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ABSTRACT

Direct Estimation of the Risk Neutral Factor Dynamics
of Affine Term Structure Models*

This paper proposes a panel data framework for tests of affine models of the
term structure of interest rates which cover equilibrium (or endogenous)
models as well as extended (or exegenous, evolutionary) models. The
econometric model pools yield curve data for different moments in time. Since
each cross-sectional yield curve only depends on the risk neutral factor
dynamics, the estimator does not involve any assumptions on the price of risk,
or on actual interest rate dynamics. In the empirical application one and two
factor Gaussian models are tested on US interest rate data. The main
empirical results are: (i} that a two-factor model cannot be rejected; (ii) that

mean reversion is highly significant; and (iii) that the extended models are
‘over-differenced’.
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NON-TECHNICAL SUMMARY

Statistical models of the term structure of interest rates are often used to price
interest rate derivative securities. For that purpose the models should satisfy a
number of properties. First, since some derivative securities have complicated
option features, computational considerations limit the number of stochastic
factors that govern the dynamics of the entire yield curve. Second, the
evolution of the term structure should be free of arbitrage oppaortunities. Third,
the dynamics must be specified under the risk neutral measure instead of the
actual probability measure. The affine class of term structure models
developed in Duffie and Kan (1996) is very attractive, since it provides a
tractable affine relation between vields of different maturities and the factors,
and a dynamic structure from which it is straightforward to build a tree for
option pricing applications.

This paper aims at direct estimation of the risk neutral factor dynamics. The
risk neutral dynamics differ from the actual time series dynamics by a possibly
time varying price of risk. The risk neutral parameters also determine the
shape of the yield curve at every moment in time and can be estimated from a
panel of observed yield curves. The advantage of this method is that it avoids
the assumption that the price of risk is constant and is thus more robust than
time series oriented estimators. lgnering the time series information, however,
can result in a loss of efficiency. In a Monte Carlo experiment we find that the
cross-sectional estimator is highly efficient when yield curves that start at very
different leveis are pooled. For example, mean reversion can be estimated
very precisely if we have observations on a yield curve with a short rate of
12% and another one that starts at 4%. When there is sufficient variation in
short-term interest rates, the time series information does not add much o the
pooled cross-sections.

For the econometric inference we develop a fixed effects panel data estimator
for the risk neutral parameters of the model. The econometric modei is
suitable for both equilibrium as well as extended term structure models. The
equilibrium models describe the shape of the yield curve, whereas the
extended models describe the arbitrage free evolution of the yield curve from
an exogenously given initial yield curve. In the application to a panel of 25
years of US interest rates we find that a two factor Gaussian model fits the
factor structure of the data well. Both equilibrium and extended versions of the
model are subjected to a number of diagnostic tests. The extended version
model turns out to be over-differenced in the sense that the residuals are
negatively autocorrelated. Overall, the equilibrium and extended models are
very similar. For both models the parameter estimates point to one factor that



is close to being non-stationary and a second factor with strong mean
reversion.

Although consistent with time series characteristics, the near unit root
behaviour of the first factor is an implication of the panel of cross-sectional
yield curves. An equilibrium model always implies that the infinite horizon yield
is a constant. Since ten year rates show a lot of variation in the data, the only
way an equilibrium model can fit the data is having cne almost non-stationary
factor. Similarly, an extended model can only explain why changes in long-
term rates are not much smaller than changes in short-term rates, if the
dominant factor has very low mean reversion.



1 Introduction

Models of the term structure of interest rates provide the shape and dynamics of the
yield curve from assumptions about the dynamics of some underlying factors and the
price of the risk associated with each factor. A limited number of underlying state
variables are assumed to account for the behaviour of interest rates of many different
maturities. The models are often applied in pricing various interest rate derivative
securities. These applications require 2n estimate of the risk adjusted (or risk neutral )
dynamics of the factors.

The risk neutral process can be inferred from the observed term structure of
interest rates, or from its change relative to an initial term structure. To estimate
the parameters of the process one would like to have an analytically tractable model
that relates the yields to the factors. A class of models that has received a lot of
attention is the affine class, analysed in detail by Duffie and Kan (1996), Campbell,
Lo and MacKinlay (1997, ch 11) and Frachot and Lesne (1993). It has a tractable
linear structure and nests a number of wellknown equilibrium term structure models
like the Vasicek (1977) and Cox, Ingersoll and Ross (1985, CIR) medel, and their
multifactor generalisations.

Even though the affine class is tractable, direct estimation of the risk neutral
parameters has not been very succesful. Many studies have attempted to estimate
parameters from cross sectional yield curve data. In these papers the structural para-
meters are re-estimated every time period using the bond prices at that moment. All
of them report unstable and erratic parameter estimates.! The econometric problems
could be due either to a lack of information in yield curve data for a single date, or
te misspecification of the models.

The aim of this paper is to revisit the direct estimation of the risk neutral process
using panel data techniques. We pool monthly yield curves for a period of twenty-five
years to reduce the problem of low power. As in the cross sectional studies cited above,
the parameters are estimated without explicit reference to the time series properties
of interest rates. Econometrically, this leads to a panel model with time dependent
fixed effects.

From the cross sectional estimation we obtain the implied dynamic process of in-

terest rates that generates yield curves that closely fit the observed term structure.

! See for example Brown and Dybvig (1986), Brown and Schacfer (1994), Dahlquist and Svensson
(1994), DeMunnik and Schotman (1994), Addolorato and Berardi (1994), and Sercu and Wu (1997).



But rather than modeling the levels of the yield curve, applications to derivative pric-
ing emphasize models of the yield curve in deviation of last period’s term structure.?
These models provide an expression for the shape of the current term structure, con-
ditional on an exogenously given initial term structure. This initial term structure
need not, but could, be consistent with an equilibrium model. Some of these models,
for example the extended Vasicek and extended CIR models, belong to the extended
affine class as analysed in Frachot and Lesne (1993). Our panel data analysis with
fixed effects is suited for both types of term structure models. The equilibrium and
extended models will generally emphasize different moments of the data. But de-
pending on the properties of measurement error in the empirical model, the two
formulations are shown to be closely related, and can be compared in 2 common
econometric framework.

Following Jacquier and Jarrow (1998), Brown and Dybvig (1986) and others, we
add an error term to the theoretical model. The covariance matrix of the error term
is modeled explicitly to take account of heteroskedasticity and the cross sectional
correlation of yields. We tightly parameterise the cross sectional covariance structure,
since we wish to include a broad range of maturities in the empirical model. Moreover,
the specification explictly deals with residual autocorrelation.

We find that the efficiency gains of the panel are large. For the one- and two-
factor models that we estimate we obtain parameter estimates with very low standard
errors. The first factor has very slow mean reversion, but with a t-ratio of more than
eight mean reversion is significantly different from zero. The average convexity of the
vield curve provides a sharp point estimate of the implied volatility of the factors. We
also find that the extended and equilibrium models give very similar point estimates
for the parameters of interest.

