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1 Introduction

The neoclassical investment-based asset pricing model links firm characteristics to stock re-

turns. With homogeneous of degree one technology, the model predicts that a firm’s realized

investment return, which is a function of firm characteristics, should be equal to its stock

return at any point in time (Cochrane 1991, and Restoy and Rockinger 1994). Under more

general specifications of the model in which this equality does not hold, the close link be-

tween stock returns and firm-characteristics at any point in time is still (approximately)

preserved, as we show here. Despite this strong time-series prediction, most of the struc-

tural work in investment-based asset pricing to date, tests the model by the generalized

methods of moments (GMM) using the weaker prediction that a firm’s stock return and

firm-characteristics should be related on average. Following this procedure, Liu, Whited,

and Zhang (2009) (henceforth LWZ) shows that a standard neoclassical investment-based

model with one capital input and homogeneous of degree one technology matches surpris-

ingly well the cross-sectional dispersion in average stock returns of a large range of portfolio

sorts. In this paper, we show how to incorporate the time-series predictions in the estima-

tion and testing of investment-based models using GMM. We find that both the standard

investment-based model in LWZ and a more general specification without homogeneous tech-

nology fail to capture the time-series properties of stock returns in the data, and we discuss

the implications of the findings for future research.

We first apply our estimation approach to the standard specification of the investment-

based model with one capital input and homogeneous of degree one technology, as the one

examined in LWZ, where the equality between levered investment and stock returns holds.

As in a standard nonlinear least squares estimation approach, we add the squared distance

between stock returns and model-implied investment returns at each point in time as a new

set of target moment conditions in the GMM estimation of the model, which we label as time-

series moments. In addition, as in previous work, we also consider cross-sectional moments,

that is, the model prediction that investment and stock returns should be equal on average.
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We follow LWZ and estimate the baseline model by the GMM at the portfolio-level, using

ten book-to-market portfolios (we also consider other test assets in the appendix), to reduce

the impact of estimation noise. The estimation targets twenty moments: ten cross-sectional

moments as in LWZ, and our novel ten time-series moments. To understand the role of the

two set of moments on the results, we investigate how the estimates and model fit change

when we vary the relative weight of the two set of moments in the GMM weighting matrix.

Most of our analyses focuses on the economic evaluation of the fit of a candidate investment-

based model as a benchmark for model validation. In particular, we investigate how well

a given model is able to simultaneously capture the average cross-sectional and time-series

variation of stock returns across portfolios with economically reasonable parameter values.

To that end, we discuss the model fit using descriptive measures such as cross-sectional R2

(henceforth XS − R2) of the scatter plot of average portfolio-level stock returns against av-

erage portfolio-level estimated investment returns, the time-series R2 (henceforth TS − R2)

measured as the time-series R2 of a linear projection of the realized stock return against the

estimated investment return, and the magnitude of the pricing errors, measured as the aver-

age of the residuals across portfolios (the standard alpha, or abnormal return, in empirical

asset pricing), and over time for a given portfolio.

The estimation results of the baseline investment-based model can be summarized as

follows. First, consistent with previous work, when we only use cross-sectional moments in

the GMM estimation, the model matches these cross-sectional moments very well, with low

cross-sectional pricing errors (alpha of about 1.4% per year) and a high XS − R2 of 73%.

The time-series fit of model is very poor, however, with an average TS − R2 of −90% across

portfolios. Thus, most of the time series variation of realized stock returns is captured by

the estimation residuals, not by the predicted investment returns. We conclude that when

estimating the baseline investment-based model using the cross-sectional moments only, the

model fails to capture its time series implications.

Second, our estimation approach uncovers a novel trade-off between cross-sectional fit
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and time-series fit in the baseline investment-based model: when we incorporate the model-

implied time series moments in the GMM estimation to improve its time series fit we find

that the model cannot fit both sets of moments simultaneously. As we increase the relative

weight of the time-series moments in the estimation, the fit on the cross-sectional moments

deteriorates significantly: the XS − R2 decreases from 73% when only cross-sectional mo-

ments are used in the estimation, to –137% when only time-series moments are used in the

estimation. As expected, the time-series fit of the model improves when the weight of the

time-series moments increases. But more importantly, and perhaps surprisingly, even when

only the time-series moments are used in the estimation, the model’s time-series fit remains

poor, with a TS − R2 of −3%. That is, the baseline investment-based model is not able to

capture the time-series behavior of stock returns in the data even when the estimation is

designed to maximize its time series fit.

