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ABSTRACT

Keeping Up With the Joneses: Competition and the
Evolution of Collusion in an Oligopolistic Economy*

An economy consists of many duopolistic markets. Firms must earn normal
profits in the long run if they are to survive. Normal profits are interpreted as
the long-run limit of average profits in the whole ecocnomy. We adopt the
aspiration based model of firm behaviour, and link it to the economy with the
requirement that in the long run the profit aspiration must be at least as great
as normal profits. We assume that the joint profits can be maximized with
symmetric payoffs, and with very few other assumptions are able to show that
the (almost) global attractor is the cooperative outcome.
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NON-TECHNICAL SUMMARY

Is there a natural tendency for markets to become collusive over time? In this
paper | argue that indeed there is. Most studies of competition have tended to
focus on the interaction between oligopolists within a particular market. This
paper focuses on the econcmy-wide interaction of oligopolists competing in
different markets. The key linkage is that the level of normal profits in the
economy is determined by the average level of profits in the economy. This
link occurs because of capital markets.

What this paper shows is that this link leads to collusion, since excessively
competitive markets are unsustainable, since one or more firms must then be
eaming low profits. In the long run, the only sustainable outcome is for
complete collusion in all markets. While many studies have emphasized the
possibility of collusive outcomes, this study argues that collusion is almost the
only and the inevitable outcome.

The implications of the framework of this paper for policy are that we should
expect that collusion is the norm in the economy. The market mechanism will
tend to lead to competition being a transitory phenomenon.

It has long been argued that firms must earn at least normal profits to survive
in the long run. Failure to achieve this will activate some market mechanism
such as bankruptcy, the possible replacement of managers by shareholders,
or take-over. The level of normal profits is taken to be the average level of
profits in the economy. This paper explores the implications of this hypothesis
in the context of an economy consisting of many identical oligopolistic
markets: what conclusions can we reach about the level of competition that
will emerge in such an economy? We model the behaviour of firms using an
aspiration based model of bounded raticnality. Firms at any time adopt a pure
strategy. If they are achieving their aspiration level, then they are likely to
continue with the same strategy. If they are below their aspiration level,
however, then they are likely to experiment and try something new.
Furthermore, we adopt a formulation which allows the aspiration level to be
endogenous reflecting the past experience of the firm and the current
profitability of the economy.

The key feature of this paper is to link together the aspirations of firms with the
level of normal profit by requiring that in the long run the aspiration level of all
firms is to have at least normal profits.



Making only a few very weak assumptions about the nature of the markets and
the behaviour of firms, the paper shows that the proportion of markets that are

collusive will eventually grow and converge to unity. The two key assumptions
are:

 First, the duopoly joint profits are maximized at a payoff-symmetric
outcome. This means that the maximisation of industry profits does not
require an asymmetric cutcome where one firm earns more than the other.

» Second, the probability that a firm will experiment needs to depend on the
relation between actual profits and aspirations in the following manner:
when firms are below aspiration and decide to experiment, there is a strictly
positive lower bound on the probability of switching to any particular strategy
{ie. any of the possible strategies may be chosen); when firms are above
aspiration, the probability of experimenting tends to zero rapidly over time

{i.e. in the long run. if firms achieve their aspiration level they tend not to
experiment).

As in conventional approaches, there is an incentive for an individual firm to
deviate from the collusive outcome. This will tend not to occur, however,
because the colluding firms will be above aspiration, and hence unlikely to
experiment. Even if they do deviate from the collusive outcome, however, their
actions will lead either to the other firm cr both firms earning lower profits. This
will trigger further experimentation that may result in more intense competition
for a peried. In the long run, however, the market can only settle down if both
firms end up earning at feast the average in the economy. This can only
happen in all markets if all markets consist of firms that are colluding.

This paper ignores one of the potentially most important sources of
competition; entry. Entry might not destroy the result, however, but only
temper it. Very simply, free entry can be seen as ensuring that profits net of
entry costs are about zero. The fact that the post-entry game is collusive will
lead to excess entry. The economy will then be exempiified by collusion
between incumbents (price exceeds marginal cost), and zero profits (price
equals average cost). This will lead to a highly inefficient welfare cutcome.
Entry can only counteract the tendency to collusion if the entry is ex post, as in
the case of contestable markets or limit-pricing theory. This raises many
issues that are not addressed in this paper, but will be in sequel works.



"The best monopoly profit is a quiet life" John Hicks (1935).

"This Is the criterion by which the economic system selects
survivers: those who realise positive profits are the survivors;
those who suffer losses disappear”  Armen Alchian (1950, p.213)

It has leng been argued that firms must earn at least normal-profits to
survive in the leng-runi. Failure to achieve this will activate some
market mechanism such as bankruptey, the possible replacement of managers
by shareholders, or takeover. The level of normal-profits is taken to be
the average level of profits in the economy. This paper explores the
implications of this hypothesis in the context of an economy consisting of
many lidentical oligopolistic markets: what conclusions can we reach about
the level of competition tha’ will emerge in such an economy?