Our fixed effects model contrasts with other panel data studies of affine term
structure models.® In these studies the cross sectional vield curve model is estimated
jointly with a time series process for the factors. Combining cross section and time
series information exploits even more information in the data. But time series data
are related to the actual dynamics, so that additional assumptions on the factor risk

prices must be made. The usual assumptions are that the price of risk is either

* See Hull and White (1990) and Heath, Jarrow and Morton (1992) for a theoretical analysis.
See Jarrow (1996) and Hull (1996) for a textbook treatment.

3 See for example Chen and Scott (1993, 1995), Gibbons and Ramaswamy (1993), DeJong (1997),
Geyer and Pichler (1997), Friihwirth-Schnatter and Geyer (1997), Babbs and Nowman (1998), Lund
(1997), Kappi (1997), Duan and Simonato (1995), Gong and Remolona (1996).

2



constant, or proportional to (one of) the factors. For the fixed effects analysis we do
not need any assumption on the actual time series properties of the factors. Only the
risk neutral process matters. Still we also oblain sharp estimates of the parameters,
in particular mean reversion. Empirically, 25 vears of pooled cross sections dominate
the time series information.

The panel data analysis also allows a detailed misspecification analysis. Mis-
specification here refers to the shape of the vield curve, in contrast to the dynamic
structure of interest rate processes. When we find misspecification for the yield curve,
this misspecification will be present a fortiori in the panel models that combine time
series and cross sectional information. For two-factor Gaussian models we can not
reject the cross sectional restrictions. The two factor model is very parsimonious,
containing only five structural parameters that are sufficient to describe the variety
of shapes encountered in a history of twenty five years of monthly term structures.
In addition to the five structural parameters, each yield curve in a two factor model
has two time dependent parameters, only relevant to that particular vield curve.

For those models that appear correctly specified in the cross sectional dimension,
1t is interesting to compare our results to the other panel literature by imposing
assumptions on the price of risk and the time series behavior of the factors. In a
broad sense, the cross sectional information is consistent with recent empirical time
series studies. Andersen and Lund (1996) and Balduzzi, Das and Foresi (1998) argue
that interest rate dynamics contains at least two factors. One of the factors is a slowly
evolving mean, and the second factor represents quickly mean reverting movements
around this mean.

The remainder of this paper is organized as follows. Section 2 introduces notation
and provides a brief review of affine term structure models. Section 3 considers the
special case of the (extended) Vasicek model in detail. In section 4 we illustrate
the problems of cross sectional estimation, and explain why pooling different cross
sections will lead to a very efficient estimator. Section 5 discusses the econometric
panel data model. The final part of this section discusses the misspecification tests.
Section 6 describes the data and stylized facts of the US term structure. Section 7

reports the empirical results. Section § concludes.



2 Affine Term Structure Models

Duffie and Kan (1996) consider equilibrium formulations of the affine yield curve
models. Frachot and Lesne {1993) generalise this approach to deal with the extended
specifications, that match an initial yield curve exactly.* The general idea underlying
the affine term structure models is that at time ¢ there exist a vector of K factors,
Z:, that govern the term structure movements. The drift and the diffusion process of
the factors are affine in the factors. The affine class has gained popularity because it
leads to a tractable solution for the term structure of interest rates that is itself an
affine function of the factors.

The risk acjusted process for the underlying factors in an affine term structure

model is specified as

dZ, = (&, — TZ) dt + V(Z,)dW, , (1)

where Z, denotes the vector of K factors, W, is a K-dimensional Brownian motion
under the risk-adjusted probability measure, and @, is a (K x 1) deterministic func-
tion. The time variation in &, enables an exact fit of an observed initial vield curve
and hence represents the no-arbitrage case. When @, is a vector of constants we are jn
the equilibrium model case of Duffie and Kan (1996). Mean reversion is determined
by the (K x K} matrix I, and V(Z;) is defined such that the covariance matrix is
affine in the factors

enZi+ B 0 amiZ+ B
U, = Vi(Z)Vi(Z) = : 5 (2)
armiZi+ Br1 0 arkZ+ Brx

where a;; are (1 x K) vectors of parameters, and Bi; are scalars.

Examples of affine term structure models are the equilibrium single factor models
of Vasicek (1977} and Cox, Ingersoll and Ross (1985). In these models the single factor
Z; is the instantaneous risk free rate, r,. For K > 1, the models include the multifactor
versions of the Vasicek and CIR models, and some generalisations. Further examples
are discussed in Chen and Scott (1993) and Duffie and Kan (1996). Examples of the

no-arbitrage class are the extended models of Vasicek and CIR, considered by Hull

* Throughout the paper we will use the term "equilibrium” model for those models that endoge-
nously determine the term structure by no-arbitrage arguments. Strictly speaking, not all affine
models with constant parameters have a general equilibrium justification. Likewise, we will use the
term "extended” for all models that start with an exogenously given yield curve. Sometimes these
models are also called evolutionary™.




and White (1990). Campbell, Lo and MacKinlay (1997) develop the affine models in
discrete time.

Define ¥;(7) as the yield of a discount bond at time ¢ with maturity 7. Frachot
and Lesne (1993) show that with this specification of the factor dynamics no-arbitrage

arguments imply a yield curve that is affine in the factors,
Yilr) = Aur) + B(r)Z, (3)

where A,(7) is a scalar and B(7) a (1 x K) vector; both are functions of the structural
parameters 7 = (e, 8, $,, ') in the factor specification. In general the functions A7)
and B(r) are found by numerically solving a set of Ricatti differential (or difference
in discrete time) equations, Next section considers the explicit functional relation for
the special case of Gaussian factor models.

For pricing of interest rate derivatives the function B(7) is the primary object of
interest in term structure models. As shown in Heath, Jarrow and Morton (1992)
and also explained in Hull {1996) all interest rate derivative securities can be priced
with as inputs the "volatility” function B(7), the factor covariance matrix ¥,, and
the initial term structure. The purpose of the econometric analysis of yield curve
models is the estimation of the function B(r). For this the cross sectional model (3)
suffices, and all we need is an assumption about the risk neutral factor dynamics.

The covariance matrix ¥, can often be estimated more precisely from time series
data. Time series descriptions of the vield curve would focus on the factor process in
(1). The general representation of the associated process under the actual probability
measure reads

dZ; = (@ — A = TZ,) dt + V(Z,)dW, (4)

where A, is a vector of K prices of risk. Using time series data for statistical inference
entails additional assumptions about the price of risk. In an equilibrium framework
the risk prices are determined by preferences of agents, or more generally through a
pricing kernel. While not every time variation in A, is allowed, the theory does not
specify how they vary.

Before we develop an econometric model, it is useful to discuss the calibration
practice of the extended models. The functions P and A,(7) have a time ¢ subscript,
but both are deterministic functions of time, whose time variation is fully determined
by the observed term structure Y.o(7) at date ¢, when the model was calibrated.

Over a short period the yield curve at time to+ At will be close to the calibrated
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yield curve at time fo due to the smooth nature of the Brownian motion process.
Over longer horizons the yield curve can wander away further from the initial yield
curve. The variance of the distance is controlled by the integrated factor dynamics
from #; to the current time ¢. Since the factor process is mean reverting the effect of
the initial conditions will fade out gradually. Mean reversion implies that long term
yields and forward rates both converge to a constant, and this in turn implies that,
when fg is fixed, limy 0o @ = ® is a constant, and A,(7) will converge to a function of
7 only. If the limit of ®; from the calibrated yield curve is the same constant as in the
equilibrium formulation (& = @), then the yield curves generated by the extended
models will converge to the yield curves from equilibrium formulations.