We investigate two potential empirical reasons for the poor fit of the baseline investment-

based model in the time-series, despite its good fit in the cross-section. First, we investigate

the role of possible issues in the portfolio aggregation for the results. As noted in Belo,

Gala, Salomao, and Vitorino (2022) (henceforth BGSV), and Gonçalves, Xue, and Zhang

(2020) (henceforth GXZ), the portfolio-level aggregation procedure in LWZ suffers from an

aggregation bias, and we investigate if this bias can be the cause the poor fit of the baseline

investment-based model in the time series (we discuss the source of this aggregation bias in

detail in Section 6.1). Following BGSV and GXZ, we estimate the model using portfolio-

level investment returns properly aggregated from firm-level investment return data. Using

simulated data from a calibrated version of the baseline investment-based model, we confirm

that, in theory, the TS −R2 should be perfect when the portfolio-level moments are properly

aggregated, and that the biased portfolio-level aggregation does lead to very low TS − R2,

and hence this bias could be a potential explanation for the low TS−R2 observed in the data.

However, when we re-estimate the model with a proper bias-free portfolio-level aggregation

in the real data, the fit of the model in the time series remains very poor, TS − R2 = −13%,
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even when the estimation focuses only on the time-series moments to maximize its time-

series fit. Thus, portfolio-level aggregation issues do not appear to be the main cause for

the inability of the baseline investment-model to capture the time series behavior of stock

returns in the data.

Second, we address the possibility that quantities (e.g. investment) and asset prices are

misaligned in the data, which might explain the observed low contemporaneous correlation

between stock returns and investment returns. For example, stock prices (and hence stock

returns) might respond instantaneously to aggregate shocks, whereas investment might take

more time to adjust, in which case investment returns lag stock returns (see, for example,

Lamont 2000 for a more formal analysis of this issue). To address this concern, we inves-

tigate the time-series fit of the model using time-smoothed data, that is, annualized 5-year

compounded returns. If the misalignment in the data is relatively short lived, the misalign-

ment between investment and stock returns should be less pronounced at longer-horizons.

We provide support for this conjecture using again simulated data from a calibrated version

of the baseline investment-based model in which we parameterize the data misalignment

and show that, in theory, the TS − R2 is indeed significantly higher when we use annual-

ized compounded returns in the presence of data misalignment (TS − R2 = 71% at longer

horizons versus TS − R2 = 11% at annual frequency with misalignment). However, in the

real data, the TS − R2 using annualized 5-year compounded stock and investment returns

remains negative, TS − R2 = −10%. Thus, the data misalignment in asset prices and real

quantity data also does not appear to be the main cause for the inability of the baseline

investment-based model to capture the time series behavior of stock returns in the data.

Next, we show how to extend our approach to evaluate the performance of investment-

based models in which the potentially restrictive assumption of homogeneous of degree one

technologies does not hold. In these specifications of the model, in general, the stock return

and investment return equality does not hold and so it cannot be used to estimate the

model. However, as we show here, most investment-based asset pricing models imply a
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strong relationship between realized stock returns and firm-characteristics, such as, a firm’s

current marginal product of capital, or the current and lagged investment rates, both in

the cross-section and in time-series. Such relationships can be assessed in the data for

any model by running simple stock return-firm characteristics regressions, and a successful

candidate investment-based model should generate regression results that are consistent

with the corresponding regressions in the real data. This approach can be used simply as

an external validity test of a calibrated existing model, or it can be incorporated in the

estimation and test of any model as additional target moment conditions using, for example,

a simulated method of moments approach.