We model the behavicur of firms using an aspiration based model of
bounded rationality. Firms at any time adopt a pure-strategy. If they
are achieving their aspiration level, then they are likely to continue
with the same strategy. If however, they are below their aspiration level
then they are likely to experiment and try something new. This approach
has been put forward as a good medel of individual decision making in the
mathematical psychology literature ((Lewin (1936), Siegel (1957)), and as
a medel of organisaticnal decision making (Cyert and March (1963). Xornai
(1971) and Simon (1947). Furthermore, we adopt a formulation which allows
the aspiration level to be endogenous (as in Borgers and Sarin {1994),
Karandikar et al (1997), Palemino and Vega-Redonodo (1997)), reflecting
the past experience of the firm and the current profitability of the
economy .

The key feature of this paper is to link together the aspirations of
firms with the level of normal profit by requiring that in the lomg run
the aspiration level of all firms is to have at least normal profits.

The structure of the economy envisaged 1s that of an economy
consisting of a large number of identical duopolies. Firms have a finite
strategy set, and we need assume very little about the structure of the
payeff matrix of the constituent duopoly game, except that the Jjoint
payoff can be maximized by a payoff-symmetric outcome. We need to make

some assumptions about aspirations and experiments: if firms are achieving

Ithere are obvious exceptions here, such as non-prefit organisations and

owner—managed firms. We are considering the “"typical” managerial public
corporation.



their current aspiration level, then the probability that they experiment
goes to zero over time, whilst the probability is bounded away from zero
if they are below aspiration. In the case that firms decide to experiment
and try out a new strategy, we need assume only that the probablilitles of
choosing certain strategies are bounded away from zero over time.

The main result of the paper is the Theorem, which states that the
collusive (joint-profit maximizing) outcome Is the (almost) global
attractor for this ececnomic system. What is novel about this result is
that cooperation is not only possible, but almost inevitable. In the case
of the PD the dominant strategy of defection will disappear, and all firms
will end up cooperating to produce the symmetric joint profit maximum.

In section 1 of the paper we outline the basic model in terms of
payoffs and strategles. In  section 2, we consider how the
economy/population evelves over time, and state the main results. In
section 3. we look at two concrete examples to illustrate the model: the
FD and Cournct duopoly. In section 4 we discuss the recent related

literature, and then conclude.

1: The Model.

Time is discrete and eternal, with t=0...e. Although the model is more
generally applicable, we will talk about "firms" rather than “"agents".
There are K pure-strategies, k={1...K}. T is the KxK matrix of payoffs
n;y, where #y; is the payoff when i plays j. Payoffs are bounded, with
w ,en, where nE€R Is the smallest comvex set covering the points {'rtU}. We
can define the set of unerdered pairs of strategies as L: where L =
{01,3): (1,3)e{1,2,..X}2 and i=j }, sc that L=#L=K(K+1)/2. Elements of L
(r, g € L) may sometimes be referenced by the underlying pair (i,3). & is
the set of subsets A of L: & = {A:ASl}. In particular, the set of payoff-
symmetric pairs is Sym = {gel: numn”}. The average payoff earned by a
pair q is: =w(q) = {;*%;1)/2. The only assumption we need to introduce
about the payoffs II are the following:

Definition 1

(a) Maxav = maxqeu_ nlqg)
(b) IS = maxquym n(q)
S = argrnaquSYm w(g)




Assumption 1: IS=Maxav

Assumption 1 requires that the maximum Joint-payoff can be attained at a
payoffwsymmetric pair of strategiesz. For example, consider the standarg
Prisoner's Dilemma (PD) with:
20
Tpp = [a 1]

where 2 is the cooperative payoff: 1 is the payoff when both defect; 0 is
the sucker's payoff; a>2 is the double crosser’'s payoff. Al is satisfied
iIff a=4: that is the c¢ombined defect/sucker payoff is less than the
combined cooperative payoff.

The economy consists of a continuum of markets A<i0,1], each
consisting of a ducpoly. We can define the general characteristic
function over all subsets A of markets [0,1]: for any A in A*, the e-field
of [G,1], Jy(A,A)=1 iff Aed at time t (0 otherwise). The probabllity

measure P can then be defined:
1

Py(A) = JJt(A,A)dR
o]

For most of the paper. we will want to classify ducpolies in terms of the
pailr of strategies q which they are playing. A particular market A is
type g=(i.j} at period t iff one firm plays i and one firm j in peried t.
The notien of duopely "type" can be interpreted as the competitiveness of
the market, since this is summarised completely by q. Define the mapping
Ap:h->A*, from subsels of strategy pairs subsets of markets:

Ay{A) = {2e{0,1]:% is type q at time t and qeA)

The proportion of duopolies in the set Ar{A) at time t is then simply:

Pz {A)

n

Pe(Ag(A))

P+ (A} gives the proporticn of markets that have duopoelies of type geh in A
at time t. In particular, we can write the Lx1 vector Py=[Pr(g)] where
Pyeal gives the proportions of each gel.