For the econometric inference we will use observed yield curves over a long period
of time. If the extended model is calibrated only once, say in January 1960, then
the yield curves in the nineties will only be affected by the initial calibration by the
level parameter ®. In that case the extended model is in fact nothing but a restricted
version of the equilibrium models. In the equilibrium models ¢ is a free parameter,
whereas it would be exogenously specified by more than thirty year old data in the
extended model.

However, common practice in applications of the no-arbitrage models is repeated
calibration, instead of a one time calibration. The model is calibrated every time
we get a new term structure. With monthly data the functions & and A(r) are
updated every month, so that tg = { — 1 and A(7) becomes a function of data from
last month’s term structure.

If, for the purpose of parameter estimation, the model is calibrated repeatedly,
then the equilibrium and extended versions of the model only coincide if last month’s
term structure happens to be consistent with an equilibrium formulation. The ex-
tended model therefore allows for deviations from the unconditional equilibrium model
that are expected to disappear gradually in a way that is consistent with the no-
arbitrage condition. Because the intercept A;(r) depends on data from time t — 1,
parameters are estimated from movements of the yield curve relative to its previous
shape. In that sense it is a more flexible model for empirical work than the equilib-
rium model. When we develop the econometric model we will always consider the
extended models being calibrated every month. In contrast to the equilibrium model,
where the parameters are estimated from the shape of the yield curve, the extended

models look at the cross section of changes in the term structure.



Using results in El Karoui, Frachot and Geman (1998) and Frachot and Lesne

(1993) the affine model can be written in the representation

Yi7) = Fioul?) + ot = to,7) + B(r)z, (5)

where Fy () is the forward rate at time ¢y for the contract period £ to {4, a(t—tg, 1)
is a function depending on the structural parameters, and z, is a K-vector of factors
(different from Z;). Since for the econometric model we will assume lg=1—1, the

first argument of a(t — ¢, 7) does not depend on time. so that
Yilr) = Frorelr) + a(7) + B(r)z, (6)

which is a representation with constant parameters. The extended model has the same
factor loading B(r) as the corresponding equilibrium model. But, in the extended
model the current yield curve Yi(7) is modelled conditional on the forward rate curve
Fi14(7). The model has similar structure as the equilibrium model, but with yields

in deviation of their corresponding forward rates instead of vield levels.

3 Gaussian Models

In general the transformation from factor dynamics to the affine yield curve para-
meters A(7) and B(r) is not available in closed form. The linear Gaussian case
with uncorrelated factors is an example where closed form solutions are available,
where comparison between equilibrium and extended models is straightforward, and
where the structural parameters cach have a clearly distinguishable function in the
model. While the econometric mode] will be developed for the general affine class, the
empirical analysis will concentrate on the Gaussian case with uncorrelated factors.

The single factor equilibrium Gaussian case is the Vasicek (1977) model. In this
case K =1 and ey; = 0 in (1). The instantaneous spot rate » is the factor driving
the yield curve, with risk adjusted diffusion process of the form

dry = x(p —ry)dt + adW, , (7)

where « is the parameter of mean reversion, g is the unconditional mean of r, and o
is the instantaneous standard deviation. A multiple factor generalization is given by
K

Ty = ZSJ':: (S)

i=1

G = mi(uy = z)dt + o,dWy, (9)

7



where the Brownian motions W are mutually uncorrelated. The associated yield

curve model is represented by

Yi(r) = A(7) + Zb Zjs, (10)
=1
where
Alr) = }:‘1 ((1 —bi(m))6; + (*1—1;;—,:1)—‘7:2)
biir) = l—ex;("-ijr) ‘
where 8; = p; — z—l-r The shape of B(7) = (84(7), .-, ¥k(7)) depends solely on the

mean reversion parametcrb x;. Each element b;(7 ) is monotomca.lly decreasing with
b;(0) = 1 and b;(c0) = 0. Asin all affine models, the long term discount yield Y'(o0)

is a constant. At every date the yield curve must converge to the same constant,
irrespective of the initial location and shape. Note that in the multifactor model not
all parameters are identified. Reparameterising by Zi=35— #;, one can verify that
we can only identify # = Zj‘ﬂ 0; = lim, o Yi(7)s but not the individual §;.> Also
note that the model is not only affine in the factors Z;:. but also in the parameters 0
and a . TFor cross sectional estimation, the only nonlinearity is In £;.

The parameters § and 0] only show up in A(7), so that B(7) solely depends on the
mean reversion. Since the factor loadings (or volatility structure) B(7) is the object of
interest for the purpose of derivative pricing, our main concern will be the estimation
of the mean reversion parameters. This is a specific feature of the Gaussian models.
In the general affine model, and also in the CIR model, the factor loadings depend
on all structural parameters.

The extended Vasicek is similar to (T7), but now p is replaced by ;. The para-
meters g fluctuate in such a way that they are consistent with the observed term
structure characteristics at some initial date fo. Calibrating the term structure at
some initial time to, Hull and White (1993) derive expressions for the coefficients p.
and A,(r) for t > to. Letting to =1 — 1, and defining h as the length of the interval
between successive observations we use their results to obtain an expression analogous
o (6),

Yi(r) = Fi1a(7) = a{r) + B(7)(re = fi-1) 5 (11)

5 See Dai and Singleton (1997) for a detailed analysis of identification and alternative
parameterizations.




where s
a(t)=(1- e'hh)%)—az , (12)
Fi_14(7) is the forward rate defined below (5). and fi_1, is the instantaneous forward
rate at time £ — 1 relating to time 4. The varizbles Yi(r) = Fili(7) and r, — o1
can be interpreted as unexpected shocks under the risk neutral probability measure.
The main differences between the standard and the extended Vasicek models are the
restrictions on the levels of the vields, which appear in the standard Vasicek model
through the parameter ¢, but not in the extended version.
From the results of Frachot and Lesne (1993) we obtain a multifactor generalisa-
tion of (11) as

K
V() = Ficailr) = al(r) + 3 bi(7) 250 (13)
=1
where b;(7) is the same as in (10), and
K sgana
_ N il
a(7) —;(1 e )—%?T—C’j :

So far we only discussed the risk neutral factor process. To include time series
properties we could make the additional assumption that the price of risk ) is a
constent. For example, internal coherence of the one factor model then requires that

the time series process of 7, must be similar to the spot rate process, given in (7),
dr = k(fi — r)dt + 5dW, (14)

The tildes on top of the structural parameters indicate that this process is specified
under the original probability measure with Brownian motion W instead of the risk
neutral processes in (7). If the model is correctly specified the structural parameters
differ from the risk neutral parameters only by the parameter )\ = p—fi, while & = &
and &* = ¢®. The equality of the "implied” and "actual” parameters are testable
restrictions.