Using this insight, we apply our approach to a more general specification of the investment-

based model with decreasing returns to scale, non convex and asymmetric adjustment costs,

and operating fixed costs. Using data simulated from the model, we document that this

more general version of the investment-based model also implies a strong relationship be-

tween stock returns and firm characteristics both in cross-section and time-series that can

be well approximated by a linear specification. When applied to the real data, however, the

time-series relationship between realized stock returns and the same firm characteristics is

weak, thus we can also reject this more general version of the model on economic grounds

based on its poor fit in the time-series.

Our approach highlights the importance of examining the time-series, in addition to cross-

sectional, predictions of investment-based models to better evaluate this class of models.

As we document here, matching the time-series implications of investment-based models

represents a higher hurdle for these models than matching cross-sectional moments. Thus,

the use of time-series moments can help researchers identify areas of the model fit that

require improvement, and guide researchers on how to improve their specification.

Our findings have implications for future research in investment-based asset pricing.

Going forward, additional capital inputs such as intangible capital as in Peters and Taylor

(2017) and BGSV, quasi-fixed labor inputs as in BGSV, or short-term and long-term assets
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as in GXZ, might be incorporated in the model to improve its fit in the time-series. In

addition, accounting for firm- or industry-level heterogeneity in the technologies, which are

assumed to be similar across firms in the baseline analyses, as well as more general functional

forms, should be investigated.

The rest of the paper is organized as follows. Section 2 discusses the related literature.

Section 3 presents the model. Section 4 describes the econometric methodology. Section

5 reports the estimation and tests results of the baseline investment-based model. Section

6 investigates potential reasons for the poor time-series fit. Section 7 proposes an exten-

sion of the approach that can be used to estimate and test more general specifications of

the investment-based model. Section 8 discusses the results from alternative estimation ap-

proaches and robustness checks. Finally, Section 9 concludes. A separate appendix with

additional results is available online.

2 Related literature

Our work is closely related to Liu, Whited, and Zhang (2009) who is the first to estimate the

baseline neoclassical investment-based model on the cross-section of stock returns. Different

from LWZ, our estimation procedure requires the model to also match the realized time series

of the observed stock returns as close as possible (in the same spirit, BGSV requires the

model to match the time series of valuation ratios), and not just on average.1 LWZ use their

estimates to document that the implied stock and investment returns have low correlation,

which they label a correlation puzzle. Similarly, the correlation puzzle is documented at the

aggregate level in Kuehn (2009). We show that this puzzle persists even when the estimation

is designed to maximize the time-series fit of the model. Our analysis is broader in that we

show how to incorporate the time series implications of investment-based models directly in

the estimation and evaluation of these models, and we discuss potential alternative empirical
1In robustness analysis, LWZ includes the cross-section of portfolio variance moments in the estimation,

but, as we show in sub-section 8.2, matching variance moments does not help improving the time-series fit
of the model.
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reasons for the observed poor time-series fit.

Li, Ma, Wang, and Yu (2021) estimate an investment-based model with two capital inputs

using firm-level data and Bayesian estimation methods. Different from our work, they focus

only on a specification of the investment-based model in which the homogeneous of degree one

assumption holds, and they estimate the model to match firm-level stock returns. In addition,

and departing from baseline neoclassical investment-based models with stable technologies,

they estimate industry-specific and time-varying technological parameters. They show that

allowing for time-varying parameters of the firm’s technology helps to significantly improve

the fit of the model in explaining the returns of several anomaly portfolios.

Gonçalves, Xue, and Zhang (2020) document the aggregation bias in the original LWZ

portfolio-level aggregation approach (see also BGSV and Zhang, 2017, for earlier discussions

of this aggregation bias in LWZ). Our analysis shows that the aggregation bias alone cannot

explain the poor fit of the investment-based model with one-capital input in the time series.

Delikouras and Dittmar (2021) estimate and test standard investment-based models using

GMM with cross-sectional moments and investment Euler equations, which requires the

specification of a stochastic discount factor, and also find that the baseline investment-

based model is unable to match both sets of moments jointly. Our paper shares the goal

of testing investment-based models across a larger set of model implications, but differs in

the approach. Our analysis focuses on the properties of the firm’s technology and does

not require the specification of a stochastic discount factor (at least for the estimation of

homogeneous of degree one models), thus avoiding the joint hypothesis testing problem.