The average level of profits at t in markets with pair geA is:

Zanother way of putting Al is that the “cooperative" outcome payoff 1S
does not lie strictly in the interior of the convex hull of T in duopely
payoff space {m,,,m,, }en?.



fle(a = ¥ Pla).niq) /ey (a)
qeA
The average level of profits in the eccnony at t is M= (L). Sometimes
for convenience we will write ﬁtkﬁ(PtJ, where M:aton is time-invariant, I
is fixed and the dynamics of Pt over time will completely determine the
dynamics of the average profits ﬁt- Analysing the model in terms of palrs
of strategies used is gimilar to the methodology adopted by Atkinsen ang
Suppes (1958)3.

1A: Aspirations and Learning,

Each firm follows the following simple learning rule. It has an
aspiration level4 %re- If it is earning less than %ry, then it decides to
experiment with probability Bee - If the firm is earning at least Ly
then it is achieving its aspiration level, and it will experiment with
probability g.. The essence of the aspiration model is that B Epy -
Define for each t gc=sup {e,} and Btzinff{ﬁft}, a Finf {e }. Let us
denote the information set of firm f at time t as heet whilst we will not
define it formally here. since the model requires little particular
structure, it could include the past history of the firm and Its industry,
and the current and past mean-profit levels. The aspirations of each firm
f can be based on its own information, ®peete(hy.t), in 2 possibly

idiosyneratic manner witich varies over tipe.

Assumption 2: There exists Yo such that for t>t,,
(a) e =S,

b) oy = ﬁt'nt- where %420 and 1m0 (uniform convergence).

(c) 38>C such that for all £ and t, g, =5,

oo
(d) 3e € 0.1) s.t. £¢3e  for all t and E £, is bounded.

=0

3In their "finite markov medel®, agents choose pure-strategies but have a
probability of switching between pure strategies. The key difference with
the present paper is that We use an explicit aspiration based model.

See Kornai (1971, pi57-158) for a discussion of the origins and meaning
of the term "aspiration level® in psychology and economics. The use of
the aspiration based model of corporate decision making has a long histery
in economics - Cyert and March (1963), Simon (1947). There is also
empirical support from experiments- see Lant (1992).
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Assumption A2(a) requires that (eventually) firms have aspirations which
are not overoptimisticS, Assumption A2(b) requires that in the limit (the
long-run) the aspiration level is at least equal to average profits. One
possibility satisfying A2(a,b) is to have o:ﬁ=<xt=ﬁt (Dixen (1995),
Palominoe and Vega-Redondo (1996)), Under A2(c)-(d) there there is
eventually a discontinuity in the probability of experimenting at ®ep: at
or above the aspiration level, the probability of experimenting goes
rapidly to zero A2(d): below it the probability of experimentation remains
bounded away from zero indefinitely (A2(e));eventually £r¢<B=B 8.  There
is nothing that precludes €se and By, from depending upon wvarious factors
(the distance of current profits from the aspiration level?, the payoff-
history of the firm etc.) so long as AZ is satisfied.

1B: Switching Probabilities.

Given that a firm decides to experiment, we can define its conditional
switching probabilities, See(l.g) is the period t probability that firm £
switches from strategy 1 to strategy g, conditional upon deciding to
experiment. For an individual firm, we can define these in a very general
way: In particular they might depend upen the history of the individual

firm, the current and past value of average profits and so on. We assume:

Selig) = Splhp t) (1-6,,) + (8407K)
13

with: Y seelig) = 1 ang 80¢€[0,1] for all t and f.

g=1

S¢(hey.t) represents the systematic part which can represent any model of
learning or experimental behaviour (including reinforcement learning,
best-response dynamics, imitation and so on), which can be firm specific.

Note that we allow for t to enter into the function directly. &,.e[0,1]

21fF %>TS, then the firms would be aiming at a level of profits that is
unattainable in the eceonomy as a whole.

This captures the essence of Hick’s notion of a "quiet life", if we
loosely interpret "the monopoly preofit" as being one above the aspiration
level,

In Karandikar et al (1997), e,=0, and Bee is a function of py~Tlpy.
Consistent with A2(c), they assume that “ipertin" means that B. is
bounded away from 1: unlike this paper, however they assume that B. tends
to zero as %ey~Tee tends to zero from above, which viclates A2(c).