For the no-arbitrage models the time series process of r, itself has time varying
parameters. But, assuming a constant price of risk, equation (11) implies that the
deviation between the short rate and the lagged forward rate r, — ft—1,. must be
serially uncorrelated under the actual factor dynamics. The mean of ry — fi_1. under
the actual probability measure is not determined by the model, and depends on the

price of risk A. As it is the innovation in the instantaneous spot rate, the variance



must be equal to the conditional variance of r; over a horizon of length A,

Vsl = ) = 5 (LR )

28

As in the equilibrium version of the model, consistency between the time series and
cross sectional dimension implies # = & and &* = o%. However, since the variance of
r¢ — fi1. is the only moment that depends on these two parameters, they cannot be
separately identified.

4 Why Pooling?

Before developing a fully articulated econometric model, we briefly illustrate the
problemns in cross sectional estimation, and give the intuition why a panel data analysis
will be helpful. For the example we consider the single factor Vasicek model.

Suppose the Vasicek model is true with parameters £ = 0.04, o = 2.5% and
§ = 0. Figure 1 shows three yield curves starting with spot rates at 4%, 8% and
12% respectively. The yield curves are drawn for maturities between 0 and 10 years.
For the selected parameter configuration all three yield curves are upward sloping
(only the curve starting at r = 12% has a slight hump) and almost parallel, although
each of them must be downward sloping eventually, and converge to Yi(co) = 6 = 0.
Even though the Vasicek model implies that all yield curves converge to the same
long term yield, this convergence is not visible over horizons up to 10 years when the
mean teversion parameter « is very small, A value of x so close to the unit root is also
plausible from a time series perspective (see for example Chan, Karolyi, Longstaff and
Sanders (1992)).

In cross sectional estimation the parameters for the yield curve at time ¢ are 7y,
x, o, and 6. When estimated period by period, they can be different for each of
the three curves. If the data are pooled, only r; is different for the three curves,
while %, o and @ are constant. In the example the yield curve data are without any
measurement error, so that we can of course uniquely recover the true parameters of
the data generating process. To show the problems with cross sectional estimators
we simulate data by adding 2 small amount of measurement noise to the data, in the
order of § basispoints at the short end to 3 basispoints at the long end. Errors with
such a small standard deviation are not visible to the eye on the scale of figure 1.

In our Monte Carlo experiment parameters are estimated by nonlinear ordinary
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least squares. In effect, the Vasicek model is only nonlinear in #. Conditional on K,
the estimator reduces to ordinary least squares with fixed regressors. The results in
table 1 are based on 1500 replications. We find that the expected value of the least
Squares estimate & increases from 0.066 (when r, = 4%) to 0.201 (when r, = 12%).
The cross sectional estimator s biased towards too much mean reversion, and the
bias increases with the level of interest rates. Since the least squares estimator is
consistent, the bias will disappear, but only when we add longer maturities beyond
the ten year horizon.

The bias in & directly affects the estimates of volatility. The estimates of o2 are
biased downwards, and show enormous variation. The parameter estimates are as
erratic as reported in the empirical studies referred to in footnote 1. As simple as it
is, the Vasicek model is already overparameterised in cross sectional estimation. The
cross sectional estimates can have a tendency to overestimate the mean reversion,

Next we pool the three cross sections by simply stacking the data for the three
vield curves. The six parameters (ry, 2, 73, £, o2, and ) are estimated Jointly by
least squares. Pooling the three cross sections is extremely effective. Because the
three yield curves are at very different levels, the parameters are estimated without
any problem. There is no bias in #. and its standard error is negligible (reduced by a
factor of 20 compared to the first cross section, and even a factor of 100 compared to
the third cross section). With # estimated almost without error, it is even possible
to estimate the variance &2 from the shape of the yield curve. The long run rate ¢
is still estimated imprecisely, but this is because it is almost unidentified when & is
small (see figure 1), and because we do not use maturities longer than 10 years,

The lower part of table 1 presents simulation results when the amount of noise
is increased substantially. More noise leaves the estimator of & unbiased. although
its standard error of course gets larger. With more noise, estimation of # becomes
hopeless. However, 6 is not a parameter of interest in applications of the Vasicek
model.

5 Econometric Mode]

The ordinary least squares estimator in the example in section 4 above is not neces-
sarily the most efficient estimator, since it ignores the measurement error structure.

The error covariance properties of the empirical data will also affect the statistical
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inference. We therefore now turn to an econometric model of the error term.

The panel structure in the general affine model (3) is apparent, since the model has
a time series dimension ¢ and a cross sectional dimension 7. An important difference
with most panel data models discussed in the econometric literature is the natural
ordering of observations in the cross sectional dimension.® The model is continuous
in both dimensions. However, data are sampled in discrete time, and for a discrete
number of maturities. In a time series analysis the typical data sets are daily, weekly
or monthly and can cover a period of more than 30 vears. The number of cross
sectional observations is limited by the number of traded bonds. If the data consist
of discount bond prices, these are usually obtained by spline methods.” In that case
the "observed” — in fact constructed — term structure will be 2 smooth curve in the
maturity dimension. It is this type of data that we have in mind when we develop
the econometric model. We consider a dataset of discount yields observed at dates
t=1,...,T and with maturities 7y,.... rn. If the yield curve is constructed using
spline methods, it is of course possible to select as many points on the vield curve as we
wish. but since neighboring yields will be almost perfectly correlated, the information
contents will reach an upper bound determined by the number of parameters in the

spline function.

5.1 Specification

All term structure models imply that there is a deterministic relation between several
vields. A perfect fit with N maturities is achieved by the inclusion of N factors.
When the number of factors is less than the number of maturities, the model implies
N — K deterministic linear relations between the vields. This holds both for the
equilibrium as well as the extended models. Although the extended models provide
a perfect fit for all N points on the yield curve at some time lo, for t > tp there are
only K state variables driving all NV yields.

To avoid such singularities many studies 2dd statistical noise to equilibrium for-

mulations of the vield curve.® The econometric model of the yield curve model then

% See Baltagi (1995) and Hsiao (1986) for textbook treatments of panel data models.

7 Gee McCulloch (1975) and Nelson and Siegel (1987).

¥ Gep for example Brown and Dybvig (1986), Gibbons and Ramaswamy (1993), Frachot, Lesne
and Renault (1995), DeJong (1997), Lund (1997) and others for noise in an equilibrium model. Bliss
and Ritchken (1996) is an example of an error term in an extended model. Jacquier and Jarrow
(1998) provide an extensive motivation why one should 2dd noise in a contingent claims model, and
how to interpret the error term.



becomes
Ye= A+ BZ, +¢, (16)

where Y, A4, and e, are vectors of length N, and B is an (N x K) matrix. The ¢
element in Y, corresponds to maturity 7;, and maturities are ordered 7 < ... < ™.
The error term ¢, captures all forms of measurement and specification error, but its
properties are not part of the economic theory.? If the model is to be of any practical
use. the error variance should be small relative to both the cross sectional and the
time series variation in yields. Otherwise, since the error deals with unmodelled
phenomena, there are no apparent restrictions on its covariance structure.

