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SUMMARY

As a consequence of the "rational expectations revolution in
macroeconomics® the conventional theory of economic policy has
had to be revised to take account of forward-locking expectations
formed in the private sector, see Calvo (1978). For policy
makers in an open economy, in particular, expectations formed by
participants in foreign currency markets play a vital role and
John Driffill (1982) showed how this affects the design of
optimal monetary policy in a small open economy. The foreign
exchange rate being the relative price of two currencies,
however, implies that poliey in one country will be judged in
relation to that pursued elsewhexe. Recognising this, national
pelicy makers find themselves in a strategic relationship with
each other, as well as with private speculators.

The purpose of this paper is to present an analytically tractable
framework for considering both of these aspects of policy at the
same time. The relationship between national policy makers is
represented as a full-information, open-~loop differential “"game";
and the results obtained by considering a variety of strategic
relationships also prove useful when it comes to deriving optimal
macroeconomic policy with a private sector which forms “rational
expectations™.

Throughout, the method used to calculate optimal policy is
Pontryagin's Maximum Principle, so the first section shows
briefly how to solve the "linear-guadratic" optimal control
problem for a single decision-maker using this technigue. (The
dynamic systemis linear and the costs, to be minimised over an
infinite horizon, are guadratic). It is the case that

cooperative policy, where all players co-ordinate their actions to
minimise a common cost function, can be treated as just such a
single-controller problem.

In section 2 it is shown how this technigue can be applied to



some non-cooperative dynamic games. The assumption that each
decision-maker takes the others' policy actions (now and in the
future} as given, defines a symmetric Nash solution. When one
player (the leader) is assumed to choose his policy actions
knowing heow the others will react to his announced plan of

action, one obtains an asymmetric Stackelberg sclution, cf.
Simaan and Cruz (1973).

Optimal policy in such an (open loop) Stackelberg dynamic game is
not "time consistent” = i.e. it is not optimal for the leader to
continue with the announced plan as time moves on from the date
at which the plan was formulated. Two alternative approaches
which do yield time consistent equilibria are then considered.
The first is the computation of a "recursive" Stackelberg
equilibrium, obtained using dynamic programming technigques, in a
recent paper by Cohen and Michel (1984). The second approach is
simply to avoid the strategic asymmetry - which, in this
context, involves simply reverting to the Nash game.

A national government designing optimal policy in an environment
where the private sector has rational expectationsg is in a
position analogous to that of a Stackelberyg leader; hence it is
not surprising to find that optimal macroeconcmic pelicy is "time
inconsistent" given such forward-looking behaviour. Aftez
deriving this optimal policy in section 3, two time—-consistent
alternatives are described - the first based directly on the
recursive Stackelberg equilibrium of Cohen and Michel; and the
second, the "loss of leadership solution” proposed by Willem
Buiter {(1983), being related to the Nash game.

Section 4 indicates how to construct solutions to problems,
characteristic of cpen-economy macroeconomics, involving several
national policy makers and private markets with rational
expectations. The design of fiscal policy in a Common Market,
with fixed internal cross-rates but a floating external exchange
rate, is discussed by way of illustration.




Introduction

In the conduct of macroeconomic policy in open economies
where there are significant economic "spillovexr™ effects it is
appropriazte to consider the strategic response of policy makers over-
seas, as the history of tariff wars indicates. T, in addition,
exchange rates are fleoating and capital is internationally mobile,
account must alse be taken of the effect of policy announcements on
expectations in private markets. In this paper we analyse the
design of macroeconcmic policy under a wvariety of different strategic
relationships between rational policy makers, in an environment where
there is forward looking behaviour on the part of private agents, so

that expectations of future policy actions influence the present.

To characterise rational behaviour of deeision makers in

an interdependent (but static¢) world, XKoichi Hamada (1974) called upon
ideas from game theory, specifically the notion of Nash reactions and
Stackelberg leadership. For dynamicC econcmies, one turns to analgous
developments in the dynamic game theory. As Simaan and Cruz (1973 )
demonstrated, however, strategic dominance in such a dynamic setting
leads to the “time inconsistency” of optimal policy - it not being
optimal for the Stackelberg leader to continmue with the initial
plan if policy is subsequently reoptimised, One of these authors
consequently described a class of Stackelberg equilibria,

Cruz {1975 ), where the leader is constrained to implement

optimal time consistent strategies obtained recursivelv and one such

recuraive Stackelberg equilibrium has recently been analysed in an

illuminating fashion by Cohen and Michel (1984). Time inconsistency

may, of course, also be avoilded by ruling out strategic asymmetry.