5



represents the randem or "drift" term In the declsion: a proportion &, of
the systematic probability is reallocated uniformly over all K strategies.
this can be firm and time specific. At present, we need not specify
further beyond this very general model: we will give specific examples at
the end of this section.

Whilst we have interpreted switching behaviour as the same firm in
two periods changing behavicur, the formal model would be exactly the same
if we think of a different firm in each period. For example, a firm in a
particular market might exit (due to bankruptcy, or death). In this case
the switching probability would pertain to the “place” of the firm: the
probability that next period the firm taking the place of the existing
firm would play a particular strategy.

Let us define the set of potentially Joint-profit maximizing
strategies ¢: ¢ = {iek: 3j such that nlJ=HS}( Furthermore, let us denote

firm f's competiter as firm £ .
Assumption 3: Switching probabilities. There exists >0 such that for all
f and t, s (L,g)>y if either

{a) geo

or (b) £’ is playing g at time t.

This iz a very general a=sumption which applies te any learning or

experimentation process if the neise term is bounded away from zero:

Observation: [f there exists &>0 such that for all feF and t=0...w

8¢¢>8, then A3 is satisfied for any s;(hy.t).

To see why, under the antecedent condition (1)} becomes:

=

=0

61'?.

Lt

s (i, g) =

which satisfies A3. In the no-noise case (5,=0 for all f and t), then
some learning models might satisfy A3, whilst others will not. We will be
using A3 as a sufficient condition.

Let us briefly consider some examples of noiseless switching rules



with &=0, First, we can have an imitation rule®, Most simply the
experimenting firm randemly observes another firm in the economy and
copies it. In this case, the conditicnal switching probabilities are the
pepulation proportions for that strategy ;t' s0 that:

Spelig) = ﬁt(g)
Imitation may fail to satisfy A3 if ﬁt(g} tends to 0 and gee. Secondly,
consider best-response dynamics. Let us define the best response mapping:

BR(J) = argmax =
1=1..K

The best response dynamic results in  the following switching
probabilities:

1]

1 .
eyl R (]
. ¥ER() if geBR(]j)
s lig) =
0 otherwise.
where we have assumed that if there is more than cne best response they
are equally likely to be chosen. Thirdly, we can have random swiltching:
Selig) = 1K
These three rules are all independent of history: alternatives are

fictitious play, reinforcement learning which are history dependent.

2: The Evolution of the Population.

At any time t, we can divide the set of markets into two groups: {1i] the
“above aspiratien* markets, where both firms are above aspiration and who
experiment with a probability bhelow £4; (ii) the ‘“below aspiration”
markets in which one or both firms have profits strictly below aspiration.

Define the subset of above-aspiration markets:

Ady = {Ae(0,11; Ty E ey and wy,® @, )

where firm £ at A plays i and firm f£* plays j. The below-aspiration
markets are the complement of Ady: BAr=[0,1]1-A4;. BAy can be partitioned
into two, deperding whether one or both firms are earning below
aspiration:

%This is an old idea - see Alchian (195C). For recent applications, see
Weibull (1995, pp.186-190), Schlag (1996a.b).
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BAZy = {xel0,1]: m ) < & and mj< ap )
BAly = BAy - BAZ:

Since the payoffs of each firm are determined by the pair of strategles
played at its market, we can classify markets according to the pair of
strategies played at that market. In the proofs, it is useful to divide

up the pairs L into two subsets using the least-aspiration ay:

Adg = {(1.J) e L my = «p and M= g}
BAr = L - AA¢

Since at may vary with time, the set of pairs AA{SL will in general vary
over time. The two subsets S and Sym are time invariant. Clearly, under
Al, SsAA¢ for all t. Furthermore, define BSym{=BAinSym. Since «t is the

lower bound on aspiraticns at t, the following inequalities hold:

v

Py (BAt) P (BAt) (Ay (BA)SBA:)
Py(BA2¢) = Py(Bsymy) (A (BSymy)SBA24) (1)
Pr(AAy) = Pr(AAL) = Pr(S)  (AApSAq (AAL)SAL(S))

In the special case where “rt=“t=ﬁt- we have Py(BA¢)=P{(BAt) and
Pt (AAy)=Py(AA¢). We are now in a position to derive our results: we start
with two Lemmas, and then use these to derive the Theorem. All proofs are
in the Appendix.

Lemma 1. Al-2. (a) There exists P*€[0,1] such that Py(S)-P*.

(b) If P¢(S)>0 for some t, then P (S)>0 for =t and P*>0.

