi(s,a−i) ≥ 0 for agents that act,
and gi(s,a−i) ≤ 0 for others. Thus, no agent has incentives to deviate, and Theorem 2 is

proven.¥

Here and in the rest of the paper the term ‘equilibrium’ is reserved for a subgame-perfect

Bayesian-Nash equilibrium. The efficient equilibrium described in Theorem 2 seems to be

a natural focal point. However, the game has a coordination component: there are other

Bayesian equilibria that are not efficient. For example, if there are only two players, there

might be two equilibria: one with the highest-ranked agent acting and the other abstaining,

and another one with the second-ranked agent acting and the highest-ranked abstaining.

3.3 Incomplete Information: Ex-post Efficient Equilibrium

Now we are ready to investigate the incomplete information case. Here we consider a three-

period model of the variable value environment similar to the one considered in the preceding

section. The only difference is that here bidders’ signals regarding their private values (s and

t) are observed privately. Now a mechanism consisting of an auction conducted after the

third period no longer leads to an efficient allocation, since under such mechanism agents take

second-period actions without knowledge of the private signals obtained by other players.11

Obviously, an efficient allocation rule can not always assign the final ownership of the object

prior the end of the third period.

Is it possible to allocate an object efficiently in the variable value environment of incom-

plete information? This question is answered affirmatively by Theorem 3. We explicitly

construct an efficient allocation mechanism, which consists of two rounds: The private infor-

mation is revealed by announcing it in the first round that takes place after the first-period-

private-signals are observed; the ownership of the object is assigned in the second round that

11For the sake of completeness, one can consider the no-signalling case, where an auction is conducted after

the third period and no signaling takes place before the second period. (Note that cheap talk communication

following the first stage is not credible because everybody has an incentive to exaggerate his signal.) To

describe the symmetric equilibria of this game, one can show that there exists a unique constant s∗ such

that any agent acts if her first-stage value si is higher or equal to s∗, and abstains from acting otherwise.

In the equilibrium, the expected number of actions is N (1− Fs(s∗)) . So, in some cases, there are too few
actions, while in others there are too many. This is a generalization of the Example from the Introduction.

Also, there are a number of asymmetric equilibria. Of course, an asymmetric equilibrium can not lead to an

efficient allocation rule.
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takes place after the third-period private signals are observed by bidders.

Rounds of the Efficient Mechanism:

1.a Part a of the first round takes place at the end of the first period (after the private signals

s have been received by agents). In part a of the first round, all agents make simultaneous

public announcements bsi about their private values si.
1.b Part b of the first round immediately follows part a. Each agent voluntarily selects a

payment amount, hi ≥ 0, that depends on the announcements of other agents, as well as
on her own announcement. (These payments hi(bs) are necessary to make announcements
credible.)

2. The second round takes place at the end of the third period, after agents observe their

private signals ti. In the second round, the ownership of the object is assigned using a

second-price sealed-bid auction.

Theorem 3 There exists a subgame perfect Bayesian-Nash equilibrium of the Signaling

Mechanism that yields an efficient allocation rule.

Proofs of Theorem 3 and all subsequent results are relegated to the Appendix. Here, let

us discuss the logic behind the result. First, note that if the first period signals are revealed

truthfully, the remaining subgame is identical to the game where first-period signals s are

common knowledge. Theorem 2 established that an efficient allocation is an equilibrium of

that game. Consequently, in order to establish existence of an efficient allocation mechanism,

it suffices to show that for some payment schedule hi(bs), truthful reporting is an equilibrium,
when agents anticipate that the equilibrium characterized in Theorem 2 will be played in the

remaining subgame. The intuition behind the possibility of truthful revelation is as follows.

The higher is the first period signal si received by an agent i, the higher is that agent’s

relative willingness to pay in order to signal that her value of si is high. Agents are willing

to pay in order to reveal their first period signals, because this information discourages other

agents from taking actions, thus increasing the probability of winning for the agent i and

decreasing the expected price that she will pay for the object (in the subsequent second price

auction) conditional on winning. The expected price decrease affects agents with different

private values differently. For instance, someone with a very low first-period signal is unlikely

to win the object, thus her willingness to pay for sending a signal that depress the price of

the object is lower than that of an agent with a relatively high first-period signal about her

13



private value. This observation, which is critical to the existence of a separating signaling

equilibrium, is formalized in Lemma 3. This Lemma establishes an appropriate analog of the

increasing-differences property (Milgrom and Shannon, 1994) for the pay-offs in the subgame.

Lemma 3. Let Eπi(si, ŝi, s−i) be bidder i’s expected pay-off gross of hi(bs), when her true
private signal is si, while other agents believe that the vector of first-period private signals is

(ŝi, s−i). For any s−i and any ŝ0i > ŝi, and any s
0
i > si,

Eπi(s
0
i, ŝ

0
i, s−i)−Eπi(s0i, ŝi, s−i) ≥ Eπi(si, ŝ0i, s−i)−Eπi(si, ŝi, s−i). (2)

In the above Lemma, Eπi(si, ŝi, s−i) is the expected pay-off of agent i in the mechanism

described in Section 3.2, when the first period private signals are given by (si, s−i) and

player i plays the best response to the action profile of players −i given by a(r∗(ŝi, s−i)).
(The action profile a(r∗(ŝi, s−i)) is characterized in Theorem 1.) Essentially, Eπi(si, ŝi, s−i)

is the pay-off received by agent i in the subgame computed under an assumption that all

first round announcements are believed to be truthful, and that agent i reported ŝi, while

her true private value is si.