After a brief review of linear quadratic "optimal control®
theory in section 1, the relevant solutions for differential games
are derived in section 2. only {linear-quadratic) open loop games
are examined here, closed loop games being discussed in a later paper,

Miller and Salmon (1984),

As for the design of econemic policy in "rational expect-
ations" models, this too was found to be time inconsistent, because
effectively the policy maker acts as a Stackelberg leader, see
Kydland and Prescott (1977) and Lucas and Sargent {1981, Introduction).
Subsequently Calve (1978) and Driffill (1982) have derived time
inconsistent optimal policy in continuous time pexfect foresight
models of a closed and small open economy respectively, After

characterising the time Inconsiztent optimal pelicy for a general

linear meodel with forward-looking markets in section 3 we consider
two time conaistent alternatives, the first relating directly to
the recursive S$tackelberag equilibrium of Cohen and Michel (1984)

and the second, proposed by Buiter (1583), being related to the Nash

differential game.

The technique used to derive all the eguilibria in the
paper is Pontryagin's maximum principle. hfter a schematic review
of these solutions, the analytical tractability of the resulting
framework for the analysis of economic policy in open economies

is illustrated by an example of fiscal policy in a Common Market.




l., 1 review of policy optimisation with & single controller

The analysis of dynamic games given in this paper may use-
fully be prefaced by a brief review of the cptimisation problem for a
single controller with a quadratic criterion defined on a linear dynamic
system. Table 1 introduces the notation and outlines the steps invelved
in selving this problem using Pontryagin's maximum principle, cf.

Intriligator (1971) Chapter 14 or Wiberg (1971} Chapter 1l0.

Given initial values x(0) for the state variables, the
gquadratic cost function V defined in (1.1) is to be minimised over
an infinite time horizon by choice of a time path for the control
variables u subject te the state equation (1.2), which describes
the inherent dynamics of the system. The maximum principle technigue
involves intro“ucing costate variables p and defining the Hamiltonian
function as in (1.3), with first order necessary conditions for
optimisation as in (1.4). The first of these produces a relation-
ship between the control variables and the costate wvariables: the
second is the state equation and the third describes the dynamic
behavicur of the costate variables, which can bhe interpreted as
"forward-looking" shadow prices measuring the marginal contribution te V*,
the minimised value of V arising from changes 'in the state variables.
These necessary conditions are succinctly summarized In the adjoint system
of differential equations (1.5), giving the @ynamic behaviour of x

and p along an optimal path,

Solving this adijeoint svstem, aubject to x{(0)

and the transversality conditien that Lim p(t)+ gas t -+ ©, see

Michel (1982), is a two-point boundary-value problem. Since the



TABLE 1 : The single centroller Linear puadratic problem

rOO

Cost functien: V = & | xT(s)ox(s) + u® {z)Ruls)}ds (1.1}
t
o]
State Equation: Dx = Ax + Bu (1.2)
Hamiltonian: M = '%'XTQX + %uTRu + pTlax + Bu) 1.3
First Order T 1T
Conditions: 3/ = Ru + B p=0—+u=~R Bp
{(1.4)
Dx = 3E/dp = AX + Bu
T
Dp = 3H/3x = -Qx - A'p
C . -1_T
Adzoxnt System: Dx A -8R B A =7 x x
= T = T M (1.5
opl  |-Q -A R A P P )
Solution of 2 point boundary wvalue problem:
(a) Definition of canonical variables
x [od c z Dz A © 2 |
_lmoTiz sy el _ |'s Sl (1.6)
P Czl 022 z, Dzu o !\u z,
(b} Trajectories of states and costates
x = C_ .z = C =C C-:L
1% ¥ ® 21%s T tmtin *
C (1.7)
A (-t )
A (=t ) =1 _ 5 o -1
wlt) = clle 5 s} cll x(to) ; plt) = Czle Cll x(tOJ
Notation
Variables Parametexs
*x n-vector of states 2 nxn symmetric pos.semi.def.
P n-vector of costates R mm symmetric pos.def.
u wm-vector of controls M 2mx2n matrix
z 2n=vector of canonical variables C matrix of (col.)eigenctors of M
(zs stable, =z unstable) A (diagonal) matrix of eigen~
u values of M
Operators At

Dx T ax(t)/at; eAt = diagle b




soiutjon for this infinite time problem involves only the stable roots
of the adjoint system, it is convenient to define the canonical
variables z each associated with a single root, see (1.6). C

is a matrix of ca1umn eigenvectors of M, so that MC = CA,

A being the diagonal matrix of eigenvalues of M (As stable,

hu unstable) . Partitioning C <¢onformably as shown and setting

z = 0 provides the solution for the states and costates with

u

trajectories given explicitly in terms of =x{(0) in (1.7).