Lemma 1 establishes that there exists a 1limit for the proportion of
markets that are maximizing joint profits. This is trivial in the case
where £4=0 for t=0..w: once joint-profit maximization is established in a
market, neither firm will ever experiment. Hence S is an absorbing state,
and P¢(S) is monotonic and bounded sc that it possesses a limit. The
result still holds so long as g4 converges to zero fast enough (A2(d)).

Furthermore, from Lemma (b), once (strictly) positive P{(S) remains so.



]

Lemma 2: A1-3. z P (BAt) is bounded.
t=0

Lemma 2 implies that the proportion of markets where one or both firms are
below aspiration tends to zero. The reasoning here is in two stages.
First, the proportion of payoff-symmetric markets with both firms below
least aspiration has to go to zero. The proportion of these markets which
become collusive is bounded away from zero (A2(c) and A3(a)): since P (S)
is bounded, it follows that this flow must go to zero, and hence the
proportion of payeff-symmetric pairs must go to zero. The seccond step is
to show that for the proportion of payoff-symmetric pairs to go to zero,
so must P¢(BA{). In fact in both cases, convergence to zero must be quick

enough to ensure that the Infinite sum is bounded.

Theorem: Al - A3, If P+ (S)>0 for some t, then as t - w:

(a) P(S)¢ tends uniformly to 1,
(b) My tends uniformly to TS.

The intuition behind the Theorem is fairly simple. Consider the simplest
case where £,=0 and “rt=“c=ﬁt= the pair(s) S then constitute an absorbing
state in the Markov process. From Lemma 2, the proportion of firms with
one or more firms below aspiration will tend to zero, so that all firms
will be at or above average profits. The only way that this is possible
is te have all firms earnin: TS. We require Py (S)>0 for some t in order
to aveld the process getting stuck at a position where all markets earn
exactly the average at a level below 1S9. 1In the next section, we examine
the Priscner’s Dilemma and Cournot Duopely to illustrate each of these
points in a concrete way.

Whilst the intuition is fairly clear, the exact evolution of P, and
ﬁt is open to a wide variety of possibilities under Al-3. In particular,
the path of both can be highly non-monotonic, and the Theorem does little

to tie down the nature of the path towards the leong-run stationary state.

SIf we assume that €.>0 for all t, then it follows that P+ (S)>0 for all

t>1. However, if £.=0 for all t. then we need to rule out Pt (8)=0 for all
t.



This would require the examination of specific models for the evolution of
aspirations and the switching probabilities. However, the Theorem does
establish the long run properties of a very wide class of learning
processes.

One Interpretation of the result is a model of group selection.
However, it should be noted that individual firms cannot choose whom they
play against: they can only choose their own behaviour. Groups are
selected, but only indirectly by the market mechanism: in duopelies that
are too competitive, profits of one or both firms are eventually below
aspiration, becoming unsustainable. Thus the process outlined in this
paper can be interpreted as one where nature (the economy) selects the
optimum degree of competiti-eness (the cooperative solution). Note that
Alchian's original argument (Alchian (1950)) was conducted at the level of
the individual firm: either the atomistie competitor or a monopoly.
However, in duopoly the individual firm's profits depends upon the joint-
strategy of the firms: hence it is the joint-strategy that is chosen.
Whilst the motivation of our arguments 1s similar in spirit, the

conclusions reached in a strategic environment are very different.

3: The PD and Cournot Duopoly.

Let us consider the examples of the PD and Cournot Duopoly with the
“simple learning model": where £4=0, Bt=1 and «p=a;=My. In the simple

learning model, S is an absorbing state, Ay (BAy)=BAy and Ay (AAy)=4A4¢.

3A: Prisoner’s Dilemma. We consider two cases of the PD:

20 - 2 a
Tpo = [a 1]; ey = [—a 1]

where a>2, k={c.d}, L={cc, cd, dd}, S={cc}, TS=2, K=2, L=3. With Tpp. Al
is satisfied if a=4: with T, any a>2.
Figure 1 here
The evolution of the population in Tpp can be represented on the unit
simplex in Fig 1, where each peint represents a 3-vector of proportions of
markets playing each strategy pair. We represent the iso-average payoff

loci on the simplex: these are linear and parallel since the average
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payoff is a linear combination of the payoffs for each strategy pair, with
slope (a-2)/2. T=a/2 is the dotted straight line passing through corner
all-ed; =2 passes through all-cc, T=1 passes through all-dd.

The dynamics of this system are straightforward with the simple
learning model. Average profits must lie in the interval m=[1,2]. Except
in the case where P(dd)=1 and ﬁt=1, we thus have: AAg={cc}; BSymg={dd};
BA{-BSymy={cd}. From any point except where P(dc)=1, all trajectories will
lead to the apex where Plcc)=1.