Lemma 3 states that the same change in announcement (from ŝi to ŝ0i) brings more in

expected surplus to the agent with relatively high true signal, s0i. Note that Eπi(si, ŝi, s−i) is

not the same as the expected utility of agent i, because it does not include the payments hi

made in the first round of the mechanism. The agent’s utility is given by Eπi(si, ŝi, s−i)−hi.
Thus, truthful reporting si is consistent with an equilibrium, if there exists a payment

schedule h(ŝi, s−i) such that incentive compatibility and individual rationality constraints

are satisfied. Namely, for any agent i and all (si, ŝi, s−i) the payments should satisfy the

following conditions:

Eπi(si, si, s−i)− h(si, s−i) > Eπi(si, ŝi, s−i)− h(ŝi, s−i) (IC)

Eπi(si, si, s−i)− h(si, s−i) > Eπi(si, ŝi = 0, s−i) (IR)

Note that finding h(ŝi, s−i) that satisfies the above constraints is sufficient for proving

the claim of Theorem 3. Such payment schedule hi(ŝi, s−i) is characterized in Theorem 4.

Before proceeding to Theorem 4, we need to introduce one more definition.

Consider the efficient allocation rule characterized in Theorem 1. It implies that for any

vector of the first period private signals s−i, there exists a sequence 0 = s̄i(k∗i ) ≤ s̄i(k∗i −1) ≤
... ≤ s̄i(1) ≤ s̄i(0) <∞, where s̄i(k) is defined to be the minimal type of i such that exactly
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k highest-ranked agents (different from the agent i herself) act in the subgame equilibrium

described in Theorem 2. Let k∗i = k∗i (0, s−i) be the number of agents acting, when i has

the lowest possible type (zero). Within each segment described above, an agent’s i report is

irrelevant to the other agents’ decisions on whether or not to act.

As above, let a(m) denote the vector of actions, where the agents with the highest m

first-period signals act, while the other N − m agents skip action. Note that a(m) is a

function of the vector of first-period signals s.

Theorem 4 The following payments are consistent with an efficient equilibrium of the Ef-

ficient Mechanism. For any i,

hi(ŝi, ŝ−i) = 0, whenever s̄i(k∗i ) ≤ ŝi ≤ s̄i(k∗i − 1), (3)

hi(ŝi, ŝ−i) = hi(s̄i(k), ŝ−i) +Eπi(s̄i(k),a(k))− Eπi(s̄i(k),a(k + 1)),

whenever s̄i(k) < ŝi ≤ s̄i(k − 1), k < k∗i .

Theorem 4 shows that for any agent i, the payment schedule satisfies incentive compati-

bility and individual rationality (IC and IR, respectively) constraints. Then, if agents in the

set −i report their type truthfully, ŝ−i = s−i, the payment scheme for the agent i given by
(3) induces her to report her type truthfully, ŝi = si. The proof of Theorem 3 is based on

combining Theorem 2 and Theorem 4.

Proof of Theorem 3. Lemma 3 proves that the above payment schedule induces truthful

reporting by agent i, provided that all other agents’ reports are truthful. The beliefs sup-

porting the equilibrium in the signaling stage are straightforward: if a payment by an agent

i is defined by (3), then the agents first-period signal is perceived to lie within the respective

range. In the subgame that starts after the first-period signals are revealed, agents play

according to the strategies described in Theorem 2.¥
In the above equilibrium, each agent reports her type truthfully regardless of the other

agents’ types given that these types are reported truthfully.12 This is a kind of an ex-post

equilibrium (Perry and Reny,1999), where no agent regrets her announcement after learning

the other agents’ types; thus, this mechanism is similar in spirit to the well-known Vickrey-

Clarke-Groves mechanism (e.g., Vickrey, 1961, Krishna and Perry, 1998). However, unlike

12As usual, the revelation principle (Myerson, 1979) allows us to assume that agents report their types

directly, rather than conveying information via a special set of signals.
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the Vickrey-Clarke-Groves mechanism, this is a two-roundmechanism, where payments made

in the signaling round of the mechanism have no direct impact on allocating of the object

– these payments influence the allocation of object indirectly by shaping beliefs about first

period signals.

3.4 Ex-ante Efficient Equilibrium

The mechanism described above provides an ex-post efficient ex-post equilibrium. In such

an equilibrium, agents’ payments may depend on the other agents’ announcements. Below

we show that the Efficient Mechanism described in the previous section also has an ex-

ante efficient separating equilibrium. In this equilibrium, agents make no announcements

(or make uninformative announcements) in the cheap talk stage of the mechanism. In the

stage 1b they simultaneously make publicly observable payments Hi; an agent decides on

the payment size without knowing the private signals of other agents. We show that there

exists a fully separating equilibrium where there is a unique payment corresponding to each

private signal si. Consequently, agents no longer need to make announcements, because the

announcements of their private signals are revealed in the size of payments they make.

Theorem 5 There exists an efficient equilibrium in the Efficient Mechanism, where agents

simultaneously make payments H(si) that depend only on their private information si. Equi-

librium payments are given by Hi(ŝi) = Es−ihi(ŝi, s−i), where hi(ŝi, s−i) are equilibrium pay-

ments defined in Lemma 3.

Let us discuss the intuition behind the proof of Theorem 5. According to Theorem 2, an

efficient allocation can be obtained, when the first period signals si are common knowledge.