The term structure data are observed as a smooth function of maturity, to which
we fit a curve that is also a smooth function of 7. as illustrated in figure 2. Therefore
we assume that the correlation between error terms e{r:) and e(7;) depends on the

distance between the terms to maturity:

corr(e( ), eury)) = ¢l (17)

with 0 < ¢ < 1. Yields that are very close show high correlation, whereas ylelds that
are far apart are less correlated. The specification resembles a cross sectional AR(1)
error term.

Besides cross sectional correlation we also account for possible cross sectional
heteroskedasticity of the error terms. The theoretical model can be written either in
terms of log-prices or in yields. A transformation from yields to log prices In P(r)=
—7Y:(7) induces maturity specific variances with a proportionality factor equal to 72,

For that reason we specify the variance of the error term ¢,(7) as a function of T
Var(e (7)) = w?r=2¢ (18)

where w? is a scale parameter, and ¢ determines the sensitivity of the variance for
the term to maturity. If ¢ = 0 then the error terms are homoskedastic in a model for
the yields. In case d = 1, the model is homoskedastic in a regression model for (log-)
bond prices. The heteroskedasticity implies a weighting scheme on the maturities:
with d = 0 all yields have equal weights; with d > 0 more emphasis is put on long

term yields. We estimate d along with the other parameters.

* See Renault (1996) for examples of an endogenous error term in the context of an option pricing
model. In order to obtain a nondegenerate error term one must start at the theoretical level with at
least as many state variables as there are observations in the eross section. It is unlikely however,
that one would ever want to 5o beyond three or four factors. Part of the statistical specification of
the model will always remain somewhat adhoc.
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In matrix form the covariance structure for the cross sectional error terms is

T =w?S(¢,d) ' (19)

where S is a matrix of order (N x N) with typical element si; = ()t glnml,
As 2 further extension of the statistical model of the error term we allow for first

order autocorrelation in the error terms of (16) like in Chen and Scott (1993),

ee(7) = cesa(7) + efT) (20

where ¢,(7) is uncorrelated over time, and has the covariance structure specified in
(19). We restrict the autocorrelation parameter ¢ to be the same for each maturity 7
in order to preserve the smoothness of the cross sectional error process.

The possible autocorrelation in the errors makes the equilibrium model flexible
enough to approximate the extended model. If in the equilibrium model the auto-
correlation parameter ¢ approaches one, we obtain a model in first differences. In
that case B(r) is estimated from yield changes, while the level function A(T) be-
comes unidentified. But empirically long maturity forward rates Fi_y.(7) are almost
identical to the corresponding spot rates Y;_1(7). Yield changes AY;(r) will thus be
very similar to the forward deviations Y;(r) — Fi—1,(7) that are input to the extended
models. Since B(7) is identical in the equilibrium and extended models, an equilib-
rium model in first differences (¢ = 1) will be very similar to an extended model with
¢ = 0, except at the short maturities.

Altogether the error specification consists of the parameters ¢ = (w,¢,d,¢). The
specification of the error term differs from other models in the literature in several
respects. First, the error term has been added at the level of the discount price func-
tion, and not on the original traded individual (coupon) bond prices as in Brown and
Dybvig (1986), Schotman (1996) and DeMunnik and Schotman (1994). Adding the
error term at the level of discount bond prices has been proposed by Gouriéroux and
Scaillet (1994), who motivate this choice from no-arbitrage conditions and invariance
properties in modelling portfolios of bonds. However, Gouriéroux and Scaillet (1994)
assume that the errors are uncorrelated across maturities, whereas our specification
explicitly takes into account the smooth nature of observed yield curves.

Chen and Scott (1993) first eliminate the unobserved factors Z; from (16), by
using the exact relation between the factors and K different vields with maturities

705, and then add noise to the equations for all other maturities. This would imply
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that the particular yields with maturity 7y; are always fitted exactly, i.e. (7;) =0
for j = 1,...,K. Apart from this singularity, Chen and Scott (1993) allow for
a fully unrestricted covariance matrix 5. Bliss and Ritchken (1996) introduce the
same singularity in their analysis of the extended Vasicek model, and also tightly
parameterise the error covariance matrix. Frachot, Lesne and Renault (1995) and
Bliss and Ritchken (1996) note that the choice of the pivotal maturities 7p; is very
influential for the empirical results. Therefore De Jong (1997) and Frachot, Lesne
and Renault (1995) eliminate the unobserved state variables in a way that is invariant
with respect to the maturity 7o;. The number of unknown parameters in £ in their
specifications is of order N?. Such a general unrestricted specification limits the
number of maturities that can be included in the empirical analysis. In most of
the empirical studies NV is therefore only 4 or 5. Our tight parameterization of £
allows NV to be large, which helps to increase the power of the cross sectional tests.
Eventually the strong positive correlation between neighboring maturities will put an
upper bound on the information contents in the data.

Although tightly parameterised, our error covariance matrix is less restrictive than
in other papers that use a broad spectrum of maturities. Gibbons and Ramaswamy
(1993) assume absence of serial correlation in the measurement error. Many other
studies (for example Geyer and Pichler (1997), Lund (1997)) assume absence of cross

sectional correlation in the errors.

5.2 Estimation and Testing

The general model for both equilibrium and extended versions of the affine class is
(16). For the estimation of the model standard panel data methods are applicable.
The least restrictive assumption on the K factors Z, is to treat them as a time series
of unknown parameters, i.e. as fixed effects. The fixed effects approach is purely
cross sectional; no time series information is used for the estimation of the structural
parameters 7 of the model, and we therefore do not need assumptions on the dynamics
of Z,. Treating Z, as parameters, the medel in (16) can already be estimated on data
for a single point in time f as in section 4. The panel data aspects arise from pooling
the data for several cross sections.

We use Quasi Maximum Likelihood to estimate the structural parameters =, the

error parameters { and the fixed effects {Z:}E;l. To handle the autocorrelation in the



error terms we adopt the following transformation for any time series variable X,

1
X = {1-A)1x, L=l

(21)
= Xg—CXg_l t=2,...,T

Using (21) on yields, factors, A,(7) and the errors we transform {20) to the model
Y= A+ BZ +e, (22)
for which we have the quasi-loglikelihood function
inL(z,{,Z) = —INTl(w*)~-iTI|S|+ INIn( -+
—;j;?;(lz' 4 - BEYST(Y, - A -BZ), ()

where Z = (Zy,...,2Z7). The likelihood can be concentrated analytically with re-
spect to the fixed effects Z and the scale parameter w?. This is the crucial element of
an affine model. For models not in the affine class the fixed effects cannot be concen-
trated out analytically, which would add T parameters to the non-linear numerical
optimization of the likelihood function in (23), rendering these models intractable for

analysis by conventional methods. For w? the maximum likelihood estimator is given
by
1 I
&= = DY - AYM(Y, - A7), (24)

=1
where M = §71 — 5-1B(B'5-'B)1B'S-'. Substitution of (24) in (23) gives the
concentrated likelihood function

InL(x,e,d,¢) = ~INTIn&? — 1T1a|S] + INIn(1 — &) (25)

which depends on only a small number of parameters, and can be easily maximized
by numerical optimization routines.