For this problem, it can be shown that the minimised cost, wv,

PR

< . T
easily evaluated given the states and tostates as W= %p X. The

"closed loop representation” of the solution for x which follows
-1

1. 1.7 4 = -

from {(1.6) and ( } is bx Cll!\scll x
Since this path for x could equally well be derived using

dynamic programming, it is clear that the policy iz "time consiztent” and
satisfies Bellman's Principle of Optimality, see Intriligator (1971},
Chapter 13, To introduce notation to be used below, let us denote
by a prefix to the state variable the date at which the open loop

plan was formed and include explicitly the time index. Then we find

that recptimising at t, given the initial condition . x(tl)
o]
{achieved by following the optimal plan formed at £ }  yields an
Q

optimal plan

F
LX) = o o ® & ~1
1 11 €y tox(tl) for £ 2,
= ClleAS (twt ) -1

cll X (to}



fcled the optimal plan found at tl is simply a continuation of the
plan found at tO provided the system arrives at t‘X(tl)' The

o}
same logic applies te the shadow prices and controls so for a time

consistent plan

plt) = plt), uf{t) = _ ulty, for +t, > t_.
= o
£y tg LY s 1

i.e. the shift of "origin" for optimisation from tO to ty leaves

the planned values for costate and policy variables unaffected.

No discount factor is included in the cost function in
Table 1, or elgewhere in the paper, as the integrals converge.
Where discounting is necessary, for convergence or otherwise,
use of the "current-value" Hemiltonian and “"current value™ shadow
prices leaves the adjcint equations described in the paper
virtually unchanged, see Xamien and Schwarz (1981, Part II,

Section 8).




2. DYNAMIC GAMES

2.1 Nash and Pareto Effjcient Solutions

The simplest extension of a policy optimisation to the case
of many decision makers is the Nash equilibriun of a differsntial aame.
In this basic characterisation of noncooperative behaviour all the
participants are on an equal strategi¢ footing, unlike the situation
where one player may be viewed as a leader, which we discuss in the

next section,

Consider the dynamic economic system with the state equation

= + B u, + 2.1}
Dx Ax + B U, B,u, {
where the ui represent the instruments undex the control of player i.

Each plaver then seeks to minimise a ¢ost function of the form

X (s)Q.x{s) + urlsIR, u. (8) + u(s)R
: i 1 171 2 i

s

<
H
b f

2uz(s) (2.2)

where the weighting matrices are symmetric and satisfy

Q; 2O, Ry >0, Ry 201 ¥ 3. The corresponding Hamiltonian for

each player may then be written as
i T

T T
H = % + U u 4+ u u
Q% ¥ 4Ry 2

T
19 SR, Uy + pi(Ax+B u_+B uz) 2.3}

2 1172

where -5 represent the costates for that player. Cn the open loop
Nash assumption that each plaver takes the other's policy time path as
given, the first oxder c¢enditions for cost minimisation by each player

are exactly as described in the previous section f£for the single



sontrollex. Collecting these together we f£ind that the dynamics of

the system under control may be expressed as

Dx 2 *Jl -Jé} ® x
= T - OLN ,
Dpl = Ql A fu] Py = M Pl; (2.4)
Cp | o] a7
P2 e | P2l P2
where J, = B_R..WIB?r i=1,2.
1 i 1 L

With the solution being restricted by transversality conditions
to involve only the stable roots and with all the state variables pre-—

determined at tO' the open loop path for the latter is

A (e=t )
- s o -1
®{t) = Cy1® c, x(to}
. 5 . OLN
where Cll and A_ are now defined with respect to the matrix M

above. The decision rules can be characterised as

-1 T -1 T -1
w, = R OBIR, S RGBS B e

where refers to the appropriate bleck of column eigenvectors

C,

irl,1
associated with the stable eigenvalues As. In practice, therefore,
all that is required to solve the Open Loop Wash game is the

: . . OLN
computation of the eigenvectors and eigenvalues of M .