With ﬂ;D the sucker-payoff is -a, so that wn(ed)=0. This extends the
possible range of average profits to w=[(0,2]. The iso-profit loci are
downward sloping as in Fig 2: the minimum is represented by the dotted
line through the cd vertex, and the maximum by the dotted line through cc.
The line passing through dd is the =1 line.

Fig 2 here

The dynamics here are different depending whether the economy is in regien
A or B. In region A T>1, so that: AA¢={cc}; ESymy={dd}: BAy-BSym;={cd}.
In region B =1, however we have: AAy={cc,dd}; BAy={cd}. With the simple
learning model, only firms playing ¢ at cd markets will experiment, so
that the trajectories must be horizontal lines in BE. Hence we can see why
we need to assume that P(cc)>0 in the Theorem: all-dd has a basin of
attraction along the Southern edge of the simploxm.

The Theorem gives a sufficlent condition for all-cc to be the
attractor. We will now 1illustrate how dropping some of the key
assumptions will open the possibility that all-cc ceases to be the
attractor. We have already seen why Plcc)>0 is necessary to rule cut all-
dd in U;D. Next consider a violation of A3: the nolseless best-response
dynamic. In both H;D and Tpy, the best response is d (the strictly
dominant strategy), which v.olates A3(a). In this case the pairs divide
into two disconnected sets: there can be no flow into or out of cc, and dd
is an absorbing state. The only flows in this system are from cd to dd.
The resultant dynamics are represented in figure 3, where the attractor is
the Northeastern edge of the simplex, where there are no cd markets. The
paths to this are simply the horizontal lines: the economy starts off with
an initial proportion of cc markets, and eventually all the rest will

become dd. However, whilst the example of noiseless best response

I0This is not robust: if we have &¢>0 for all t, then this basin
disappears.

14



dynamics is an interesting illustration of what can happen when A3 is
violated, it is not at all robust. Any level of switching noise &>0, no
matter how small, will lead to the Theorem becoming valid again, and cc
absorbing all markets so long as P(S)>0 for some t.
Figure 3 and Figure 4 here
Lastly, what happens when Al is viclated? For simplicity, let us
consider the Mpy payoff matrix, with a=6 so that Maxav=3>TS=2. The iso-
payoff loci in Figure 4 are vertical, passing through all-cd ( [=3), all-
ce (i=2) and all-dd ( fi=1). There are two different regions: in M; T2,
so that AAt={cc}, BA¢={dd,cd}; whilst in Mp AA =@, whilst BAy={cc,dd,cd}
What exactly happens depends upon the exact switching technology.
With random switching, the equilibrium is a point in Ms where
P*(cc)=0.125, P*(dd)=0.5, P*(cd)=0.375 with M=2.125. There is a perpetual

flow of markets between the ‘hree pairs of strategies.

3B: Cournot Duopoly with Random Switching.

Perhaps the simplest economic application of our model is to Cournot
duopoly without costs, so that the two firms in any duopoly produce output
*x and y, and the price is P=max[0,1-x-y], and the profits of the firms are
%.P and y.P respectively. In this case we have the set S has a unique
element: it is the joint profit maximizing (JPM) pair where each firm
produces 0.25 (half of the monopoly ocutput 0.5). Furthermore,
MS=maxav=0.125, so that Al is satisfied. With the random switching rule
s¢(1,J)=1/K for all i,j, which satisfies Al.

Wwell allowed for 21 firm types. choosing a grid of granularity 0.025
over the rangel2 0.1 to 0.6, perturbing it slightly by moving 0.325 to
0.333 (1/3), so that the Cournot-Nash output was included. Hence K=21 and
L=231. The simulations were initiated from the initial position with a
uniform distribution over 2!l pairs. The results of the simulation are
depicted in Figures 5a and 5b. In Figure 5b, we see the path of average
profits over time: in Figure 5a the evolution of population proportions of
the JPM market (0.125,0.125) and the symmetric Cournot market are depicted

(note that the proportions are measured on a logarithmic scale).

II1 would like to thank Paclo Lupi for implementing these simulations for
me In Gauss.

2ye did not allow for a wider grid range (e.g. [0,1]), because the
additional strategies are often ones with very low or zero profits: they
slow down the simulation without adding any extra insight.
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Figures 5a,b here

From Fig S5Sb, we see that the average profits converge to the symmetric
Jeint profit maximum of 0.125. However, the time path of profits is non-
monotonic: at particular times there appear large drops in profit. The
reason for this is quite intuitive. As the average profit level increases
and surpasses that of one or both firms, which start to experiment. The
profits of firms at those markets will then on average fall below the
population average as the firms disperse over some or all output pairs.
The effect of this can be quite dramatic: the discontinuity is
particularly large when a symmetric market goes critical, since both firms
at each such market begin to experiment. However, whilst the time-series
of profits is non-monotonic and “"discontinuous’, there is a clear upward
trend and convergence to 0.125.