It remains to show that the signaling mechanism proposed above is incentive compatible

when an efficient equilibrium is chosen in the subgame following the signaling stage. More

formally we need to show that for any s−i,

si ∈ argmax
ŝi

©
Es−i,vπi(si, ŝi, s−i)−Hi(ŝi)

ª
(note that here expectation is taken with respect to s−i and v). This result is a straightfor-

ward corollary to the existence of an ex-post equilibrium established in Lemma 3. Existence

of this ‘ex-ante’ separating equilibrium essentially follows from the fact that if the agent’s i
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truth-telling is a best reply to any vector s−i of other agents’ signals, than it is a best reply

on the average as well.

Proof of Theorem 5. It suffices to observe that

si ∈ argmax
ŝi
{Etπi(ŝi, s−i)− hi(ŝi, s−i)}

for any s−i and any si, and take sum over all s−i.

Then note that all hi(ŝi, s−i) and thus the function H(si) increase in the bidder’s i

first-period signal si. This allows to use H(si) to report the true value of si. Beliefs are

straightforward.¥
Although existence of ex-ante equilibrium follows from existence of an ex-post equilib-

rium, it is a useful result. It shades some light on the maneuvering that bidders often make

prior to an auction: for example, firms preparing to participate in a large-scale privatization

auction or competing for a procurement contract might engage in costly signaling in order

to discourage potential rivals. For example, let us consider the history of bidding for Los

Angeles license in 1995 broadband auction for mobile-phone licenses.13 One bidder, Pacific

Telephone, possibly started with a higher private value than other bidders due to experi-

ence in California market and possible synergies between its wireline and wireless businesses.

There were a number of important decisions (actions) that each bidder had to make before

the auction for Los Angeles license, these included forming alliances, making investments and

formulating strategies for other markets. It appears that Pacific Telephone signaled to other

bidders (and would-be bidders) that it anticipates winning California. Pacific Telephone

made public statements like ‘If somebody takes California away from us, they’ll never make

any money’.14 To make these statement credible, Pacific Telephone made investments that

were of little value without winning Los Angeles license15. As a result, some potential bid-

ders (including the industry giants such as Bell Atlantic, GTE, and MCI) were discouraged

from participating in the auction. (Thus failing to undertake an action, in our interpreta-

tion). In fact, GTE and Bell Atlantic took actions that made them ineligible for the auction.

13We thank Paul Milgrom for suggesting this example of the variable value environment.
14Wall Street Journal, October 31, 1994.
15Some of the investments made by Pacific Telephone might be interpreted as actions and others as

signals. Essentially, running a PR campaign aimed at signaling that Pacific Telephone is determined to win

Los Angeles license can be interpreted as signaling. In contrast, making unobservable arrangements made

to expedite creation of the wireless service in Southern California can be interpreted as an action.
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As a result, revenues were quite low compared to initial estimates.16 Applying the logic of

our model highlights the importance of signaling that discourages competitors from taking

actions that increase the value of the prize for them.

In the above example the costs of making reports credible have not been captured by the

auctioneer. There is no reason why bidders would opt to announce their types by writing

checks to the auctioneer, and not by burning money in some other way. Another problem is

that the game considered above has an inefficient pooling equilibrium along with an efficient

separating one. Thus, there is no guarantee that an efficient equilibrium is selected. In

the following section we introduce an ε−efficient mechanism, which is similar to the ex-
ante equilibrium considered here, but free of its main disadvantages. First, an ε−efficient
mechanism insures coordination on the efficient equilibrium in the subgame. Second, it

allows seller to capture the signaling costs of bidders. The sacrifice that must be made in

order to gain robustness and capture signaling costs is an arbitrarily small loss in efficiency.

4 Robust ε-Efficient Mechanism

The efficient mechanism described in the previous section can be viewed as a two-stage

auction. The reporting stage, where agents simultaneously make payments that reveal their

types, can be replaced with a sealed-bid all-pay auction, where the object being sold is worth

nothing (zero). Theorem 5 established existence of an efficient Bayesian-Nash equilibrium of

this two stage auction. Unfortunately, this is not a unique equilibrium: a pooling equilibrium,

where everybody bids zero in the signaling stage, is a natural focal point. Nevertheless,

introducing an arbitrarily small inefficiency into the auction design can force bidders to

coordinate on an efficient separating equilibrium. We will refer to such a mechanism as an

ε−efficient mechanism. We start with describing an ε−efficient mechanism and then proceed
to establish efficiency properties of this mechanism in Theorem 6.

16Granted, this is not the only possible interpretation of the 1995 auction for Los Angeles licence. Klem-

perer (2000) considers the history of this auction and suggests that the winner’s curse played an important

role because the winner’s curse is particularly powerful in auctions where one bidder has an advantage. For

a theoretical argument that uses this logic, see also Bulow, Huang, and Klemperer (1999). The outcome

of that auction was probably determined by a constellation of a large number of factors. Revenue in the

auction for Los Angeles licence were low in comparison with spectrum auction in Chicago; however, it is not

clear if asymmetry among bidders and the winner curse were more severe in California.
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Rounds of ε−Efficient Mechanism
1. The first (reporting) round takes place at the end of the first period (after the private

signals s have been received by agents, but before agents take actions). In this round one

coupon is sold via all pay sealed bid auction.17 All bids are announced at the end of the

round. The coupon sold in the signaling round entitles its owner to a discount of size ε for

the price in the final auction (the discount coupon is not-transferable, only the winner of the

final auction can benefit from having the coupon).

