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1 Introduction

The asset management industry is enormous and growing rapidly. U.S. mutual funds had $24 tril-

lion in assets under management at the end of 2020, more than half of which were in equity mutual

funds. Over 100 million Americans rely on such funds to save for retirement and meet other finan-

cial objectives. Many of these mutual funds actively trade stocks in an effort to out-perform their

benchmarks and create value for their investors. The literature has found mixed results in terms

of the investment performance of actively-traded equity mutual funds. We revisit the evidence

using modern techniques, and ask which–if any–characteristics of mutual funds and of the stocks

they hold can help separate the corn from the chaff. We uncover new evidence of economically

substantial and long-lasting abnormal return predictability. Fund flows and fund return momen-

tum are the main two characteristics that can meaningfully and robustly help distinguish funds

that outperform from those that under-perform, particularly in times of high investor sentiment.

We study the universe of actively-traded U.S. equity mutual funds between 1980 and 2019 and

the stocks that they hold. The object we predict is the abnormal fund return, defined as the locally-

estimated four-factor alpha of the mutual fund. The predictors are a long list of 46 stock character-

istics weighted by the funds’ holdings of each stock and 13 fund and fund-family characteristics.

We also include a variable that summarizes the overall state of the market, either proxied by in-

vestor sentiment or by a comprehensive measure of macro-economic activity. Our main method

is a feedforward neural network, which can reliably estimate a complex functional relationship

among a large set of predictors. It is trained and tuned on one subset of the data and evaluated

on another subset of the data. Hence, all of our predictions are out-of-sample. Our method iden-

tifies fund characteristic information, and specifically fund flow and fund momentum, as the key

predictors of mutual fund out-performance. Moreover, there is an important interaction effect

between these two fund characteristics and sentiment, which linear models fail to pick up.

The model generates large differences in out-of-sample performance. Buying the ten percent

of mutual funds with the best predicted performance each month, and using the model not only

to select but also to weight the funds within the top decile, generates a cumulative abnormal

return of 72%. Buying the ten percent of mutual funds with the worst predicted performance each

month produces a cumulative abnormal return of -119%. The 191% difference in out-of-sample

performance based on the model’s predictions is economically large and statistically significant.

Since the best and the worst funds have similar fees, the same result holds for after-fee abnormal

returns. The performance improves further when we directly predict net-of-fees performance.

The performance differential is nearly identical if we constrain the model by removing all stock

characteristic information. In fact, we can also remove most fund and fund family characteristics.

The predictions of a model that are only given data on fund flow, fund momentum, and sentiment

are nearly as good as those of the full model. They deliver out-performance of 48 basis points per
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month for the top relative to the bottom deciles of predicted performers. The Sharpe ratio on this

strategy is 0.24 per month.

The predictability we uncover is surprisingly persistent. Even though investments are made

based on one-month ahead prediction, the best decile of funds significantly outperforms the worst

decile for three years. Even after 36 months, the monthly Sharpe ratio on the long-short portfolio

is still 0.20, compared to a 0.30 Sharpe ratio 3-months ahead. This result is remarkable in light of

the literature’s difficulty in finding evidence for persistence in abnormal fund returns.

We decompose the fund abnormal return into a between-disclosure component, which holds

fixed the funds’ stock holdings at their previous quarter-end values, and a within-disclosure com-

ponent, which accounts for mutual fund trades during the quarter. The latter is the sum of the

return gap and a risk exposure differential.1 We find that about half of the outperformance comes

from the model’s ability to predict between-disclosure abnormal returns and the other half from

predicting within-disclosure abnormal returns. Both fund flow and fund momentum predict the

return gap and the risk exposure differential, while most stock characteristics that predict the re-

turn gap do so by taking on more systematic risk resulting in little within-disclosure abnormal

return. These results shed additional light on the sources and persistence of out-performance.

The salience of flow and fund return momentum as the key predictors suggests that some

investors can detect skill and (re)allocate their investment towards such skilled managers. This

reallocation of investment flows is not as strong as the frictionless model of Berk and Green (2004)

predicts. Skill leaves a trail in the form of fund return momentum for investors to exploit in the

next period. Put differently, the flows are gradual and small enough that it takes several periods

until the fund runs into zero marginal abnormal returns.

The results are potentially also consistent with funds and fund families attracting flows through

marketing rather than—or in addition to—through investment skill (Ibert, Kaniel, Van Nieuwer-

burgh, and Vestman, 2018; Roussanov, Ruan, and Wei, 2021). Marketing-induced inflows create

buying pressure for stocks that the fund typically invests in. In a world with downward-sloping

demand curves (Coval and Stafford, 2007; Koijen and Yogo, 2019; Gabaix and Koijen, 2021), this

raises prices and lifts fund returns. Through the flow-performance relationship, as well as through

persistence in marketing-driven flows, the out-performance creates more inflows in the next pe-

riod. The demand pressure increases prices further, generating momentum in fund returns. The

fact that flows and fund momentum have a much stronger association with fund performance in

high-sentiment periods lends further credence to this marketing-driven channel.

Our paper makes several methodological contributions adding to the protocol of how to use

machine learning models for asset pricing. First, we contribute to relative performance predic-

tion. We show that abnormal returns, obtained as local residuals to a factor model, are not only

1The return gap is the difference between the fund’s actual returns over the period and the hypothetical returns
generated by keeping the fund’s portfolio holdings constant.
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an economically motivated, but also the statistically better target for prediction. In contrast, the

level of fund (and stock) returns is extremely hard to predict. Abnormal returns remove the level

effect of market and other risk factors, which makes the prediction of abnormal returns a rela-

tive objective. The commonly-used machine learning prediction of total returns can be dominated

by the prediction error in the common component in return levels, resulting in suboptimal use

of cross-sectional information relevant to relative performance. Indeed, we show that using the

same flexible methods for predicting abnormal returns instead of total returns results in higher

accuracy and better portfolio performance.

Second, we quantify the economic benefit of different information sets. We suggest to compare

the prediction and trading benefits by varying the information set available to the same flexible

machine-learning algorithm. The focus is the comparison of information sets instead of a horse

race of model specifications.

Third, we show how to measure the dependencies on macroeconomic states. Specifically, we

propose a cross-out-of-sample evaluation of conditional models using the full time-series. Impor-

tantly, the data points for estimating and evaluating the model have to be sampled such that all

relevant economic conditions are represented in all subsamples, which can be achieved by random

sampling over time. This is particularly important for measuring the dependencies on macro-

economic states which are only available in a subset of the data and might be neglected in the

estimation or evaluation with a conventional chronological data split. Our evaluation approach

allows us to take advantage of all sample periods for the out-of-sample analysis, diminishing the

effect of particular subperiods. That said, our main results are robust to using a chronological

cross-validation as well as an expanding-window sampling approach.

Fourth, in order to better assess the investment benefits of prediction, we suggest prediction-

weighted portfolios. These portfolios result in the largest return spread as they take advantage

not only of the ranking but also of the relative strength of the prediction signal. The prediction-

weighted portfolios dominate the widely-used equally-weighted portfolios based on prediction

quantiles.

Last but not least, we propose a new measure for interaction effects in machine learning algo-

rithms, which does not only measure a local slope, but a more informative global slope. For this

interpretable measure, we provide a formal statistical significance test based on functional central

limit theorems for neural networks.

Related Literature An enormous literature in empirical asset pricing studies whether mutual

fund managers outperform their benchmarks through stock picking and market timing. The sem-

inal paper of Berk and Green (2004) suggests that a large fraction of fund managers out-performs

before fees while Fama and French (2010) find no out-performance before fees. Kacperczyk,

Van Nieuwerburgh, and Veldkamp (2014; 2016) find that a modest fraction of managers displays
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enough skill to persistently outperform, through a strategy that switches between market timing

in recessions and stock picking in expansions. The presence of uninformed mutual fund managers

and retail traders makes this possible as an equilibrium phenomenon (Stambaugh, 2014).

While investors direct flows to funds that out-perform, at least as measured by the CAPM al-

pha (Berk and Van Binsbergen, 2016; Barber, Huang, and Odean, 2016), there is mounting evidence

that other factors besides fees and before-fee performance determine fund flows. Roussanov,

Ruan, and Wei (2021) argues that marketing is an important determinant of flows, necessary to

understand the empirical joint distribution of fund size and performance. Consistent with this,

Ibert, Kaniel, Van Nieuwerburgh, and Vestman (2018) shows that fund manager compensation is

tied to the component of assets-under-management that is orthogonal to current and past fund

performance.

The predictive role of flows to fund performance was first uncovered by Gruber (1996) and

Zheng (1999), who identified a positive, but fairly short-lived and weak relationship. The “smart

money” relation they found exists for small but not for large funds. Risk adjustment in these pa-

pers did not include momentum. Sapp and Tiwari (2004) shows the smart money effect disappears

once a stock return momentum factor is considered (Carhart, 1997). Prior work identified differ-

ent directional effects for different components of flow and fund returns. Lou (2012) shows that

the expected part of flow-induced trading positively forecasts mutual fund returns in the follow-

ing year. Song (2020) finds that fund flows associated with positive factor related returns lead to

negative future fund performance. Our machine learning approach revives the predictive role of

flows, with a 4-factor risk-adjustment, and shows that fund flow predicts performance positively.

Carhart (1997) finds that persistence in fund net performance essentially disappears once a

stock momentum factor is added, apart for the worst performing funds where it arises from per-

sistently high expenses. With the aid of machine learning, we identify an important predictive role

for fund past performance both gross and net of fees, even after controlling for stock momentum.

Furthermore, the predictive power of our method is long lived. Bollen and Jeffrey (2005) argue

that part of the reason for the lack of performance persistence in Carhart (1997) is that he forms

decile portfolios and considers the time series of performance of these decile portfolios, instead

of computing an abnormal return at the stock level and averaging that across stocks in each sub-

sequent period. Our predictive results, which find an important role for fund past performance,

hold for long-short portfolios as well, highlighting that including fund past performance as part

of a neural network prediction model is important.

Our paper more broadly relates to the fund return predictability literature. Cremers and

Petajisto (2009)’s Active Share—funds with holdings that differ greatly from their benchmarks—

predicts benchmark index-adjusted Carhart alphas. Kacperczyk, Sialm, and Zheng (2008)’s Return

Gap predicts 4-factor monthly alphas. The monthly abnormal return we identify is about twice

as large as theirs. While they finds significance for the short but not the long leg, we find sig-
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nificance for both.2 More importantly, we show that the predictive power of fund momentum

and fund flows are substantially amplified when investor sentiment is high at the time of forming

portfolios.

There is fairly little evidence on the impact of macro-economic conditions on performance.

Moskowitz (2000) and Kosowski (2011) find that risk-adjusted performance of mutual funds is

better in recessions than in booms. Massa and Yadav (2015) show that a fund’s level of exposure

to high-sentiment beta stocks predicts lower future returns. Sentiment affects the out-performance

of fund managers differently than long-short anomaly strategies. Similar to the findings in Stam-

baugh, Yu, and Yuan (2012) for stock return anomalies, we find that high sentiment periods coin-

cide with more fund return predictability. While the effect for equity anomalies comes primarily

from its short leg, the out- respectively under-performance of the best and worst fund managers

in high sentiment periods is symmetric, suggesting a different economic channel. In contrast to

the novel interaction effects between sentiment and fund characteristics, we find no equivalent

interaction effects with the state of the macro-economy as proxied by CFNAI.

Our work connects to the growing Machine Learning (ML) literature in finance (see Karolyi

and Van Nieuwerburgh, 2020, for a summary). This literature has focused on analyzing the cross-

section of stock returns using a plethora of return predictors.3 Similar techniques are beginning to

be used in other asset classes.4 Independent work to ours by Li and Rossi (2020) and DeMiguel,

Gil-Bazo, Nogales, and Santos (2022) study mutual fund performance with ML techniques, pro-

viding a comparison study of predicting fund returns or abnormal returns, respectively, with ma-

chine learning methods similar to Gu, Kelly, and Xiu (2020). In addition to our methodological

innovations, we use a richer information set, which allows us to disentangle the relative value of

holdings-based, fund-specific, and macroeconomic information. In addition, Li and Rossi (2020)

predict fund total returns using holding-based stock characteristics. We confirm and refine their

analysis by showing that holdings-based stock characteristics only predict the systematic compo-

nent of fund returns. Our main object of interest is the fund abnormal return, which is orthogonal

to the systematic component of fund returns.5 These abnormal returns are only predicted by fund-

specific characteristics and sentiment, and not by stock-specific characteristics. In contemporane-

ous work, DeMiguel, Gil-Bazo, Nogales, and Santos (2022) also predicts abnormal returns, but

2Some other predictive variables identified in the literature include, for example, Industry Concentration of holdings
(Kacperczyk, Sialm, and Zheng (2005)) and fund R2 (Amihud and Ruslan (2013)).

3Recent contributions include among others: return prediction with flexible and regularized models in Freyberger,
Neuhierl, and Weber (2020) and Gu, Kelly, and Xiu (2020), robust stochastic discount factor construction with many
characteristics in Kozak, Nagel, and Santosh (2020), Chen, Pelger, and Zhu (2020), Bryzgalova, Pelger, and Zhu (2021)
and Cong, Feng, He, and He (2022) and estimation and evaluation of risk factors in Lettau and Pelger (2020), Kelly,
Pruitt, and Su (2019), and Feng, Giglio, and Xiu (2020).

4Bianchi, Büchner, and Tamoni (2021); Bianchi, Büchner, Hoogteijling, and Tamoni (2021) study bonds, Filippou,
Rapach, Taylor, and Zhou (2021) currencies, and Wu, Chen, Yang, and Tindall (2021) hedge fund strategies

5A two-step procedure that predicts total, rather than abnormal, fund returns in a first step and then estimates a four-
factor model on ex-post prediction-based return portfolios to form abnormal returns in the second step is fundamentally
different from our procedure which directly predicts abnormal returns.
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uses only fund-specific characteristics without macroeconomic information. In order to capture

how a model can change depending on macroeconomic conditions, it is necessary to also include

the macroeconomic variables as predictors.6 Furthermore, neither paper includes price trends of

fund returns as predictors, which we find to be the most relevant. In summary, our results em-

phasize the role of fund-specific characteristics and the interaction with the state of the economy,

thereby making progress on understanding the economic mechanism.

The rest of the paper is organized as follows. Section 2 describes our data. Section 3 describes

our neural network model and our main results. Section 4 analyzes the main results in depth. Sec-

tion 5 concludes. The appendix provides additional empirical results (A), implementation details

(B), and statistical significance tests (C). An Internet Appendix contains auxiliary results.

2 Data

2.1 Mutual Funds

As is customary, we focus on actively-managed mutual funds holding mostly domestic equities.

The mutual fund returns, expenses, total net assets (TNA), investment objectives and other fund

characteristics are from the Center for Research in Security Prices (CRSP) Survivor Bias-Free Mu-

tual Fund Database. Our analysis requires fund holdings, which we obtain by linking the database

to the Thomson Financial Mutual Fund Holdings. Our cleaned data set includes 407,158 (mutual

fund by month) observations for 3,275 mutual funds spanning the period from January 1980 until

January 2019. We restrict our study to mutual funds with raw returns observed at time t and hold-

ings data and total net assets observed at t − 1, which guarantees that holding-based abnormal

return returns at time t, as defined below, are observed. At each time t, mutual funds are also

required to have at least 30 non-missing return observations in the last 36 months, which guaran-

tees that the regression-based abnormal returns are well-defined. Internet Appendix IA.1 contains

more details and summary statistics.

2.2 Abnormal Fund Returns

Our main object of interest is the abnormal mutual fund return. It measures fund performance

after subtracting compensation for systematic risk factor exposure. We construct the abnormal

return for each fund-month observation relative to the Carhart (1997) model, following a similar

procedure. First, factor loadings are estimated over the prior 36 months:

Ri,t−36:t−1 = αi + Ft−36:t−1 β̂i,t−1 + ηi,−36:t−1, (1)

6An ex-post regression on sentiment or sentiment indicators is not sufficient to detect the interaction effects with
sentiment our ML method uncovers. We show that the overall model changes depending on interactions of fund-level
variables with sentiment and not just an additive sentiment component.
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where Ri,t is the gross (before-fee) return of fund i in month t in excess of a one-month T-bill

yield. The rolling window regressions allow for time-varying factor exposures. Second, abnormal

returns (Rabn
i,t ) are computed:

Rabn
i,t = Ri,t − Ft β̂i,t−1. (2)

Abnormal returns are not guaranteed have a mean of zero. Their mean and median is -0.03%

per month in our sample with a standard deviation of 2.00%. Hence, mutual funds earn returns

commensurate with the predictions of the Carhart model on average, but with substantial cross-

sectional dispersion. While there is some controversy over which return model actual mutual

fund investors use (Berk and Van Binsbergen, 2015; Barber, Huang, and Odean, 2016; Jegadeesh

and Mangipudi, 2021), the Carhart model arguably remains the main factor model in the mutual

fund literature and hence a natural benchmark for our purposes. The main results are robust to

using abnormal returns with respect to an eight-factor model.7

We will use machine-learning techniques to connect abnormal fund returns to the character-

istics of mutual funds, including the characteristics of the stocks they hold, and to variables that

capture the state of the economy.

2.3 Holdings-based Characteristics

Mutual funds hold stocks. The stock characteristics are from Chen, Pelger, and Zhu (2020) and

cover 46 characteristics that have been shown to have predictive power for the cross-section of

expected returns. They are listed in Table 1 in six subgroups.

There are 332,294 fund-by-time observations with fully observed fund characteristics. We im-

pute the missing fund characteristics with a latent factor model in the characteristics space as

described in IA.1. Hence, we have a complete set of fund characteristics for all 407,158 fund-by-

time observations. Our results are robust to the data imputation and are essentially identical on

the subset of funds with fully observed data.

All stock characteristics are cross-sectionally normalized to range from -0.5 to 0.5 based on

stocks’ rankings on that characteristic. We normalize the sign of the characteristic ranking of

stocks such that the corresponding long-short factor has a positive risk premium. For example for

size (LME), the largest stocks have negative rankings while small stocks have positive rankings.

The stock-specific characteristics of each fund are weighted by the fund’s holdings.

7That model includes market, size, value, momentum, investment, profitability, short-term reversal, and long-term
reversal factors. The results are available upon request.
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Table 1: Fund-specific and stock-specific characteristics by category

Past Returns (30) CF2P Cashflow to price
(1) r2 1 Short-term momentum (31) D2P Dividend Yield
(2) r12 2 Momentum (32) E2P Earnings to price
(3) r12 7 Intermediate momentum (33) Q Tobin’s Q
(4) r36 13 Long-term momentum (34) S2P Sales to price
(5) ST Rev Short-term reversal (35) Lev Leverage
(6) LT Rev Long-term reversal

Trading Frictions
Investment (36) AT Total Assets

(7) Investment Investment (37) Beta CAPM Beta
(8) NOA Net operating assets (38) IdioVol Idiosyncratic volatility
(9) DPI2A Change in property, plants, and (39) LME Size

equipment (40) LTurnover Turnover
(10) NI Net Share Issues (41) MktBeta Market Beta

(42) Rel2High Closeness to past year high
Profitability (43) Resid Var Residual Variance

(11) PROF Profitability (44) Spread Bid-ask spread
(12) ATO Net sales over lagged net operating assets (45) SUV Standard unexplained volume
(13) CTO Capital turnover (46) Variance Variance
(14) FC2Y Fixed costs to sales
(15) OP Operating profitability Fund Momentum
(16) PM Profit margin (47) F ST Rev Fund short-term reversal
(17) RNA Return on net operating assets (48) F r2 1 Fund short-term momentum
(18) ROA Return on assets (49) F r12 2 Fund momentum
(19) ROE Return on equity
(20) SGA2S Selling, general and administrative Fund Characteristics

expenses to sales (50) age Fund age
(21) D2A Capital intensity (51) tna Fund tna

(52) flow Fund flow
Intangibles (53) exp ratio fund expense ratio

(22) AC Accrual (54) turnover ratio turnover ratio
(23) OA Operating accruals
(24) OL Operating leverage Fund Family Characteristics
(25) PCM Price to cost margin (55) family tna family tna

(56) fund no number of funds in family
Value (57) Family r12 2 family momentum

(26) A2ME Assets to market cap (58) Family age Family age
(27) BEME Book to Market Ratio (59) Family flow Family flow
(28) C Ratio of cash and short-term
(29) CF Free Cash Flow to Book Value

This table shows all 59 characteristics sorted into nine categories. The first six categories represent stock-specific
characteristics and the last three characteristic groups are fund-specific characteristics.

2.4 Fund and Family Characteristics

In addition to the 46 stock characteristics, we also form 13 fund characteristics sorted in the

last three subgroups shown in Table 1: fund momentum, fund characteristics, and fund family

characteristics. The three fund momentum characteristics are computed from fund abnormal re-

turns as defined in Table 2. Fund momentum is different from holdings-based stock momentum.

First, portfolio holdings information is only available quarterly, while funds also trade within the

quarters. Hence, holdings-weighted averages of stock momentum, which use quarterly-updated

8



Table 2: Fund momentum characteristics

Acronym Name Definition Reference

F r2 1 Short-term momentum Lagged one-month abnormal return Jegadeesh and Titman (1993)

F r12 2 Momentum Mean abnormal return from past 12 months before the Fama and French (1996)
abnormal return prediction to two months before. Need
at least 8 non-missing samples to be included.

F ST Rev Short-term reversal Prior month abnormal return Jegadeesh and Titman (1993)

This table summarizes the fund momentum characteristics. We use a ‘F’ prefix to denote that these characteristics are
based on mutual funds. It includes their acronym, name, definition and reference of their stock based counterpart.
The fund momentum characteristics follow the same definition as their stock counterpart in Chen, Pelger, and Zhu
(2020).

weights for monthly-updated stock quantiles, can only provide an approximation. Second, fund

momentum is based on the time series of residuals after removing the correlation with a stock

market-based momentum factor.

Following Brown and Wu (2016), fund family is identified by the management company code.

The variables “Family r12 2” and “Family flow” are the average of the fund-level counterparts,

“F r12 2” and “flow,” weighted by TNA of all funds in the family, excluding the fund itself. “Fam-

ily age” is the age of the oldest fund in the family, excluding the fund itself. “Fund no” is the

number of funds in the family and “Family tna” is the sum of TNAs of all funds in the family

excluding the fund itself. The fund and family characteristics are similarly normalized.

On average, mutual funds in our sample are 13.7 years old, manage $1,153 million dollars in

assets, and charge a monthly expense ratio of around 0.1%. The fund’s flow is defined as f lowi,t =
TNAi,t−TNAi,t−1(1+Ri,t)

TNAi,t−1
. Throughout the sample period the mutual fund industry is growing; on

average funds enjoy a 1.6% monthly inflow.

2.5 Macro-economic Information

To study whether fund performance can be linked to the state of the economy, we include investor

sentiment (Baker and Wurgler (2006)) and the Chicago Fed National Activity Index (CFNAI), a

series which captures the state of the macro economy and is itself an index of many macro time

series.8 Figure 1 plots the time series plots of both macro variables. Kacperczyk, Van Nieuwer-

burgh, and Veldkamp (2014) shows that mutual fund performance depends on CFNAI.

8CFNAI is the first principal component of 85 economic indicators from four broad categories: production and
income; employment, unemployment, and hours; personal consumption and housing; and sales, orders, and invento-
ries. Sentiment also uses principal component analysis to combine the information from multiple economic indicators,
which include the closed-end fund discount, NYSE share turnover, number of IPOs, average first-day returns on IPOs,
equity share in new shares and the dividend premium.
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Figure 1: Macroeconomic time series plots

(a) Sentiment

(b) CFNAI

These figures show the macroeconomic time series plot. Panel (a) plots the sentiment time series and panel (b) plots
the CFNAI time series.