From Figure 5a, the proportion P(S) is monotonic. but not smooth.
Corresponding to the discontinuous falls in population average profit,
there are jumps in the proportion of firms at the JPM market,
corresponding to the jumps in average profit. The proportion of firms at
the Cournot pair (1/3,1/3) is a highly non-monotonic time series. The
first thing to note is that in the initial stages of the simulation, the
proportion of Cournot markets exceeds the proportion of JPM markets.
This can occur because during this period the Cournot pair is also in the
set AA¢: until average profits reach 1/9, the Cournot pair will "absorb"
markets from BAy. The fact that the Cournot pair attracts more than JPM
is due to the fact that early on more markets in BA; can reach the Cournot
palr than JPM. However, after 50 iterations, the Cournot pair has a
smaller propertion than the JPM pair, and is in BAt most of the time. The
time-series of the Cournot market type is not atypical: most pairs except
JPM have a similar time-series profile. The convergence of the proportion
of markets towards type JPM is steady but slow: this is because the
probability of hitting JPM from other locations is small throughout the
simulation: from each market in which both firms experiment there is a
probability of 1/442 of moving to JPM. Convergence is in general qulcker
with fewer strategies and non-random switching rules. We explore more
general learning rules in the Cournot model using simulations in Dixon and
Lupi (1997).
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4: Related Literature.

There are several recent papers related to ours. The closest is
Palomino and Vega-Redonde (1996). This paper considers a population of
players who a randomly matched, and play the priscner’s dilemma. The mean
payoff is known in each period, and this determines the aspiration levelld,
If & player is earning below aspiration with its current strategy. then it
switches with a pesitive probability to the other sirategy. They find
that for certain parameters, all paths converge to a situation with a
strictly positive proporticn of cooperaters. Our paper differs in that we
do not have random matching, and that we consider a very general class of
(of which the PD is cne example).

Bendor et al (1994} and Kandrikar et al (1997} both consider a two
player game, where indivigdual behaviour is driven by a similar aspiration
based model. In Bendor et al aspiration levels are constant over time,
and they impose the condition that the individual aspiration levels are
equal to the long-run individual average payoff14 (consistent aspirations);
in Kandrikar et al aspirations can evelve, but are determined by
individual payoff histories. In Both papers, there are multiple long-run
equilibria, which in general include cooperative outcomes. The key
difference between cur own paper and these papers is the seocial dimension:
here it is the population average which ultimately determines the
aspiration leveil3,

The local interactiom 1literature (Ellison (1993), Fudenberg and
Ellison (1995), Oliphant (1994}) is similar in that here firms only
interact with their market competiters. However, the key interactions in
our paper are not only local, but alse social via the population average
paycff. Cur results held even if the individual firms Iignore the
existence of their competitors, and consider themselves to be solving a
non-strategic problem, This feature also differentiates ocur paper from
other learning models [(e.g. Blume and Easley (1992), Marimom and Grattan

{1995)). More similar to ocur approach are papers where there is global

I3In fact, they assume a partial adjustment model, so that the aspiration
level changes in accordance with the difference between the current level
and average profits,

14v s pinimal requirement for a model of endogenous aspirations is that in
the long-run, aspirations should not be out of line with the average
gayoffs accumulated from experience", Bendor et al (1994, p.9).

SThis also differentiates cur paper from Borgers and Sarin (1994]).
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interaction through the population average action {Banerjee (1992).
Canning (1992)). Lastly, there is a theoretical and experimental
literature on learning in oligopely settings (Kirman (1995)), which again

focus on lsolated markets, and do not have the social dimension.

5:Conclusion.

In this paper we have formulated a simple model of social learning which
iz based on an information structure and matching technology suggested by
the economic application of oligopely, and with a learning model in which
aspirations are linked in the long run to the population average payeff.
The results of the paper are very simple and very powerful: the model
predicts perfect collusion (cooperation). even in the case where collusion
implies the use of a dominated strategy (as in the prisoner’s dilemma).
The model does not require strong assumptions on the learning precess or
payoff matrix, and the Theorem will certainly held in symmetrlc versions
of most eccnomic models.
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Appendix: Proofs

Lemma 1. Al-2. (a) There exists P*e{0,1] such that Py (S)aFP".

Py (8)>0 for some t, then P*>0.
t

Proof: Pi(S) = Po(s) + § [P,(S)—PT_I(S}] (a1)
=1

Let us define the two sequences:

wty = max [O,PT(S)—PY,i(S)]

Lk +

nin [O,P.C(S)«-Pr_i (s)]

Hence we can rewrite (A1) as:

t t
PLIS) = Pis) +  § oty + ¥ oTr (a2}
=1 =1
t t £
Under A2(d), 0 = E W= F z £P-(S) = % z er
t=1 T=1 T=1
o
Hence there exists Q<e such that E Wiy = Q.
=1
t
Define Py(S) = Pg(S) + } w'y - @ (a3)
=1

Comparing (a2) and {a3), 1zP4(S)2P.(S) and as t-m» ﬁt{s)a?t(s).