2. The second round (final) auction takes place at the end of the third period, after agents

observe private signals v. In the second round the ownership of the object is assigned using

a second price sealed bid auction. (If the highest bidder in the final round is the owner of

the ε−coupon, then she pays the second highest bid minus ε.)
There are two rounds and three decision nodes in an ε-efficient mechanism. At the

first decision node, agents make bids in an all-pay auction, i.e. the i’s actions space is

{Hi|Hi ≥ 0}. The information set of agent i at the first decision node is given by si. The
first round strategy is described by the probability distribution ρi(·; si) over the set of pure
strategies {Hi|Hi ≥ 0}. At the second decision node, agents make a decision to act or not to
act. The information set of agent i at the second decision node is given by (si,Hi,H−i,w),

where w is an N-dimensional vector with wk = 1 if the agent k won the coupon in the all

pay auction, and wk = 0 otherwise. (There is a unique vector w consistent with vector of

payments H, unless there is a tie). The probability that agent i acts (ai = 1) is denoted by

λi = λi(si,Hi,H−i,w). At the third decision node, agents submit bids in the second price

sealed-bid auction. At this moment, the information sets are (si, Hi,H−i,w, ai, ti). It is

well known that in an equilibrium in weakly dominant strategies of a private value Vickrey

auction bidders bid their true values. Thus, equilibrium bids are given by V (si, ti)+bai+εwi.

Clearly, an ε-efficient mechanism has multiple equilibria. Some of these equilibria are

highly implausible. In order to rule out such equilibria we introduce a restriction on strategies

in the spirit of ‘intuitive’ criteria such as D1 of Cho and Kreps (1987) or stability of Kohlberg

and Mertens (1986).

Definition. A strategy of an agent j is monotonic, if two vectors H−j and H0
−j differ only

17In an all pay sealed bid auction every agent submits a sealed bid. All agents have to pay the amount

of their bids regardless of whether or not they won the object. The agent with the highest bid receives

the object. (In case of a tie the winner is randomly chosen from the set of highest bidders.) Fullerton and

McAfee (1999) use an all-pay auction in their ’contestant selection auction’.
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in component i so that Hi > H 0
i, then pj(sj,Hj,H−j,w) ≤ pj(sj,Hj,H0

−j,w
0).

In words, a monotonic strategy of an agent j assumes that for any history, the probability

that the agent j takes an action is non-increasing in the size of the payment that some agent

i, i 6= j makes in the signaling stage.
As we will see, the requirement that the strategies are monotonic rules out the ‘bizarre’

equilibrium, where all agents bid zero in the signaling stage and an agent who bids a positive

amount is perceived to be of the lowest type. Basically, there are two reasons why an equi-

librium strategy may not be monotonic: First, perverse beliefs may sustain an equilibrium in

strategies that are not monotonic. An example of such ‘unnatural’ beliefs is as follows: The

more an agent bids for a discount coupon, the lower is her perceived si. Obviously, this is

counter-intuitive: the higher is an agent’s si, the more she values the discount coupon. The

second possibility stems from coordination aspect of the game. If bids in the signaling stage

are used as coordination devices for selecting a Bayesian-Nash equilibrium in the remaining

subgame, an equilibrium resulting from these beliefs may include strategies that are not

monotonic.

Definition. A robust equilibrium of an ε−efficient mechanism is any symmetric subgame-

perfect Bayesian-Nash equilibrium in monotonic strategies.

Theorem 6 For an ε-efficient mechanism, the following is true:

(i) There exists a robust equilibrium.

(ii) The robust equilibrium is unique.

(iii) The probability that the robust equilibrium yields an efficient allocation converges to

one as ε→ 0.

Before proceeding to a formal proof, let us sketch the intuition behind this result. A

pooling equilibrium where everybody bids zero for the coupon is not robust. Indeed, if

everybody bids zero for the discount, it can be purchased for an arbitrarily small amount.

Thus, the pooling equilibrium is sustainable only if bidders are discouraged from bidding a

positive amount by a belief that a positive bid would encourage other bidders to act more

aggressively in the action stage. However, this belief is inconsistent with strategies being

monotonic. The same argument applies to any partially pooling equilibrium. We show that

there are no equilibria in mixed strategies, because the willingness to pay for the discount is

an increasing function of the bidder’s signal. Efficiency of a robust equilibrium follows from
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Theorem 5 that establishes that for ε = 0, there exists an efficient symmetric equilibrium.

To prove asymptotic efficiency of a robust equilibrium, we show that when ε approaches 0,

the robust equilibrium converges to the equilibrium described in Theorem 5.18

Proof of Theorem 6.

(i) The proof of existence follows the pattern of the proof of Theorem 3. Construction

of an ex-ante equilibrium in the previous section used existence of an ex-post equilibrium

in a mechanism, where credibility payments are allowed to be functions of announcements.

Here, we use the same idea. As an intermediate step, consider a mechanism, where the

discount is not auctioned off using an all-pay auction. Instead, bidders announce their

types in the reporting stage (much like in the mechanism described in Section 3). After the

announcement, bidders make payments hi(bsi,bs−i) to make the announcement credible, and
the bidder with the highest announced si receives the ε−discount.
Rounds of the “intermediate” mechanism:

1. After each agent privately learns si, all agents simultaneously announce their types in

the cheap talk stage. Afterwards, each agent must make a payment of hi(bsi,bs−i). The agent
with the highest first period announcement bs receives the discount coupon (ties are broken
using a lottery). Agents take action after observing announcements bs.
2. After the third period signals v are revealed, the object is sold via a second-price

sealed-bid auction.

We shall show that there exists a payment schedule hi(bsi,bs−i) such that truthful reporting
supported by paying hi(bsi,bs−i) is an ex-post equilibrium. The private value of the bidder
with the highest first-period signal is essentially boosted by the amount equal to the discount

ε. Let es(s,bs) be a vector of ‘adjusted’ private value signals, where esi = si + ε if bsi > bsj =
sj for all j 6= i, and esi = si otherwise. Assuming bs−i = s−i, we study the ith agent

incentives to misreport the true signal si. If all the equilibrium reports bsi are truthful, then
the subgame after ε discount is assigned is identical to the game considered in Section 3.1.