As decision makers are acting nencooperatively, the Nash
solution is typically not Pareto optimal. A Pareto efficient cooperative
solution may be calculated by assuming a single controller who seeks to

minimise some weighted average, with weights W of the individual




cost functions i.e.

min

Byt

Under this form of centralised control the dynamics of the system are

shown by
Dx | A T3 [x X
- oz - 0 { 2.5
Dp -(lel+w2Q2) R =-A | p. LP
5.8 13" and R = ( R..)
where Ji = BiRi Bi an Ri = WlRIi + WoRy 2

Once again the system may be solved by calculating the eigenvectors

g R, .
of the adicint matrix, M O; the decision rules are then given by

w1 T -1
ui = -Ri Bi c21cll X.

While it may be straightforward to solve for such Pareto
efficient policy, it is not so obvious how such policies may be
sustained in dynamic games. In full information, infinite horizon
repeated games it has been argued that such cogperative outcomes may

be achieved in a non coopperative equilibrium where the players adopt

"punishment" or “trigger" strategies. In such cases, centrol actions

are not simply related to the cuxrent state but depend alsc on past
states of the system, i.,e. involve "memory"; see, for example,
J.W.Friedman (1984). The applicability of such strategies to

dynamic games is an important area for research.
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2.2 Stackelberg sclutions

While both players in the preceding Nash games are treated
entirely symmetrically, in many strategic situations one player is
leader and the other player a follower. For this asymmetric case
the two person Stackelberg differential game may provide a useful
characterisation of behaviour. In the open loop Stackelberg game
the follower takes the leader's pelicy path as given, so his
behaviour will be governmed by the same first order conditions
discussed above for the Nash game. The leader, however, calculates his
optimal policy taking into account the reaction of the follower to

his own policy path.

As the leader seeks to minimise a cost function as in (2.2)
subject to constraints that now include the first oxder condition
for the follower, namely

Dp, = =R X - ATp (2.8)

2 2 2
{where subscript 1 denotes the leader and 2 the follower) the

leadex's Bamiltonian becomes

T
o= x g+ “"fRn"‘l+ ugnlzuz * PEW * Byuy *+ Bu,)
* T
+ 92(~Q2x “ A pz) . (2.7)

*
where P, is the costate attached by the leader to pz, the
follower's costate. As the latter is a "forward looking" vaxiable,
however, 9;(1:.0) is not, like x(tO) , predetermined but will depend

systematically on the leader's announced policy path.




11,

Applying the maximum principle yields an adjoint system of

the form

b T ol =
D A 0 -.‘Jl —.3‘2 * *
* * L
op, [+} A I, ~Iya) [Py Py (2.9)
-
= =M
PRy "Ry R, R o by By
Q o] -t
PPaj [P J P2 P2

-1 T . -1 -1
where J. =B.R.T B im1,2: 3, = 32R22R332#2 =

The transversality conditions include x(tcl = Xgr Lim By {(t) =0,
A v

Lim p {t,} = 0 as before and in addition p*{t ) = 0, as the

o0 22 270

leader chooses his announced policy so as to minimise his integrated

costs.
The dynamics of = and p; will thus be characterised by
Do -1 X
= c..AC (2.9)
1175711
L *
D3 B3
where cll and As are stable eigenvectors and values of M°
a1
above, which, for scalar x .

describes a stable node such as

that portrayed in Figure 1.
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Eigenvector associated
with 'small' reot

Eigenvector assoc=
iated with 'large’
root

fx

FIGURE 1 : The "time inconsistency" of optimal policy

The unique optimal trajectory associated with the initial
condition x(to) = %y is shown starting with p;(to) = 0. It is
evident from the figure, however, such a path is not "time consistent”
as the conditions for reoptimising at Ty > t0 involve setting
tlp;(tl} =0 # tapz(th). The change of plan implicit in resetting
p; to zero in this way reflects the temptation upon the leader to
"treat bygones as bygones” and renege on those long terxm plans whose
strategic effects on the follower have already been achieved, in
favour of those which promise greater strategic effects fxom tl

onwards, see Kydland and Prescott (1977).