The structural parameters only affect the first term in (25). 1t is instructive to -
consider this term in more detail. For the equilibrium models A, does not depend on
t. Let V be the sample covariance matrix of ¥y (which depends on ¢), and let ¥ be
the sample mean of ¥;. Equation (24) can be rewritten as

e % (te(MV) + (7 ~ ayM(¥ - 1)), (26)

ignoring 2 term of order (Y7 — ¥;) /T. For the Gaussian model this decomposition

implies that the function A(r), and therefore the parameters 6 and o7 are determined
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by the unconditional sample means Y, i.e. the average shape of the yield curve. The
function B(r) — and thus mean reversion parameters x; — are identified through all
first and second moments of the transformed yields. QML defines a weighting scheme
based on all possible V(N + 3) moment conditions.

A similar decompoesition for the extended Vasicek model in (11) shows that the
volatility parameter is only determined through the convexity in ¥ — F as a function
of 7 (F is the sample average of the N-vector with elements Fi(7;)). Without using
time series information all the information on o has to be extracted from the sample
means of the deviation between the yield and the forward rate. Since this is not likely
to be very informative data, estimates of o2 are presumably imprecise in the extended
models.

The cross sectional specification of any affine term structure model is testable by
comparing A7) and B(r) with a less restrictive specification. To test for deviations
from the theoretical model we augment the functional forms Aq(7) and B(7),

Il

A7)
B(r)

A7) ++'g(7)
B(r) + Dg(7) , (27

where g(7) is an L-vector of functions of 7,2nd v and D are an L-vector and (K x L)
matrix of parameters.

This tests considers the specification of the model keeping the number of factors
constant. The number of factors itself can be examined by comparing with a model
that has more factors. A formal test for the number of factors is not trivial due
to the increasing number of incidental parameters in Z. Every -additional factor
k introduces T new parameters in {Z4}, invalidating standard large T asymptotic
inference. When the pumber of factors K equals the number of maturities N, the
model will fit perfectly, and the likelihood function will go to infinity.

Unlike in standard factor models, or in principal components analysis, the "spe-
cific” risk terms e;(7) in (16) are not necessarily mutually uncorrelated. In fact, as
discussed in section 2, they most likely are not, because of the smooth nature of the
term structure data. Finding more than one factor in the covariance structure of
interest rate data does not necessarily invalidate single factor term structure models.

It is the shape of the factor loadings B(7) that constitute the testable implications
of the model.
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6 Data

The data set consists of a panel of discount yields, which are constructed using the
MecCulloch (1975) spline procedure from US government bond data, available from the
CRSP tapes. The data are monthly observations that span the peried from January
1970 until December 1994. At every time ¢ the yield curve is represented by a cross
section of N = 16 yields. The maturities are one through six months and one year
until ten years.

Figure 3 shows the full data panel. Most striking is the predominance of parallel
shifts of the yield curve. Apart from noisy behaviour at the short end, yield changes
are almost horizontal. Yields with different maturities are therefore heavily correlated,
both in levels and in deviation from lagged forward rates.

Summaries are presented in fizure 4. The average yield curve in figure 4A is
concave, as it should be in the Vasicek model in order to obtain a positive estimate
of volatility. In deviation of the forward rate the concavity does not hold at the very
short maturities of one- and two months in figure 4B.

Both for levels and changes the volatility in figures 4C and 4D decreases with ma-
turity, as they should when interest rates are mean reverting. But the term structure
of volatilities for the levels is flatter than that for the changes. This is primarily due
to the initial steep decrease in volatility for the very short term rates (maturities six
months and less). Very short rates are different from the rest of the term structure.
Volatility at longer maturities is still far from zero, indicating that the ten year inter-
est rate is not a proxy for the infinite horizon vield that must be constant over time
in the affine model. The observed yield curves have not converged to a single yield
for long maturities.

The term structure of volatilities in figure 4D for first differences ¥;(7) — Yi—1(7)
is almost identical to the volatility structure for the deviations between yields ¥;(7)
and lagged forward rates Fy_; (7). This implies that the extended model is in effect
a model of yield changes. This is brought out more clearly in the scatter diagram in
figure 6.

Figure 5 shows vield curves ordered by the level of the ten year rate. For a one
factor model, all curves with a common ten year rate should be identical apart from
measurement error. Instead the curves spread out at the short maturities. One

interpretation of these data is a second factor with strong mean reversion that only



has an effect on short term yields. Another possibility is that measurement error for

short maturities is relatively high.

7 Empirical Results

In the empirical analysis we consider four different models: equilibrium and extended
Gaussian models, with either one or two factors. Parameter estimates are reported
in the first column of table 2. We first discuss the Vasicek single factor equilibrium
model in detail, and then proceed with the other three models.

The parameter of interest in the Vasicek model is the implicit mean reversion &,
since it completely determines the volatility function B(r). The panel model pools the
yield curves for many different months. During the sample period short term interest
rates have fluctuated between 5 and 15 percent, i.e., the yield curves start from very
different levels of the instantaneous spot rate. When all these yield curves are forced
to converge to a single infinite yield, the only way that any single factor model can
achieve this, is by setting the mean reversion parameter at a very small value. The
point estimate implies a monthly autoregressive coefficient of 0.997, or equivalently
2 halflife of shocks equal to In2/x = 17 years. From the cross sectional perspective
interest rates have to be near integrated series. Although the mean reversion is low,
it is estimated very precisely and is significantly different from zero, with a t-statistic
that is larger than 8.

At the very long end of the yield curve, the estimate of the infinite yield @ is
negative and imprecise. It appears that this parameter is not identified in the data.
The poor estimates are related to the low mean reversion, since the constant infinite
maturity yield becomes unidentified when & is close to zero. We simply have no
reliable data about very long term interest rates.!®1112 Although the infinite yield
is negative, the model generates upward sloping, almost parallel, yield curves for

maturities up to 10 years. Due to the low mean reversion the term structures are far

10 The CRSP data set does contain bonds with a maturity of 30 years. We included these bonds,
when we estimated spline functions to create discount yields. However, the spline function shows
very large standard errors at maturities beyond ten years, indicating that the yield curve data are
measured with much error for these long maturities. For that reason we did not extend our discount
yield data beyond the ten year maturity.

11 The CIR model yields similar results. Although mean reversion is even lower at 1.25¢-6 and
the infinite yield is positive at 6.35 by construction, the fit of the term structure is almost identical.

12 Getting § = 0 instead of the ridiculously large negative value makes absolutely no difference for
the estimate of x. It only has some effects on o.
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from convergence to their common infinite horizon yield at a maturity of ten years. It
might be considered a serious drawback of the Vasicek model, like all other one factor
models, that it implies one constant infinite vield. But even in a multifactor world,
1t is not trivial to construct an equilibrium model without this feature. Variability of
long maturity interest rates wil] always imply low mean reversion,'®

Other panel data studies, referred to in the introduction, also incorporate time
series information. Instead of estimating the factor as an unknown parameter, they
treat it as a latent variable that follows the Gaussian process (14). The parameters
x and & appear in both the cross sectional as well as the time series dimension of the
model, in other words in both the risk neutral and actual dynamics. That way these
studies use all possible information in the data at the cost of making the assumption
of a constant price of risk. But the additional information in the time series seemns
weak. When we use the Kalman filter to estimate the model by maximum likelihood
with r, as a latent variable, the parameter estimates remain unchanged. Qur point
estimates are & = 0.039 and & = 0.337 with standard errors that are only slightly
less than those in table 2. The cross sectional information dominates the time series
information in the data. This should not come as a surprise, since time series data
are known not to be informative on mean reversion. That was one of the conclusions
of Chan, Karolyi, Longstaff and Sanders (1992). When time series and cross sectional
parameters are allowed to differ in the way discussed below (14), we indeed find that
the time series mean reversion 7 = .21 gets a standard error of 0.12, and is not
significantly different from zero.