Naturally, the ultimate goal is to obtain a specification of firm’s technology and of the

stochastic discount factor that simultaneously matches the cross-sectional, the time-series,

and the investment Euler equations as in Delikouras and Dittmar (2021). However, focusing

only on the properties of the firm’s technology allow us to narrow down how its specification

alone affects the time-series and cross-sectional fit of the model. Our paper thus complements

their approach by providing the first step (focus on firm’s technology) towards that goal.
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Finally, our paper contributes to the literature on developing and improving the method-

ology in the estimation and testing of structural models in financial economics.2 In addition,

our paper is closely related to the strand of production-based asset pricing literature that

links firm characteristics to asset returns.3 We contribute to these literatures by improving

the econometric methodology for estimating and testing this class of models.

3 The neoclassical investment-based model

We briefly present the baseline neoclassical investment-based model of the firm with one

(physical) capital input and homogeneous of degree one technology as in LWZ. We use

their notation whenever possible. Time is discrete and the horizon infinite. Firms choose

costlessly adjustable inputs each period, taking their prices as given, to maximize operating

profits (revenues minus expenditures on these inputs). Taking operating profits as given,

firms choose investment and debt to maximize the market equity.

Operating profits for firm i at time t are given by Π (Kit, Xit), in which Kit is physical

capital and Xit is a vector of exogenous aggregate and firm-specific shocks. The firm has a

Cobb-Douglas production function with constant returns to scale. As such, Π (Kit, Xit) =

Kit∂Π (Kit, Xit) /∂Kit, and the marginal product of capital, ∂Π (Kit, Xit) /∂Kit = αYit/Kit,

in which α is the capital’s share in output and Yit is sales.

Capital depreciates at an exogenous rate of δit, which is firm-specific and time-varying:

Kit+1 = Iit + (1 − δit) Kit, (1)

where Iit is investment. Firms incur adjustment costs when investing. The adjustment costs

function, denoted Φ (Iit, Kit), is increasing and convex in Iit, is decreasing in Kit, and has
2Examples include, Cochrane (1996), Hansen and Jagannathan (1997), Bazdresch, Kahn, and Whited

(2018), Chen, Dou, and Kogan (2019), Gala, Gomes, and Liu (2020), Cheng, Dou, and Liao (2022).
3Examples include, Zhang (2005b), Belo (2010), Belo, Lin, and Bazdresch (2014), İmrohoroğlu and Tüzel

(2014), Kogan and Papanikolaou (2014), Kung and Schmid (2015), Croce (2014), and Deng (2021).
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constant returns to scale in Iit and Kit. We use a standard quadratic functional form:

Φ (Iit, Kit) = c

2

(
Iit

Kit

)2
Kit, (2)

where c > 0 is the slope adjustment cost parameter.

Firms finance investment with one-period debt. At the beginning of period t, firm i issues

an amount of debt, denoted Bit+1, that must be repaid at the beginning of t + 1. Let rB
it

denote the gross corporate bond return on Bit. We can write taxable corporate profits as

operating profits minus depreciation, adjustment costs, and interest expense: Π (Kit, Xit) −

δitKit −Φ (Iit, Kit)−
(
rB

it − 1
)

Bit. Let τt denote the corporate tax rate. We define the payout

of firm i as:

Dit ≡ (1 − τt) [Π (Kit, Xit) − Φ (Iit, Kit)]−Iit +Bit+1 −rB
it Bit +τtδitKit +τt

(
rB

it − 1
)

Bit, (3)

where τtδitKit is the depreciation tax shield, and τt

(
rB

it − 1
)

Bit is the interest tax shield.

Let Mt+1 denote the stochastic discount factor from period t to t + 1, which is correlated

with the aggregate component of the productivity shock Xit. The firm chooses optimal

capital investment and debt to maximize the cum-dividend market value of equity:

Vit ≡ max
{Iit+s,Kit+s+1,Bit+s+1}∞

s=0
Et

[ ∞∑
s=0

Mt+sDit+s

]
, (4)

subject to a transversality condition given by limT →∞Et [Mt+T Bit+T +1] = 0.