In the absence of precomuitment only time consistent plans

are credible, as suc¢h reoptimisation can be expected continuously,




and the appropriate time consistent solution for this Stackelberyg
game obtained by dynamic programming is analysed by Cohen and Michel
(1984) . To characterise the recursive solutien using the maximum
principle they show that the follower minimises z Hamiltonian of
the form (2.3) treating the leader's contrel path as given, while

the leader minimises his corrxesponding Eamiltonian on the assumption
of closed loop behaviour by the follower, specifically treating

P, = G*x with ©* parametric to the leader but endogenous to the

Jroblem. {In this formulation, unlike (2.7), 4 does not annear)

Rv extending their univariate analysis to the multivariate case,
the adioint eguations for this "time consistent™ solution to the

Stackelberg game can be written

Dx = A —Jl -J2 x o
op. Clep, eaTse*I, —o*a = e {2.10)
: 1 2 23 A Fyfte-
Dp! -Q o] -AT b ie)

2 2 _ 2 2

wnere J,, J,, are as defined in (2.9) above and 0% = cnc;i
depends on the stable eigenvector of MTC. The transversality
conditions are as before, except p; does not appear. Since the
coefficients of MTC invelve the eigenvectors, it is evident that
to obtain the latter it will in general be necessary to proceed
numerically with an iterative scheme to cobtain the eigenvectors

and values required to generate the "time consistent" trajectories

for x, Py pz.

Of course if O™ in eguation (2.10) were not constrained as

shown but were simply set to zero, we would obtain the adjoint equations

of the Nash game of the previousg section, with each player taking

the other's control path as a predetermined open loop.




14.

3. Optimal contrxel of an economy with forward leoking behaviour

Macroeconomic models with agents exhibiting "forward looking"
behavicur typically possess a “saddlepoint" dynamic structure; the state
variables are consequently partitioned between those which arxe historically
pre-determined and those which are free to jump sc as to satisfy conditions
for dynamic stability. Such non-predetermined state variables are
characteristically forward-locking asset prices which depend on the
(expected) future evolution of the system in much the same way as de
the shadow prices of an optimal control problem, cf. Dernbusch (1980,

Chapter 11), Blanchard {1981) Summers (1981) and Hayashi (1982}.

Indeed the Got;e_rxment seeking to minimise a social cost function
given such a macroeconomic structure appears to be in much the same
position as the Stackelberg leader in a dynamic game, a point argued
with some force by Lucas and Sargent (1981, Imtroduction). Consequ_tently
procedures analegous to those used to f£ind the leader's optimal control
path can be used for determining optimal policy in these economic models.
Policies derived using the maximum principle on the assumption that the
leader can precommit himself are derived for a close” - onoiny in
Calvo (1978) and for an open economy with a freely fleoating exchange
rate by Driffill (1982). In the absence of credible commitments, of.
course, such plans will not be time congistent, but dynamic programming
metheds may be used to derive optimal time consistent policies, as

deseribed below.

If the government is not acting as a leader, however, the

appropriate analegy may rather be the Nash differential game , and



Buiter (1983) descrihbes what this "loss of leadership” implies for

policy design in an economy with forward-leoking private agents.

We start with the characterisation of the optimal "time
inconsistent"” policy for a government with the quadratic cost
function (1.1) above seeking the optimal time path foxr its contrels
u in an economy with 2 dynamic structure described by (1.2). We
now assume, however, that the linear economic system has a “saddle
point" structure and that the state vector x is partitioned between
those variables, Xy, which are predetermined at to and those
variables, Ko which are free to adjust at the time of cptimisation.

{The corresponding costate variables are denoted Py and p2.)

The differential equations {1.5) for the adjoint system of
state and costate variables, described in Section 1 still apply.,
although the assvompticn made there, that the entire initial state
vector is predetermined, is clearly no longer appropriate. Instead,
at ty, we take *y to be predetermined (given by history) and P, >
the costates for *y to be set to zero by the transversality

conditions (a restriction analogous to setting p; {t O) =0 for the

stackelberg game in the previous section).

To describe the trajectories under the cptimal plan it
is convenient to reorder the system so that the wvariables whose
initial conditicns are known come first, so the adjoint equations

become:

15.




oxy Ay TN B Tl ¥ *y
T T
or, Ro1 Ray Ry TRy R, By
= =M (3.1)
D A - -
%y 21 a2 P Ua % Xy
T T
o - -
PPl [P R R TRy [Py P3|

where A, Q and J are partitioned to conform with x and p.