3 Main Analysis

Our main analysis aims to predict mutual fund abnormal returns. This analysis is an out-of-

sample prediction analysis with many conditioning variables. It allows for interactions of char-

acteristics (the 59 characteristics in Table 1 plus sentiment/CFNAI), as well as for non-linearities

in the relationship between characteristics and future fund outperformance. To that end, we use

an artificial neural network, similar to Gu, Kelly, and Xiu (2020). In their extensive comparison

study, they show that this method dominates other ML techniques for predicting stock returns.

We predict fund abnormal returns with a neural network of lagged predictors:

Rabn
i,t+1 = g(zit, zt) + ϵi,t+1 (3)
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The structure of the neural network g(·) is selected based on a validation sample. It uses as its

inputs the characteristics zi,t specific to mutual funds, and macro-economic variables zt to build

the best predictors of fund abnormal returns. We focus on sentiment as our main macroeconomic

variable, and discuss the results with CFNAI as a robustness check.

3.1 Sampling Scheme

We use a cross-out-of-sample analysis to evaluate the performance of the neural network model.

We split the full sample into three folds, periods of the same length. We use two of the folds to

estimate the model and select the tuning parameters, and evaluate the prediction out-of-sample

on the remaining fold. Following Kozak, Nagel, and Santosh (2020), Lettau and Pelger (2020) and

Bryzgalova, Pelger, and Zhu (2021), we cross-validate the estimation on three different combina-

tions of the three folds, thereby obtaining an out-of-sample prediction for each data point in our

sample. This cross-out-of-sample evaluation diminishes the effect of particular subperiods in the

out-of-sample analysis. The estimation and validation time period (2/3 of the sample) is split into

3/4 used for estimation (training) and 1/4 used for validation (to select the tuning parameters).

Our baseline results select the dates that go into each of the three folds randomly. The top

panel of Figure 2 shows this random sampling scheme, where different colors denote the three

folds. The bottom panel shows the more traditional chronological sampling. A second alternative

is an expanding-window chronological estimation and evaluation without cross-validation. We

analyze the two alternative sampling schemes below, and show that our benchmark predictability

results are robust to the sampling scheme.9

Each sampling scheme has benefits and drawbacks. The random sampling approach has the

important advantage of having a more equal distribution of high- and low-sentiment observations

in each fold, as illustrated in Figure 2. In contrast, the chronological sampling approach may have

no high-sentiment periods in the evaluation fold (in the validation where the green fold is used

for out-of-sample evaluation) or the estimation fold (in the validation where the green fold is used

for estimation). If sentiment is an important conditioning variable in the prediction problem, as

we will show is the case, the chronological results will fail to accurately capture the dependencies

on the underlying economic state. By using the full time span of the data, the random sampling

scheme allows the model to better learn the non-linear function g(zit, zt).

The random sampling scheme does not create look-ahead bias. The economic object of interest

is the conditional abnormal return g(zit, zt). A prediction can be interpreted as a cross-sectional

non-parametric regression, where the time-series order of the cross-sectionally stacked triplets

9In Internet Appendix IA.3, we also investigate the impact of overlap between data points that are both in the 36-
month window used for the estimation of the abnormal return (equations 1 and 2) and in the testing fold in the random
cross-out-of-sample validation. We find that eliminating this overlap has minimal impact on the results, but reduces
estimation precision.
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Figure 2: Sentiment time series for the different cross-out-of-sample folds

(a) Random sampling

(b) Chronological sampling

This figure plots the Baker and Wurgler (2006) sentiment measure from 1979/12 to 2018/12. Different colors denote
the three different cross-out-of-sample folds, which we use throughout the paper. The top figure shows the random
sampling into three folds, while the bottom figure shows chronological sampling.

{Rabn
i,t+1, zit, zt}i,t is not explicitly taken into account. This regression only uses variables known at

time t to predict abnormal returns at time t+ 1. Information in the error term ϵt+1 of the prediction

is never used in the prediction.

What is true is that both the random and chronological sampling schemes with cross-validation

are not available to investors in real-time. In contrast, the expanding-window chronological sam-

pling scheme does represent a feasible investment strategy at each date. However, the latter esti-

mates a new model at each point in time, making the interpretation more problematic. It also uses

less data for evaluation and estimation, sacrificing precision. Because it uses less data and because

is not a cross-validation, it has an even less representative distribution of economic states to learn

from at each date.
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3.2 Neural Network

A feedforward network (FFN) is a flexible non-parametric estimator that can learn any functional

relationship y = f (x) between an input x and output variable y with sufficient data.10 A deep

neural network combines several layers by using the output of one hidden layer as an input to the

next hidden layer. Our best model structure is a one-layer neural network.

Figure 3: Illustration of Feedforward Network with Single Hidden Layer

It combines the raw predictor variables (or features) z = z(0) ∈ RK(0)
linearly and applies a

non-linear transformation. This non-linear transformation is based on an element-wise operat-

ing activation function. We choose the popular rectified linear unit activation function (ReLU),11

which component-wise thresholds the inputs and is defined as:

ReLU(zk) = max(zk, 0).

The result is the hidden layer z(1) = (z(1)1 , ..., z(1)
K(1)) of dimension K(1) which depends on the pa-

rameters W(0) = (w(0)
1 , ..., w(0)

K(0)) and the bias term w(0)
0 . The output layer is simply a linear trans-

formation of the output from the hidden layer.

z(1) = ReLU(W(0)⊤z(0) + w(0)
0 ) = ReLU

(
w(0)

0 +
K(0)

∑
k=1

w(0)
k z(0)k

)

10FFN are among the simplest neural networks and treated in detail in standard machine learning textbooks, e.g.
Goodfellow, Bengio, and Courville (2016).

11ReLU activation functions have a number of advantages including the non-saturation of its gradient, which greatly
accelerates the convergence of stochastic gradient descent compared to the sigmoid/hyperbolic functions and fast
calculations of expensive operations.
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Rabn = W(1)⊤z(1) + w(1)
0 with z(1) ∈ RK(1)

, W(0) ∈ RK(1)×K(0)
, W(1) ∈ RK(1)

.

Note that without the non-linearity in the hidden layer, the one-layer network would reduce to a

generalized linear model. Our optimal network has 64 nodes in the hidden layer, which can be

interpreted as representing the information set with 64 basis functions which are non-linear trans-

formations of the original characteristics and macroeconomic variables and which are linearly

combined to predict the abnormal return.

Our results are extremely robust to the choice of tuning parameters. Networks with more lay-

ers and nodes result in a very similar performance and estimated functional form as our optimal

network. This is consistent with the findings in Chen, Pelger, and Zhu (2020) and Gu, Kelly, and

Xiu (2020). Hence, it matters primarily to allow for the flexible functional form and interaction

effects, which can be achieved with many model specifications. The details of the hyperparameter

tuning are in Appendix B.

We quantify the economic benefit of different information sets by comparing the prediction

and trading benefits of each information set available to the neural network. As appropriately

tuned neural networks can approximate any functional relationship, they allow us to understand

what the best possible prediction is for a given information set.

As a robustness check, we explore Gradient Boosted Trees as an alternative machine learning

approach. We obtain broadly similar conclusions, and relegate an in-depth comparison to Internet

Appendix IA.4. Neural networks have the advantage that we can provide valid confidence inter-

vals, similar to regression analysis, which is not always the case for alternative machine learning

predictors.

3.3 Optimal Prediction

Having estimated the neural network model, we form the model’s prediction of fund abnormal

returns for each fund-month using all 59 characteristics listed in Table 1 and investor sentiment.

We sort funds in deciles based on their predicted abnormal return for the next month.

Within the deciles we weight the funds either by their predicted value or equally. Figure 4

illustrates the two weighting schemes in the extreme deciles for a representative month. The

prediction weights in the left panel exploit the heterogeneity in the prediction and assign a higher

relative weight to predictions that deviate more from the center of the decile.12

12The prediction based weights are defined as the following shifted and scaled weights:

For top portfolio: µ̃i,t = µ̂i,t − min
i∈Top

(µ̂i,t) (4)

For bottom portfolio: µ̃i,t = µ̂i,t − max
i∈Bottom

(µ̂i,t) (5)

wpred
i,t =

µ̃i,t

∑N
i=1 µ̃i,t

(6)

where µ̂i,t are the predictions of neural network models. For top-performing funds, we subtract the smallest model pre-
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Figure 4: Equally and prediction-weighted portfolio weights within deciles

(a) Prediction weights (b) Equal weights

These figures show the equal and prediction-weighted portfolio weights for the first and tenth decile in a long-short
portfolio for the representative example month 2000/01. The x-axis refers to the sorted firms in the bottom 10% and
in the top 10% of the predicted abnormal return distribution

Figure 5 plots the cumulative abnormal return from investing in each of these 10% of funds.

The right panel equally-weights the abnormal returns of the funds within each decile, using the

neural network model only to sort funds into deciles. The left panel additionally uses the neural

network model prediction to form portfolio weights; we refer to this as the prediction-weighted

return. A prediction-weighted approach uses more information resulting in a larger spread in the

prediction portfolios. The baseline model for the rest of the paper is prediction-weighted.13 An

investor who had followed an investment strategy that invests in the 10% best mutual funds based

on the neural network model’s predictions would have earned a cumulative abnormal return of

72% prediction-weighted and 48% equally-weighted. The difference between these two numbers

shows that the neural net is not only good at predicting which funds are likely to be in the top

performance decile, but also at how good some of the funds in the top decile are relative to other

top-performing funds.

At the other end of the spectrum, the 10% worst funds according to the out-of-sample pre-

diction of the neural network model generate cumulative abnormal returns of -119% prediction-

weighted and -93% equally-weighted. Hence, avoiding the 10% worst mutual funds is even more

valuable than investing in the best 10% of mutual funds.

diction within the group in equation (4) to ensure that the top portfolio is a long-only portfolio. For bottom-performing
funds, we subtract the largest model prediction within the group in equation (5) to ensure that the bottom portfolio is
a short-only portfolio. We then standardize the normalized predictions to sum up to 1 per equation (6). The prediction
weights are similar for the other deciles. The results for quintiles and 20 quantiles are very similar and available upon
request. An alternative to the prediction weights within the quantiles are rank weights. The results with rank weights
are very similar to those with prediction weights and are omitted for brevity.

13The results for the equally-weighted approach are similar and presented in Appendix A.1.3. We explore a third
weighting scheme, which is value-weighted returns in Appendix A.1.8.
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Figure 5: Cumulative abnormal returns of prediction deciles for all characteristics.

(a) Prediction-weighted abnormal returns. (b) Equally-weighted abnormal returns.

These figures show the cumulative abnormal returns sorted into prediction deciles when considering the complete
information set (fund-specific and stock-specific characteristics + sentiment) to predict abnormal returns.

The main conclusion is that abnormal mutual fund returns are predictable and the extent of

predictability over the past 40 years is economically large. The cumulative abnormal return trans-

lates into a monthly out-performance of 15 basis points for the 10% best funds prediction-weighted

(10 basis points equally-weighted). The 10% worst funds see 25 basis point per month under-

performance prediction-weighted (20 basis points equally-weighted).

Panel (a) of Figure 6 shows the average fees for the different prediction-based decile portfolios.

While those funds with higher predicted and realized abnormal returns charge a higher fee, the

spread in fees does not explain the spread in expected returns. In fact, the worst and best 10% of

funds both have a cumulative expense ratio of around 50%, which are higher than the expense ra-

tios of the funds in the middle of the predicted performance distribution. Given that the 10% best

and 10% worst funds have the same fees, fees can explain nothing of their relative performance.

The 10% best funds earn cumulative abnormal gross returns of 72%, exceeding cumulative fees.

Indeed, Panel (b) of Figure 6 shows that the funds in the top two prediction deciles still earn a

positive abnormal return after fees. Note that these are lower bounds as predicting abnormal re-

turns after fees (rather than before fees) improves the predicted after-fee performance. Figure A.1

shows the performance for predicting abnormal after-fee returns. The 10% best funds achieve a

cumulative abnormal return after fees of 37%, which substantially exceeds the 72% gross outper-

formance minus 50% in fees. On the other hand, the 10% worst funds earn cumulative abnormal

returns after fees of around -170%, further highlighting the usefulness of the neural network in

identifying which funds to avoid.
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Figure 6: Cumulative expense ratios and abnormal net return.

(a) Cumulative prediction-weighted expense ratios (b) Cumulative abnormal net returns

The left figure shows the cumulative expense ratios of prediction-weighted deciles based on the full information set
(fund-specific and stock-specific characteristics + sentiment). The right figures shows the abnormal net returns for the
prediction-weighted deciles, that is, the abnormal returns minus the fees.

3.4 Which Information Most Useful When Predicting Fund Abnormal Returns?

To assess the importance of stock-specific characteristics (labeled 1-46 in Table 1), fund momentum

(47-49), fund characteristics (50-54), family characteristics (55-59), and sentiment for the prediction

of fund abnormal performance, we estimate neural network models that are given subsets of pre-

dictors. Our main finding is that the combination of fund-level variables and sentiment results in

the best performance. Stock-specific characteristics of the stocks held by funds do not help predict

fund abnormal return.

Figure 7 shows the cumulative abnormal returns for the fund deciles when using stock char-

acteristics 1-46 only (Panel A), stock characteristics and sentiment (Panel B), fund characteristics

47-59 (Panel C), and fund characteristics and sentiment (Panel D). Fund abnormal returns within

each decile are prediction-weighted. The best model for predicting fund abnormal returns ignores

stock characteristics entirely. Fund characteristics, in sharp contrast to stock characteristics, are

extremely useful for prediction, as is sentiment. We note the monotone pattern in Panel D. As we

will see shortly, fund characteristics interact with sentiment in important ways.

As most of the predictability is in the extreme deciles, we propose a long-short prediction

portfolio of the top and bottom decile as a measure for the spread in skill. This is a convenient

economic measure of the spread, not a tradable investment strategy. Figure 8 shows that the

portfolio that goes long in the (predicted) best 10% of funds and short in the (predicted) worst 10%

of funds earns cumulative returns of -9% out-of-sample when only stock information is used, 69%

when using stock plus sentiment information, 178% when using fund information, 188% when
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Figure 7: Cumulative abnormal returns for different information sets.

(a) Stock-specific characteristics (b) Stocks-specific characteristics + sentiment

(c) Fund-specific characteristics (d) Fund-specific characteristics + sentiment

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
returns are prediction-weighted within deciles. We consider fund-specific characteristics + sentiment, stock-specific
characteristics+ sentiment, fund-specific characteristics or stock-specific characteristics to predict abnormal returns.

using fund plus sentiment information, and 191% when using stock plus fund plus sentiment

information. The results are qualitatively the same for equally-weighted portfolios as shown in

Appendix A.1.3.

To assess whether these different long-short investment strategies incur different amounts of

risk, we compute the Sharpe Ratio on the long-short decile portfolio, which Table 3 reports along-

side the mean return. The highest Sharpe-ratio strategy ignores stock-specific information. Using

fund information and sentiment to select the best and worst 10% of funds results in a monthly

long-short return of 40 basis points with a monthly Sharpe ratio of 0.25, which translates into a

0.87 annual Sharpe ratio.

The last three rows show that when one only uses four out of the 13 fund characteristics,
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Figure 8: Cumulative abnormal returns of long-short prediction portfolios

This figure plots the cumulative abnormal returns of prediction-weighted long-short decile portfolios that use dif-
ferent information sets for prediction. We consider fund-specific and stock-specific characteristics combined with
sentiment.

namely the fund momentum group (F r12 2, F r2 1 and F ST Rev) and flow, combined with senti-

ment, the resulting long-short portfolio has a similar mean return and Sharpe ratio to the portfolio

based on all fund information. The last row shows that using all fund characteristics except for

these two results in substantially worse performance. In summary, fund momentum and flow,

interacted with sentiment, are the key variables for predicting fund abnormal returns.

The last column of Table 3 reports the R2
F statistic, which measures how well the realized long-

short portfolio return is predicted by the neural network model.14 If the realized long-short abnor-

mal return factor is predicted more accurately, then an investor knows better by how much funds

in the top decile will outperform funds in the bottom decile in the next period.15 The highest R2
F

of 5.00% monthly, which is substantial, is obtained for the full model with fund, sentiment, and

stock information. Dropping sentiment information results in a large decline in R2
F, which sug-

gests that sentiment is important for predicting the high-minus-low abnormal fund return. As we

will see below, the conditional mean of the long-short portfolio is higher in high sentiment peri-

ods. Replacing fund- with stock-level information also results in a large drop in R2
F. Note that the

R2
F measures accuracy of both the relative cross-sectional prediction of funds (the fund ranking)

and the level of the abnormal returns. The prediction based only on fund information correctly

predicts the ranking of future abnormal fund returns, but not their magnitude as suggested by the

14We denote by Ft the realized return and by F̂t the predicted return of the long-short portfolio based on prediction-

sorted deciles. The normalized time-series prediction error is measured by R2
F = 1 − ∑T

t=1(F̂t−Ft)2

∑T
t=1 F2

t
.

15This information could be used for timing and sizing the portfolio investment in the spirit of Haddad, Kozak, and
Santosh (2020).
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Table 3: Performance of long-short abnormal return portfolios for different information sets.

Information set mean(%) t-stat SR R2
F (%)

Stock+ fund+ sentiment 0.41 4.5*** 0.21 5.00
Fund+ sentiment 0.40 5.4*** 0.25 2.73

Fund 0.38 5.5*** 0.25 0.19
Stock+ fund 0.28 3.3*** 0.15 2.30

Stock+ sentiment 0.15 1.6 0.07 1.27
Stock -0.02 -0.2 -0.01 -1.60

Fund momentum + sentiment 0.35 4.4*** 0.21 0.29
Fund momentum + Flow + sentiment 0.48 5.2*** 0.24 0.92
Fund excl. fund momentum and flow 0.06 1.5 0.07 0.12

This table reports the Sharpe ratio, mean and factor R2 of long-short prediction-weighted decile portfolios that use
different information sets for the prediction. We consider nine different information sets which combine fund-specific
and stock-specific characteristics and sentiment. We also include flow and fund momentum (F r12 2, F r2 1 and
F ST Rev) individually.

low R2
F. Including sentiment slightly improves the relative prediction, due to the interaction ef-

fects studied in Section 4.1, but substantially improves the level prediction of abnormal returns.16

Table A.1 reports the results for the top and bottom prediction deciles separately with the same

findings.

Spanning Do the long-short portfolio returns formed from the neural network model’s predic-

tion reflect true abnormal return or compensation for risk? To explore this question, we estimate

a multivariate regression of the long-short portfolio return on several sets of return factors from

the literature. The results for the main information set is reported in the first row of Table 4. The

second row reports results when using fund characteristics and sentiment in the predictor set. In

both cases, we find large and highly significant intercepts α, relative to the mean return µ (reported

in the last column), and low R2. Hence it is not the case that our approach results in a mutual fund

portfolio return that inadvertently captures compensation for systematic factor exposure.

Robustness to Fund Size The predictability is robust to excluding or down-weighting small

mutual funds. First, we exclude mutual funds with less than 15 million asset under management

(TNA), which is an often used cutoff in the literature (see for example Doshi, Elkamhi, and Simutin

(2015)). Figure A.14 shows the result is essentially unaffected by dropping the smaller funds.

Second, we combine the prediction classification with the value of the assets under management

of the funds to form value-weighted prediction portfolios. Figure A.15 shows that the magnitude

of the outperformance of the best over the worst decile of funds for value-weighted portfolios is

16The results for the different measures also illustrate the challenges of using them to select the best model. The mea-
sures are tools for understanding what economic structure is captured. The models do not need to improve uniformly
along all measures.
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Table 4: Spanning of long-short abnormal prediction portfolios with different factor models.

FF 4 factors FF 5 factors FF 6 factors FF 8 factors
α R2 α R2 α R2 α R2 mean µ

Stock+ fund+ sentiment 0.13*** 0.29 0.10** 0.33 0.08** 0.36 0.07* 0.37 0.13***
(0.04) (0.04) (0.04) (0.04) (0.05)

Fund+ sentiment 0.17*** 0.16 0.22*** 0.04 0.18*** 0.16 0.19*** 0.18 0.20***
(0.05) (0.05) (0.05) (0.05) (0.05)

Fund 0.14*** 0.17 0.20*** 0.04 0.16*** 0.18 0.16*** 0.18 0.18***
(0.05) (0.05) (0.05) (0.05) (0.05)

Stock+ fund 0.07 0.14 0.08* 0.13 0.06 0.15 0.04 0.19 0.04
(0.05) (0.05) (0.05) (0.05) (0.05)

Stock+ sentiment 0.09** 0.31 0.04 0.39 0.03 0.40 0.02 0.41 0.08*
(0.04) (0.04) (0.04) (0.04) (0.05)

Stock 0.05 0.15 0.04 0.16 0.03 0.17 0.01 0.22 0.01
(0.04) (0.04) (0.04) (0.04) (0.05)

Flow+ fund momentum+ sentiment 0.11*** 0.28 0.22*** 0.13 0.16*** 0.33 0.18*** 0.37 0.15***
(0.04) (0.04) (0.04) (0.04) (0.05)

F r12 2+ sentiment 0.13*** 0.30 0.25*** 0.11 0.19*** 0.34 0.19*** 0.34 0.19***
(0.04) (0.04) (0.04) (0.04) (0.05)

This table reports the time-series regression results of long-short prediction-weighted decile portfolios for different
factor models. We compare different information sets to predict abnormal returns. We consider the 4-factor Fama-
French-Carhart model (market, size, value and momentum), the 5-factor Fama-French model (market, size, value,
profitability and investment), a 6-factor model which adds the momentum factor to the Fama-French 5 factors, and
an 8-factor model which adds the momentum, short-term reversal and long-term reversal factors to the Fama-French
5 factors. The α column reports the time-series pricing error and R2 is the explained variation of the regression. Both
the long-short abnormal return portfolios and the factor models are normalized to have a standard deviation of 1.
Standard errors are in brackets and stars denote the significance levels.

very similar to prediction-weighted portfolios. Interestingly, the top decile performs better under

value-weighting, suggesting that some of the best funds have relatively high AUM.

3.5 Longer Holding Periods

The monthly rebalancing of mutual funds is not crucial to earning the high abnormal returns asso-

ciated with the relative performance of funds. Figure 9 shows the abnormal returns on a long-short

prediction portfolio for holding periods up to 3 years. Fund investments are made every month

based on the one-month ahead prediction, but investments are held for a longer holding period,

ranging from 1 to 36 months (with overlapping holding periods). As expected, the mean return

decreases over time but it stays significant for all holding periods (top left panel). At the same

time, the longer holding periods decrease the standard deviation of the return (top right panel).

A 3-month holding period reduces the standard deviation more than the mean, and hence results

in a higher Sharpe ratio than the one-month holding period (bottom left). Even after 36 months,

the monthly Sharpe ratio is still 0.20, compared to 0.30 after 3 months. The outperformance re-

mains statistically significant even after 36 months (bottom right panel). This occurs even though

the model only attempts to predict abnormal returns one-month ahead. In light of the literature’s

difficulty in finding persistence in abnormal returns, this result is remarkable.
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Figure 9: Performance for Different Holding Periods

(a) Mean of abnormal returns (b) Standard deviation

(c) Sharpe ratio (d) T-statistics of abnormal mean returns

This figure shows the results for long-short prediction-weighted portfolios for different holding periods. At each
time t, we sort funds based on the one-month prediction into deciles and hold the long-short prediction portfolio
for s months with overlapping returns. We calculate the mean, Sharpe ratio, standard deviation, and t-statistics of
the overlapping abnormal returns. The one-month prediction uses either fund+sentiment, stock+fund+sentiment or
flow+fund+sentiment.

Removing stock characteristics results in similar long-horizon Sharpe Ratios as with the full

information set. Trading based on the most important predictors (flow, fund momentum, and

sentiment) results in similar holding-period patterns as using the full information set.