Firms’ equity value maximization implies that Et

[
Mt+1r

I
it+1

]
= 1, in which rI

it+1 is the

investment return, defined as

rI
it+1 ≡

(1 − τt+1)
[
α Yit+1

Kit+1
+ c

2

(
Iit+1
Kit+1

)2
]

+ τt+1δit+1 + (1 − δit+1)
[
1 + (1 − τt+1) c

(
Iit+1
Kit+1

)]
1 + (1 − τt) c

(
Iit

Kit

) .

(5)
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The investment return is the ratio of the marginal benefits of investment at period t + 1 to

the marginal costs of investment at t.

The first-order condition of maximizing Equation (4) with respect to Bit+1 implies that

Et

[
Mt+1r

Ba
it+1

]
= 1, in which rBa

it+1 ≡ rB
it+1 −

(
rB

it+1 − 1
)

τt+1 is the after-tax corporate bond

return. Define Pit ≡ Vit − Dit as the ex-dividend equity value, rS
it+1 ≡ (Pit+1 + Dit+1) /Pit

as the stock return, and wit ≡ Bit+1/ (Pit + Bit+1) as the market leverage. Under constant

returns to scale, the investment return equals the weighted average of the stock return and

the after-tax corporate bond return:

rI
it+1 = witr

Ba
it+1 + (1 − wit) rS

it+1. (6)

Equivalently, the stock return equals the levered investment return, denoted rIw
it+1:

rS
it+1 = rIw

it+1 ≡
rI

it+1 − witr
Ba
it+1

1 − wit

. (7)

4 Econometric methodology

Section 4.1 describes the portfolio approach used to estimate the baseline model. Section

4.2 describes the generalized method of moments (GMM) estimation methodology, discusses

the cross-sectional moment conditions used in prior studies, and presents our new time-series

moment conditions. Section 4.3 discusses the metrics used to evaluate the fit of the model.

4.1 Portfolio approach

Equation (7) establishes an exact relationship between a firm’s observed stock return and its

model-implied levered investment return at each point in time. However, using equation (7)

and firm-level data to directly estimate the model parameters can be challenging because the

firm-level data can be very noisy. Thus, we estimate the model parameters using portfolio-

level moments as in LWZ. The use of portfolio-level moments, a common practice in the
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asset pricing literature, has several attractive features in our context. First, it allows us to

reduce the noise in the firm-level data, and hence obtain more accurate parameter estimates

and measures of model fit such as R2. Second, portfolio-level moments are less sensitive, and

hence more stable, to firm entry and exit, and to missing firm-level observations. Finally, the

use of portfolio-level moments allows us link our approach to the large empirical asset pricing

literature, and to characterize the data in a more parsimonious manner as the number of

portfolios is naturally smaller than the number of firms in the data.

Following LWZ, we construct the portfolio-level investment returns as follows. We first

compute the portfolio-level characteristics in the investment return formula given by equation

(5) as Iit+1/Kit+1 =
N∑

j=1
Iijt+1/

N∑
j=1

Kijt+1, Yit/Kit =
N∑

j=1
Yijt/

N∑
j=1

Kijt, etc, where a portfolio is

indexed by i= 1, ..., N , and a firm is indexed by j. We then plug each characteristic in the

investment return formula given by equation (5) to compute the portfolio-level investment

return. As portfolios, we use the standard ten book-to-market (BM) portfolios (we consider

other test assets in the appendix), and describe the construction of the portfolios in the Data

subsection 5.1.

4.2 GMM estimation and target moments

We estimate the investment-based model using the generalized method of moments (GMM).

We define the moment conditions as follows. As in previous work (e.g. LWZ), we consider a

set of cross-sectional moments implied by Equation (7). In particular, this equation implies

a weaker model prediction that stock returns should be equal to levered investment returns

on average,

gXS
i = ET

[
rS

it+1 − rIw
it+1

]
= 0, (8)

in which ET [·] is the sample mean of the series in brackets. We can stack the previous

moment for each portfolio into a column vector gXS, which we label as cross-sectional moment
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conditions.

According to equation (7), the investment-based model has rich implications not only for

the cross-section of stock returns, but also for the time-series of stock returns. Hence, we also

require the estimation to match the equality of stock and levered investment returns at each

point in time as closely as possible, that is, we add a new set of time-series moment conditions.