The path to be followed by %X and Py from these initial
conditions can now be described as a function of the stable eigen-

values and their associated eigenvectors in the usual way, so

e e
< X1 h(get) ey ! 0—]
° s T (3.2)
E Cll e 11 3.2
o]
witi the remaining varjables determined by
Py 4 |
N = czzcn (3.3)
2 s

where Ell' Cl?JT' A_ denote the stable elgenvectors and roots
3

of M.

In the absence of credible commitments,.optimisation is
restricted to time consistent plans found recursively. By analogy wikh
the recursive Stackelberg-equilibrium, the policy maker proceeds "as if"
x, = @xl, an assumption which makes the jump variables effectively
predeternined and so removes the time inconsistency. The trajectories

for Xy (and the value for ©) can be determined as usuval from the

adjoint system:
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1 11 12 11 1 1
— - e
Dx, | = Ay A22 Io1 %, M x, (3.4)
T T T _TT
Dpy "0117000; 91,700, R PR, R, Py

where the elements of M are defined as for (3.1) except that € is

=1
c .
12 11

defined by the stable eigenvector of Y by B=¢C

If the policy maker were to "lose his leadership" altogether
and to act as if the value of all Hump variables were exogenously given,
the "Nash" solution proposed by Buiter (1983) will apply, with an

adjoint system obtained by simply setting 9  to zero in (3.4},




4. Solving dynamic games between open economies

4.1 The nature of solutions

Since the lack of credible pre-commitment renders the
optimal policy of a Stackelberg leader “:time inconsistent”, alter-
native policies have been described which may be obtained recursively.
But way of summary, we outline in Table 2 -« in highly schematic
fashion =~ various possible solutions to full informaticn dynamic games
in open economies with forward looking financial markets, before

proceeding to describe a (particularly simple) example.

The rows of the Table contain the various "inter-govern=~
mental™ relationships which have been considered. The columns show
likewise the relations between these governments and private
forward looking markets: for simplicity, it is here assumed that
all governments stand in the same relationship to all such rna.rkets._
In the body of the Table the nature of the solution te be calculated
is indicated symbolically, using the variables and parameters
occurring earlier. Thus the symbols p; and P, flag the sources
of time inconsistency, while ©* and € zrefer to the constraints

to be observed in computing time consistent leadership soluticns.

It should be noted,however, that several of the cconomic
boxes appearing in the Table may well prove empty (see below): and
furthermore that a number of interesting papers on economic
interdependence which treat the exchange zate as determined by the
current account only are not strictly covered{as they contain no
foward locking variables), See, for example, Hamada and Sakurai
(1978}, Sachs (1983) and Turner (1984); the last two of which

treat policy making as an explicit Nash dynamic game using discrete

and continuous time methods respectively.

i8.



Where the capital account plays a role and expected move-

ments of the exchange rate depend on interest differentials "as

in Dornbusch (1976, 1980 Chap.ll) problems of time inconsistency and

of preserving credibility are unavoldable.

John Driffill (1982}

was the First to our knowledge t¢ characterise the time inconsistent

optimal policy for a small open economy.

(The single controller

approach he used is formally almost identical te that indicated in

the last column of the Table.)

The example below {a much reduced

version of what appears in Annex 2 of our 1983 paper} alse treats

the exchange rate as forward locking and illustrates the wvarious

solution concepts indicated in the last two columns of the Table.

TRBLE 2 : Key to cengtructing sclutions

Relationships between Governments

Non~Cocperative Cooperative
Asymmetxic Symmetric: single
Stackelbarg . Nash Contzrollexr
{a) {b}
Relations
between Stackel- {a) B3, By e, P, ¢ . p, e,
governments) bei
& markets o9
with Leadex- .
shi Z ,
forward ship (L) Py Q g*, © o, ® 5}
locking
variables
No Leader-
ship p;. [+ a*, o o, 0 [}
Notes: (a) time inconsistent (only credible with pre-commitment) .

(b} time consistent (solved recursively).

p; costate for follower's costate required.

P, costate for forward looking asset prices required.

e relation between followers costates and state variables

constrained

a relation between forward-locking variables and state

variables conztrained,




4.2 An_example

As an illustration of the varieus sclutions described in this
paper, we include an exceedingly simplified example of fiscal stabil-
isation pelicy in a (fix-price) Common Market. The dynamic equations
determining Market output and the price of foreign ("Rest of World")
currency are given in Table 3{a), where the variables used are also
defined. output is determined in a Keynesian fashion by govermment
expenditure, the exchange rate and past output, see equation (4.1).
Given the free movement of goods inside the Market, fiscal expenditure
has effects spread widely over partner countries, so the objective
of each policy maker is to help stabilise Market output, subject te

a quadratic cost attached to the use of fiscal expenditure.