The diagnostic tests give many indications that the one factor moded is misspec-
ified. First, the likelihood ratio test rejects the structure of A(7) and B(7) imposed
by the Vasicel model. The deviations are illustrated in fizures 7A and SA. Figure 7
shows the average observed term structure and the average of the estimated term
structure, given by A(7)+ B(r)z, where = is the sample mean of the estimated factor.
On average the actual term structure is steeper than what would be consistent with
the one factor Vasicek model. Figure § shows the volatility structure. The estimated
volatility is computed as the standard deviation of B(7)z,. Short term rates are much
more volatile than implied by the model. Another way to interpret figure § is as a
measure of fit. The ratio of fitted to actual variance, Var(B(r)z,)/Var(Y,(r)) for dif-

ferent maturities can be used as an R* measure of goodness of fit. The explained

¥ See for example the theoretical discussion in El Karoui, Frachot and Geman (1998).

20



variance quickly rises from 31% for the one month interest rate to over 99% for vields
with maturities 3 years and longer.

Second, the estimate of the cross sectional heteroskedasticity parameter d implies
that parameter estimates are mostly determined by data from the long end of the
maturity spectrum, and that the model does not fit the short end at all. With
d = 0.75, the relative weight of the ten year vield compared to the one month rate is
(1—},[1’—2)& 2= 36, against equal weighting when d=0.

Third, the estimate of ¢ states that cross sectional dependence of the errors is
strong. For yields that differ only one month in time to maturity, the correlation
cocfficients are about ¢/** = 0.97. There is a strong common component left in the
errors. This common component also has strong autocorrelation, but is far away from
the unit root.

Fourth. figure 9 depicts the implied instantaneous spot rate. i.e., the estimated
fixed effect 7, together with the observed one month rate (as a proxy for the short
rate). The implied rate is less volatile than the observed rate. It looks as if the actual
one month interest rate contains a lot of transitory noise. The same transitory noise
is also visible in the vield curve changes in figure 3

All these four empirical diagnostics point at a second factor, which has stronger
mean reversion than the dominant first factor, and which therefore will mostly affect
the shorter maturities. The second column in table 2 show the estimation results. As
anticipated we find ene factor with very low mean reversion, like in the one factor case.
The second factor is much more volatile but strongly mean reverting. This model fits
the data much better. The restrictions on A(7) and B(r) can not be rejected, and
therefore the actual and fitted first and second moments match almost perfectly in
figures T and 8. The two factors account for more than 95% of all variation in interest
rates. The remaining error terms are small. Moreover, most of the cross sectional
correlation in the errors has disappeared.

The high mean reversion of the second factor is entirely consistent with the time
series behavior of short term interest rates. Both Andersen and Lund (1996) and
Balduzzi. Das and Foresi (1998) find that the short term interest rate can be de-
scribed as a time series that quickly reverts towards a slowly changing mean. Dai
and Singleton (1997) show that such a model, which they call a "cascade” model, is
just an alternative parameterisation of the two-factor model.

A disturbing diagnostic is that the residual autocorrelation remains. The second



factor only fixes the misspecification at the short end, but does not affect the longer
term yields. Since most of the autocorrelation comes from the longer term yields, the
second factor can not take thas away." When the theoretical vield curve does not
match the observed yield curve. the error persists for some time. That is exactly the
type of behavior that can be modelled by an extended model. An extended model
starts from an exogenously given yield curve, and assumes that movements away from
the Initial conditions satisfly a no-arbitrage constraint. If the current yield curve is
not consistent with an equilibrium model, then the error will only partly be corrected
in next period’s yield curve. When an equilibrium is fitted to data from an extended
model with an arbitrary initial condition, the error terms will exhibit strong positive
autocorrelation. Estimation of an extended model is therefore directly motivated by
the results from the equilibrium meodel.

The estimate of the mean reversion in the extended Vasicek model in table 2 is
close to the estimate for the equilibrium version of the model. Like the equilibrium
model, the one factor extended Vasicek model has problems fitting the short term
interest rate movements. The observed volatility is much higher than the volatility
Var(B(7)(r, — fi1,))? implied by the estimated factor.

In the two factor extended model, the first factor is almost 2 random walk. Since
the equilibrium and extended Vasicek models are not nested, they cannot be formally
tested against each other. The two models aim at fitting different sets of moments
in the data. Still the likelihood value of the extended two-factor model falls short of
the likelihood value of the equilibrium model. Other diagnostics also suggest that the
equilibrium version of the model £tg the data better.

A major difference between the extended and equilibrium models is the autocor-
relation in the residuals, First, for the equilibrium model, specified in levels, the
estimated autocorrelation is about ¢ A 0.75. For the extended Vasicek model, which
is practically equivalent to taking first differences of the vields, the autocorrelation
coefficient becomes negative at about €& —0.30. Negative autocorrelation is an in-
dication that working with monthly changes in yields leads to “overdifferencing’. The
extended Vasicek model calibrates too often! What is missing in the extended Vasicek
model is an “error correction” factor that measures the deviation of the current term

structure from the expected yield curve based on an equilibrium model, The levels

" This of course means that our parameterisation of the measurement error structure is too
restrictive, since it imposes the same autocorrelation for all maturities. But this does not affect the
consistency of the parameter estimator, and only means that a more efficient estimator exists.
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of interest rates contain useful information about the parameters that is ignored in
the extended model. This could explain why parameter estimates are more precise
for the equilibrium version of the model.

Second, the estimated volatility structure in figure 8 indicates that the two-factor
model still does not account for the relatively high volatility at the short end of the
term structure. This is directly related to the low mean reversion in the second factor.
The low value for &» arises from the covariance structure of Yi(r) — Fi_14(7). The
correlations between ¥; () — Fy_1,(7) are generally lower than between the yield levels
Yi(r), even after correcting for autocorrelation as in Y;"(7). The data need the second

factor to improve the fit of movements in long term rates.

8 Conclusions

We have proposed 2 fixed effects panel data model for the term structure of interest
rates. This framework allows us to estimate the risk neutral process of the factors
without making additional assumptions on the actual time series behavior of the fac-
tors. Tn this framework we treat single and multifactor models as well as equilibrium
and extended term structure models. Two issues are important in the econometric
model. First, we consider the affine class of term structure models, since this class
allows the use of linear panel data methods. Second, the model takes into account
the natural ordering of interest rates in the maturity dimension to parameterise the
covariance matrix of the error terms.