The equilibrium expected pay-off of agent i of the subgame, which does not include hi,

is denoted by Eeπi(si, ŝi, s−i). One can express Eeπi(si, ŝi, s−i) in terms of Eπi(si, ŝi, s−i)
(defined in Lemma 3) using ‘adjusted’ private signals. Let bes denote a vector of perceived
‘adjusted’ signals of agents; the ith component of bes is besi = besi(si, bsi,bs−i) = esi+(si−bsi). That
is, es is a vector of ‘adjusted’ private value signals and bes is public perception about es. Now
18Also, if the ε-efficient mechanism yields an inefficient outcome, efficiency losses are of magnitude ε.
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we can write Eeπi(si, ŝi, s−i) = Eπi(esi,besi,es−i).
To prove that a separating equilibrium exists, we need to formulate an increasing-

differences condition similar to (2).

Claim. For any N − 1-tuple of truthful reports s−i, and any ŝ0i ≥ ŝi, s0i ≥ si,

Eeπi(s0i, ŝ0i, s−i)−Eeπi(s0i, ŝi, s−i) ≥ Eeπi(si, ŝ0i, s−i)−Eeπi(si, ŝi, s−i) (4)

To prove the claim, we need to consider three cases: (a) the agent wins the ε discount if she

makes announcement ŝ0i but not ŝi; (b) an agent wins the discount for either announcement

ŝ0i or ŝi; (c) neither ŝ
0
i, nor ŝi are high enough to win the discount.

For (b) and (c), (4) follows immediately from Lemma 3. It remains to show that it

also holds for the case (a). Denote s−i = (sm−i, s
−m
−i ), where s

m
−i is the largest component

of the vector s−i and s−m−i is an N − 2-dimensional vector that consists of all components
of vector s−i other than its largest component sm−i. Applying the new notation, one gets

Eeπi(si, ŝi, s−i) = Eeπi(si, ŝi, sm−i, s−m−i ). In case (a), we have es−m−i = s−m−i . Therefore, one can
re-write (4) as follows:

Eπi(s
0
i + ε, ŝ0i, s

m
−i)−Eπi(s0i, ŝi, sm−i + ε) ≥ Eπi(si + ε, ŝ0i, s

m
−i)−Eπi(si, ŝi, sm−i + ε). (5)

Let

X = V (si, ti) + ε−max
j 6=i

©
V (sj, tj) + ba

∗
j(ŝ

0
i, s

m
−i, s

−m
−i )

ª
,

X 0 = V (si, ti) + ε−max
j 6=i

©
V (sj, tj) + ba

∗
j(ŝi, s

m
−i + ε, s−m−i )

ª
,

Y = V (s0i, ti) + ε−max
j 6=i

©
V (sj, tj) + ba

∗
j(ŝ

0
i, s

m
−i, s

−m
−i )

ª
,

Y 0 = V (s0i, ti) + ε−max
j 6=i

©
V (sj, tj) + ba

∗
j(ŝi, s

m
−i + ε, s−m−i )

ª
We know that X 0 º X, Y 0 º Y. Then

Eπi(s
0
i + ε, ŝ0i, s

m
−i)−Eπi(si + ε, ŝ0i, s

m
−i) = EY + −EX+,

Eπi(s
0
i, ŝi, s

m
−i + ε)−Eπi(si, ŝi, sm−i + ε) = EY 0+ − EX 0+.

Using Lemma A3 (from the Appendix) completes the proof of (5).

Since (5) holds, there exists an ex-post separating equilibrium in the “intermediate mech-

anism”. Using existence of an ex-post equilibrium, we can apply the same argument as in the

proof of Theorem 5 to establish existence of ex-ante separating signaling mechanism, where
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agents make signaling payments that are strictly increasing in their signals. This completes

the proof of existence.

Now we shall prove that any robust equilibrium is unique, fully separating, and ’almost

efficient’.

In an equilibrium, the probability of any particular bid value H in the signaling stage

is zero. Indeed, if there is a positive mass of agents that plays some Hmass with positive

probability, then there is a positive probability of a tie. Then an agent playing Hmass can

increase the likelihood of winning the discount ε > 0 by increasing her bid by an infinitesimal

amount. Since the strategies are monotonic, none of the agents would increase their likelihood

of taking actions. Thus, such a deviation would be profitable.

Probability that players in the set−i take actions is denoted here as p−i. LetΠ(si,p−i, s−i)
denote the pay-off of player i in the subgame after signaling payments H’s are sunk. We

want to show that if p−i ≥ p0−i then for every s0i > si we have

Π(s0i,p−i, s−i)−Π(si,p
0
−i, s−i) ≤ Π(s0i,p−i, s−i)−Π(si,p

0
−i, s−i). (6)

Essentially this condition says that any decrease in “final” private values of player in the

set −i is more valuable for player i with a larger first period private signal. Inequality (6)
follows from the proof of Lemma 3.

Let us show that all robust equilibria are separating. In a robust equilibrium, actions

taken by players depend on their private signals and the announcements of other players.

Thus, we can write p−i = p−i(s−i,H−i,Hi) and p0−i = p−i(s−i,H−i,H
0
i). (From above, we

can conclude that a tie is a measure zero event; and thus have no impact on expected payoffs.)

For monotonic strategies p−i ≥ p0−i for H 0
i > Hi (the inequality holds for all components).