Consistent with a standard nonlinear least squares estimation approach (henceforth NLLS),

we specify the time-series moment condition for each portfolio as the time-series average of

the squared differences between stock returns and levered investment returns:

gT S
i = ET

(
rS

it+1 − rIw
it+1

)2
= 0. (9)

We can stack the previous moment for each portfolio into a column vector gT S, which we

label as time-series moment conditions.

We note that we use the NLLS objective function (sum of squared residuals) as the target

time-series moment for each portfolio. Under the null that the model is correctly specified,

this moment should be zero, and hence it is a valid moment condition for GMM. Naturally,

if there is some measurement error or other noise in the data, the moment will deviate from

zero even if the model is correctly specified, but it should not deviate too much and the

deviation should be random. The fact that the deviation might be different from zero due to

noise might affect the interpretation of the chi-square tests for assessing the validity of the

model (described in the next section), but this is not a concern in our analysis given that

our focus is mostly on the interpretation of the model fit on economic grounds, with less

emphasis on the statistical tests of the model. Finally, the use of NLLS objective function

as the moment condition has the benefit of being parsimonious and easy to interpret.4

We then estimate the model parameters θ ≡ (α, c), using one-step GMM to minimize
4In robustness checks, we confirm that the main results reported here are similar to those obtained

when we use the NLLS first order conditions as test moments. Also, there are several alternative ways of
incorporating the time-series implications in the estimation and testing of the model, such as, for example,
the use of conditional moments. We discuss the robustness checks and the alternative approaches in the
subsection 8.1 .
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three different set of moments: i) a weighted average of gXS
i ; ii) a weighted average of gT S

i ;

or iii) a weighted average of gXS
i and gT S

i . Specifically, we stack the cross-sectional and the

time-series moment conditions in the matrix g ≡
[
gXS; gT S

]
. We then estimate the model

parameters θ by minimizing a weighted combination of the sample moments, denoted by gT :

min
θ

g′
T WgT , (10)

in which W is the prespecified weighting matrix. As suggested in Cochrane (2009), a pre-

specified weighting matrix can force the estimation and evaluation to pay attention to eco-

nomically interesting moments, in contrast to an optimal (or other) weighting matrix. In

our context, we use several different specifications of the weighting matrix, which vary on

the relative weights of the cross-sectional and time-series moments in the estimation. If the

model is valid, this choice of target moments should not affect the parameter estimates nor

the fit of the model: the same set of model parameters should match both the cross-sectional

and the time-series moments, because both are proper moment conditions and GMM is a

consistent estimator.

Specifically, W = [I, 0] indicates that we put identity weights on gXS and zero weights

on gT S (cross-sectional moments only, which we label as Only XS in the tables). This is a

special case of our methodology and identical to the GMM estimation in existing studies as

LWZ. When W = [0, I], we assign identity weights on gT S and no weights on gXS (time-series

moments only, which we label as Only TS in the tables). More generally, when W = [I, Z],

we assign identity weights on gXS and positive weights Z on gT S (cross-sectional and time-

series moments, which we label as Both XS and TS in the tables). In this setup, by increasing

Z we can specify relatively more weight on gT S over gXS, thus forcing the estimation to pay

relatively more attention to the time-series features of the data.
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4.3 Model evaluation

We evaluate the fit of the investment-based model on economic grounds, with less empha-

sis on the statistical tests of the model. As discussed in Cochrane (1991), the baseline

investment-based model should be rejected at any level of significance because the model

predicts that stock returns and investment returns should be equal at each point in time

without any error term, which is not possible to achieve in the data. Nevertheless, if the

model provides a reasonably description of the real world, the investment return generated

by a successful candidate model should match well the behavior of the stock returns in the

real data, and this matching can be assessed with standard goodness of fit measures.

Specifically, we investigate how well the model is able to capture the average cross-

sectional variation and the time-series variation of stock returns across portfolios. Accord-

ingly, our analyses focuses on first stage GMM estimates. (In the online appendix we show

that our conclusions are similar if we use second stage GMM.) In addition, the evaluation of

the model is based on the properties of easy-to-interpret goodness of fit measures such as the

XS −R2 of the scatter plot of average portfolio-level stock returns against average portfolio-

level estimated levered investment returns, the TS − R2 of the realized stock return against

the realized estimated levered investment returns of the portfolios, and the magnitude of the

cross-sectional and time-series pricing errors of each portfolio.