We obtain similar results for longer holding periods when using the longer-horizon abnormal

return as the prediction objective. Appendix A.1.4 shows the strong predictability for an annual

abnormal return prediction. While 12-month-horizon prediction lowers the mean return, it also

reduces the variance and, hence, results in similar monthly Sharpe ratios as the one-month ahead

prediction.
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The predictability lasts for longer because many fund-specific characteristics contain predic-

tive information that remains relevant for a longer horizon. Figure A.9 shows the autocorrelation

of fund-specific characteristics. Except for short-term momentum (F r2 1) and short-term rever-

sal (F ST Rev), the fund characteristics are persistent. This is also reflected in the persistence of

the classification of funds. Figure A.10 shows the transition matrix between the different predic-

tion quantiles for each month. Over 60% of the top-20% and bottom-20% funds stay in the same

prediction quantile in the next month. The classification remains stable for longer time periods.

3.6 Sampling Scheme

Results are not sensitive to the random sampling scheme with three-fold cross-validation. Ap-

pendix A.2 revisits all results using chronological sampling with cross-validation, while Appendix

A.3 does the same for a chronological expanding-window estimation. We highlight the main find-

ing here. Panel A of Figure 10 shows a very similar out-performance of the predicted top-decile

and under-performance of the predicted bottom decile with chronological sampling with three-

fold cross-validation. Panel B shows again similar performance with chronological expanding-

window sampling (without cross-validation). Table 5 shows that, if anything, the mean return

and Sharpe ratio of the long-short portfolio based on the full information set are higher for the

two alternative sampling schemes than for the benchmark random sampling scheme.

The second main result, that stock characteristics are less useful for predicting out- and under-

performance of mutual funds than fund characteristics is also robust to the sampling scheme. This

is clearly visible in the right panels of Figure 10 and confirmed in the row “Stock” of Table 5. While

there is some statistical evidence for predictability of stock characteristics in the chronological

scheme, the mean return and Sharpe ratio are less than half as large as when fund and sentiment

information are added. The results in the expanding-window sampling are weaker still.

4 Understanding the Results

4.1 Variable Importance and Interaction Effects

Importance of Predictors In order to visualize which variables are the most important for pre-

diction, we construct a metric based on the average squared gradient of the abnormal return pre-

diction for each characteristic, following Sadhwani, Giesecke, and Sirignano (2020) and Horel and

Giesecke (2020):

Sensitivity(zk) =

√√√√ 1
T

T

∑
t=1

1
Nt

Nt

∑
i=1

(∂R̂abn
i,t+1

∂zi,k,t

)2
(7)

23



Figure 10: Cumulative abnormal returns for different sampling schemes.

Panel A: Chronological sampling

(a) Fund-specific characteristics + sentiment (b) Stock-specific characteristics

Panel B: Expanding window

(c) Fund-specific characteristics + sentiment (d) Stock-specific characteristics

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
abnormal returns are prediction-weighted within deciles. We consider fund-specific characteristics + sentiment and
stock-specific characteristics. In Panel A, the three cross-out-of-sample folds keep the chronological order. In Panel
B, we estimate prediction models on an expanding window, that is, for each t we use all available data to estimate
new predictions for year t + 1. As we need an initial training data set, the out-of-sample analysis for the expanding
window starts in 1990.

The partial derivatives are evaluated at the observed characteristics and are approximated with

numerical derivatives. T is the number of periods and Nt is the number of funds available at time

t. The Sensitivity(zk) is then averaged over the three cross-out-of-sample folds and normalized to

sum up to 1. The partial derivative simplifies to the standard slope coefficient in the special case of
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Table 5: Performance of abnormal return portfolios: Sampling Schemes.

Sampling Information set mean(%) t-stat SR R2
F (%)

Long-short

Random
Stock+ fund+ sentiment 0.41 4.5*** 0.21 5.00

Fund+ sentiment 0.40 5.4*** 0.25 2.73
Stock -0.02 -0.2 -0.01 -1.60

Chronological
Stock+ fund+ sentiment 0.52 5.7*** 0.26 2.66

Fund+ sentiment 0.39 5.2*** 0.24 1.49
Stock 0.18 2.2** 0.10 -1.38

Expanding
Stock+ fund+ sentiment 0.45 5.4*** 0.29 8.92

Fund+ sentiment 0.40 5.8*** 0.31 5.71
Stock 0.14 1.7* 0.09 -0.47

This table reports the Sharpe ratio, mean and factor R2 of the top-minus-bottom prediction-weighted decile portfolios
that use different information sets for the prediction. We consider three different information sets. We compare three
different sampling schemes: three random cross-out-of-sample folds, three cross-out-of-sample folds that keep the
chronological order, and estimation on an expanding window. The out-of-sample analysis for the expanding window
starts in 1990.

a linear regression framework. A larger sensitivity means that a variable has a larger effect on the

neural network prediction.17 In addition to the point estimates, we can provide formal statistical

tests for the significance of Sensitivity(zk). We apply the theory developed by Horel and Giesecke

(2020) to test the null hypothesis that the sensitivity measure is statistically different from zero.

This corresponds to a generalization of t-statistics in linear regressions.18 The test enables model-

free inference for the importance of variables. Appendix C provides the technical details on how

we extend their model.

The left panel of Figure 11 shows the sensitivities for the neural network model with fund-level

information and sentiment. Sentiment is the most important variable, followed by fund momen-

tum, turnover, fund reversal, and flow. In the right panel, we define the variable importance

measure of a group by taking the average of the sensitivity measures within that group. The most

important fund-specific characteristics group is fund momentum characteristics.

Table 6 reports the level and statistical significance of the measure for Sensitivity(zk) in the

first column of each panel. We do not normalize the measures to add up to one. Hence, the values

represent the predicted average change in returns. We confirm that sentiment and most fund-level

characteristics are highly statistically significant on a 1% level. This is true both for our benchmark

sampling scheme in the left panel and chronological sampling in the right panel. One difference

17An alternative sensitivity measure is based on the average absolute values of the partial derivatives. The relative
importance results are very similar to the average squared gradients, but the measure in Equation 7 has the advantage
that we can provide a valid asymptotic inference.

18Horel and Giesecke (2020) study the large sample asymptotic behavior of gradient based variable importance mea-
sures. They view the neural network estimator as a nonparametric sieve estimator and show under mild assumptions
that it converges to the argmax of a Gaussian process with mean zero and a specific covariance function. Then, they
use a functional delta method to derive the distribution of gradient based test statistics.
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Figure 11: Top variable importance for explaining abnormal returns.

(a) Top variable importance. (b) Top variable group importance.

This figure shows the importance ranking for individual variables and variable groups. The ranking is square root
of the average of the squared gradient for the eight ensemble fits. The variable importance measures are evaluated
on the test data and averaged across three cross-out-of-sample folds. Fund-specific characteristics and sentiment are
used as network input.

is that sentiment is quantitatively somewhat less important in the chronological sampling. The

random sampling approach allows the model to better learn the non-linear interaction between

sentiment and fund-level variables, as we discuss next.

Table 6: Statistical significance of variable importance and interaction effects

Random sampling

Fund characteristics Sensitivity Interaction

sentiment 0.14***
F r12 2 0.08*** 0.09***

turnover 0.05*** 0.06***
F ST Rev 0.04*** 0.04***

F r2 1 0.04*** -0.03***
flow 0.03*** 0.03***
ages 0.02*** 0.02***

fund no 0.02*** -0.01**
tna 0.02*** 0.01**

Family r12 2 0.02*** 0.01
Family flow 0.02** 0.01***
Family TNA 0.02** 0.00

Family age 0.02* -0.01
exp ratio 0.01 0.01

Chronological sampling

Fund characteristics Sensitivity Interaction

F r12 2 0.09*** 0.03***
sentiment 0.08***
F ST Rev 0.06*** 0.02***

F r2 1 0.03*** 0.01
flow 0.03*** 0.01***

turnover 0.03*** 0.00
ages 0.02*** 0.00

Family r12 2 0.02*** 0.01
tna 0.02*** 0.00

fund no 0.02*** 0.00
exp ratio 0.02*** 0.00

Family age 0.01*** 0.00
Family flow 0.01 0.00
Family TNA 0.01 0.00

This table reports the magnitude and significance of the measures for Sensitivity(zk) and Interaction(zk, sentiment).
Both measures are reported in percentages. Fund-specific characteristics and sentiment are used as network input.
The significance levels are given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The left panel reports the results for random
sampling, while the right panel shows the corresponding results for chronological sampling.

Interaction Effects We now analyze the interactions between sentiment and fund characteristics

that are implied by the neural network model. Figure 12 plots the predicted abnormal fund return

(on the y-axis) as a function of one fund-level variable (on the x-axis), keeping all the other vari-

26



ables at their median level. The function is averaged over three cross-out-of-sample folds. In order

to study the interaction effects with sentiment, we plot this one-dimensional function for different

quantiles of the sentiment distribution. Hence, the plots show the mean of abnormal fund returns

conditional on the values of one fund variable and sentiment.

There are clear interaction effects between sentiment and fund-level variables. Predicted ab-

normal returns are almost linear in fund-specific variables, but the slope of that relationship is

substantially higher in times of high sentiment. Note that without interaction effects between sen-

timent and the flow variable, the different curves in each panel would be parallel shifts. They

clearly are not. The interaction effect with sentiment is particularly strong for fund momentum in

panel (a). In contrast, there is no interaction effect for family momentum.

Figure 12: Conditional mean as a function of fund characteristics and sentiment.

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic conditional
on different sentiment quantiles. The other variables are set to their median. The neural network model is estimated
with fund-specific characteristics and sentiment. The interaction effects are evaluated on the test data and averaged
across three cross-out-of-sample folds. The high-minus-low portfolios have a higher mean conditional on high past
sentiment. This is a non-linear interaction effect.
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It turns out the interaction effects of sentiment with fund-level variables is monotonic for all

our variables. In order to assess the economic magnitude and the relative importance, we intro-

duce the following new interaction measure, which measures the differences in slopes for high

and low macroeconomic states. While we consider only sentiment as macroeconomic variable in

this section, we extend this measure to other macroeconomic states in the next section.

Interaction(z, macro) =
(

R̂abn(high z, high macro) − R̂abn(low z, high macro)
)

−
(

R̂abn(high z, low macro) − R̂abn(low z, low macro)
)

.

We evaluate the predicted abnormal return R̂abn for the highest and lowest value of the fund

variable z and the high (90% quantile) and the low (10% quantile) macroeconomic state. The

other variables are set to their median values. A high absolute value in this measure indicates

a strong interaction effect and measures the difference in the return spread of characteristic z in

high and low sentiment states. In addition to introducing this new measure, Appendix C extends

the statistical distribution results of Horel and Giesecke (2020) to test the statistical significance of

interaction effects.

Table 6 reports the interaction measure for sentiment with the fund-level characteristics. Re-

turn spreads due to fund momentum, turnover, flow and reversal are the most affected by senti-

ment. The table shows that the predicted monthly spread in fund momentum is nine basis points

higher in high sentiment states compared to low sentiment states. The large interaction effects

that we observe are statistically significant.

Why is our neural network structure able to generate such an interaction effect between senti-

ment and fund-level characteristics? The hidden layer of the neural network performs a nonlinear

transformation of original characteristics into new characteristics: z(1) = ReLU(∑K
k=1 w(0)

k z(0)k +

w(0)
0 ). There are some hidden-layer neurons that get activated only when sentiment is high (zt is

large), which changes the dependency of the abnormal return prediction on fund-level character-

istics. When the neuron gets activated, the slope of this dependency gets higher, which is exactly

what we see in Figure 12. While the interaction effects with sentiment are the strongest, there are

also interaction effects between the fund specific variables as shown in Appendix A.1.7.

The interaction effects are weaker for chronological than random sampling because chronolog-

ical sampling hurts the model’s ability to learn the non-linear relationship between fund variables

and sentiment, given that high-sentiment periods are clustered chronologically. Appendices A.2

and A.3 discuss sensitivity and interaction effects for chronological and expanding-window sam-

pling.
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4.2 Which Macro-economic Variable?

Having shown the importance of sentiment and its interaction effects with fund characteristics, it

is reasonable to ask whether other variables like CFNAI might play a similarly important role in

predicting mutual fund out-performance. Or maybe they add a useful piece of macro-economic

information that is not contained in sentiment? Appendix A.1.6 answers these questions in great

detail. The main finding is that replacing sentiment with CFNAI results does not affect much

which mutual funds are sorted bottom and top predicted performance deciles. However, the

relative performance prediction within the top and bottom deciles is weaker with CFNAI than

with sentiment. The reason can be traced back to the much weaker interaction effects between

fund variables and CFNAI.

4.3 A Parsimonious Model

In order to illustrate a more interpretable model, we estimate a simplified model that uses only

flow, F r12 2, and sentiment as inputs and present its functional form. Previously, we showed the

results for the information set flow + fund momentum + sentiment, where fund momentum refers

to the fund momentum group consisting of F r2 1, F r12 2, F ST Rev. Table 7 shows that these

three variables already capture a large fraction of the predictability. However, the predictability

is weaker than for a model that includes all fund momentum characteristics, which illustrates the

benefit of F r2 1 and F ST Rev.

Table 7: Performance of abnormal return portfolios conditioned on flow + F r12 2 + sentiment.

Decile mean(%) t-stat SR R2
F (%)

Long-short 0.40 5.4*** 0.25 0.70
Top 0.17 3.4*** 0.16 -0.73

Bottom -0.23 -3.6*** -0.21 0.82

This table reports the Sharpe ratio, mean and factor R2 of long-short prediction-weighted, and top and bottom decile
portfolios that use only flow, F r12 2, and sentiment as information set.

This simple model with only three variables can be easily visualized and interpreted. Figure

13 shows non-trivial interaction effects between the three variables. The interaction effects with

sentiment are particularly strong. The highest conditional abnormal return occurs during high

sentiment periods for funds with high momentum and high flow. The lowest abnormal returns

are predicted for low sentiment periods and funds with low momentum and low flow. These

non-linear interaction effects cannot be captured by a linear model. A simple ex-post regression

of abnormal returns on sentiment or high-sentiment indicators is also not sufficient to detect these

interaction effects, since the key point is that sentiment must be included in the prediction model

itself.
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Figure 13: Conditional abnormal returns as a function of F r12 2, flow and sentiment

This figure shows the conditional abnormal return as a function of F r12 2, flow and sentiment. The neural network
only uses F r12 2, flow, and sentiment as input. The results are shown in percentages.

Gruber (1996) and Zheng (1999) identified a positive, but fairly short-lived and weak rela-

tionship between flows and subsequent fund abnormal returns for small but not for large funds.

Importantly, Sapp and Tiwari (2004) show that this “smart money” effect is explained away once

the risk adjustment controls for stock return momentum. Lou (2012) shows that the expected part

of flow-induced trading positively forecasts mutual fund returns, while Song (2020) finds that

fund flows associated with positive factor returns lead to negative future fund performance. Our

machine learning approach revives the predictive role of flows, with a 4-factor risk-adjustment,

and shows that fund flow predicts performance positively and persistently. It also uncovers that

fund abnormal return momentum strongly and positively predicts fund abnormal return. Both

predictive relationships are stronger in high-sentiment periods.

These results are consistent with theories where at least some managers are skilled and at

least some investors can detect skill and (re)allocate their investment towards skilled managers.

There are reasons to believe that this reallocation of investment flows may not be as strong and

quick as the frictionless model of Berk and Green (2004) predicts because of transaction or broader

search costs (Roussanov, Ruan, and Wei, 2021), investor inertia, or weak transmission from in-

vestor beliefs to allocation decisions (Giglio, Maggiori, Stroebel, and Utkus, 2021). With imperfect

reallocation, skill leaves a trail in the form of fund return momentum for investors to exploit in the

next period. Put differently, the flows are gradual and small enough that it takes several periods
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until the fund runs into zero marginal abnormal returns. The results are potentially also consis-

tent with funds and fund families attracting flows through marketing rather than—or in addition

to—through investment skill (Ibert, Kaniel, Van Nieuwerburgh, and Vestman, 2018; Roussanov,

Ruan, and Wei, 2021). Marketing-induced inflows create buying pressure for stocks that the fund

typically invests in. In a world with downward-sloping demand curves (Coval and Stafford, 2007;

Koijen and Yogo, 2019; Gabaix and Koijen, 2021), this raises prices and lifts fund returns. Through

the flow-performance relationship, as well as through persistence in marketing-driven flows, the

out-performance creates more inflows in the next period. The demand pressure increases prices

further, generating momentum in fund returns. The fact that flows and fund momentum have

a much stronger association with fund performance in high-sentiment periods lends further cre-

dence to this marketing-driven channel.

4.4 Decomposing Abnormal Returns

Having established that fund characteristics, and in particular fund momentum and flow, and

their interaction with sentiment are key inputs for predicting mutual fund abnormal returns, we

now try to understand in more detail the mechanisms behind this prediction. For simplicity, we

do so in a univariate setting.19 We decompose the mutual funds’ abnormal return into a compo-

nent that reflects trading between disclosure dates (between quarter ends) and a component that

reflects trading within a disclosure period (within quarter).

Rabn
i,t = R̃i,t − ft β̃i︸ ︷︷ ︸

Between-disclosure abnormal return

+ Ri,t − ftβi − (R̃i,t − ft β̃i)︸ ︷︷ ︸
Within-disclosure abnormal return

(8)

= R̃i,t − ft β̃i︸ ︷︷ ︸
Between-disclosure abnormal return

+ Ri,t − R̃i,t︸ ︷︷ ︸
Return gap

+ ft(β̃i − βi)︸ ︷︷ ︸
Risk exposure difference

(9)

The between-disclosure abnormal return is the abnormal return of an investor who invests

in the most recently disclosed stock positions of a fund and holds that portfolio until next fund

disclosure. In the equation above, R̃i,t is the hypothetical return of a mutual fund i that keeps its

portfolio weights fixed at their last-disclosed levels (at t − 1), ft is the contemporaneous return

vector on the Carhart factors, and β̃i is the vector of exposures to the Carhart factors associated

with this hypothetical fund return R̃i,t.20 A positive average between-disclosure abnormal return

means that the mutual fund can pick stocks with positive alpha at quarterly frequency.

A high value of within-disclosure abnormal returns indicates that the fund is adding value by

19For a full set of univariate predictability results, see Appendix IA.2.
20The exposures β̃i are estimated from a regression of R̃i,t−h on the Carhart factors in the previous 36 months (h =

1, · · · , 36), where R̃i,t−h = ∑j wi,j,tRj,t−h. That is, R̃i,t−h is the return on a portfolio that holds the identity of the stocks
j and their portfolio weights wi,j,t fixed at the last-disclosed period t for every h.
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Table 8: Decomposition of univariate long-short abnormal return factors

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

F r12 2 0.28 0.36*** 0.14 0.20*** 0.20 0.17*** 0.14 0.11*** 0.10 0.06***
F ST Rev 0.20 0.30*** 0.14 0.16*** 0.15 0.15*** 0.12 0.08** 0.12 0.06***

Family r12 2 0.19 0.13*** 0.10 0.09*** 0.09 0.04** 0.12 0.07** -0.06 -0.03
Beta 0.15 0.18*** 0.12 0.16*** 0.03 0.03 -0.01 -0.00 0.05 0.03

Rel2High 0.14 0.20*** 0.13 0.25*** -0.05 -0.05 -0.03 -0.03 -0.03 -0.03
RNA 0.13 0.13*** 0.11 0.12*** 0.01 0.01 -0.03 -0.02 0.04 0.02

Family TNA 0.13 0.09*** 0.09 0.07 0.05 0.03 -0.12 -0.06** 0.16 0.08***
fund no 0.13 0.10*** 0.10 0.07** 0.06 0.03 -0.12 -0.05** 0.14 0.07***

flow 0.12 0.11** 0.08 0.08** 0.06 0.03 -0.00 -0.00 0.08 0.03**
Family age 0.11 0.09** 0.08 0.07 0.03 0.02 -0.13 -0.06** 0.13 0.08***

ROA 0.10 0.10** 0.11 0.13*** -0.03 -0.03 -0.05 -0.03 0.01 0.01
PM 0.10 0.10** 0.10 0.11** -0.01 -0.01 -0.03 -0.02 0.02 0.01

ROE 0.10 0.11** 0.09 0.12** -0.01 -0.01 -0.02 -0.01 0.00 0.00
ST Rev 0.09 0.13** 0.06 0.11 0.02 0.02 0.02 0.02 0.01 0.01

CF 0.09 0.09** 0.11 0.16** -0.07 -0.06** -0.06 -0.04 -0.04 -0.03

This table reports mean and Sharpe ratio of the decomposition of univariate long-short abnormal return factors.
Means of abnormal returns are reported in percentages. The results are sorted according to the Sharpe ratio of the
long-short factors and show the first 15 factors. The full results are in Table IA.11. For each of the 59 characteristics
and each abnormal return, we construct decile-sorted portfolios. The long-short factors are the differences between
the top decile and the bottom decile. Stars denote the significance levels.

actively trading between adjacent disclosure dates. The within-disclosure abnormal return can be

decomposed further into two parts: the return gap, as defined in Kacperczyk, Sialm, and Zheng

(2008), and the risk exposure differential, which is the difference between the risk exposure of

the hypothetical fixed portfolio from the latest stock holding disclosure and the real risk exposure

from the current (since rebalanced) portfolio.

We ask which characteristics best predict each of these three components of the fund abnormal

return. Table 8 shows the results for the three-way decomposition. Columns 2 and 3 report the

Sharpe Ratio and mean return associated with an investment that goes long the 10% best funds

and short the 10% worst funds based on a univariate prediction using the variable listed in the

first column.21 The next four sets of two columns predict one of the components of the abnormal

fund return.

Momentum characteristics in the first three rows of the table are the most important character-

istics for both between-disclosure and within-disclosure abnormal returns, with each component

of returns accounting for about half of the return. Flow, the number of funds in the family as well

as a few stock-specific characteristics are also useful for predicting between-disclosure returns,

while these momentum characteristics are the only significant predictors of within-disclosure ab-

21The rows are ranked by Sharpe Ratio in the column, from highest abnormal return predictive SR to lowest. For
brevity, we only report the first 15 rows of this table; the full set of results appears in Table IA.11.
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Table 9: Decomposition of prediction long-short abnormal return portfolios

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

Stock+ fund+ sentiment 0.21 0.41*** 0.10 0.28** 0.13 0.13*** 0.07 0.06 0.09 0.06**
Fund+ sentiment 0.25 0.40*** 0.15 0.24*** 0.16 0.16*** 0.16 0.13*** 0.03 0.03

Fund 0.25 0.38*** 0.15 0.20*** 0.17 0.18*** 0.15 0.12*** 0.08 0.06**
Stock+ fund 0.15 0.28*** 0.05 0.13 0.14 0.15*** 0.06 0.06 0.11 0.09***

Stock+ sentiment 0.07 0.15 0.04 0.12 0.02 0.02 0.00 0.00 0.02 0.02
Stock -0.01 -0.02 -0.01 -0.03 0.01 0.01 -0.01 -0.01 0.03 0.02

Flow+fund momentum+ sentiment 0.24 0.48*** 0.14 0.26*** 0.17 0.22*** 0.13 0.12*** 0.11 0.10***

This table reports the mean and Sharpe ratio for the decomposition of the prediction-weighted long-short decile
portfolios. We use different information sets to predict abnormal returns. Means of abnormal returns are reported in
percentages. Stars denote the significance levels.

normal returns.22 When it comes to understanding within-disclosure returns, we find that fund

momentum and reversal are the only characteristics that predict both the return gap and the risk

difference with the same sign. Flows predict the return gap as well. Other fund and fund-family

variables predict the return gap significantly, but this effect is offset by an opposite-sign predic-

tion for the risk difference. That is, while funds with these characteristics are trading in a way that

increases the fund’s return, they do so by taking on more systematic risk. Funds with high fund

momentum and reversal characteristics, in contrast, trade within the quarter in ways that both

increase the return gap and reduce the systematic risk of the portfolio significantly.