Inequality (6) implies that H(s) is weakly increasing in s. Now we can conclude that H(s)

is strictly increasing in s (expect perhaps for a measure-zero set).

Let us show that in equilibrium, pi(H−i,Hi(si), si) is non decreasing in si. Indeed, p−i =

p−i(s−i,H−i,Hi) is weakly decreasing in Hi. Thus, according to single crossing condition, if

agent with a first period signal si acts with positive probability pi(H−i,Hi(si), si) > 0, then

any agent with a signal s0i > si strictly prefers to act, and pi(H−i, Hi(s
0
i), s

0
i) = 1. Therefore,

there exists a unique equilibrium in the subgame that is consistent with a robust equilibrium

strategy profile. In this equilibrium, all agents with private values exceeding some critical

value s∗(H) act.
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From the previous paragraph and Theorem 2, it follows that ε−efficient mechanism yields
an efficient allocation with probability converging to one as ε converges to zero.

To establish uniqueness of the robust equilibrium, we use a standard argument (e.g.,

Klemperer, 1999). Condition (6) implies that dH(s)
ds

is the same in any robust equilibrium.

In Step 5, we showed that there is a unique robust equilibrium in the subgame following the

all-pay auction. It remains to show that H(0) = 0. Suppose otherwise, say H(0) = H0 > 0.

For a player with si = 0, H(0) = 0 is a profitable deviation: Indeed, after this she does

not change the perception of her type (she is correctly perceived to have si = 0). It was

demonstrated that in a robust equilibrium each player either acts with probability one or

zero (except perhaps for a set of measure zero). Thus, the deviation can only cause other

players to increase the probability with which they act; however, given the set of players

that act, non of the players that do not act in a robust equilibrium would choose to act. ¥
Let us now consider an example illustrating that the all pay auction part of the ε-

efficient mechanism is crucial for ensuring that any robust equilibrium is separating and

nearly efficient.

Example. Suppose the all-pay auction is replaced with a second-price sealed-bid auction.

When a sufficiently small discount is auctioned off via a second price auction, the following

inefficient pooling equilibrium is robust: all agents bid ε for the discount of size ε. Indeed,

we need to specify beliefs that support this equilibrium. If an agent deviates by bidding less

than ε, she is perceived to have the lowest possible signal si. Thus, there are no incentives

to bid less than ε, provided that ε is sufficiently small. If an agent bids more than ε, the

beliefs of other agents about her type are the same as if she bids ε. Thus, bidding more than

ε is a bad strategy: If there are N agents bidding ε each in a second-price auction, each of

them has a 1
N
chance of getting the discount. The winner of the discount “envy” the bidders

who did not win the discount, and thus do not have to pay anything in the signaling stage.

By bidding more than ε, an agent insures that she wins the discount and will have to pay

for it, thus, making herself worse off. In contrast, there are no robust pooling equilibrium of

the ε-efficient mechanism (by Theorem 6). For instance, if all agents bid ε for the discount,

bidding slightly more than ε is a profitable deviation.
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5 Conclusion

Our model captures essential features of the variable value environment. The model describes

the sale of an object available for use at some future date (such as a military base scheduled

to close in twenty years). Suppose several firms from different industries are considering

buying the base in order to convert it into a manufacturing facility. In this case, investments

complementary with ownership of the base are modeled as actions and demand shocks, and

unexpected developments in bidder’s business are modeled as exogenous shocks. We put forth

an efficient mechanism for allocating an object in such environment (Theorems 3 and 6).

At least in theory, the ε-efficient auction proposed herein has several important advantages

under this environment. First, it has a unique robust equilibrium. Second, this equilibrium

yields efficient allocation with near certainty (see Theorem 6). An ε-efficient auction seems

simple and intuitive enough to have viable practical applications; it might be a first real-world

example of ’virtual implementation’. Albeit, no amount of theorizing can guarantee that it

performs well with human decision makers. Thus, comparison of ε-efficient auction and other

types of auctions may be a high pay-off project for an experimental economist. Note that

ε-efficient auction is preferable to a Vickrey auction even if it is not certain whether or not

the environment has a variable value component. Indeed, Vickrey auction is a subgame of

ε-efficient auction. In general, a fully separating equilibrium collapses, if the first period

signals have a large common value component.19 In the extreme case where no information

revelation takes place in the signaling round an ε-efficient auction yields a negligibly small

loss in efficiency relative to one round Vickrey auction. However, as long as information

revelation occurs in the signaling round of the ε-efficient auction, the additional information

is likely to improve performance of the Vickrey auction conducted in the second round

relative to a standard Vickrey auction. It is straightforward to show that ε-efficient auction

is efficient in independent private value environment. Obviously, in an independent private

value case using a simpler efficient mechanism is more practical. However, it is reassuring

that using ε-efficient auction does no harm even if the environment has no variable value

19Note that in a variable value setting each agent would like to convince other bidders that her signal is

high in order to discourage other bidders from taking actions; in contrast, if first period signals have a large

common value component agents would like to convince other bidder’s that their signals are low in order

to depress the price in the final auction. Thus, if the common value component is large the information

revelation in the signaling round can be limited or even non-existent.
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features. In short, ε-efficient auction seem to offer substantial benefits with a minimum

downside.