(k)

If

Since

Py(S) is bounded and strictly monctonic, it possesses a limit P*(S).

Hence PFy(S) posses the same limit. From :he definition of Py(S),

P*e{0,11.

o

(b) follovs from the fact that P*z [| (1-ec)Py(S). Hence:

=t
w
log P* = log Pt (S) + z log(i-g4)
=t
oo
= log Pt(S) - § ey +2
T=t
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«© -]
2n Zn+l
where 2 = z [ £y z 0 since 0sg.<l,

£t
=1 =t Zn  2n+l
Hence P* = Py (S). expi{-G}>0
where € is a finite upper bound on Zey from AZ(d). ul
w
Lemma 2: Al-3. ] Py(BA¢) is bounded.
t=0

Proof: The proof uses the inequalities (1), and in particular the first
two inequalitlies provide lower bounds for P{BAy) and Py (BA2¢).

First, we establish that P;{BSym{)-0. Consider the change in the
proportion of firms in doupolies with strategy pairs in 3, P {S)-P,,(S).
This change is the result of inflows less outflows. A lower bound on
inflows is {from A2{c) and A3(a) and (1)) I.P, , (BSym,,), where T=(B.7)2.
Industries in BSym,_; will have both firms below aspiration level (since
both firms have the same profit, which is below least-aspiration ad: >0
is the lower bound on the probability of both firms experimenting and
choosing new strategies that result in a pair geS. An upper bound on the
outflows from S is g, , {since P,_,(S)=1}. Hence:

P (S)-P_, (S} = T'.P,_,(Bsym,_,) - £,.,
T T

Po(S) * .} Py (Baymy) = Jgy

t=1 =1

Pr(S}

From Lemma 1, the Limit of Pp(8) exists and is less than 1:

o [-1]
12 PplS) + T. ] Py y(Bsyme ;) ~ J 6 =0
t=1 t=1

From AZ(d), Zey is bounded. Hence ZP{(BSymy) is bounded

and Py (BSym¢) » 0.
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An analogous argument shows that if Py (BSymy) tends to zero, so must
Pe(BAy). Again, finding a lower bound for inflows, and an upper bound for
outflows into Sym:

P, (Sym}-Py_,(Sym) = [ Pe_j(BAgy) = £¢q.PigiAdeny) — P, (BSym )

= [Py (BALy) - 4= Py {BSym ;)
The lower bound for inflows comes form the fact that if at least one firm
is below @, it may experiment and choose the same strategy as its
competitor {A3(b)): if both experiment they mayv choose a payoff symmetric
pair with a probability of at least T'. The upper bound on cutflows is
based on the assumption that above-aspiration indusiries experiment with
probability g4 and choose a non-symmetric pair; also, all industries in

the subset BSym._, leave Sym. Hence:

T
1 = Pp(Syn) = Po(Sym) + | [?t(sm) - P,__1(Sym)]
t=1
o0 <o «©
1-Pg(Sym) = T. § Py(Bag) - § ey - ¥ P(ESymt)
=1 t=1 =1

Since both Zey and TPt (BSymy) are bounded. and Py(BA;)20. it follows that

o o ]
1-Pp(S) + Joep o } P(BSymy) T2 = § Pr(Bag) = 0
t=1 t=1 t=1

and hence Py {BAg)=0.
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Theorem: Al1-A3. If for some t Py(S)>0, then as t - «: (a) P(S)y tends

uniformly to 1, (b) Ty tends uniformly to IiS.

Proof: From the definition for average profits, for all t:

My = ML) = PL(S).Ty(S) + PylAAy-S).Ty(AA-S) + Py (BAL). Ty (BAL)  (a4)
By definition, fy(AA¢-S) = «t, and from A2(b) ey = fiy-ny, so that
when Pt (S)>0 {ad) becomes:

- Py(S).1S + Py(AAL-S)ny + Py(Bay)T(Ba,)
it = l—Pt(AAt"S) (as)

Since Py(S) + Py(AA¢~S) + Py{BAy) = 1, and the limit of Py(S) is P*>0
{Lemma 1{b}), and of Py{BA¢) is O {Lemma 2), the Limit of Py(AA;~S)=1-P*.
Eence (a3) implies:
Liminf Ty =TS
L5
Since Limsup Iy = 7S

it follows that Lim ﬁt exists and equals NS, with P*=1, o
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