These univariate insights carry over to the neural network prediction model as shown in Table

9. The decomposition is a complex average of the univariate results. A prediction model that is

only based on fund momentum, flow, and sentiment (third row of the table) has the strongest

within-disclosure effects, which is driven in equal part by the significant positive risk differ-

ence and return gap. Adding more fund characteristics, lowers both the within-disclosure and

between-disclosure mean returns.

4.5 Abnormal versus Total Return Prediction

One of our findings is that stock characteristics contribute little to the prediction of best and worst

funds. This may be a surprising result, and it may appear to contradict the findings in Li and Rossi

(2020) who emphasize that one can predict the best and worst funds based on the stocks that they

hold. We explain why there is no contradiction.

Li and Rossi (2020) predict total mutual fund returns, Ri,t, while our paper predicts fund abnor-

mal returns, Rabn
i,t . Fund total returns have a strong common component, due to fund exposures to

common return factors Ft. Figure 14 and Table 10 report the results for predicting the total returns

of mutual funds rather than abnormal returns. First, stock characteristics are substantially more

predictive for total fund returns than for their abnormal returns. In other words, the stock char-

22An exception being CF that is a significant negative predictor of within and positive predictor of between.
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Figure 14: Predicting Total Fund Returns

(a) Fund-specific characteristics+sentiment (b) Stock-specific characteristics+ sentiment

This figure plots the cumulative returns sorted into prediction deciles for different information sets. The returns are
prediction-weighted within deciles. We consider information sets which combine fund-specific and stock-specific
characteristics and sentiment to predict returns instead of abnormal returns.

acteristics seem to be able to predict the systematic factor component in fund returns, consistent

with Li and Rossi (2020).23 However, as we have established above, once this factor component

is taken out, stock characteristics lose most of their predictability. Indeed, our object of interest,

abnormal returns, is orthogonal to the systematic component of fund returns by construction. It is

this systematic component of returns that is predicted by stock characteristics. Second, the Sharpe

ratio of long-short portfolios based on total return prediction is lower than from predicting ab-

normal returns. This points to an important methodological contribution of this paper. The level

of fund returns (and also stock returns) is extremely hard to predict, while the relative perfor-

mance is more predictable. Abnormal returns remove the level effect arising from compensation

for systematic risk factor exposures. Hence, an abnormal return prediction objective is mainly a

relative objective. In contrast, a machine learning prediction for returns might not select a model

with a correct relative cross-sectional ranking of funds if it has a high prediction error in the level,

which is largely irrelevant for relative ranking. In summary, abnormal returns are not only the ob-

ject of interest to us, since we want to measure the returns managers earn in excess of systematic

risk compensation, but they may also be the better objective for machine learning prediction in a

statistical sense.

The comparison between returns and abnormal returns also illustrates the difference between

conditional and unconditional factor models. The abnormal returns are estimated from a factor

model using rolling-window regressions and hence reflect time-varying risk exposure. Holding-

based stock characteristics seem to predict the time-varying risk exposure of the factors. The

23As an aside, this result also suggests that the list of stock-specific characteristics we use is not driving our results.
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Table 10: Performance of long-short return portfolios for different information sets.

Data mean(%) t-stat SR R2
F (%)

Stock+ fund+ sentiment 0.45 3.1*** 0.14 -26.54
Fund+ sentiment 0.49 3.0*** 0.14 0.97

Fund 0.53 3.5*** 0.16 0.97
Stock+ sentiment 0.44 3.1*** 0.14 -20.03

Stock 0.11 1.1 0.05 -53.21

This table reports the Sharpe ratio, mean and factor R2 of long-short prediction-weighted decile portfolios based on
predicting total returns instead of abnormal returns with different information sets. We consider five different infor-
mation sets which combine fund-specific and stock-specific characteristics and sentiment to predict returns instead of
abnormal returns.

residuals of these local regressions take out the component that is predictable with holding-based

stock characteristics.

As a coda to this discussion, predicting total returns with a ML model and subsequently esti-

mating an unconditional Carhart 4-factor model on the prediction portfolio returns is fundamen-

tally different from first constructing abnormal returns from a conditional Carhart 4-factor model

and subsequently predicting abnormal returns with a ML model. It is possible to find significant

unconditional alphas for mutual fund portfolio returns formed from total return predictions using

only stock characteristics, as shown in Table A.11. However, once we obtain local residuals with

respect to Carhart factors, the stock characteristics lose most of their predictability. As we showed,

these residuals depend almost entirely on fund-specific characteristics and sentiment.

5 Conclusion

In this paper, we revisit the question of predicting actively-managed mutual fund performance.

While predictability has been difficult to establish thus far, using modern neural network tech-

niques we find strong evidence of abnormal return predictability. An important advantage of

non-linear neural network methods is that they can reliably estimate a complex functional re-

lationship among a large set of variables. This turns out especially advantageous in predicting

abnormal returns of mutual funds. The predictability we identify is out-of-sample, long-lived,

and economically meaningful. It holds both before and after fees. Most of the benefits accrue

from avoiding funds that the model predicts to be the worst performers. However, the prediction

model is also able to identify about 10-20% of funds that generate positive abnormal returns even

after fees. The predictability lasts for at least 36 months.

We identify two fund characteristics, fund flow and fund momentum, as key predictors of mu-

tual fund out-performance. Characteristics of the stocks that funds hold do not play a significant

role in predicting abnormal returns. Moreover, these two fund characteristics matter much more

when investor sentiment is high. A linear model would fail to pick up this important interaction

35



effect. While including CFNAI, a proxy for macro-economic activity, also improves predictability,

there are no discernible interaction effects associated with CFNAI unlike with sentiment. These

results should prove useful for improving theories of delegation in the mutual fund market.

Methodologically, we show that abnormal returns, obtained as local residuals to a factor model,

are not only an economically motivated, but also the statistically better target for prediction. We

demonstrate how to measure dependencies on macro-economic states. We suggest that instead

of the typical horse race of model specifications it may be better to compare the prediction and

trading benefits by varying the information set available to the same flexible machine learning

algorithm. Finally, we introduce a novel measure for interaction effects in machine learning algo-

rithms, which does not only measure a local slope, but a more informative global slope. For this

interpretable measure, we provide a formal statistical significance test. These methodological con-

tributions will help advance future asset pricing and investment research using machine learning,

a growing area of research.

This paper focused on actively-managed equity mutual funds. Natural next steps are to study

bond mutual funds, as well as portfolios managed by hedge funds, pension funds, and endow-

ments, in an effort to uncover both the presence and the drivers of skill in other asset classes and

types of institutions.
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A Additional Empirical Results

A.1 Random Sampling Method: Additional Results

The results in the main text use the random sample split scheme. This appendix contains addi-

tional results referenced in the main text.

A.1.1 Predicted Top and Bottom Decile Returns

Table A.1: Performance of extreme abnormal return decile portfolios.

Information set mean(%) t-stat SR R2
F (%)

Top decile

Stock+ fund+ sentiment 0.15 2.9*** 0.13 1.87
Fund+ sentiment 0.17 3.5*** 0.16 1.46

Fund 0.16 3.7*** 0.17 -1.20
Stock+ fund 0.10 1.7* 0.08 -0.52

Stock+ sentiment 0.06 1.2 0.06 0.61
Stock -0.02 -0.4 -0.02 -2.52

Flow+ fund momentum+ sentiment 0.19 3.2*** 0.15 -0.15
Fund exclude momentum and flow -0.01 -0.2 -0.01 -0.17

F r12 2+ sentiment 0.12 2.0** 0.09 -0.58

Bottom decile

Stock+ fund+ sentiment -0.25 -3.5*** -0.22 1.99
Fund+ sentiment -0.23 -3.8*** -0.23 1.38

Fund -0.22 -3.7*** -0.23 0.74
Stock+ fund -0.19 -2.6*** -0.15 1.33

Stock+ sentiment -0.09 -1.2 -0.08 -0.03
Stock -0.00 -0.0 -0.00 -0.82

Flow+ fund momentum+ sentiment -0.29 -4.2*** -0.23 1.05
Fund exclude momentum and flow -0.07 -1.8* -0.09 -0.32

F r12 2+ sentiment -0.23 -3.8*** -0.18 0.88

This table reports the Sharpe ratio, mean and factor R2 of prediction-weighted of the first and tenth decile portfolios
that use different information sets for the prediction. We consider nine different information sets which combine fund-
specific and stock-specific characteristics and sentiment. We also include flow and fund momentum individually.
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A.1.2 After-Fee Abnormal Returns

Figure A.1: Predicting After-Fee Abnormal Returns

(a) Prediction-weighted abnormal net return (b) Equally-weighted abnormal net return

These figures show the cumulative abnormal after-fee returns for prediction-sorted decile portfolios. We use fund-
specific characteristics and sentiment to predict abnormal after-fee returns. The left panel weights funds based on
their prediction, while the right panel equally weights funds within the prediction deciles.

A.1.3 Equally-Weighted Prediction Portfolios

Unless explicitly mentioned, all results in the main text are for prediction-weighted returns, where

mutual funds’ abnormal returns in each prediction decile are weighted using the ML algorithm.

Here we explore the alternative of equally-weighting within each prediction decile.

Table A.2: Performance of equally-weighted long-short abnormal return portfolios for different
information sets.

Information set mean (%) t-stat SR R2
F (%)

Stock+ fund+ sentiment 0.30 4.3*** 0.20 4.47
Fund+ sentiment 0.33 5.9*** 0.27 3.50

Fund 0.31 5.8*** 0.27 0.24
Stock+ fund 0.21 3.1*** 0.14 2.03

Stock+ sentiment 0.13 1.9* 0.09 0.18
Stock 0.01 0.1 0.01 -1.29

Flow+ fund momentum+ sentiment 0.38 5.7*** 0.26 1.26
F r12 2+ sentiment 0.38 6.0*** 0.28 0.43

This table reports the Sharpe ratio, mean and R2
F of long-short equally-weighted decile portfolios that use different

information sets to predict abnormal returns. We consider eight different information sets which combine fund-
specific and stock-specific characteristics and sentiment. We also include flow and fund momentum individually.
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Figure A.2: Cumulative expense ratios and abnormal net return for equally-weighted deciles.

(a) Cumulative equally-weighted expense ratios (b) Cumulative abnormal net returns

The left figure shows the cumulative expense ratios of equally-weighted prediction deciles. We use the full informa-
tion set (fund-specific and stock-specific characteristics + sentiment) to predict abnormal returns before fees. The right
figures shows the abnormal returns for the equally-weighted deciles after fees, that is, the abnormal returns before
fees minus the fees.

Table A.3: Decomposition of equally-weighted prediction long-short abnormal return portfolios

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

Stock+ fund+ sentiment 0.20 0.30*** 0.08 0.18** 0.16 0.12*** 0.10 0.08** 0.09 0.05**
Fund+ sentiment 0.27 0.33*** 0.16 0.18*** 0.20 0.15*** 0.16 0.11*** 0.07 0.04

Fund 0.27 0.31*** 0.15 0.17*** 0.18 0.14*** 0.14 0.10*** 0.07 0.04**
Stock+ fund 0.14 0.21*** 0.04 0.09 0.14 0.11*** 0.08 0.05 0.10 0.06**

Stock+ sentiment 0.09 0.13** 0.05 0.11 0.03 0.03 0.03 0.03 0.00 0.00
Stock 0.01 0.01 -0.01 -0.01 0.03 0.02 0.01 0.01 0.03 0.02

Flow+ fund momentum+ sentiment 0.26 0.38*** 0.13 0.20*** 0.19 0.18*** 0.16 0.11*** 0.11 0.07***

This table reports the mean and Sharpe ratio for the decomposition of equally-weighted long-short abnormal return
portfolios. We use different information sets to predict abnormal returns. Means of abnormal returns are reported in
percentages. The long-short portfolios are the differences between the top decile and the bottom decile. Stars denote
the significance level.
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Figure A.3: Cumulative abnormal returns of equally-weighted long-short prediction portfolios.

This figure plots the cumulative abnormal returns of equally-weighted long-short decile portfolios that use different
information sets to predict abnormal returns. We consider fund-specific and stock-specific characteristics combined
with sentiment.

Figure A.6: Cumulative total return of long-short portfolio

(a) Prediction-weighted (b) Equally-weighted

This figure plots the cumulative return of long-short decile portfolios that use fund- or stock-specific characteristics
and sentiment to predict total returns (not abnormal returns).
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Table A.4: Performance of equally-weighted long-short total return portfolios for different
information sets.

Information set mean (%) t-stat SR R2
F (%)

Stock+ fund+ sentiment 0.35 2.9*** 0.14 -25.20
Fund+ sentiment 0.40 2.7*** 0.13 0.56

Fund 0.44 3.2*** 0.15 0.84
Stock+ sentiment 0.35 2.9*** 0.14 -18.98

Stock 0.06 0.8 0.04 -55.93

This table reports the Sharpe ratio, mean and R2
F of long-short equally-weighted decile portfolios based on predicting

returns instead of abnormal returns with different information sets. We consider five different information sets which
combine fund-specific and stock-specific characteristics and sentiment.

Figure A.4: Cumulative abnormal returns of equally-weighted deciles: different information sets.

(a) Stock-specific characteristics (b) Stocks-specific characteristics + sentiment

(c) Fund-specific characteristics (d) Fund-specific characteristics + sentiment

This figure shows the cumulative abnormal returns sorted into prediction deciles for different information sets. The
returns are equally-weighted within deciles. We consider fund-specific characteristics + sentiment, stock-specific
characteristics+ sentiment, fund-specific characteristics or stock-specific characteristics to predict abnormal returns.
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Figure A.5: Cumulative total returns of equally-weighted deciles: different information sets.

(a) Fund-specific characteristics+ sentiment (b) Stock-specific characteristics+ sentiment

This figure plots the cumulative total (not abnormal) returns sorted into prediction deciles for different information
sets. The returns are equally-weighted within deciles. We consider information sets which combine fund-specific and
stock-specific characteristics and sentiment to predict returns instead of abnormal returns.

46



A.1.4 One-Year Holding Period

The results in main text are based on one-month ahead prediction. We obtain better results for

longer holding periods when we estimate our model with a longer horizon prediction objective.

In this section, we use the same network structure and cross-out-of-sample evaluation method

as in the main text, but predict one-year ahead abnormal returns. At each time t, we use charac-

teristics to predict the average abnormal return from time t + 1 to t + 12. Figure A.7 reports the

performance of annual abnormal return decile portfolios based on the annual prediction target.

As expected, the performance improves relative to holding the one-month prediction portfolio for

12 months. We confirm that the predictability lasts over longer horizons.

Figure A.7: Results for annual overlapping abnormal return prediction portfolios

(a) Cumulative abnormal returns of deciles
(b) Cumulative abnormal returns of long-short

portfolio

Information set SR mean(%) t-stat

Fund+ sentiment 0.27 0.31 6.6***

(c) Performance of long-short abnormal return portfolio for fund + sentiment information

These panels show the out-of-sample results for prediction deciles for one-year holding periods. Each month, we
predict cumulative abnormal returns over the next 12 months with fund-specific characteristics and sentiment. Panels
(a) and (b) show the overlapping cumulative annual abnormal returns of prediction-weighted deciles and the long-
short portfolio of the top decile minus the bottom decile. Panel (c) reports the Sharpe ratio, mean, and t-statistics of
the annual overlappping abnormal return long-short portfolio. The variances and standard errors are adjusted with
the Newey-West estimator with twelve lags. The performance is scaled to monthly abnormal returns.

Figure A.8 plots the most important variables for predicting annual abnormal returns. The

variable importance changes, and shifts to more persistent fund characteristics.
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Figure A.8: Top variable importance for explaining annual overlapping abnormal returns.

(a) Top variable importance. (b) Top variable group importance.

This figure shows the importance ranking for individual variables and variable groups. The ranking is the square
root of average of the squared gradient for the eight ensemble fits as in equation 7. The variable importance measures
are evaluated on the test data and averaged across three cross-out-of-sample folds. Fund-specific characteristics and
sentiment are used as network input. The model’s prediction target is annually averaged and overlapping abnormal
returns
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A.1.5 Persistence of Signals and Classification

The prediction of returns and investment strategies for longer horizons is directly related to the

persistence of the fund characteristics. The robustness to longer holding periods requires at least

some of the characteristics to be persistent. Indeed, we find that many fund characteristics are

stable over short time horizons.

Figure A.9 shows the autocorrelation of the fund characteristics averaged over time and funds.

Several fund characteristics are very persistent, in particular turnover and F r12 2, which are two

of the most important model predictors.

Figure A.9: Persistence of fund characteristics

This figure shows the persistence of fund characteristics. We estimate the autocorrelation for each time series of fund
and characteristics. We exclude time series with less than 50 observations. The figure reports the persistence as the
average autocorrelation for each characteristics sorted in increasing order.

A closely related aspect is the persistence of the classification of funds. For this purpose we

estimate the transition matrix between prediction quantiles based on the one-month prediction.

In more detail, we count the percentage of funds that move from prediction decile i to decile j in

the next month. This transition probability is calculated as

Pi,j =
1
T ∑

t

∑k 1i
k,t1

j
k,t+1

∑k 1i
k,t

,

where 1i
k,t is an indicator variable if a fund k is in decile i at time t and decile j at time t + 1.

The result is shown in Figure A.10. Rows correspond to i and column to j. For example,

the value of 0.22 of the (1, 2) element implies that on average 22% of the funds in the bottom

decile at time t move to the second decile at time t + 1. We observe that the top 20 and bottom

20 percent of fund classifications are very persistent, which explains why long-short portfolios
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Figure A.10: Transition matrix of machine learning prediction

This matrix shows the transition probabilities of the prediction decile classifications between time t and time t + 1.

The transition probability is defined as Pi,j =
1
T ∑t

∑k 1i
k,t1

j
k,t+1

∑k 1i
k,t

, where 1i
k,t is an indicator variable if a fund k is in decile

i at time t and decile j at time t + 1.

remain profitable over longer horizons.

A.1.6 Macroeconomic Conditioning Variables

The main text shows the importance of sentiment and its interaction effects with fund character-

istics. It is reasonable to ask whether other variables like CFNAI might play a similarly important

role in predicting mutual fund out-performance. Or maybe they add a useful piece of macro-

economic information that is not contained in sentiment? To answer these questions, we estimate

several additional neural network models which combine fund-level information with the follow-

ing macro variables: sentiment (benchmark), CFNAI, sentiment orthogonalized to CFNAI, CFNAI

orthogonal to sentiment, and sentiment plus CFNAI.24 Table A.5 shows the results.

24We use a least-squares orthogonalization. The results are similar for a least absolute deviation orthogonalization.
Sentiment and both orthogonalized sentiment series are all very similar because sentiment has a low 10% correlation
with CFNAI. The prediction of abnormal fund returns can only use a relatively small number of macroeconomic pre-
dictors as macroeconomic variables are different from cross-sectional characteristics. In our sample we have a large
cross-sectional dimension, but only a comparatively small time dimension. The effect of macroeconomic variables is
estimated from the time-series, while cross-sectional variables can take advantage from the variation in the large cross-
sectional dimension. Therefore, there is simply to little time-series data to estimate a model with a large number of
macroeconomic variables.
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Table A.5: Long-short abnormal return portfolios for different macro-economic information.

Weighting method Information set mean (%) t-stat SR R2
F (%)

Prediction-weighted

Fund+sentiment 0.40 5.4*** 0.25 2.73
Fund+CFNAI 0.39 6.0*** 0.28 0.72

Fund+sentiment+CFNAI 0.42 6.3*** 0.29 2.48
Fund+sentiment orth 0.43 6.4*** 0.29 1.22

Fund+CFNAI orth 0.38 5.4*** 0.25 0.92
Fund 0.38 5.5*** 0.25 0.19

Equally-weighted

Fund+sentiment 0.33 5.9*** 0.27 3.50
Fund+CFNAI 0.33 6.5*** 0.30 0.85

Fund+sentiment+CFNAI 0.32 6.0*** 0.28 2.71
Fund+sentiment orth 0.34 6.8*** 0.31 1.58

Fund+CFNAI orth 0.31 5.8*** 0.27 1.11
Fund 0.31 5.8*** 0.27 0.24

This table reports the Sharpe ratio, mean and R2
F of long-short prediction-weighted and equally-weighted decile

portfolios that use different macro-economic information sets for the prediction. We consider six different macro-
economic information sets: none, sentiment, CFNAI, sentiment orthogonal to CFNAI, CFNAI orthogonal to sentiment
and sentiment+CFNAI. We use least-squares orthogonalization.

In terms of out-of-sample mutual fund return predictability, using CFNAI leads to equally

strong results in terms of the mean and Sharpe Ratio of the long-short portfolio. This result is

surprising at first in light of the low correlation between sentiment and CFNAI. However, the

low (linear) correlation is misleading. Sorting the respective time series of sentiment, CFNAI,

and orthogonalized sentiment into high, medium, and low states (terciles) results in large overlap

between the states. High-sentiment and high-CFNAI periods are often the same periods. What

matters for mutual fund abnormal return predictability is to distinguish between the good and

the bad states. This can be done equally effectively with sentiment and CFNAI. Put differently,

different neural network models place very similar mutual funds into the same deciles. We calcu-

late that 78% of mutual funds that are put in the bottom decile by the model that uses sentiment

are also put in the bottom decile by the model that uses CFNAI. The corresponding number for

the top decile is 74%. These numbers are even higher for the orthogonalized sentiment measure

and when using both sentiment and CFNAI as shown in Table A.6.

Figure A.11 shows cumulative abnormal returns on the long-short portfolio, using prediction-

weighting and equally-weighted funds within the top and bottom deciles. It reinforces the result

that the four different macro-economic information sets result in similarly strong out-performance.

Consistent with our previous results, the prediction-weighting results in larger return spreads be-

tween the extreme deciles and hence a larger mean return.

Does that mean that the predictions with sentiment and CFNAI are equally good? No. The

R2
F statistic is substantially higher when sentiment is used than when CFNAI is used. In other

words, the actual outperformance of the best relative to the worst funds aligns better with the

predicted outperformance when sentiment is used. The reason is that the model with sentiment
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Table A.6: Prediction based classification relative to fund+ sentiment information.

# bin = 2 # bin = 5 # bin = 10 # bin = 20
Bin 1st 2nd 1st 5th 1st 10th 1st 20th

Fund+ CFNAI 0.91 0.91 0.84 0.82 0.78 0.74 0.70 0.61
Fund+ sentiment orth 0.95 0.95 0.89 0.89 0.85 0.81 0.79 0.70

Fund+CFNAI orth 0.91 0.91 0.83 0.83 0.78 0.74 0.70 0.61
Fund+ sentiment and CFNAI 0.94 0.94 0.87 0.89 0.83 0.82 0.75 0.73

Fund 0.93 0.93 0.87 0.86 0.81 0.78 0.73 0.67
Stock+ sentiment 0.55 0.55 0.27 0.27 0.17 0.15 0.11 0.08

Stock 0.55 0.55 0.27 0.27 0.17 0.16 0.11 0.08

This figure shows the percentage of funds that overlap with the prediction quantiles based on fund+ sentiment infor-
mation. We consider two, five, 10 or 20 quantiles and six different information sets for predicting abnormal returns.
The reference classification is fund + sentiment.

does a better job predicting the actual (the cardinal and not just the ordinal) abnormal return of the

funds in the top and bottom deciles than the model with CFNAI. In other words, while sentiment

and CFNAI result in similar decile rankings of funds, the model with sentiment is substantial

better in predicting the level of the performance. This can be exploited for timing the investments.

Table A.7 shows the out-of-sample performance based on sentiment terciles. The predictability

of abnormal returns is the highest for medium and high sentiment states. An investor, who only

invests into the long-short strategy during periods of high predictability, earns more than twice the

expected return compared to the low predictability state. The table also shows that even investors

who can only take long positions can still achieve an average monthly abnormal return of 0.27%

by investing into the top funds in high sentiment periods. Note that these results represent a

valid out-of-sample performance as the strategy uses lagged sentiment and estimates the terciles

cut-offs without the use of out-of-sample data.

Table A.7: Long-short abnormal return portfolios in different sentiment terciles.