Specifically, we compute the different goodness of fit measures as follows. Denote the

time series average of stock return and model-implied levered investment return for each

portfolio i as rS
i and rIw

i , respectively, and define rS = 1
N

∑N
i=1 rS

i . We compute the XS − R2
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and the TS − R2 (with pooled data of the portfolios across time) as follows:5

XS − R2 = 1 −
∑N

i=1

(
rS

i − rIw
i

)2

∑N
i=1

(
rS

i − rS
)2 , (11)

and

TS − R2 = 1 −
∑N

i=1
∑T

t=1

(
rS

it+1 − rIw
it+1

)2

∑N
i=1

∑T
t=1

(
rS

it+1 − rS
)2 . (12)

In addition, we compute average pricing errors, both in the cross-section and in the time-

series. We define the model cross-sectional pricing error of portfolio i, which we can interpret

as the standard alpha (abnormal return) in the asset pricing literature, as:

eXS
i ≡ ET

[
rS

it+1 − rIw
it+1

]
, (13)

in which ET [·] is the sample mean of the series in brackets. The mean absolute cross-sectional

error across portfolios is then defined as

∣∣∣eXS
∣∣∣ = 1

N

N∑
i=1

∣∣∣eXS
i

∣∣∣ . (14)

Similarly, we compute the alpha of the spread high-minus-low portfolio (H − L, which is

typically examined in the asset pricing literature) as:

∣∣∣eXS
H−L

∣∣∣ =
∣∣∣eXS

H − eXS
L

∣∣∣ . (15)

To obtain the pricing errors in the time-series, we first compute the time-series pricing
5The TS − R2 is based on pooled data. There are many alternative ways of measuring the time-series

fit of the model. For example, one can compute the time-series R2 for each portfolio separately, and report
an average R2, or compute the correlation of each portfolio with its stock return and report the average
correlation. Although the numbers naturally vary slightly across the different measures, the interpretation
of the results is consistent across these alternative measures. Hence, we use a simple time-series R2 based
on pooled data for most of the analysis.
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error for each portfolio i at each point in time as:

eT S
it+1 ≡ rS

it+1 − rIw
it+1. (16)

We then define the mean absolute time-series error averaged over time and across port-

folios as: ∣∣∣eT S
∣∣∣ = 1

N

1
T

N∑
i=1

T∑
t=1

∣∣∣eT S
it+1

∣∣∣ . (17)

Note that the units of all the pricing errors discussed here are in annual returns per year.

In addition, if the model provides a good description of reality, the estimation residuals

should be small, and largely random either across portfolios or over time, that is, they should

not exhibit a systematic behavior. Hence, we also study the properties of the time-series

error terms (residuals) implied by the estimation. In particular, we perform a principal

components analysis (PCA) of the residuals of the portfolios over time, and report the

fraction of the variation of the residuals that is explained by each principal component.

For completeness, we also perform standard statistical tests of the model. We assume that

stock return and investment returns are observed with an error. The general distribution

theory applies to GMM with prespecified weighting matrices (Cochrane 2009). Let D =

∂gT /∂θ. We estimate S, a consistent estimate of the variance-covariance matrix of the

sample errors gT , with a standard Bartlett kernel with a lag length of two. The estimate of

θ, denoted θ̂, is asymptotically normal with the following variance-covariance matrix:

var
(
θ̂

)
= 1

T
(D′WD)−1

D′WSWD (D′WD)−1
. (18)

To construct standard errors for individual model errors, we use:

var (gT ) = 1
T

[
I − D (D′WD)−1

D′W
]

S
[
I − D (D′WD)−1

D′W
]′

, (19)

which is the variance-covariance matrix for gT . We follow Hansen (1982) to form a χ2 test
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on the null hypothesis that all of the model errors are jointly zero:

g′
T [var (gT )]+ gT ∼ χ2 (#moments − #paras) , (20)

in which χ2 denotes the chi-square distribution, and the superscript + denotes pseudo-

inversion.6

5 Estimation and tests results

Section 5.1 describes the data. Section 5.2 reports the estimation results of the baseline

investment-based model from matching the cross-sectional moments only as in previous

studies. Section 5.3 reports the estimation and tests results from matching the cross-sectional

and the time-series moments jointly.