Pooling results in very sharp point estimates of the structural parameters. Most
salient is the implied mean reversion in a one factor Gaussian model, which is very
low but statistically different from zero. Such precise estimates are not available from
time series analysis of 25 years of monthly data. Moreover the equilibrium version
model fits very tight for maturities larger than one year. At the very short side of
the yield curve, we find a lot of transitory noise, which requires a second factor. For
the extended Gaussian models we find strong negative autocorrelation as evidence of

overdifferencing. The extended models ignore useful information in the levels of the

vield curve.
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Table 1: Monte Carlo Results Vasicek Yield Curves

RIMSE r To r3 K ot [

True values:

0.060 4 3 12 0.04 6.25 0
Fitted cross section models:
Mean 0.001 4.00 0.066 4.33 0.92
Std.dev. 0.002 0.08 0.065 4.98 10.69
Minimum 0.000 3.68 -0.056 -42.14 -244.6
Maximum 0.020 4.28 0.336 T7.97 7.96
Mean 0.001 8.00 0.100 1.80 1.35
Std.dev. 0.003 0.08 0.128 10.92 13.35
Minimum 0.000 i -0.055 -149.6 -259.4
Maximum 0.033 8.27 0.682 10.44 10.55
Mean 0.004 12.00 0.201 -13.18 0.08
Std.dev. 0.008 0.03 0.351 45.41 36.42
Minimum 0.000 11.75 -0.360 -252.0 -1103.
Maximum 0.037 12.35 1.465 63.08 12.88
Pooled estimates:
Mean 0.011 4.00 3.00 12.00 0.040 6.25 -0.29
Std.dev. 0.007 0.08 0.06 0.08 0.003 0.07 2.41
Minimum 0.000 3.67 7.82  11.73 0.023 6.02 -14.57
Maximum 0.038 4.25 8.20  12.36 0.054 6.56 6.17
True values:

0.200 4 8 12 0.04 6.25 0
Pooled estimates:
Mean 0.053 4.00 8.00 12.01 0.040 6.19 -23.45
Std.dev. 0.039 0.40 0.31 0.39 0.016 0.62 100.11
Minimum 0.001 2.80 6.96  10.98 -0.013 -0.06 -1230.
Maximum 2.355 5.40 9.15 13.30 0.087 7.79 483.7

Notes: Yield curves are generated using the Vasicek model with the parameter values listed under
"True values” including measurement noise:

e(7) = une + %(UZ: - upt)
where uy; and us; are mutually uncorrelated normal random variables with zero mean. For the first
part of the table the error standard deviations are 7 and 2 basispoints for uy; and ug respectively.
For the high noise case these standard deviations are 40 and 20 basispoints. All level parameters (rit,
Tor, T3, §) are in units of percent per annum. The variance o is in percent per annum squared. The
Root, Integrated Mean Squared Error (RIMSE) is in basispoints. Parameters have been estimated by

nonlinear least squares using 120 monthly spaced points on the yield curve. The longest maturity is
ten years, the shortest one month.




Table 2: Parameter Estimates

Equilibrium Extended
One Factor Two factors One Factor Two factors
® 0.042 0.003  0.311 0.095 0.012 0.081
(0.005)  (0.001) (0.010) (0.002)  (0.004) (0.013)
o 0.321 0.290 0.797 0.507 0.210 0.189
(0.023)  (1.122) (0.248) (0.026)  (0.014) (0.015)
0 -8.74 -4539
(5.18) (1003)
@ 0.725 0.031 0.720 0.503
(0.026) (0.045) (0.001) (0.005)
d 0.763 0.746 0.748 0.794
(0.008) (0.046) (0.003) (0.008)
¢ 0.785 0.693 -0.314 -0.356
(0.024) (0.004) (0.005) (0.027)
w 0.408 0.258 0.398 0.265
i InL 31364 32214 31305 32143

Notes: The table reports the estimation results for four versions of the (extended) Vasicek
model in a panel with fixed effects. The first half of the columns refer to the equilibrium
model, the last half of the columns to the extended Vasicek model. The parameters K, 0
and ¢ denote the mean reversion, volatility and infinite yield. The parameters w, ¢ and
d define the covariance matrix of the cross sectional error term; ¢ is the autocorrelation
parameter in the error term. Time in measured in years, so that for example In2/x
measures the halflife in years. Other parameters, like # and & are converted to percent per
vear. Standard errors are in parentheses. In L denotes the log likelihood.

Table 3: Misspecification Tests

Equilibrium Extended
One Factor  Two factors  One Factor Two factors
LM 38.51" 2.76 9.96" 9.01
df 4 6 4 6

Notes: The table reports the Lagrange Multiplier test of the hypothesis Hg : y =
0 and D = 0 in the extended model

e
|

As(m) +v'g(7)

e
B(r B(r) + Dy(7) ,

R
I

where g(7) = (r,7%) is a vector with two elements. The number of restrictions is given
by df. An asterisk denotes significance at the 5% level.
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Figure 1: Yield Curve Pooling
"The figure shows three yield curves generated by the Vasicek model with pararmneters
#=0,¢=25%and x = 0.04. The curves start at spot rates of » = 4%, 5% and
12%, respectively.

Actual
Fitted

Maturity {}

Figure 2: Yield curve fitting
The figure shows a hypothetical observed vield curve (Aetual) and a yield curve
implied by an equilibrium term structure model (Fitted). The observed yiled curve
is drawn as 2 coatinuous Jine, because it is assumed that is constructed by interpo-
lation methods like a spline function.
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Figure 3: US Interest Rates

The figure shows monthly US discount yields for the period 1970 - 1994, and ma-
turities between 0 and 10 vears.
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Figure 4: Data Summary

Panel A shows the sample mean of yields Y:(r) for different maturities, panel C the
standard deviation, and panel E the first order autocorrelation. Yields are measured
in percent per annum. Panels B, D en F provide the same summary for yields in
deviation of the lagged forward rate Fy_, ((7) (solid line) and first differences of
yields (dashed line). All data are monthly oo%ervar.ions for the period 1970-1994.
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Figure 5: A second factor

The figure shows observed yield curves ordered with respect to the level of the ten year discount
rate,
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Figure 6: Discount yields and forward rates

The figure shows scatter plots with Y;{r) — F\_1(7) on the vertical axis and Yi(r) — Yeo1{7) on the
horizontal axis for selected values of T.
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Figure T: Average Yield Curve
This figure shows the average yield curve along with the fitted average yield curve for four dif-

ferent models: One factor equilibrium Vasicek (A), One factor extended Vasicek (B), Two factor
equilibrium Vasicek (C), and Two factor extended Vasicek (D).
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Figure 8 Term Structure of Volatilities

This figure shows the standard deviations of yiclds with different maturities along with the fitted
standard deviations for four different models:” One factor equilibrium Vasicek {A), One factor ex-
tended Vasicek (B), Two factor equilibrium Vasicek (C), and Two factor extended Vasicek (D). The
fitted strandard deviation refer to the volatility of B(+)z;. Units are petcent per annum.




Figure 9: Implied spot rates

The figure shows the observed one month discount yield and the estimated spot
rates ry for the equilinbrium Vasicek model. Panel A refers to a one factor model,
and panel B to the two factor model, where R; is the sum of the two factors.
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