TL TM TH

Portfolio SR mean t-stat R2
F SR mean t-stat R2

F SR mean t-stat R2
F

D10-D1 0.12 0.23 1.6 0.50 0.37 0.42 4.6*** 3.39 0.32 0.55 4.0*** 4.83

D1 -0.11 -0.18 -1.4 0.71 -0.25 -0.23 -3.1*** 3.65 -0.23 -0.29 -2.9*** 1.35
D2 -0.19 -0.16 -2.4** 1.77 -0.15 -0.10 -1.8* 1.77 -0.05 -0.04 -0.6 -3.43
D3 -0.12 -0.09 -1.5 0.80 -0.05 -0.04 -0.7 1.14 0.03 0.02 0.4 -7.41
D4 -0.15 -0.10 -1.9* 1.10 0.01 0.01 0.1 -0.53 -0.07 -0.06 -0.9 -4.49
D5 -0.09 -0.06 -1.1 0.44 0.01 0.01 0.2 0.49 0.01 0.00 0.1 -2.90
D6 -0.09 -0.06 -1.2 0.67 0.12 0.07 1.5 -0.85 0.06 0.04 0.7 -3.20
D7 -0.15 -0.09 -1.8* 1.05 0.10 0.06 1.2 -0.12 0.15 0.11 1.9* -0.43
D8 -0.10 -0.06 -1.2 -0.55 0.15 0.10 1.8* -1.01 0.14 0.12 1.7* -1.69
D9 -0.06 -0.05 -0.8 -0.80 0.19 0.24 2.3** -0.32 0.07 0.08 0.9 -0.12

D10 0.05 0.04 0.6 -0.86 0.22 0.19 2.7*** 1.00 0.21 0.27 2.6** 2.68

This table reports the Sharpe ratio, mean, t-statistic of mean and R2
F of prediction-weighted decile portfolios evaluated

in different sentiment terciles. The mean and R2
F are reported in percentages. The low, medium and high tercile (TL,

TM and TH) splits for sentiment are based on the in-sample data of each of the three folds, and represent a valid
out-of-sample performance. We use fund-specific characteristics and sentiment to predict abnormal returns.
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Figure A.11: Cumulative abnormal returns of long-short portfolios for different macroeconomic
information sets

(a) Prediction-weighted long-short portfolio (b) Equally-weighted long-short portfolio

This figure plots the cumulative abnormal return returns of long-short prediction-weighted and equally-weighted
decile portfolios that use different macroeconomic information and fund-specific characteristics to predict abnormal
returns. We consider the following macro-economic information sets: none, sentiment, CFNAI, sentiment orthogonal
to CFNAI and sentiment+CFNAI. We use least-squares orthogonalization.

A.1.7 Interaction Effects

To help understand the origin of the weaker performance of the model with CFNAI, Figure A.12

revisits the interaction effects of fund-level characteristics with CFNAI. It shows no interaction

effects: the predictive effect of a fund characteristic on abnormal returns in high CFNAI periods

is a parallel shift from the relationship in low-CFNAI periods. This is in contrast to the strong

interaction effects for sentiment.

Figure A.13 compares the interaction measure for sentiment (orange bars) and CFNAI (black

bars) with the fund characteristics. As noted in the main text, return spreads due to fund mo-

mentum, turnover, flow and reversal are the most affected by sentiment. In contrast, CFNAI has

virtually no interaction with the fund characteristics.

We assess more general interactions between different fund characteristics. Here, we calculate

the interactions between fund-specific characteristics. The interaction measure is defined similar

to the main text as:

Interaction(zi, zj) =
(

R̂abn(high zi, high zj) − R̂abn(low zi, high zj)
)

−
(

R̂abn(high zi, low zj) − R̂abn(low zi, low zj)
)

.

We set the high values of zi and zj to 0.5, and the low value to -0.5, which makes the measure

symmetric with respect to zi and zj, that is, Interaction(zi, zj) = Interaction(zj, zi). The other
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Figure A.12: Conditional mean as a function of fund characteristics and CFNAI

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic and dif-
ferent CFNAI quantiles. The other variables are set to their median values. The neural network model is estimated
with fund-specific characteristics and CFNAI. The interaction effects are evaluated on test data and averaged across
three cross-out-of-sample folds. The high-minus-low factors have almost the same mean conditional on different past
CFNAI. There is essentially no interaction effect.

variables are set to their median values. The results are presented in Table A.8.

Table A.8: Interaction for fund-specific characteristics in the neural network model

flow F r12 2 F ST Rev Family r12 2 turnover

F r12 2 0.251
F ST Rev 0.068 0.336

Family r12 2 0.037 0.147 0.018
turnover 0.004 0.070 0.050 -0.020

F r2 1 0.080 0.284 0.049 0.048 -0.007

This table shows the interaction measure between the fund-specific characteristics. The results are presented in basis
points. The neural networks use fund-specific characteristics and sentiment as input.
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Figure A.13: Interaction of fund variables with sentiment and CFNAI

This figure reports the measure Interaction(z,macro) for fund characteristics and sentiment and CFNAI as macro-
economic variables. We evaluate the predicted abnormal return R̂abn for the highest and lowest value of the fund
variable z and the high (90% quantile) and the low (10% quantile) macro-economic state. The other variables are set
to their median values. The measure is reported in percentages.
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A.1.8 Robustness to Size of Funds

The predictability is robust to excluding or down-weighting small mutual funds. We first present

the results after excluding small mutual funds and second for value-weighted prediction portfo-

lios.

We exclude mutual funds with less than 15 million asset under management (TNA), which is

an often used cutoff in the literature. Figure shows the results for prediction weighted portfolios.

The predictability is essentially not affected by dropping the smaller funds and our results are not

driven by small funds.

Figure A.14: Results for abnormal return prediction portfolios for mutual funds larger than 15
million

(a) Cumulative abnormal returns of deciles
(b) Cumulative abnormal returns of long-short

portfolio

Decile mean(%) t-stat SR R2
F (%)

Long-short 0.40 6.5*** 0.30 4.07
Top 0.17 3.9*** 0.18 2.03

Bottom -0.23 -4.5*** -0.23 2.05

(c) Performance of long-short abnormal return portfolio for fund + sentiment information

These panels show the out-of-sample results for prediction-sorted portfolios for mutual funds with at least 15 million
asset under management. We predict abnormal returns with fund-specific characteristics and sentiment. Panel (a)
displays the cumulative abnormal returns of prediction-weighted deciles portfolios, while panel (b) shows the cumu-
lative abnormal returns of the long-short portfolios. Panel (c) reports the out-of-sample Sharpe ratios, mean returns
and t-statistics of the long-short portfolio.

As shown in the main text, prediction-weighted portfolios use normalized model predictions

as portfolio weights and thus take advantage of both the ranking and relative magnitude infor-

mation. The prediction based weights are defined in equation (6), where µ̃i,t are the normalized

prediction weights. Value-weighted portfolios assign proportionally larger weights to funds with

more assets under management (aum). We combine the prediction with the value of funds to form
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predication-value weights

wpred,val
i,t =

µ̃i,t × aumi,t

∑N
i=1 µ̃i,t × aumi,t

Figure A.15 summarizes the results for prediction-value weighted portfolios and shows that

the predictability is overall robust to value weighting.

Figure A.15: Results for abnormal return prediction portfolios with value weights

(a) Cumulative abnormal returns of deciles
(b) Cumulative abnormal returns of long-short

portfolio

Decile mean(%) t-stat SR R2
F (%)

Long-short 0.35 4.3*** 0.20 2.30
Top 0.18 3.0*** 0.14 1.12

Bottom -0.18 -2.8*** -0.14 0.76

(c) Performance of long-short abnormal return portfolio for fund + sentiment information

These panels show the out-of-sample results for prediction-value weighted portfolios. We predict abnormal returns
with fund-specific characteristics and sentiment. Panel (a) displays the cumulative abnormal returns of prediction-
value weighted deciles portfolios, while panel (b) shows the cumulative abnormal returns of the long-short portfolios.
Panel (c) reports the out-of-sample Sharpe ratios, mean returns and t-statistics of the long-short portfolio.
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A.2 Chronological Sampling Method

The results in the main text apply a random cross-out-of-sample analysis, where the time periods

for the three folds are sampled randomly to ensure that low and high sentiment states are rep-

resented in all three folds. The predictability results are robust to a cross-out-of-sample analysis

with chronological sampling. This shows that the predictability in the main text is not driven by

our sample selection.

The chronological cross-out-of-sample analysis keeps the chronological order of observations

within the folds. Exactly as in the main text, we use two of the folds to estimate the model and

select the tuning parameters (two-thirds of the sample), and evaluate the prediction out-of-sample

on the remaining fold (one-third of the sample). We repeat the estimation for three different com-

binations to obtain an out-of-sample prediction for each observation in the sample.

A.2.1 Long-short portfolio results

This subsection confirms that our main findings on abnormal returns are robust to chronologi-

cal sampling. We can still strongly predict out-of-sample the abnormal returns of mutual fund

managers, and the mean spread in skill between the top and bottom fund managers is similar

to random sampling. Fund characteristics still have the strongest predictive power, but now the

predictability with stock characteristics is stronger than before. However, the economic and sta-

tistical significance of stock characteristics is still much weaker compared to fund characteristics.

When we zoom in on the time series of long-short portfolios, stock characteristics lose their pre-

dictive power after the year 2000. Fund momentum, flow, and sentiment still emerge as the most

important variables for predicting abnormal returns. Consistent with our intuition, the role of in-

vestor sentiment is now weaker: it shows up as the second most important variable in the variable

importance ranking and the interaction effects between fund variables and sentiment is weaker.

The cumulative abnormal returns for different information sets are in Figure A.16, the cumu-

lative abnormal returns of long-short prediction portfolios are in Figure A.17. The Sharpe ratio,

mean, and factor R2 of long-short, the first, and the tenth prediction-weighted decile portfolios are

in Table A.9.
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Figure A.16: Cumulative abnormal returns for different information sets with chronological data
split.

(a) Stock-specific characteristics (b) Stock-specific characteristics + sentiment

(c) All characteristics (d) Fund-specific characteristics + sentiment

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets.
The abnormal returns are prediction-weighted within deciles. We consider fund-specific characteristics + sentiment,
stock-specific characteristics+ sentiment, stock-specific characteristics or all characteristics to predict abnormal re-
turns. Three cross-out-of-sample folds keep the chronological order.
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Figure A.17: Cumulative abnormal returns of long-short prediction portfolios with chronological
data split.

This figure plots the cumulative abnormal returns of prediction-weighted long-short decile portfolios that use dif-
ferent information sets for prediction. We consider fund-specific and stock-specific characteristics combined with
sentiment. Three cross-out-of-sample folds keep the chronological order.
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Table A.9: Performance of abnormal return portfolios with chronological data split.

Portfolio Information set mean(%) t-stat SR R2
F (%)

Long-short

Stock+ fund+ sentiment 0.52 5.7*** 0.26 2.66
Fund+ sentiment 0.39 5.2*** 0.24 1.49

Fund 0.41 5.6*** 0.26 0.52
Stock+ fund 0.40 4.9*** 0.23 -0.78

Stock+ sentiment 0.20 2.9*** 0.13 -13.48
Stock 0.18 2.2** 0.10 -1.38

Fund + CFNAI 0.36 5.2*** 0.24 1.15
Flow+ fund momentum+ sentiment 0.47 5.3*** 0.24 1.12
Fund exclude momentum and flow 0.00 0.1 0.00 0.10

F r12 2+ sentiment 0.32 4.0*** 0.19 0.88

Top Decile

Stock+ fund+ sentiment 0.20 4.5*** 0.21 -3.65
Fund+ sentiment 0.17 3.6*** 0.17 -0.44

Fund 0.18 3.9*** 0.18 -1.63
Stock+ fund 0.16 3.3*** 0.15 -7.07

Stock+ sentiment 0.14 2.7*** 0.12 -7.98
Stock 0.10 2.4** 0.11 -6.38

Fund + CFNAI 0.14 3.1*** 0.14 -1.72
Flow+ fund momentum+ sentiment 0.19 3.6*** 0.17 -0.05
Fund exclude momentum and flow -0.03 -0.8 -0.03 -0.52

F r12 2+ sentiment 0.10 1.6 0.08 -0.05

Bottom Decile

Stock+ fund+ sentiment -0.32 -4.1*** -0.33 2.93
Fund+ sentiment -0.22 -3.6*** -0.22 1.03

Fund -0.23 -3.8*** -0.23 0.30
Stock+ fund -0.23 -3.5*** -0.22 1.95

Stock+ sentiment -0.07 -1.2 -0.06 -5.46
Stock -0.08 -1.1 -0.08 0.31

Fund + CFNAI -0.22 -3.9*** -0.22 0.64
Flow+ fund momentum+ sentiment -0.27 -4.0*** -0.23 0.76
Fund exclude momentum and flow -0.03 -1.0 -0.04 -0.04

F r12 2+ sentiment -0.22 -3.6*** -0.16 0.56

This table reports the Sharpe ratio, mean and factor R2 of long-short, the first, and the tenth prediction-weighted decile
portfolios that use different information sets for the prediction. We consider nine different information sets which
combine fund-specific and stock-specific characteristics and sentiment. We also include flow and fund momentum
(F r12 2, F r2 1 and F ST Rev) individually. The cross-out-of-sample folds keep the chronological order in each fold.

A.2.2 Holding period

This subsection shows that the persistence of performance in our long-short portfolio is robust

to chronological sampling. Figure A.18 shows the abnormal returns on a long-short prediction

portfolio for holding periods ranging from 1 month to 36 months under chronological sampling.
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Figure A.18: Performance for Different Holding Periods

(a) Mean of abnormal returns (b) Standard deviation

(c) Sharpe ratio (d) T-statistics of abnormal mean returns

This figure shows the results for long-short prediction-weighted portfolios for different holding periods. The time
periods are sampled chronologically. At each time t, we sort funds based on the one-month prediction into deciles
and hold the long-short prediction portfolio for s months with overlapping returns. We calculate the mean, Sharpe
ratio, standard deviation, and t-statistics of the overlapping abnormal returns. The one-month prediction uses either
fund+sentiment, stock+fund+sentiment or flow+fund+sentiment.
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A.2.3 Interaction effects

This subsection studies the interaction effects between fund characteristics and sentiment under

chronological sampling. The interaction effects between sentiment and fund variables are less

pronounced than with random sampling, but the interaction effects between sentiment and fund

momentum, fund short term reversal, and flow are still significant, as in the main text.

The top variable importance for explaining abnormal returns and interaction effects between

sentiment and fund characteristics are in Figures A.19 and A.20. Since the third chronological

fold does not include any high sentiment states, there is mechanically no interaction effect with

sentiment for this specific fold. As a result, Figure A.19 shows that the importance of sentiment

declines. A model evaluation that would only use the last fold to assess the conditional abnormal

return would not detect the strong interaction effects with sentiment.

Figure A.19: Top variable importance for explaining abnormal returns with chronological
sampling.

(a) Top variable importance. (b) Top variable group importance.

This figure shows the importance ranking for individual variables and variable groups. The ranking is the square
root of average of the squared gradient for the eight ensemble fits as in equation 7. The variable importance measures
are evaluated on the test data and averaged across three cross-out-of-sample folds. Fund-specific characteristics and
sentiment are used as network input. Three cross-out-of-sample folds keep the chronological order.

Figure A.20 plots the mean of abnormal fund returns conditional on the values of one fund

variable and sentiment. It shows that the interaction effects between sentiment and fund variables

are less pronounced compared to the interaction effects at random sampling.
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Figure A.20: Conditional mean as a function of fund characteristics and sentiment with
chronological data split.

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic conditional
on different sentiment quantiles. The other variables are set to their median. The neural network model is estimated
with fund-specific characteristics and sentiment. The interaction effects are evaluated on the test data and averaged
across three cross-out-of-sample folds. The cross-out-of-sample folds keep the chronological order in each fold. The
high-minus-low portfolios have a higher mean conditional on high past sentiment. This is a non-linear interaction
effect.

Figure A.21 plots the mean of abnormal fund returns conditional on CFNAI. It shows weak

interaction effects between CFNAI and fund characteristics, just like in the random sampling ap-

proach.
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Figure A.21: Conditional mean as a function of fund characteristics and CFNAI with
chronological data split.

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic conditional
on different CFNAI quantiles. The other variables are set to their median. The neural network model is estimated
with fund-specific characteristics and CFNAI. The interaction effects are evaluated on the test data and averaged
across three cross-out-of-sample folds. The cross-out-of-sample folds keep the chronological order in each fold.

A.2.4 Predicting Total Returns

Table A.10 shows the results for predicting total (as opposed to abnormal) return with various

information sets under chronological sampling. Table A.11 shows exp-post unconditional factor

regressions on total return prediction long-short portfolios. The alphas are significant and the R2

modest.
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Table A.10: Performance of long-short total return portfolios for different information sets with
chronological data split.

Information set mean(%) t-stat SR R2
F (%)

Stock+ fund+ sentiment 0.63 4.8*** 0.22 -1.68
Fund+ sentiment 0.65 3.6*** 0.17 0.56

Fund 0.61 3.6*** 0.16 0.22
Stock+ fund 0.47 4.1*** 0.19 -5.48

Stock+ sentiment 0.62 5.0*** 0.23 0.62
Stock 0.42 3.8*** 0.17 -3.19

This table reports the Sharpe ratio, mean and factor R2 of long-short prediction-weighted decile portfolios based on
total return prediction with different information sets. We consider six different information sets which combine fund-
specific and stock-specific characteristics and sentiment. Three cross-out-of-sample folds keep the chronological order
and the network structure is the same as the benchmark setup for predicting abnormal returns other than l1 penalty
= 1e − 5.

Table A.11: Spanning of long-short return prediction portfolios with different factor models and
chronological data split.

FF 4 factors FF 5 factors FF 6 factors FF 8 factors
α R2 α R2 α R2 α R2 mean µ

Stock+ fund+ sentiment 0.19*** 0.08 0.19*** 0.05 0.16*** 0.09 0.20*** 0.25 0.22***
(0.04) (0.04) (0.04) (0.04) (0.05)

Fund+ sentiment 0.14*** 0.15 0.18*** 0.07 0.14*** 0.16 0.20*** 0.51 0.17***
(0.03) (0.03) (0.03) (0.03) (0.05)

Fund 0.15*** 0.09 0.17*** 0.04 0.14*** 0.09 0.22*** 0.58 0.16***
(0.03) (0.03) (0.03) (0.03) (0.05)

Stock+ fund 0.16*** 0.16 0.23*** 0.05 0.19*** 0.18 0.23*** 0.36 0.19***
(0.04) (0.04) (0.04) (0.04) (0.05)

Stock+ sentiment 0.20*** 0.11 0.20*** 0.07 0.17*** 0.12 0.21*** 0.23 0.23***
(0.04) (0.04) (0.04) (0.04) (0.05)

Stock 0.14*** 0.24 0.24*** 0.09 0.19*** 0.27 0.22*** 0.36 0.17***
(0.04) (0.04) (0.04) (0.04) (0.05)

This table reports the time-series regression results of long-short prediction-weighted decile portfolios for different
factor models. The model predictions are based on machine learning predictions on fund returns with different
information sets. Three cross-out-of-sample folds keep the chronological order and the network structure is the same
as the benchmark setup for predicting abnormal returns other than l1 penalty = 1e − 5. We consider the 4-factor
Fama-French-Carhart model (market, size, value and momentum), the 5-factor Fama-French model (market, size,
value, profitability and investment), a 6-factor model which adds the momentum factor to the Fama-French 5 factors,
and an 8-factor model which adds the momentum, short-term reversal and long-term reversal factors to the Fama-
French 5 factors. The α column reports the time-series pricing error and R2 is the explained variation of the regression.
Both the long-short abnormal return portfolios and the factor models are normalized to have a standard deviation of
1. Standard errors are in brackets and stars denote the significance levels.
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A.3 Expanding-Window Sampling Method

This section studies how our results change under an expanding window estimation of the neu-

ral network. This model assumes a time-varying conditional abnormal return function, in con-

trast with the constant abnormal return function assumed in the random and chronological cross-

validation exercises. We predict abnormal returns with an expanding window estimation, updat-

ing the model every year. Since we need to “warm start” the model, the analysis now starts in the

year 1990.

The cumulative abnormal returns for different information sets are in Figure A.22. The cumu-

lative abnormal returns of long-short prediction portfolios are in Figure A.23. The Sharpe ratio,

mean, and factor R2 of the long-short, the first, and the tenth prediction-weighted decile portfolios

are in table A.12. These results establish the strong predictability of fund manager skill and the

important role of fund characteristics for prediction. The predictive power of stock characteristics

also remains weaker compared to information sets that include fund information.

Figures A.24 and A.25 show that the important predictive role of fund momentum and fund

flow and the interaction effects between fund variables and sentiment remain robust.
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Figure A.22: Cumulative abnormal returns from rolling-window predictions for different
information sets.

(a) Fund-specific characteristics + sentiment (b) Stock-specific characteristics

(c) All characteristics (d) Stock-specific characteristics + sentiment

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
returns are prediction-weighted within deciles. We consider fund-specific characteristics + sentiment, stock-specific
characteristics+ sentiment, stock-specific characteristics or all characteristics to predict abnormal returns. The model
predictions are generated in a rolling way. That is, we use data until year to generate predictions for year t+1, with t
varying. To make sure that we have enough training data for out-of-sample evaluations, we start the out-of-sample
analysis on year 1990.
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Figure A.23: Cumulative abnormal returns of long-short rolling-window prediction portfolios

This figure plots the cumulative abnormal returns of prediction-weighted long-short decile portfolios that use dif-
ferent information sets for prediction. We consider fund-specific and stock-specific characteristics combined with
sentiment. The model predictions are generated in a rolling way. That is, we use data until year to generate predic-
tions for year t+1, with t varying. To make sure that we have enough training data for out-of-sample evaluations, we
start the out-of-sample analysis on year 1990.

Table A.12: Performance of abnormal return portfolios with rolling-window predictions.

Portfolio Information set mean(%) t-stat SR R2
F (%)

Long-short

Stock+ fund+ sentiment 0.45 5.4*** 0.29 8.92
Fund+ sentiment 0.40 5.8*** 0.31 5.71
Stock+ sentiment 0.24 2.8*** 0.15 2.78

Stock 0.14 1.7* 0.09 -0.47

Top decile

Stock+ fund+ sentiment 0.20 3.2*** 0.17 0.13
Fund+ sentiment 0.18 3.4*** 0.18 -1.37
Stock+ sentiment 0.11 1.9* 0.10 -1.29

Stock 0.03 0.5 0.03 -2.75

Bottom decile

Stock+ fund+ sentiment -0.25 -4.0*** -0.21 3.31
Fund+ sentiment -0.22 -4.1*** -0.23 -1.44
Stock+ sentiment -0.13 -2.1** -0.12 0.42

Stock -0.11 -1.6 -0.10 0.57

This table reports the Sharpe ratio, mean and factor R2 of long-short, the first, and the tenth prediction-weighted
decile portfolios that use different information sets for the prediction. We consider four different information sets
which combine fund-specific and stock-specific characteristics and sentiment. The model predictions are generated in
a rolling way. That is, we use data until year to generate predictions for year t+1, with t varying.
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Figure A.24: Conditional mean as a function of fund characteristics and sentiment with rolling
window predictions.

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic conditional
on different sentiment quantiles. The other variables are set to their median. The neural network model is estimated
with fund-specific characteristics and sentiment. When the training data is until time t, the interaction effects are
evaluated on year t+1. The final interaction measure is averaged across all out-of-sample years. The high-minus-low
portfolios have a higher mean conditional on high past sentiment. This is a non-linear interaction effect.
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Figure A.25: Top variable importance for explaining abnormal returns with rolling window
prediction.

(a) Top variable importance. (b) Top variable group importance.