The model considered in this paper is sufficiently rich to offer insight into understanding

of the variable value environment. However, many important examples of the variable envi-

ronment may be better captured by variations of our models. Markets where search matters

are a particularly significant examples of the variable value environment. The theory of the

variable value environment developed herein explains why sellers in such an environment

are reluctant to use auctions. Indeed, we established that in the variable value environment

(e.g. the housing market) standard auction mechanisms, such as Vickrey auction or first

price auction, are inefficient. The signaling mechanism and ε-efficient auction proposed in

this paper inform our intuition for mechanism design in the variable value environments

ranging from market for capital equipment to the housing market.
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APPENDIX
To prove propositions in the body text, we need some auxiliary notation and lemmas. For any

number (function) x, let x+ = max{x, 0}. A random variable X (first-order) stochastically

dominates a random variable Y (denoted X º Y ) if and only if for cumulative density

functions, one has FX(z) ≤ FY (z) for any z ∈ R. An equivalent condition is that Eh(X) ≥
Eh(Y ) for any increasing function h (e.g., Levy, 1992).

Lemma A1. Suppose that X,Z and Y,W are random variables, and in both pairs variables

are independent of each other. Suppose that X º Y, W º Z. Then X − Z º Y −W.
Proof. We need to prove that for any t, FX−Z(t) ≤ FY−W (t). One has

FX−Z(t) =

Z ∞

−∞

·Z ∞

x−t
dFZ(z)

¸
dFX(x) =

Z ∞

−∞
(1− FZ(x− t))dFX(x)

≤
Z ∞

−∞
(1− FW (x− t))dFX(x) =

Z ∞

−∞

·Z ∞

x−t
dFW (w)

¸
dFX(x)

=

Z ∞

−∞

·Z z+t

−∞
dFX(x)

¸
dFW (w) =

Z ∞

−∞
FX(w + t)dFW (z)

≤
Z ∞

−∞
FY (w + t)dFW (z) =

Z ∞

−∞

·Z w+t

−∞
dFY (y)

¸
dFW (z) = FY−W (t).

¥

Lemma A2. For any random variables X and Y such that X º Y , and a random variable
Z, which is independent of X,Y,

max{X,Z} º max{Y, Z}.

Proof. Straightforward.¥

Lemma A3. For any random variables X and Y such that X stochastically dominates Y ,

and any constant z ≥ 0,

E(X + z)+ −EX+ ≥ E(Y + z)+ −EY +.

Proof. For any z ≥ 0, the function hz(x) = (x+ z)+− x+ is a bounded increasing function
of x. Therefore, the definition of stochastic dominance yields that Ehz(X) ≥ Ehz(Y ).¥
Lemma A4. For any independent random variables X,Y, Z such that X º Y, and any

constant t ≥ 0,
Emax{X + t, Y, Z} º Emax{X,Y + t, Z}.
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Proof. For any numbers x, y, and z, max{x, y} = (x− y)++ y.We start with the following
identites

max{X + t, Y, Z} = (X + t−max{Y, Z})+ +max{Y, Z},
max{X,Y, Z} = (X −max{Y,Z})+ +max{Y,Z}.

Then

max{X + t, Y, Z}−max{X,Y,Z} = (X + t−max{Y,Z})+ − (X −max{Y,Z})+,
max{X,Y + t, Z}−max{X,Y,Z} = (Y + t−max{X,Z})+ − (Y −max{X,Z})+.

From Lemma A2, we know that max{X,Z} º max{Y,Z}. Lemma A1 implies that X −
max{Y,Z} º Y −max{X,Z}. Using Lemma A3 completes the proof. ¥
Lemma A5. Let q(x, y) be a continuous function increasing in both arguments, and let

X,Y be two random variables. For any realizations x1 > x2 of the random variable X, the

distribution of Y conditional on x1 (first-order) stochastically dominates the distribution of

Y conditional on x2. Then q(x1, Y ) º q(x2, Y ).
Proof. Define τ(x, z) to satisfy q(x, τ(x, z)) = z. Clearly, τ(x, z) is increasing in z. Now

Fq(x1,Y )(z) = FY |x1(τ(x1, z)) ≤ FY |x1(τ(x2, z)) and Fq(x2,Y )(z) = FY |x2(τ(x2, z)) ≥ FY |x1(τ(x2, z)),
the latter inequality following from the fact that Y |x1 º Y |x2.Therefore, for any z, Fq(x1,Y )(z) ≤
Fq(x2,Y )(z). ¥

Proof of Lemma 1. Let ea be a vector of actions with eaj = eak = 0 and eai = ai = a0i for
all i 6= j, k. Lemma A4 yields that V (sj, Tj) º V (sk, Tk) whenever sj ≥ sk. Now one can use
Lemma A3 with the constant beaj = beak.¥
Proof of Lemma 2. Let Z = maxj 6=i {V (sj, tj) + baj}), and X = V (si, ti). By definition,

gi(s,a−i) = E(X + b− Z)+ −E(X − Z)+.

Using the formula max{x, y} = (x− y)+ + y, we get

Gi(s, a−i) = Emax{X + b, Z}−Emax{X,Z}
= E(X + b− Z)+ +EZ − (E(X − Z)+ +EZ)
= E(X + b− Z)+ −E(X − Z)+ = gi(s,a−i),

as claimed.¥
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Proof of Lemma 3. First, we claim that for any i, and for any s and s̃ such that s−i ≤ s̃−i
and si = s̃i, a∗i (̃s) ≤ a∗i (s). Indeed, letXi(s) = V (si, ti) and Zi(s) = maxj 6=i

©
V (sj, tj) + ba

∗
j

ª
.