Anticipated movements in the exchange rate {defined as
the price of Rest of World currency) offset interest differentials
between the Market and the Rest of World, with Market countries
locking their cross-rates and pursuing a Market meney supply target
under conditions of perfect capital mobility. Consequently, high
Maxket output, will (via high interest rates) be associated with an

anticipated rise in the price of foreign currency, see equation {4.2).

In principle, each Market member, acting as a Nash player.
will have shadow prices for y and e; but as they share a common
purpese in contrelling vy and have identical private costs of using
fiscal policy, all such shadow prices will be identical! We can
thus represent the adjoint equations using only one set of costate

variables (the very same, indeed, as would guide a central controller

minimising simple sum of partner costs) .



TABIE 3(a) : Fiscal Policy inm a Commen Market

Behavicural Equaticons for the Private Sectoxr
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Definition of Varjables
¥ log of real output of Common Market
e log cof exchange rate (price of Rest of World Currency)
Py shadew price of y
P shadow price of e

g log of government expenditure .in country
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The adjeint equations for the various solutions to this Nash
game are shown in Table 3(k). The time inconsistent peolicy involves
a costate for e, and has four differential equations, see [1-1 Two
forms of time consistent policy are specified, I:Zj in which the
countries assume e = €y and [3] in which the exchange rate is taken
to be exogenous in designing fiscal stabilisation policy. At the
foot of the Table, the inherent “saddlepoint" dynamics of output and

the exchange rate in the absence of policy is indicated, see @1

1
E r
stable xoots for the four caszes as follows: EL:[ -1.573, ~0.159,

Setting o4=1, RBR=v=248-= for example, one finds
Ez] -1.534, [:3] =-1,553, EIJ -1.207, with the biggest root associated
with time inconsistent policy and the smallest with the absence of
policy. Integrated welfare costs increase monotonically (though not

by much) from EL:[ to ]:41, as one might expect.

Since the shadow prices in each partner country are the same
as they would be for a centralised policy maker using equal weights,
policy coordination hardly appears worthwhile. However, the plaus-
ibility of those =olutions (I:l:l and [2]) .which invelve strategic
effects on the exchange rate is surely greate:; for centrally cordinated
policy than it is for n <ountries each pursuing its own obiectives.
Helping to attain such strategic effects on the exchange rate may

thus provide a rationale for coordination in this case.
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TABLE 3'h) : Dynamic Adjustment

ﬁ.}- Time Inconsistent Optimal Policy
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5. Conclugicn

In this paper we have analysed some of the implications of
dynamic games and of "rational expectations® for the theory of economic
policy in inter-dependent economies. Various non-cocperative
relationships between raticnal policy makers were considered undexr
alternative assumptions as to the credibility of official policy
announcements . The maximum principle has been used o characterise
both cptimal time incomsistent policies, which may arise when there

is strategic dominance, and various time consistent alternatives.

Although the resulting framework is analytically fairly
straightforward for linear structures and gquadratic ecriteria, the
aumber of differential equations can rapidly escalate. As Aoki
(1981} has pointed out with respect to the positive analysis of open
economy macreeconemics, however, considerable simplification is to be-
had by setting parameters the same in dijfferent countries (as the
canonical variahles can then be specified independently of the values
of these parameters). This simplification carries over to the
analysis of policy design so long as the coefficients of objective
functions are similarly constrained, cf. Miller and Salmon (1983)

Appendix 2.

It has to be recognised, however, that a purely algebraic
treatment will probably need to be supplemented with numerical analysis
in owdex to cbtain definjite results. The examination of policy
design and pelicy conflict on econemetrically estimated macromodels is
probably essential te arrive at a realistic estimate of the potential

gains from policy co-ordination:; see Oudiz and Sachs (2984) for example.
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In addition, recent study by game theorists of how such
co=cperative behaviour may be sustained by explicit threats of
punishment or by loss of "reputatfon” is likely "further to

illuminate the theory of poliey.

Even without this, we would hope that the above account
has indicated the potential of dynamic games for exsmining
important issues of policy formation in open economies and of
the maximum principle for characterising optimal policy in a

variety of strategic settings.
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