This figure shows the importance ranking for individual variables and variable groups. The ranking is the square root
of average of the squared gradient for the eight ensemble fits as in equation 7. When the training data is until time
t, the importance measure is on year t+1, and the variable importance measure is averaged across all out-of-sample
years. Fund-specific characteristics and sentiment are used as network input.
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B Implementation: Tuning Parameters

Table B.1 summarizes the tuning parameters for the possible network structures. HU, the number

of hidden units in each layer, deserves more explanation. The nodes of first layer are 64 or 32 and

the number of nodes in each layer is half of the previous layer. For example, for a neural network

with 3 layers the number of nodes are 32, 16, 8 and 64, 32, 16. In mathematical terms the number

of nodes in the ith layer is 27−i or 26−i.

Table B.1: Selection of tuning parameters

Notation Tuning Parameters Candidates Optimal

HL Number of layers in Neural Network 1, 2, 3 1
HU Number of hidden units in each layer 26−i or 27−i, i = 1 to HL 64
DR Dropout 0.90, 0.95 0.95
LR Learning rate 0.001 , 0.1 0.001
L1 l1 regularization 0, 1e-5 0
L2 l2 regularization 0, 1e-2, 1e-3 0.01

This table shows the set of tuning parameters, which result in 144 candidate models. The optimal parameters are
selected on the validation data.

We obtain robust and stable fits by ensemble averaging over several fits of the models. A dis-

tinguishing feature of neural networks is that the estimation results can depend on the starting

value used in the optimization. The standard practice which has also been used by Chen, Pelger,

and Zhu (2020) is to train the models separately with different initial values chosen from an opti-

mal distribution. Averaging over multiple fits achieves two goals: First, it diminishes the effect of

a local suboptimal fit. Second, it reduces the estimation variance of the estimated model. All our

neural networks are averaged over eight model fits.

We split the full time-series sample into three periods of the same length but select the dates

randomly for each fold as shown in Figure 2. We keep the same three randomly selected folds

throughout our analysis. We use two of the periods to estimate the model and select the tuning

parameters, and evaluate the prediction out-of-sample on the remaining third of the sample. We

repeat the estimation on three different combinations of the three time periods and report the

average results. The estimation and validation time period is split into 3/4 used for training and

1/4 used for validation to select the optimal tuning parameters from the candidate set in Table B.1.

For each combination of candidate tuning parameters we train the network for 512 epochs. Our

results are robust to the choice of tuning parameters. In particular, our results do not depend on

the structure of the network and all models with good performance on the validation data provide

essentially an identical model with the same relative performance on the test data.25

25The number of layers of the network is a tuning parameter selected on the validation data (instead of making
statements about the number of layers on the out-of-sample data). Theoretically a shallow network with few layers
but with more nodes can be equivalent to a deeper network with less nodes. Hence, a discussion about the number of
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C Variable Importance and Interaction Effects: Statistical Significance

Test

We use the large-sample asymptotic theory of Horel and Giesecke (2020) to study the statistical

significance of the measures for Sensitivity(zk) and Interaction(zk, macro). Horel and Giesecke

(2020) develop a pivotal test to assess the statistical significance of the feature variables in a single-

layer feedforward neural network regression model. They study the asymptotics of gradient-

based test statistics using nonparametric techniques. Using an empirical-process approach, they

show that the large-sample asymptotic distribution of the rescaled neural network sieve estimator

is given by the argmax of a Gaussian process. A second-order functional delta method is then used

to obtain the asymptotic distribution of the test statistic as the weighted average of the squared

partial derivative of the argmax of the Gaussian process with respect to the variable of interest.

They show that a test statistics based on the squared partial derivatives can be asymptotically

represented by a mixture of chi-squared distributions.

The asymptotic theory in Horel and Giesecke (2020) is developed for a one-layer neural net-

work, which is what we use as the benchmark model in this paper. They apply their method to

univariate partial derivatives, while we extend it to also measure interaction effects. The func-

tional delta method arguments directly carry over to our interaction measure, which is simply a

linear function of the estimated network. We use the same sensitivity measure as in their paper

to study the univariate effects. Their results are derived for sigmoid basis activation functions,

while we use ReLU activation function, which can be viewed as an approximation. This approx-

imation is not expected to affect the empirical distribution results. The functional central limit

theorems are derived under the assumption that the samples {Rabn
i,t , zi,t, zt}i,t are i.i.d., which es-

sentially imposes that the error terms from the neural network prediction are independent and

identically distributed. Obtaining a distribution theory for a general estimation approach like

neural networks requires to impose some assumptions of this form.

The difficulty of the procedure lies in obtaining the asymptotic distribution of the neural net-

work. Our implementation follows the “discretization approach” of Horel and Giesecke (2020),

which obtains a cover of the argmax of the Gaussian process by randomly sampling neural net-

works which approximate the function space. More specifically, we generate random neural net-

works with the same network structure as the benchmark model, but sample the network param-

eters randomly.

layers needs to be related to the number of nodes used in each layer. More layers obviously also mean more parameters
and therefore require either more data or a stronger signal to noise ratio to be useful. A panel of individual stock returns
is a larger data set and returns (instead of abnormal returns) have a stronger structure to detect. The data of abnormal
fund returns is comparatively smaller and seems to have a less complex structure than the panel of individual stock
returns. Therefore, the structure that can be estimated robustly in our data is simpler. In conclusion, a smaller number
of layers provides a parsimonious and robust model for this data.
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In more detail, we randomly sample M = 1, 000 functions fl with the same network struc-

ture as the benchmark setup. The functions are scaled such that the standard deviation of their

predictions is the same as for the estimated model g(zi,t). In order to generate a sample from the

asymptotic distribution, we first generate a random sample from a multivariate normal distribu-

tion of dimension M = 1, 000 with mean 0 and covariance matrix approximated by a diagonal

matrix with diagonal elements 1
T ∑T

t=1
1

Nt
∑Nt

i=1 fl(zi,t)
2, l = 1 · · · M. T is the number of periods

and Nt is the number of funds available at time t. We extract the maximum index from this

multivariate normal, l∗, and the argmax function h is approximated by fl∗ . Given the approx-

imate argmax function fl∗ , we generate an approximate sample from the asymptotic distribu-

tion of the test statistics: [Sensitivity(zk)]
2 = 1

T ∑T
t=1

1
Nt

∑Nt
i=1(

∂ fl∗(zi,t)

∂zi,k,t
)2 and Interaction(z, macro) =

( fl∗(high z, high macro)− fl∗(low z, high macro))− ( fl∗(high z, low macro)− fl∗(low z, low macro)).

We repeat the process for 1,000 times to estimate the quantile of the test statistics at 1%, 5%, and

10% levels. We obtain the statistical significance levels by comparing the realized test statistics

with the properly scaled quantiles. The scaling for Interaction(z, macro) is rn = ( n
log n )

d+1
2(2d+1) while

the scaling for [Sensitivity(zk)]
2 equals r2

n , where n is the number of samples and d the number

of features in the model. The scaling constants are different because [Sensitivity(zk)]
2 is a squared

function, while Interaction(z, macro) is linear.

This approach is computationally efficient and less expensive than a bootstrap approach. The

partial derivative underpinning the test statistic is basically a byproduct of the widely used gradient-

based fitting algorithms and is provided by standard software packages used for fitting neural

networks. The test procedure does not require re-fitting the neural network. Furthermore, the test

is not susceptible to the non-identifiability of neural networks.
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IA.1 Data Cleaning and Imputation

IA.1.1 Data Cleaning

We make use of the code of Doshi, Elkamhi, and Simutin (2015) for processing mutual fund data.

The fund returns, expenses, total net assets (TNA), investment objectives and other fund char-

acteristics are from the Center for Research in Security Prices (CRSP) Survivor Bias-Free Mutual

Fund Database. Our analysis requires fund holdings, which we obtain by linking the database to

the Thomson Financial Mutual Fund Holdings. The stock characteristics are from Chen, Pelger,

and Zhu (2020) and cover 46 characteristics that have been shown to have predictive power for

the cross section of expected returns.

We restrict the analysis to diversified domestic active managed equity mutual funds. We use

the newly introduced CRSP funds’ investment objectives, crsp obj cd to define our sample and

funds’ style categories. The final sample selected with crsp obj cd is nearly identical to the one

obtained when including funds with AGG, GMC, GRI, GRO, ING, and SCG Strategic Insight

codes, EIEI, G, LCCE, LCGE, LCVE, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, SCGE,

and SCVE Lipper codes, and G, G-I, AGG, GCI, GRI, GRO, LTG, MCG, and SCG Wiesenberger

codes. We screen styles and fund names to exclude international, balanced, sector, bond, money

market, and index funds. There are eleven (mutual fund, time) observations for which the raw

return is larger than 1, which we also remove.

A fund’s total net asset value (TNA) is summed across share classes, and its return, expense

ratio, turnover and flow are averages weighted by the lagged asset value of each share class.

Fund age is defined as the number of years since the inception of the oldest share class. The fund

momentum characteristics are constructed as defined in Table 2.

Following Brown and Wu (2016), fund family is identified by the management company code.

For the quarters with a missing company code, we use the mapping between the company name

and company code identified in other quarters. For a given fund and month, Family r12 2 and

Family flow are the averages of F r12 2 and flow weighted by tna of all funds in the family, ex-

cluding the fund itself. Family age is the age of the oldest fund in the family, excluding the fund

itself. Fund no is the number of funds in the family and Family tna is the sum of TNAs of all

funds in the family excluding the fund itself.
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Table IA.1: Summary statistics of fund characteristics

Statistic N Mean St. Dev. Median

turnover 358,303 0.826 1.015 0.620
ages 407,139 13.669 10.200 11.000
flow (%) 406,661 1.601 419.975 −0.392
r12 2 407,158 0.108 0.173 0.107
LME 407,158 −0.385 0.108 −0.424
BEME 407,158 −0.153 0.376 −0.161
abnormal return (%) 407,158 −0.028 2.000 −0.028
exp ratio (%) 407,043 0.097 0.086 0.095
TNA 406,802 1,153.180 4,833.920 214.700
Family TNA 398,655 19,834.410 60,108.400 1,584.700
Family age 399,011 22.657 19.512 18.000
fund no 399,011 13.017 18.165 6.000

This table reports summary statistics of the fund characteristics. The sample period is from 1980/01 to 2019/01.

IA.1.2 Data Imputation

We use a panel of monthly firm returns and characteristics from 1963/01 to 2019/12. The data set

has in total 30,000 different stocks with around 5,000-9,000 stocks available in each month. How-

ever, in each month only around 2,000-3,000 stocks have all 46 characteristics available. In order

to use almost all stocks in our sample, we impute the missing characteristic information. This is

important as a large number of funds’ holdings include stocks that have missing characteristics.

We follow the insights of Bryzgalova, Lettau, Lerner, and Pelger (2021) to impute the missing char-

acteristics. More specifically, we apply the cross-sectional factor model advocated by Bryzgalova,

Lettau, Lerner, and Pelger (2021), which is a modification of the method developed in Xiong and

Pelger (2021) applied to characteristics. Intuitively, each month we estimate a latent factor model

with principal components analysis (PCA) in the characteristic space and impute the missing ob-

servations as the common components of the factor model. This approach has the advantage that

it takes into account the dependency between characteristics, which is not the case with a simple

mean or median imputation. Importantly, the method of Xiong and Pelger (2021) allows the miss-

ing pattern to depend on the latent factor model or characteristic specific features, which is crucial

as the data is not missing at random as shown by Bryzgalova, Lettau, Lerner, and Pelger (2021).

We have a three dimensional array of firm-characteristics Ct,l,i which denotes the characteris-

tics l of firm i at time t. We have in total L firm characteristics which we report as cross-sectional

quantiles from -0.5 to 0.5. The number of total time periods is T and at time t there are Nt stocks

available. We denote by Ct the L× Nt matrix of L characteristics for the Nt stocks in month t. We

assume that the characteristics can be modeled by an approximate K-factor model as in Xiong and
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Pelger (2021):

Ct
i,l = Ft

i Λt
l
>
+ et

i,l

Without missing values the latent factors and loadings can be estimated by PCA from the “charac-

teristics covariance matrix” Σt = 1
Nt

CtCt>. In the presence of missing values, we use the method

of Xiong and Pelger (2021) to estimate the latent factors. More specifically, we estimate the L× L

matrix Σt as

Σt
l,r =

1
|Ql,r| ∑

i∈Ql,r

Ct
l,iC

t
r,i, (IA.1)

where Ql,r are the indices of all the stocks that have characteristics l and r in common at time t and

|Ql,r| is the cardinality of this set. The Λt are estimated with PCA as the normalized eigenvectors

of Σt. Last but not least, we estimate the “characteristic factors” with a weighted regression

F̂t
i︸︷︷︸

K×1

=

(
∑

l∈Qi,t

Λ̂t
lΛ̂

t
l
>
)−1

∑
l∈Qi,t

Λ̂t
lC

t
l,i.

Given the estimated factors and loadings, the missing values are imputed with Ĉt
l,i = F̂t

i Λ̂t
l
>.

The factor imputation depends on two parameters. First, we select the number Lmin of charac-

teristics that a stock needs to have in order to be included in the sample. By construction this is

an upper bound on the number of latent factors. Second, we select the number of latent factors K.

Based on an extensive analysis we have set Lmin = 10 and K = 10 as the benchmark model. The

results are robust to this choice, while it allows us to include almost all stocks in the sample.

We assess the accuracy of the data imputation method based on how well the characteristic fac-

tor model approximates the observed characteristic entries. We measure the amount of explained

variation by the following R2 using only the observed entries:

R2 = 1− ∑t,l,i e2
t,l,i

∑t,l,i C2
t,l,i

.

Table IA.2 shows that a model with K = 10 factors explains around 75% of the cross-sectional

variation in characteristics. Note that the first latent factor is very close to a cross-sectional average

for each characteristic. Hence, a one-factor model is essentially imputation with a cross-sectional

median, which is strongly suboptimal.

Table IA.3 shows that after the data imputation we have full characteristic information for

almost 99% of the stocks held by mutual funds. Without the data imputation, we could only

observe the characteristics for around 57% of the stocks held by mutual funds. The choice of
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Lmin trades off the accuracy of the imputation and the goal of keeping as many stocks as possible.

The extensive empirical study in Bryzgalova, Lettau, Lerner, and Pelger (2021) provides further

support for this imputation model.

Table IA.2: R2 of Factor Model

K 2 4 6 8 10

R2 34.7% 50.7% 60.6% 68.4% 74.5%

This table shows the time average of R2 of the characteristics imputation for different number of factors K. We require
at least Lmin = 10 observed characteristics for each stock.

Table IA.3: Proportion of Missing Characteristics for Different Lmin

Lmin Missing (i, j, t) No. Proportion of total observations

8 565,663 0.98%
10 744,087 1.29%
12 1,794,131 3.12%
14 2,025,437 3.52%

46, original characteristic data 24,596,754 42.80%

This table shows the number of missing characteristics observations and the corresponding proportion relative to the
total number of entries. The results are summed over mutual funds, stocks and time.

IA.2 In-Sample Fund Performance By Univariate Characteristic

We explore which fund characteristics are associated with strong mutual fund performance in a

univariate analysis. This analysis is not a substitute for our full machine-learning analysis since it

is (i) in-sample rather than predictive, (ii) it ignores the possibility of important non-linearities in

the relationship between fund characteristics and fund abnormal returns, and (iii) it ignores the

possibility of important interaction effects between multiple characteristics or between character-

istics and macro variables.

For each of the 59 characteristics, we sort fund abnormal returns into deciles based on the

value of the characteristic. Then, we construct long-short portfolios as the difference between the

top and bottom deciles. The first two columns of Table IA.4 report the mean and Sharpe ratio of

these long-short portfolio returns, ranked from highest to lowest Sharpe ratio. The stars report

the significance of a test that the mean of the long-short portfolio return is different from zero.

The main finding, which foreshadows the results in our main analysis, is that portfolios based on

fund characteristics, and in particular fund momentum and flow, are associated with the highest

Sharpe ratios as well as a large and statistically significant mean abnormal fund return. Of the

ten characteristics that are associated with a monthly Sharpe ratio above 0.10, seven are fund-

level variables and only three are stock characteristics. Most stock-specific characteristics cannot
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systematically differentiate between the performance of mutual funds. Put simply, little can be

learned about fund abnormal returns from the stocks that they hold.

IA.2.1 Univariate Groups

In Table IA.5, we show that the pre-eminence of fund characteristics as (univariate) drivers of fund

performance also emerges when we collapse characteristics by group (using the nine groups in

Table 1). Group characteristics are formed as the equally-weighted average of the characteristics

within each category, and then long-short portfolios of funds are formed based on the deciles

of the group characteristics. Fund momentum rises to the top as the group characteristic that

is associated most strongly with fund performance (Sharpe ratio of 0.22), followed by Family

characteristics (SR of 0.16), and Fund characteristics (0.13). The holdings-based characteristics

Value (0.16) and Profitability (0.11) are in third and fifth place. Thus, the last five places out of

nine are reserved for stock characteristics.

Table IA.5: Group characteristic long-short factors from abnormal returns

mean (%) std (%) SR t-stat

fund momentum 0.33 1.45 0.22 4.9***
family 0.12 0.74 0.16 3.5***
value 0.18 1.11 0.16 3.4***
fund 0.09 0.71 0.13 2.8***

profitability 0.13 1.02 0.13 2.7***
friction 0.17 1.72 0.10 2.1**

intangile 0.08 0.88 0.09 1.9*
past 0.11 1.39 0.08 1.7*

investment 0.06 0.93 0.06 1.3

This table reports the summary statistics for univariate long-short factors based on group-averaged abnormal returns
and sorted according to their Sharpe ratios. For each of the 9 categories, we construct group characteristics as the
equally-weighted average of the characteristics within each category. The long-short factors are the differences be-
tween the top decile and the bottom decile. “Mean”, “std” and “Sharpe ratio” report the mean, standard deviation
and Sharpe ratio of the factors and the fourth column, “t-stat” denotes the t-statistics for a test that the factor mean is
different from 0.

IA.2.2 Interaction Effects with Macro Variables

The univariate analysis confirms a second main result of the paper, which is that fund character-

istics exercise a different influence on fund performance depending on the state of the economy.

The last six columns of Table IA.4 report Sharpe ratios and mean returns of the same univariate

long-short portfolios, but conditional on the level of investor sentiment. The sample is split into

terciles based on the value of the sentiment index in the prior month. We find that the strong as-

sociation between abnormal performance and fund characteristics such as fund momentum, fund

short-run reversal, and flow is driven by above-average sentiment periods. This hints at impor-
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Table IA.4: Univariate long-short portfolios from mutual fund abnormal returns

Full sample Low sentiment Medium sentiment High sentiment
SR mean (%) SR mean (%) SR mean (%) SR mean (%)

F r12 2 0.28 0.36*** 0.16 0.19* 0.46 0.50*** 0.25 0.40***
F ST Rev 0.20 0.30*** 0.11 0.15 0.22 0.28*** 0.26 0.49***

Family r12 2 0.19 0.13*** 0.24 0.13*** 0.31 0.21*** 0.06 0.05
Beta 0.15 0.18*** 0.17 0.19** 0.06 0.06 0.23 0.31***

Rel2High 0.14 0.20*** 0.06 0.08 0.20 0.24** 0.18 0.31**
RNA 0.13 0.13*** 0.16 0.14* 0.14 0.11* 0.10 0.13

Family TNA 0.13 0.09*** 0.01 0.01 0.24 0.15*** 0.13 0.12
fund no 0.13 0.10*** 0.03 0.01 0.24 0.17*** 0.11 0.11

flow 0.12 0.11** 0.21 0.15** 0.11 0.09 0.08 0.09
Family age 0.11 0.09** 0.01 0.01 0.27 0.17*** 0.08 0.08

ROA 0.10 0.10** 0.16 0.15* 0.05 0.04 0.11 0.13
PM 0.10 0.10** 0.11 0.10 0.19 0.13** 0.07 0.09

ROE 0.10 0.11** 0.13 0.12 0.04 0.04 0.13 0.18
ST Rev 0.09 0.13** 0.04 0.06 0.09 0.11 0.15 0.24*

CF 0.09 0.09** 0.08 0.07 0.02 0.01 0.15 0.21*
Resid Var 0.09 0.14** 0.11 0.15 0.10 0.13 0.09 0.18

ages 0.09 0.05** 0.10 0.05 0.10 0.04 0.09 0.07
MktBeta 0.08 0.14** 0.09 0.16 0.13 0.16 0.06 0.12

r12 2 0.08 0.11** 0.02 0.02 0.17 0.18** 0.06 0.11
Spread 0.08 0.13** 0.11 0.16 0.06 0.07 0.10 0.21

D2P 0.08 0.12** 0.04 0.06 -0.04 -0.05 0.19 0.32**
r12 7 0.08 0.11** 0.08 0.11 0.10 0.10 0.05 0.10

F r2 1 0.08 0.11 0.02 0.02 0.23 0.27*** 0.02 0.04
LTurnover 0.07 0.13 0.13 0.24 -0.00 -0.00 0.09 0.20

Variance 0.07 0.13 0.11 0.17 0.03 0.04 0.10 0.21
IdioVol 0.07 0.12 0.09 0.13 0.09 0.11 0.07 0.15

C 0.07 0.09 0.03 0.04 0.11 0.11 0.06 0.08
Lev 0.07 0.08 0.08 0.09 0.05 0.05 0.05 0.07

Family flow 0.07 0.04 0.09 0.04 0.06 0.03 0.07 0.06
ATO 0.07 0.07 0.02 0.01 0.01 0.01 0.12 0.16

exp ratio 0.07 0.04 0.12 0.06 0.01 0.01 0.07 0.06
CTO 0.06 0.07 0.03 0.02 0.05 0.04 0.08 0.11

tna -0.06 -0.04 -0.03 -0.02 -0.19 -0.11** -0.00 -0.00
SUV 0.06 0.06 0.15 0.14* -0.06 -0.05 0.08 0.10

SGA2S 0.05 0.06 0.11 0.12 0.04 0.04 -0.01 -0.01
OL 0.05 0.05 0.02 0.01 0.02 0.02 0.07 0.08

PCM 0.05 0.05 0.15 0.14* 0.05 0.04 -0.04 -0.05
r2 1 0.05 0.06 0.02 0.02 0.06 0.07 0.07 0.13

CF2P 0.04 0.06 0.03 0.05 0.09 0.10 -0.00 -0.01
NI 0.04 0.05 0.12 0.17 -0.06 -0.05 0.05 0.08
Q 0.04 0.05 0.05 0.07 0.01 0.01 0.03 0.04

FC2Y 0.04 0.05 0.10 0.12 0.04 0.03 -0.02 -0.03
PROF 0.04 0.04 0.11 0.08 0.01 0.01 0.01 0.02
LME 0.04 0.03 0.01 0.01 -0.03 -0.02 0.11 0.11
D2A 0.03 0.03 -0.05 -0.04 0.03 0.02 0.10 0.10

turnover 0.03 0.03 0.03 0.02 -0.03 -0.02 0.08 0.08
AT 0.03 0.04 0.02 0.02 -0.04 -0.03 0.06 0.09
OA 0.03 0.03 -0.02 -0.01 0.08 0.06 0.05 0.06

r36 13 -0.03 -0.04 0.02 0.03 0.01 0.01 -0.09 -0.13
AC 0.03 0.02 -0.01 -0.01 0.08 0.06 0.04 0.04
E2P -0.03 -0.04 0.05 0.06 -0.05 -0.06 -0.04 -0.07
OP 0.02 0.03 0.12 0.10 -0.02 -0.02 0.01 0.02

NOA 0.02 0.02 -0.03 -0.02 0.18 0.13** -0.03 -0.04
DPI2A 0.01 0.01 0.00 0.00 0.19 0.14** -0.08 -0.09
A2ME 0.01 0.02 0.07 0.11 0.03 0.03 -0.07 -0.12

S2P -0.01 -0.02 -0.07 -0.10 -0.07 -0.07 0.10 0.16
Investment 0.01 0.01 -0.01 -0.01 0.12 0.09 -0.05 -0.06

LT Rev 0.01 0.01 0.08 0.08 0.03 0.03 -0.04 -0.06
BEME -0.00 -0.00 -0.07 -0.09 -0.03 -0.02 0.09 0.13

This table reports summary statistics for univariate long-short portfolios in the full sample and in different sentiment terciles. The
results are sorted according to the Sharpe ratio of univariate long-short factors. For each of the 59 characteristics, we construct
ten sorted decile portfolios. The long-short factors are the differences between the top decile and the bottom decile. We split the
time-series into TH , TM and TL, which denotes the high, medium and low sentiment terciles based on the previous months. For
each of these time periods we separately estimate “Mean” and “Sharpe ratio”, which report the mean and Sharpe ratio of this factor
conditional on a sentiment tercile. The stars are the signifance of t-statistics for the test that the factor mean is different from 0. The
sample period is 1980/01 to 2019/01 with monthly rebalancing.
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tant interaction effects between macro variables and (fund) characteristics. Table IA.6 shows that

this result also applies to the first principal component of each group.