Suppose that a∗j(si, s−i) ≤ a∗j(si, s̃−i) for all j 6= i. Then

Xi(si, s−i)− Zi(si, s−i) º Xi(si,es−i)− Zi(si,es−i)
by Lemmas A1 and A2. To prove that gi(s) ≥ gi(̃s), recall that

gi(s) = E (Xi(s) + b− Zi(s))+ − E (Xi(s)− Zi(s))+ ,

and then apply Lemma A3 to prove the claim. By definition, gi(s) ≥ gi(̃s) implies that

a∗i (̃s) ≤ a∗i (s).
It is enough to consider the case of a∗j(si, s−i) ≤ a∗j(si, s̃−i) for all j 6= i. Indeed, if a switch

from 1 to 0 occurred with an agent that ends up higher than i as a result of increase from

s−i to s̃−i, then it is definite that a∗i (̃s) = 0, and thus a
∗
i (̃s) ≤ a∗i (s) for any a∗i (s). Otherwise

(if a change have occurred with an agent ranked lower than the agent i), a∗i (s) = 1.

Second, we claim that the function gi increases with si. The first claim shows, in particu-

lar, that if si increases, while s−i is constant, the number of agents acting (weakly) decreases.

Thus, the random variable Xi(si, s−i) − Zi(si, s−i) raises in terms of stochastic dominance,
and Lemma A3 applies.

Now we shall prove that

Eπi(s
0
i, ŝ

0
i)−Eπi(si, ŝ0i) ≥ Eπi(s0i, ŝi)−Eπi(si, ŝi),

which is equivalent to (2).

Define Xi = V (si, ti), X
0
i = V (s0i, ti), Yi = maxj 6=i

©
V (sj, tj) + ba

∗
j(ŝi, s−i)

ª
, and Y 0i =

maxj 6=i
©
V (sj, tj) + ba

∗
j(ŝ

0
i, s−i)

ª
.

Eπi(s
0
i, ŝi)−Eπi(si, ŝi) = E(X 0

i − Yi)+ −E(Xi − Yi)+,
Eπi(s

0
i, ŝ

0
i)−Eπi(si, ŝ0i) = E(X 0

i − Y 0i )+ −E(Xi − Y 0i )+,

and so it remains to prove that

E(X 0
i − Y 0i )+ −E(Xi − Y 0i )+ ≥ E(X 0

i − Yi)+ − E(Xi − Yi)+.

The two claims proved above yield that X 0
i º Xi and Yi º Y 0i . Using Lemma A3 (for

each non-negative constant) completes the proof.¥
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Proof of Theorem 4. Let si be the true agent’s i first-period signal, and consider k such

that s̄i(k) < ŝi ≤ s̄i(k − 1). Since ŝ−i is fixed throughout the argument, we suppress the
notation. Truthful reporting brings the expected utility of

Eπi(si,a(k))− hi(si) = Eπi(si,a(k))− hi(s̄i(k))− Eπi(s̄i(k),a(k)) +Eπi(s̄i(k),a(k + 1)).

First, we prove that the agent i has no incentives to under-report her first-period signal,

i.e. to report ŝi < si. Consider incentives the agent i with the first-period signal s̄i(k) faces.

For any ε such that s̄i(k) − s̄i(k + 1) > ε > 0, she is indifferent between reporting s̄i(k)

and reporting s̄i(k) − ε. Indeed, the ’credibility payment’ is the same and the number of

acting rivals is the same (k + 1). The condition (2) assures that if the agent with s̄i(k) is

indifferent between reporting s̄i(k) to reporting s̄i(k) − ε, then the agent with si > s̄i(k)

(weakly) prefers reporting s̄i(k) to reporting s̄i(k) − ε. Thus, ŝi can not be less than s̄i(k).

(To rule out reports below s̄i(k + 1), one can consider incentives the s̄i(k + 1)-agent faces.)

It remains to show that ŝi (weakly) exceeds s̄i(k). So, we need to prove that

Eπi(si, a(k))−hi(s̄i(k))−Eπi(s̄i(k),a(k))+Eπi(s̄i(k),a(k+1)) ≥ Eπi(si,a(k+1))−hi(s̄i(k)),

or equivalently,

Eπi(si,a(k))−Eπi(si,a(k + 1)) ≥ Eπi(s̄i(k),a(k))−Eπi(s̄i(k),a(k + 1)),

but this is true by (2). Since the agent i having the signal si is indifferent between reporting

si and reporting any signal that is larger than s̄i(k) and does not exceed si, the proof that

the agent i has no incentives to under-report her signal is complete.

The proof that there is no incentives to over-report the signal is somewhat symmetric.

The si−agent is indifferent between reporting the true signal and reporting s̄i(k−1). Indeed,
the mechanism assumes that the agents with reports si and s̄i(k− 1) pay the same amount.
Now, for any ε such that s̄i(k− 2)− s̄i(k− 1) > ε > 0, the agent with s̄i(k− 1) is indifferent
between reporting the true signal and reporting s̄i(k − 1) + ε. To see this, note that

Eπi(s̄i(k − 1),a(k))− hi(s̄i(k − 1)) = Eπi(s̄i(k − 1), a(k − 1))− hi(s̄i(k − 1))
−Eπi(s̄i(k − 1), a(k − 1)) +Eπi(s̄i(k − 1), a(k)).

By (2),

Eπi(s̄i(k − 1), a(k − 1))−Eπi(s̄i(k − 1),a(k)) ≥ Eπi(si,a(k − 1))− Eπi(si,a(k)).

31



Thus, if the s̄i(k − 1) is indifferent between reporting the truth and reporting s̄i(k − 1) + ε,

the si-agent (weakly) prefers to report s̄i(k− 1) (which is pay-off equivalent to reporting the
truth), than to report s̄i(k− 1)+ ε. To show, that ŝi would not exceed s̄i(k− 2), one should
consider the incentives the s̄i(k−2)-agent faces, etc. Therefore, the agent i has no incentives
to over-report her first-period signal.¥
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