Table IA.6: First Principal Component within each Characteristic Group in Different Sentiment
Terciles

TL TM TH

Name SR t-stat SR t-stat SR t-stat

fund momentum 0.02 0.3 0.30 5.0*** 0.23 4.6***
family 0.08 1.0 0.15 1.8* 0.16 2.5**

profitability 0.01 0.1 0.20 1.9** 0.17 2.5**
fund 0.10 0.9 0.04 0.4 0.16 2.1**
past -0.07 -0.6 0.24 1.7*** 0.12 1.3

friction 0.02 0.2 0.01 0.1 0.18 2.1**
value 0.04 0.1 0.19 0.2** -0.12 -0.2

intangile -0.00 -0.0 -0.08 -0.1 0.12 0.2
investment -0.02 -0.0 -0.10 -0.1 0.12 0.1

This table reports the mean, standard deviation and Sharpe ratio for different sentiment terciles. For each of the 9
categories, we apply PCA to the abnormal returns of all long-short factors within a group to obtain a group factor.
We split the time-series into TH , TM and TL, which denotes the high, medium and low sentiment terciles based on
the previous months. For each of these time periods we separately estimate the mean, standard deviation and Sharpe
ratio of the factors conditional on a sentiment tercile. The column, “t-stat” denotes the t-statistics for factor mean
different from 0 in each sentiment tercile.

Table IA.7 shows the results when when using the economic activity variable CFNAI as the

conditioning variable.
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Table IA.7: Univariate long-short portfolios in different CFNAI terciles

Low CFNAI Medium CFNAI High CFNAI
SR mean (%) SR mean (%) SR mean (%)

F r12 2 0.26 0.39*** 0.34 0.40*** 0.25 0.30***
F ST Rev 0.17 0.31** 0.19 0.26** 0.25 0.34***

Family r12 2 0.28 0.23*** 0.13 0.08* 0.13 0.08
Beta 0.17 0.24** 0.12 0.13 0.17 0.18**

Rel2High 0.07 0.14 0.22 0.25*** 0.20 0.21**
RNA 0.18 0.21** 0.17 0.12** 0.05 0.05

Family TNA 0.04 0.04 0.26 0.16*** 0.11 0.08
fund no 0.02 0.02 0.25 0.15*** 0.16 0.12*

flow 0.03 0.04 0.15 0.13* 0.18 0.15**
Family age 0.04 0.04 0.27 0.15*** 0.10 0.07

ROA 0.17 0.20** 0.09 0.07 0.04 0.04
PM 0.21 0.24** 0.13 0.11* -0.04 -0.04

ROE 0.19 0.23** 0.08 0.07 0.02 0.02
ST Rev 0.09 0.16 0.15 0.18* 0.05 0.06

CF 0.03 0.04 0.19 0.16** 0.08 0.08
Resid Var 0.11 0.23 0.06 0.08 0.08 0.10

ages -0.00 -0.00 0.06 0.04 0.19 0.12**
MktBeta 0.12 0.25 0.06 0.09 0.06 0.09

r12 2 -0.03 -0.05 0.25 0.27*** 0.09 0.12
Spread 0.13 0.26 0.06 0.08 0.04 0.07

D2P 0.12 0.22 0.03 0.04 0.08 0.10
r12 7 -0.05 -0.10 0.20 0.23** 0.14 0.19*

F r2 1 -0.01 -0.03 0.19 0.23** 0.09 0.12
LTurnover 0.12 0.25 -0.01 -0.01 0.10 0.17

Variance 0.10 0.20 0.03 0.05 0.09 0.13
IdioVol 0.11 0.22 0.04 0.05 0.06 0.08

C 0.02 0.04 0.24 0.27*** -0.04 -0.04
Lev 0.07 0.11 0.03 0.03 0.11 0.11

Family flow 0.09 0.05 0.06 0.03 0.06 0.04
ATO -0.01 -0.02 0.07 0.08 0.17 0.14**

exp ratio 0.06 0.04 0.16 0.09** -0.00 -0.00
CTO -0.01 -0.02 0.07 0.07 0.16 0.14*

tna -0.06 -0.05 -0.06 -0.03 -0.06 -0.05
SUV 0.01 0.01 0.12 0.12 0.04 0.04

SGA2S 0.01 0.02 0.18 0.18** -0.02 -0.02
OL 0.02 0.02 0.08 0.07 0.05 0.04

PCM -0.02 -0.02 0.15 0.13* 0.03 0.03
r2 1 0.02 0.03 0.12 0.13 0.03 0.03

CF2P 0.05 0.08 0.06 0.08 0.02 0.02
NI 0.09 0.13 -0.09 -0.11 0.14 0.15*
Q 0.04 0.07 0.04 0.04 0.05 0.05

FC2Y 0.01 0.01 0.14 0.15* -0.01 -0.02
PROF 0.00 0.00 0.09 0.06 0.06 0.05
LME 0.11 0.12 0.00 0.00 -0.03 -0.02
D2A 0.06 0.05 -0.00 -0.00 0.05 0.04

turnover 0.03 0.03 0.04 0.02 0.03 0.03
AT 0.06 0.09 0.02 0.01 0.01 0.01
OA 0.14 0.14* 0.11 0.08 -0.16 -0.13**

r36 13 0.08 0.12 -0.18 -0.19** -0.04 -0.04
AC 0.12 0.12 0.12 0.08 -0.16 -0.12**
E2P -0.03 -0.04 -0.04 -0.05 -0.01 -0.02
OP -0.01 -0.01 -0.02 -0.02 0.13 0.11

NOA -0.02 -0.02 0.12 0.09 -0.02 -0.01
DPI2A -0.01 -0.01 0.13 0.11* -0.06 -0.06
A2ME -0.07 -0.12 0.09 0.10 0.05 0.06

S2P 0.05 0.09 -0.08 -0.10 -0.02 -0.03
Investment -0.05 -0.07 0.10 0.09 0.00 0.01

LT Rev 0.09 0.13 -0.13 -0.11 0.02 0.02
BEME 0.11 0.14 -0.10 -0.11 -0.03 -0.04

This table reports summary statistics for univariate long-short factors in different CFNAI terciles. The results are
sorted according to the Sharpe ratio of univariate long-short factors. For each of the 59 characteristics, we construct
ten sorted decile portfolios. The long-short factors are the differences between the top decile and the bottom decile.
We split the time-series into TH , TM and TL, which denotes the high, medium and low CFNAI terciles based on the
previous months. For each of these time periods we separately estimate “Mean” and “Sharpe ratio”, which report the
mean and Sharpe ratio of this factor conditional on a CFNAI tercile. The stars are the signifance of t-statistics for the
test that factor mean is different from 0.
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IA.2.3 Spanning

Next, we show that the long-short portfolios that are most strongly associated with fund outper-

formance do not simply reflect compensation for exposure to standard risk factors. To that end,

we estimate multivariate regressions of the long-short portfolios based on fund characteristics on

the four Carhart factors and an intercept. The results are in Table IA.8. All R2 are small (below

10%) except for fund momentum (23%). Most of the factor loadings are also insignificant. Im-

portantly, a vast majority of alphas are highly significant, meaning that the returns on long-short

portfolios are not spanned by the equity asset pricing factors. We also report the mean return on

the long-short portfolios. In the few cases where the alpha is not significant, the risk premium of

the portfolios is typically not significant. For most fund variables, the mean return and the mean

intercept are similar in magnitude, which implies that the Carhart factor exposure explains little

of the abnormal returns of fund characteristic portfolios.

Table IA.8: Spanning of univariate long-short portfolios with FFC-4 factors.

Mkr SMB HML Mom α Factor mean R2

F ST Rev -0.09* 0.07 0.08* 0.13*** 0.18*** 0.20*** 0.04
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

F r2 1 0.10** -0.05 0.05 0.34*** 0.01 0.08 0.11
(0.05) (0.04) (0.05) (0.05) (0.05) (0.05)

F r12 2 0.29*** 0.04 0.11** 0.44*** 0.17*** 0.28*** 0.23
(0.04) (0.04) (0.04) (0.04) (0.04) (0.05)

ages -0.00 -0.11** 0.07 0.06 0.08 0.09* 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

flow 0.12** -0.10** 0.03 0.03 0.10** 0.12** 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

exp ratio -0.07 0.02 -0.08* -0.20*** 0.11** 0.07 0.04
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

tna -0.09* -0.03 0.03 0.05 -0.05 -0.06 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

turnover -0.00 0.04 0.03 0.06 0.02 0.03 0.01
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family TNA 0.11** -0.03 -0.06 -0.07 0.13*** 0.13*** 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

fund no 0.17*** 0.02 0.03 0.08 0.09* 0.13*** 0.03
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family r12 2 0.10* 0.04 0.10** 0.21*** 0.14*** 0.19*** 0.04
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family age 0.18*** 0.01 0.00 0.07 0.08 0.11** 0.03
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family flow -0.04 0.04 -0.01 -0.06 0.08* 0.07 0.01
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

This table reports the multivariate time-series regression results of univariate long-short abnormal return portfolios
on the four Fama-French-Carhart factors. The first four columns report the slope coefficient on the FFC-4 factors in the
regression and the fifth column, α reports the time-series pricing error of the regression. The last two columns report
the mean of the univariate long-short decile portfolios and the R2 of the regression. Both, the univariate long-short
abnormal return portfolios and FFC-4 factors, are normalized to have a standard deviation of 1.
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Table IA.9 shows that these results are robust to using alternative factor models: the Fama-

French three-factor model, the Fama-French five-factor model (with investment and profitability

factors), a six-factor model that adds momentum to the Fama-French five factors, and an eight-

factor model that adds short-term reversal, long-term reversal, and momentum to the Fama-

French five factors.

Table IA.9: Spanning of univariate long-short portfolios with different factor models.

4 factors 5 factors 6 factors 8 factors

α R2 α R2 α R2 α R2 mean
F ST Rev 0.18*** 0.04 0.19*** 0.02 0.18*** 0.04 0.23*** 0.31 0.20***

(0.04) (0.04) (0.04) (0.04) (0.05)
F r2 1 0.01 0.11 0.03 0.03 -0.01 0.12 0.01 0.17 0.08

(0.05) (0.05) (0.05) (0.05) (0.05)
F r12 2 0.17*** 0.23 0.22*** 0.06 0.16*** 0.23 0.16*** 0.23 0.28***

(0.04) (0.04) (0.04) (0.04) (0.05)
ages 0.08 0.02 0.06 0.03 0.05 0.03 0.06 0.03 0.09*

(0.05) (0.05) (0.05) (0.05) (0.05)
flow 0.10** 0.02 0.08 0.03 0.08 0.03 0.07 0.03 0.12**

(0.05) (0.05) (0.05) (0.05) (0.05)
exp ratio 0.11** 0.04 0.14*** 0.07 0.16*** 0.09 0.16*** 0.11 0.07

(0.05) (0.05) (0.05) (0.05) (0.05)
tna -0.05 0.02 -0.05 0.02 -0.06 0.02 -0.07 0.04 -0.06

(0.05) (0.05) (0.05) (0.05) (0.05)
turnover 0.02 0.01 -0.05 0.08 -0.05 0.08 -0.07 0.12 0.03

(0.05) (0.05) (0.05) (0.05) (0.05)
Family TNA 0.13*** 0.02 0.16*** 0.05 0.16*** 0.05 0.18*** 0.07 0.13***

(0.05) (0.05) (0.05) (0.05) (0.05)
fund no 0.09* 0.03 0.12** 0.03 0.11** 0.04 0.13*** 0.07 0.13***

(0.05) (0.05) (0.05) (0.05) (0.05)
Family r12 2 0.14*** 0.04 0.17*** 0.01 0.15*** 0.05 0.14*** 0.05 0.19***

(0.05) (0.05) (0.05) (0.05) (0.05)
Family age 0.08 0.03 0.11** 0.04 0.10** 0.04 0.11** 0.07 0.11**

(0.05) (0.05) (0.05) (0.05) (0.05)
Family flow 0.08* 0.01 0.07 0.00 0.08 0.01 0.07 0.02 0.07

(0.05) (0.05) (0.05) (0.05) (0.05)

This table reports the multivariate time-series regression results of univariate long-short abnormal return portfolios for
different factor models. We consider the 4-factor Fama-French-Carhart model (market, size, value and momentum),
the 5-factor Fama-French model (market, size, value, profitability and investment), a 6-factor model which adds the
momentum factor to the Fama-French 5 factors, and an 8-factor model which adds the momentum, short-term reversal
and long-term reversal factors to the Fama-French 5 factors. The α column reports the time-series pricing error and
R2 is the explained variation of the regression. Both the univariate long-short abnormal return portfolios and the
factor models are normalized to have a standard deviation of 1. Standard errors are in brackets and stars denote the
significance levels.

IA.2.4 Holding Period

The univariate results are robust to alternative holding-period assumptions. This is germane, as

mutual funds tend to be held by investors for longer periods than one month. We consider three

robustness tests: (i) we update characteristics annually, (ii) we hold each fund investment for one
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year with overlapping returns, and (iii) we consider quarterly returns of quarterly updated posi-

tions. For all three, as for monthly returns, portfolios sorted on fund-specific characteristics—in

particular flow and fund momentum—have the highest Sharpe ratio and a statistically signifi-

cant mean, while most stock-specific characteristics cannot systematically differentiate the perfor-

mance of funds. These results show that monthly rebalancing of mutual funds is not crucial to

earning the high abnormal returns associated with strongly-performing funds. We study even

longer holding periods in our main analysis below.

First, we construct annually updated monthly abnormal return portfolios. Specifically, we sort

funds into portfolios only once a year. We keep the weights constant in the sorting portfolios

for 12 months. We use the December characteristics to obtain the decile sorting allocations and

update these allocations each December. Then we compute the monthly abnormal returns as be-

fore. We report the univariate sorting results in Panel (a) of Table IA.10. Second, we consider

overlapping abnormal returns with one-year holding periods. At each time t − 1, investors use

the current month characteristics to form portfolios and hold the portfolio for one year. The over-

lapping holding results are in Panel (b). Last but not least, we consider the abnormal return of

investors who rebalance their portfolios every quarter. They rebalance fund portfolios using the

fund characteristics at the end of each quarter and hold the same portfolio for one quarter. These

returns are not overlapping. They are in Panel (c). For all three specifications, we observe that the

Sharpe ratios and average abnormal returns are comparable to the results in Table IA.4. The fund-

specific characteristics, in particular flow and fund momentum, have the highest Sharpe ratio and

a statistically significant mean, while most stock-specific characteristics are not significant.
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Table IA.10: Univariate long-short portfolios from abnormal returns at different holding
frequency

(a) Annually updated characteristics (b) Overlapping annual holdings (c) Quarterly
mean std SR t-stat mean std SR t-stat mean std SR t-stat

F r12 2 0.23 1.16 0.20 4.3*** 0.32 2.35 0.24 5.1*** 0.20 12.82 0.19 4.0***
F ST Rev 0.18 1.18 0.16 3.4*** 0.19 2.71 0.12 2.7*** 0.17 8.86 0.23 4.9***

Family r12 2 0.06 0.84 0.07 1.5 0.10 1.39 0.13 2.8*** 0.05 8.29 0.07 1.4
Beta 0.24 1.13 0.21 4.6*** 0.20 1.98 0.18 3.8*** 0.18 9.71 0.23 4.8***

Rel2High 0.19 1.29 0.15 3.2*** 0.26 2.29 0.20 4.2*** 0.20 13.55 0.18 3.8***
RNA 0.09 0.88 0.10 2.2** 0.13 1.74 0.13 2.8*** 0.07 7.36 0.12 2.6**

Family TNA 0.08 0.73 0.12 2.5** 0.10 1.23 0.14 3.0*** 0.09 8.20 0.13 2.6***
fund no 0.07 0.73 0.10 2.2** 0.10 1.24 0.14 3.0*** 0.09 7.54 0.14 3.0***

flow 0.16 0.93 0.17 3.6*** 0.16 1.33 0.20 4.4*** 0.05 4.71 0.12 2.6***
Family age 0.09 0.76 0.12 2.6*** 0.10 1.26 0.14 3.0*** 0.08 7.54 0.12 2.5**

ROA 0.07 0.92 0.08 1.7* 0.10 1.79 0.10 2.2** 0.07 6.85 0.12 2.5**
PM 0.06 0.94 0.06 1.3 0.14 1.64 0.14 3.1*** 0.08 6.48 0.14 2.9***

ROE 0.06 0.97 0.06 1.4 0.09 1.73 0.09 2.0** 0.07 7.56 0.11 2.3**
ST Rev 0.08 1.31 0.06 1.3 0.11 2.59 0.07 1.6 0.09 7.46 0.15 3.1***

CF 0.02 0.97 0.02 0.5 0.05 1.92 0.04 0.9 0.09 10.98 0.10 2.1**
Resid Var 0.15 1.57 0.09 2.0** 0.20 2.67 0.13 2.8*** 0.18 18.18 0.12 2.4**

ages 0.05 0.60 0.08 1.7* 0.05 1.07 0.08 1.6 0.05 6.35 0.10 2.1**
MktBeta 0.12 1.65 0.07 1.5 0.13 2.79 0.08 1.7* 0.18 17.37 0.13 2.7***

r12 2 0.04 1.30 0.03 0.7 0.10 2.77 0.06 1.4 0.03 13.73 0.02 0.5
Spread 0.14 1.58 0.09 1.9* 0.18 2.79 0.11 2.5** 0.16 17.85 0.11 2.3**

D2P 0.10 1.46 0.07 1.5 0.14 2.41 0.10 2.2** 0.15 15.23 0.12 2.4**
r12 7 0.04 1.40 0.03 0.6 0.09 2.64 0.06 1.3 -0.01 12.64 -0.01 -0.2

F r2 1 0.14 1.27 0.11 2.5** 0.16 2.38 0.12 2.6** 0.14 8.61 0.20 4.2***
LTurnover 0.17 1.73 0.10 2.1** 0.18 2.88 0.11 2.3** 0.22 19.92 0.13 2.8***

Variance 0.16 1.62 0.10 2.1** 0.20 2.83 0.12 2.6** 0.20 19.48 0.12 2.6**
IdioVol 0.13 1.59 0.08 1.7* 0.19 2.66 0.13 2.7*** 0.17 18.21 0.11 2.4**

C -0.01 1.23 -0.01 -0.2 0.05 2.37 0.03 0.7 -0.02 12.20 -0.02 -0.4
Lev 0.10 1.20 0.08 1.7* 0.06 2.18 0.05 1.1 0.06 10.74 0.07 1.4

Family flow 0.04 0.66 0.07 1.4 0.01 1.10 0.02 0.4 0.01 3.54 0.04 0.8
ATO 0.03 1.04 0.03 0.6 0.11 1.84 0.10 2.1** 0.07 9.14 0.09 1.9*

exp ratio 0.04 0.73 0.05 1.1 -0.01 1.17 -0.01 -0.2 -0.04 6.50 -0.07 -1.5
CTO 0.05 1.02 0.05 1.0 0.09 1.74 0.09 1.9* 0.07 7.71 0.11 2.4**

tna -0.02 0.77 -0.03 -0.7 -0.06 1.14 -0.09 -2.0* -0.01 6.70 -0.01 -0.3
SUV 0.07 1.02 0.07 1.5 0.07 1.74 0.07 1.5 0.00 5.76 0.00 0.1

SGA2S 0.04 0.95 0.04 0.9 0.06 2.13 0.05 1.0 0.04 11.44 0.05 1.0
OL 0.05 0.97 0.05 1.1 0.09 1.71 0.09 1.9* 0.08 8.77 0.11 2.2**

PCM -0.01 0.90 -0.01 -0.2 0.01 1.88 0.01 0.3 0.02 7.48 0.03 0.6
r2 1 0.11 1.41 0.07 1.6 0.11 2.42 0.08 1.6 0.07 7.68 0.12 2.4**

CF2P 0.03 1.34 0.03 0.6 0.03 2.60 0.02 0.4 -0.01 13.92 -0.01 -0.2
NI 0.02 1.10 0.02 0.3 0.04 2.10 0.03 0.6 0.08 11.23 0.09 1.8*
Q 0.06 1.22 0.05 1.0 0.07 2.42 0.05 1.0 -0.01 11.26 -0.01 -0.1

FC2Y 0.04 0.98 0.04 0.8 0.06 2.24 0.05 1.0 0.04 11.67 0.04 0.8
PROF 0.07 0.86 0.08 1.7* 0.04 1.90 0.04 0.8 0.11 8.71 0.15 3.2***
LME 0.05 0.87 0.06 1.2 -0.01 1.21 -0.01 -0.2 0.01 5.89 0.01 0.2
D2A -0.03 0.82 -0.03 -0.7 -0.01 1.46 -0.01 -0.1 -0.02 6.23 -0.04 -0.9

turnover 0.05 0.92 0.05 1.2 0.03 1.73 0.03 0.6 0.07 12.73 0.07 1.4
AT 0.07 1.11 0.06 1.4 0.00 1.82 0.00 0.1 -0.01 8.89 -0.02 -0.4
OA 0.00 0.73 0.00 0.1 0.02 1.48 0.02 0.5 0.01 5.30 0.02 0.5

r36 13 -0.02 1.04 -0.02 -0.4 -0.02 2.03 -0.02 -0.3 0.02 11.73 0.02 0.4
AC 0.01 0.71 0.01 0.3 0.03 1.43 0.04 0.8 0.01 5.02 0.02 0.4
E2P -0.03 1.33 -0.02 -0.5 -0.00 2.47 -0.00 -0.0 0.06 14.70 0.05 0.9
OP 0.04 0.96 0.04 0.8 0.03 1.91 0.03 0.6 0.08 9.40 0.10 2.2**

NOA -0.02 0.92 -0.02 -0.5 -0.03 1.39 -0.04 -0.8 -0.02 6.17 -0.04 -0.8
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mean std SR t-stat mean std SR t-stat mean std SR t-stat

DPI2A 0.04 0.93 0.04 0.8 0.08 1.83 0.07 1.6 -0.01 6.27 -0.02 -0.4
A2ME -0.03 1.13 -0.02 -0.5 0.07 2.38 0.05 1.1 0.01 11.54 0.01 0.3

S2P 0.01 1.27 0.01 0.2 -0.02 2.48 -0.02 -0.4 0.02 13.55 0.02 0.4
Investment 0.08 1.01 0.08 1.6 0.07 2.00 0.06 1.3 0.02 7.40 0.03 0.6

LT Rev 0.02 0.98 0.02 0.5 0.04 1.71 0.04 0.9 0.04 9.41 0.05 1.1
BEME 0.05 1.11 0.05 1.1 -0.03 2.34 -0.02 -0.5 0.00 11.50 0.00 0.1

This table reports summary statistics for univariate long-short factors based on fund abnormal returns. Mean and std
of abnormal returns are reported in percentages. The results are sorted according to the Sharpe ratio of univariate
long-short factors based on abnormal returns, in the same order as in Table IA.4. In panel (a), the characteristics of
mutual funds are updated in December of each year and kept constant throughout the year. Panel (b) reports the
results for overlapping annual returns. The standard deviation and t-statistics are reported with Newey-West correc-
tion for time-series correlation with 12 lags. Panel (c) displays the results for non-overlapping quarterly abnormal
return. For each of the 59 characteristics, we construct ten sorted decile portfolios based on fund abnormal returns.
The long-short factors are the differences between the top decile and the bottom decile. The fourth column, “t” reports
the t-statistics for a test that the factor mean is different from 0 and stars denote the significance levels.

IA.2.5 Decomposing Abnormal Returns
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Table IA.11: Decomposition of univariate long-short portfolios from mutual fund abnormal
returns

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

F r12 2 0.28 0.36*** 0.14 0.20*** 0.20 0.17*** 0.14 0.11*** 0.10 0.06***
F ST Rev 0.20 0.30*** 0.14 0.16*** 0.15 0.15*** 0.12 0.08** 0.12 0.06***

Family r12 2 0.19 0.13*** 0.10 0.09*** 0.09 0.04** 0.12 0.07** -0.06 -0.03
Beta 0.15 0.18*** 0.12 0.16*** 0.03 0.03 -0.01 -0.00 0.05 0.03

Rel2High 0.14 0.20*** 0.13 0.25*** -0.05 -0.05 -0.03 -0.03 -0.03 -0.03
RNA 0.13 0.13*** 0.11 0.12*** 0.01 0.01 -0.03 -0.02 0.04 0.02

Family TNA 0.13 0.09*** 0.09 0.07 0.05 0.03 -0.12 -0.06** 0.16 0.08***
fund no 0.13 0.10*** 0.10 0.07** 0.06 0.03 -0.12 -0.05** 0.14 0.07***

flow 0.12 0.11** 0.08 0.08** 0.06 0.03 -0.00 -0.00 0.08 0.03**
Family age 0.11 0.09** 0.08 0.07 0.03 0.02 -0.13 -0.06** 0.13 0.08***

ROA 0.10 0.10** 0.11 0.13*** -0.03 -0.03 -0.05 -0.03 0.01 0.01
PM 0.10 0.10** 0.10 0.11** -0.01 -0.01 -0.03 -0.02 0.02 0.01

ROE 0.10 0.11** 0.09 0.12** -0.01 -0.01 -0.02 -0.01 0.00 0.00
ST Rev 0.09 0.13** 0.06 0.11 0.02 0.02 0.02 0.02 0.01 0.01

CF 0.09 0.09** 0.11 0.16** -0.07 -0.06** -0.06 -0.04 -0.04 -0.03
Resid Var 0.09 0.14** 0.08 0.17** -0.03 -0.03 0.03 0.03 -0.06 -0.06

ages 0.09 0.05** 0.01 0.01 0.06 0.04 0.07 0.04 0.02 0.01
MktBeta 0.08 0.14** 0.07 0.14 0.00 0.00 0.05 0.05 -0.07 -0.05**

r12 2 0.08 0.11** 0.08 0.19** -0.06 -0.08** -0.08 -0.09** 0.01 0.01
Spread 0.08 0.13** 0.07 0.14 -0.01 -0.01 0.04 0.04 -0.04 -0.04

D2P 0.08 0.12** 0.08 0.13** -0.01 -0.01 0.09 0.08*** -0.16 -0.09***
r12 7 0.08 0.11** 0.10 0.19*** -0.07 -0.08** -0.09 -0.09** 0.02 0.02

F r2 1 0.08 0.11 -0.00 -0.00 0.13 0.11*** 0.12 0.08** 0.07 0.04**
LTurnover 0.07 0.13 0.06 0.14 -0.01 -0.01 0.08 0.08** -0.12 -0.09***

Variance 0.07 0.13 0.07 0.17 -0.04 -0.04 0.04 0.04 -0.09 -0.08**
IdioVol 0.07 0.12 0.07 0.15 -0.04 -0.04 0.03 0.03 -0.07 -0.06

C 0.07 0.09 0.08 0.12** -0.04 -0.03 -0.10 -0.08*** 0.11 0.05***
Lev 0.07 0.08 0.05 0.07 0.02 0.01 -0.02 -0.01 0.04 0.02

Family flow 0.07 0.04 0.05 0.03 0.02 0.01 0.04 0.02 -0.03 -0.01
ATO 0.07 0.07 0.05 0.05 0.02 0.02 -0.03 -0.02 0.09 0.04**

exp ratio 0.07 0.04 -0.03 -0.02 0.13 0.06*** 0.08 0.04** 0.05 0.03
CTO 0.06 0.07 0.06 0.07 -0.01 -0.01 -0.07 -0.04 0.07 0.03

tna -0.06 -0.04 -0.04 -0.03 -0.03 -0.02 0.09 0.04** -0.11 -0.06***
SUV 0.06 0.06 0.06 0.07 -0.03 -0.02 -0.04 -0.02 0.01 0.01

SGA2S 0.05 0.06 0.08 0.10** -0.06 -0.04 -0.07 -0.05** 0.02 0.01
OL 0.05 0.05 0.03 0.04 0.01 0.01 -0.01 -0.00 0.03 0.01

PCM 0.05 0.05 0.10 0.12** -0.09 -0.07** -0.06 -0.04 -0.06 -0.03
r2 1 0.05 0.06 0.00 0.00 0.06 0.06 0.05 0.04 0.03 0.02

CF2P 0.04 0.06 0.04 0.08 -0.02 -0.02 -0.08 -0.06** 0.08 0.04**
NI 0.04 0.05 0.04 0.05 0.01 0.01 0.12 0.09** -0.16 -0.08***
Q 0.04 0.05 0.02 0.04 0.01 0.01 -0.07 -0.05** 0.10 0.07**

FC2Y 0.04 0.05 0.07 0.09 -0.06 -0.05 -0.06 -0.04** -0.00 -0.00
PROF 0.04 0.04 0.05 0.08 -0.06 -0.05 -0.06 -0.03 -0.02 -0.01
LME 0.04 0.03 0.04 0.04 -0.01 -0.00 0.03 0.03 -0.03 -0.03
D2A 0.03 0.03 0.03 0.03 0.00 0.00 -0.02 -0.01 0.01 0.01

turnover 0.03 0.03 0.04 0.04 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01
AT 0.03 0.04 0.01 0.02 0.02 0.02 -0.04 -0.02 0.05 0.04
OA 0.03 0.03 -0.01 -0.00 0.05 0.03 0.07 0.04 -0.01 -0.00

r36 13 -0.03 -0.04 -0.10 -0.13** 0.12 0.09*** 0.12 0.08*** 0.02 0.01
AC 0.03 0.02 -0.00 -0.00 0.04 0.02 0.06 0.03 -0.02 -0.01
E2P -0.03 -0.04 -0.01 -0.02 -0.03 -0.02 0.06 0.03 -0.10 -0.05**
OP 0.02 0.03 0.02 0.03 -0.00 -0.00 -0.02 -0.01 0.01 0.01

NOA 0.02 0.02 0.05 0.05 -0.06 -0.03 -0.11 -0.06** 0.05 0.03
DPI2A 0.01 0.01 0.08 0.08** -0.11 -0.07*** -0.19 -0.09*** 0.05 0.02
A2ME 0.01 0.02 0.05 0.07 -0.07 -0.06** -0.15 -0.12*** 0.12 0.06***

S2P -0.01 -0.02 -0.02 -0.03 0.02 0.02 0.13 0.11*** -0.18 -0.09***
Investment 0.01 0.01 0.08 0.08** -0.11 -0.07*** -0.14 -0.09*** 0.04 0.02

LT Rev 0.01 0.01 -0.01 -0.01 0.02 0.02 0.02 0.01 0.01 0.01
BEME -0.00 -0.00 -0.03 -0.04 0.05 0.04 0.13 0.11*** -0.15 -0.07***

This table reports the mean and Sharpe ratio for the decomposition of univariate long-short abnormal return factors.
Means of abnormal returns are reported in percentages. The results are sorted according to the Sharpe ratio of uni-
variate long-short factors. For each of the 59 characteristics and each abnormal return, we construct ten sorted decile
portfolios. The long-short factors are the differences between the top decile and the bottom decile.
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IA.3 Abnormal Return Construction on Out-Of-Sample-Folds

The construction of abnormal returns (equations 1 and 2 in the main text) in our main analysis

respects the chronological order of the data. The main neural network analysis then randomly

samples dates for the cross-out-of-sample analysis based on those abnormal returns. This means

that we use information from time t− 36 to t− 1 to construct the abnormal return at date t in the

first step, while in the cross-out-of-sample analysis in the second step, some dates from time t− 36

to t− 1 are used for training and validation. In this appendix, we investigate the impact of this

data structure by studying an alternative approach that avoids this overlap. Specifically, for each

test-sample in one of the test folds, we still look back three years, but only using data points that

are not within this test fold. Since in our cross-out-of-sample evaluations, each data point is in

one of the test folds, this guarantees that all abnormal returns are defined out-of-sample but also

respect the chronological order locally. The downside of this sampling scheme is that we have

fewer samples in the local regressions and thus this abnormal return definition will be noisier.

IA.3.1 Prediction Results

The cumulative abnormal returns for different information sets are in Figure IA.1 and the cumu-

lative abnormal returns of long-short prediction portfolios are in Figure IA.2. The Sharpe ratio,

mean, and factor R2 of long-short, the first, and the tenth prediction-weighted decile portfolios are

in table IA.12. The results are very similar to the analysis in the main text, though the economic

magnitudes are a few basis points smaller.

The top variable importance for explaining abnormal returns and interaction effects between

sentiment and fund characteristics are in figures IA.3 and IA.4.
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Figure IA.1: Cumulative completely out-of-sample abnormal returns for different information
sets with benchmark random data split.

(a) Fund-specific characteristics + sentiment (b) All characteristics

(c) Stock-specific characteristics + sentiment (d) Stock-specific characteristics

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
returns are prediction-weighted within deciles. We consider fund-specific characteristics + sentiment, stock-specific
characteristics+ sentiment, stock-specific characteristics or all characteristics to predict abnormal returns. Fund abnor-
mal returns are defined completely out-of-sample and the data split is random cross-out-of-sample as in our bench-
mark setup.
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Figure IA.2: Cumulative completely out-of-sample abnormal returns of long-short prediction
portfolios with benchmark random data split.

This figure plots the cumulative abnormal returns of prediction-weighted long-short decile portfolios that use dif-
ferent information sets for prediction. We consider fund-specific and stock-specific characteristics combined with
sentiment. Fund abnormal returns are defined completely out-of-sample and the data split is random cross-out-of-
sample as in our benchmark setup.

Table IA.12: Performance of completely out-of-sample abnormal return portfolios with random
sampling.

Portfolio Information set mean(%) t-stat SR R2
F (%)

Long-short

Stock+ sentiment 0.17 1.8* 0.08 1.78
Stock+ fund+ sentiment 0.37 4.2*** 0.19 4.41

Fund+ sentiment 0.32 4.1*** 0.19 1.49
Stock 0.02 0.3 0.01 -1.11

Top decile

Stock+ sentiment 0.11 2.3** 0.11 1.89
Stock+ fund+ sentiment 0.19 3.4*** 0.16 3.32

Fund+ sentiment 0.15 2.9*** 0.13 0.57
Stock 0.05 0.8 0.04 -0.51

Bottom decile

Stock+ sentiment -0.06 -0.7 -0.05 -0.51
Stock+ fund+ sentiment -0.18 -2.5** -0.15 -0.27

Fund+ sentiment -0.17 -2.7*** -0.15 0.18
Stock 0.03 0.3 0.02 -1.13

This table reports the Sharpe ratio, mean and factor R2 of long-short, the first, and the tenth prediction-weighted decile
portfolios that use different information sets for the prediction. We consider four different information sets which
combine fund-specific and stock-specific characteristics and sentiment. The abnormal returns are defined completely
out-of-sample and the data split is random cross-out-of-sample as in our benchmark setup.
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Figure IA.3: Conditional mean as a function of fund characteristics and sentiment with
completely out-of-sample abnormal returns and random sampling.

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic conditional
on different sentiment quantiles. The other variables are set to their median. The neural network model is estimated
with fund-specific characteristics and sentiment. The interaction effects are evaluated on the test data and averaged
across three cross-out-of-sample folds. The high-minus-low portfolios have a higher mean conditional on high past
sentiment. This is a non-linear interaction effect. Fund abnormal returns are defined completely out-of-sample and
the data split is random cross-out-of-sample as in our benchmark setup.
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Figure IA.4: Top variable importance for explaining abnormal returns with completely
out-of-sample abnormal returns and random sampling.

(a) Top variable importance. (b) Top variable group importance.

This figure shows the importance ranking for individual variables and variable groups. The ranking is the square
root of average of the squared gradient for the eight ensemble fits as in equation 7. The variable importance measures
are evaluated on the test data and averaged across three cross-out-of-sample folds. Fund-specific characteristics and
sentiment are used as network input. Fund abnormal returns are defined completely out-of-sample and the data split
is random cross-out-of-sample as in our benchmark setup.

IA.4 Gradient Boosted Tree prediction results

Our findings are robust to the machine learning method that is used. Based on the discussion

of Li and Rossi (2020), we compare the predictability of gradient boosted trees (GBT) with our

neural networks. We use the same setup as for the neural network prediction and use the default

parameters of the GBT package except for the maximum depth, which is selected optimally from

the validation data.

IA.4.1 Random Sampling

We use the same random sample for the three folds as in the main text for the neural network anal-

ysis. Subsection IA.4.3 shows that there are a few extreme outlier GBT predictions pre-1990, which

makes long-short prediction-weighted portfolio results unreliable. Thus we focus on the equally-

weighted portfolio results for the main analysis. The results for this equally-weighted portfolio

are in Table IA.13 and a comparison between different information sets is given in Figure IA.5. In

Subsection IA.4.3, we also show the prediction-weighted portfolio results post 1990 and find that

the qualitative results are similar. Analogously to the main results with neural networks, we find

that under our benchmark random sampling method, stock characteristics have little predictive

power for abnormal returns of mutual funds.
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Table IA.13: Performance of equally-weighted abnormal return portfolios of GBT with random
sampling.

Portfolio Information set mean(%) t-stat SR R2
F (%)

Long-short

Stock+ sentiment 0.21 3.1*** 0.14 -14.46
Stock+ fund+ sentiment 0.34 4.7*** 0.22 -8.31

Fund+ sentiment 0.32 6.3*** 0.29 -7.97
Stock 0.09 1.5 0.07 -5.07
Fund 0.28 5.7*** 0.26 4.48

Stock+ fund 0.25 4.4*** 0.20 1.65

Tenth decile

Stock+ sentiment 0.11 2.3** 0.11 -4.52
Stock+ fund+ sentiment 0.17 3.1*** 0.14 -0.90

Fund+ sentiment 0.13 3.2*** 0.15 -0.74
Stock 0.05 1.1 0.05 -3.19
Fund 0.12 2.9*** 0.13 0.21

Stock+ fund 0.10 2.3** 0.11 -2.14

First decile

Stock+ sentiment -0.10 -1.9* -0.10 -23.90
Stock+ fund+ sentiment -0.17 -3.2*** -0.15 -21.58

Fund+ sentiment -0.19 -4.6*** -0.20 -22.62
Stock -0.05 -0.9 -0.05 -4.14
Fund -0.17 -3.6*** -0.19 0.17

Stock+ fund -0.14 -2.9*** -0.15 0.10

This table reports the Sharpe ratio, mean and factor R2 of long-short, the first, and the tenth equally-weighted decile
portfolios that use different information sets for the prediction. We consider six different information sets which
combine fund-specific and stock-specific characteristics and sentiment. The three cross-out-of-sample folds use the
benchmark random sampling.
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Figure IA.5: Cumulative abnormal returns of equally-weighted long-short prediction portfolios
with random sampling.

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets.
The abnormal returns are equally-weighted within deciles. The three cross-out-of-sample folds use the benchmark
random sampling.

IA.4.2 Chronological Sampling

Because of the effect explained in Subsection IA.4.3, we focus on the results for equally-weighted

portfolios. The results are shown in Table IA.14 and Figure IA.6. Similar to the chronological split

results from neural network predictions, the predictability of stock characteristics is stronger than

with random sampling but weaker compared to information sets that contain fund characteristics.

The stock characteristics lose their predictive power after the year 2000.
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Table IA.14: Performance of abnormal return portfolios with GBT and chronological sampling.

Portfolio Information set mean(%) t-stat SR R2
F (%)

Long-short

Stock+ sentiment 0.25 3.8*** 0.17 2.30
Stock+ fund+ sentiment 0.42 6.7*** 0.31 6.04

Fund+ sentiment 0.30 5.8*** 0.27 1.68
Stock 0.19 3.4*** 0.16 -1.08
Fund 0.26 5.1*** 0.23 -3.15

Stock+ fund 0.35 6.5*** 0.30 6.00

Tenth decile

Stock+ sentiment 0.13 3.2*** 0.15 -0.29
Stock+ fund+ sentiment 0.18 4.2*** 0.20 -1.21

Fund+ sentiment 0.14 3.5*** 0.16 -7.00
Stock 0.12 3.3*** 0.15 0.55
Fund 0.12 2.7*** 0.12 -3.75

Stock+ fund 0.19 4.5*** 0.21 2.37

First decile

Stock+ sentiment -0.12 -2.2** -0.15 -1.66
Stock+ fund+ sentiment -0.25 -5.0*** -0.27 0.95

Fund+ sentiment -0.17 -3.8*** -0.20 -1.54
Stock -0.07 -1.3 -0.09 -1.36
Fund -0.15 -3.2*** -0.16 -2.93

Stock+ fund -0.16 -3.7*** -0.18 1.63

This table reports the Sharpe ratio, mean and factor R2 of long-short, the first, and the tenth equally-weighted decile
portfolios that use different information sets for the prediction. We consider six different information sets which com-
bine fund-specific and stock-specific characteristics and sentiment. Three cross-out-of-sample folds keep the chrono-
logical order.
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Figure IA.6: Cumulative abnormal returns of equally-weighted long-short prediction portfolios
with GBT and chronological sampling.

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
abnormal returns are equally-weighted within deciles. The three cross-out-of-sample folds keep the chronological
order.

IA.4.2.1 Predicting Total Returns

When predicting total (as opposed to abnormal)returns, we are not affected by the outlier issue

described in Subsection IA.4.3. Hence, we return to the benchmark setup and report results for

prediction-weighted portfolios. The results for equally-weighted portfolios are comparable.

Table IA.15 and Figure IA.7 show the results for predicting total returns with GBT and chrono-

logical sampling. Both fund characteristics and stock characteristics strongly predict out-of-sample

mutual fund returns, and the economic magnitudes are similar to the results in section A.2.4. That

is, we do not find evidence that GBT has stronger predictive power for fund total return than our

benchmark neural networks.
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Table IA.15: Performance of return portfolios with GBT and chronological sampling.

Portfolio Information set mean(%) t-stat SR R2
F (%)

Long-short

Stock+ sentiment 0.52 3.6*** 0.17 -13.40
Stock+ fund+ sentiment 0.56 3.9*** 0.18 -14.90

Fund+ sentiment 0.49 3.6*** 0.17 -12.34
Stock 0.37 3.6*** 0.17 -218.36
Fund 0.28 2.8*** 0.13 -119.70

Stock+ fund 0.44 3.8*** 0.18 -152.90

Top decile

Stock+ sentiment 0.13 3.2*** 0.15 -0.29
Stock+ fund+ sentiment 0.18 4.2*** 0.20 -1.21

Fund+ sentiment 0.14 3.5*** 0.16 -7.00
Stock 0.12 3.3*** 0.15 0.55
Fund 0.12 2.7*** 0.12 -3.75

Stock+ fund 0.19 4.5*** 0.21 2.37

Bottom decile

Stock+ sentiment -0.12 -2.2** -0.15 -1.66
Stock+ fund+ sentiment -0.25 -5.0*** -0.27 0.95

Fund+ sentiment -0.17 -3.8*** -0.20 -1.54
Stock -0.07 -1.3 -0.09 -1.36
Fund -0.15 -3.2*** -0.16 -2.93

Stock+ fund -0.16 -3.7*** -0.18 1.63

This table reports the Sharpe ratio, mean and factor R2 of long-short, the first, and the tenth prediction-weighted
decile portfolios that use different information sets for the return prediction. We consider six different information
sets which combine fund-specific and stock-specific characteristics and sentiment. The three cross-out-of-sample folds
keep the chronological order.

Figure IA.7: Cumulative returns of prediction-weighted long-short prediction portfolios with
GBT and chronological sampling.

These figures show the cumulative returns sorted into prediction deciles for different information sets. The returns
are prediction-weighted within deciles. The three cross-out-of-sample folds keep the chronological order.
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IA.4.3 Instability of GBT Prediction Pre-1990

The GBT prediction in the early part of the sample is more extreme that that of the neural networks.

This makes the long-short abnormal return prediction portfolio look extremely good in the early

part of the sample. An illustration of this effect is shown in Figure IA.8.

Figure IA.8: Cumulative abnormal returns of long-short prediction-weighted prediction
portfolios of GBT with random sampling

These figures show the cumulative abnormal returns sorted into prediction deciles for stock-specific characteristics.
The abnormal returns are prediction-weighted within deciles.

However, if we analyze equally-weighted portfolios instead, we arrive at a different conclu-

sion. The results are shown in Figure IA.9. Hence, the good results in the early part of the sample

arise not because we are systematically able to differentiate good from bad mutual fund managers

but because we can predict some extreme outliers correctly with GBT. This is the reason why in the

prior subsections of GBT prediction, we focused on the results with equally-weighted portfolios.
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Figure IA.9: Cumulative abnormal returns of equally-weighted long-short prediction portfolios
of GBT with random sampling

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
abnormal returns are equally-weighted within deciles. The information set is stock characteristics only.

Table IA.16 and Figure IA.10 report the prediction-weighted long-short portfolio results after

1990. Now, again we find that stock characteristics cannot predict abnormal returns under random

sampling, even with GBT models.
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Table IA.16: Performance of abnormal return portfolios post 1990 with random sampling.

Portfolio Information set mean(%) t-stat SR R2
F (%)

Long-short

Stock+ sentiment 0.17 1.6 0.09 -25.12
Stock+ fund+ sentiment 0.28 2.7*** 0.14 -20.55

Fund+ sentiment 0.29 4.1*** 0.22 -14.60
Stock 0.04 0.4 0.02 -19.44
Fund 0.28 4.3*** 0.23 -6.62

Stock+ fund 0.16 1.7* 0.09 -12.56

Top decile

Stock+ sentiment 0.02 0.3 0.02 -13.83
Stock+ fund+ sentiment 0.10 1.6 0.09 -11.11

Fund+ sentiment 0.12 2.5** 0.14 -8.73
Stock -0.08 -1.1 -0.06 -23.57
Fund 0.09 2.0** 0.11 -4.78

Stock+ fund 0.04 0.7 0.04 -12.41

Bottom decile

Stock+ sentiment -0.15 -1.8* -0.13 -24.11
Stock+ fund+ sentiment -0.18 -2.1** -0.16 -21.22

Fund+ sentiment -0.17 -2.8*** -0.20 -27.59
Stock -0.12 -1.3 -0.09 -4.87
Fund -0.19 -3.1*** -0.21 -5.43

Stock+ fund -0.12 -1.4 -0.10 -5.55

This table reports the Sharpe ratio, mean and factor R2 of long-short, the first, and the tenth prediction-weighted
decile portfolios that use different information sets for the prediction. We consider six different information sets
which combine fund-specific and stock-specific characteristics and sentiment. The three cross-out-of-sample folds use
the benchmark random sampling and the GBT model predictions are post 1990.

Figure IA.10: Cumulative abnormal returns of prediction-weighted long-short prediction
portfolios post 1990 with random sampling

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
abnormal returns are prediction-weighted within deciles. The three cross-out-of-sample folds use the benchmark
random sampling and the GBT model predictions are post 1990.
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