5.1 Data

To facilitate the comparison with prior studies, our sample construction largely follows LWZ

and GXZ. Our sample consists of all common stocks traded on NYSE, Amex, and Nasdaq

from 1963 to 2020. The firm-level data are from the Center for Research in Security Prices

(CRSP) monthly stock files and the annual Standard and Poor’s Compustat files. We exclude

firms in financial and utility sectors and firms with non positive total assets, capital, or sales.

We include only firms with a fiscal year end in December to align the accounting data across

firms.7
6In the online appendix, we develop an external validity specification test of the model. Specifically, we

estimate the model using cross sectional moments only, and evaluate how the fitted model matches the time
series moments. The conclusions from this approach are similar to those reported here.

7We also replicate our main results using the publicly available data from LWZ, which is from 1963 to
2005. In the online appendix we show that the results using this shorter sample are broadly similar to those
reported here.
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5.1.1 Testing portfolios

As noted, we use ten book-to-market (BM) portfolios as the test assets. Following Fama

and French (1992), at the end of June of each year t, we sort all stocks on BM, which is

defined as the book equity for the fiscal year ending in calendar year t − 1 divided by the

market equity (from CRSP) at the end of December of t − 1, into deciles based on the

NYSE breakpoints. We calculate equal-weighted annual returns from July of each year t to

June of year t + 1 for the portfolios, which are re-balanced at the end of each June. Our

conclusions are similar if other testing portfolios are used, as reported in the online appendix

and discussed in sub-section 8.1.

5.1.2 Variable measurement and timing alignment

Compustat records both stock and flow variables at the end of year t. In the model, however,

stock variables dated t are measured at the beginning of year t, and flow variables dated t

are over the course of year t. As such, for the year t = 2015, for example, we take time-t

stock variables from the 2014 balance sheet, and time-t flow variables from the 2015 income

or cash flow statement.

We measure output, Yit, as sales (item SALE). Capital stock, Kit, is net property, plant,

and equipment (item PPENT). Depreciation rate, δit, is the amount of depreciation and

amortization (item DP) subtracted by the amortization of intangibles (item AM, zero if

missing) and then divided by the capital stock, Kit. We measure investment, Iit, directly

as Kit+1 − (1 − δit) Kit. Total debt, Bit+1, is long-term debt (item DLTT, zero if missing)

plus short-term debt (item DLC, zero if missing). The market leverage, wit, is the ratio of

total debt to the sum of total debt and market equity (from CRSP). The tax rate, τt, is

the statutory corporate income tax rate from the Commerce House’s annual publications.

We measure the pretax cost of debt, rB
it+1, as the ratio of total interest and related expenses

(item XINT) scaled by total debt, Bit+1.

To mitigate the impact of outliers, we winsorize 2% of the extreme observations every
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year. We winsorize the unbounded variables such as investment rate, Iit/Kit, at the 1%−99%

level. For variables that are bounded below at zero, such as sales-to-capital, Yit+1/Kit+1, and

the depreciation rate, δit, we winsorize at the 0% − 98% level. Finally, we do not winsorize

the market leverage, wit, because it is bounded between zero and one.

To match levered investment returns with stock returns, we need to align their timing.

As noted, we use the Fama-French portfolio approach in forming testing portfolios at the

end of June of each year t. Portfolio stock returns are calculated from July of year t to June

of year t + 1. To construct the matching annual investment returns, we use capital at the

end of fiscal year t − 1 (Kit), the tax rate, investment, and capital at the end of year t (τt,

Iit, and Kit+1), as well as other variables at the end of year t + 1 (τt+1, Yit+1, Iit+1, and

δit+1). Because stock variables are measured at the beginning of the year and flow variables

are realized over the course of the year, the investment returns go approximately from the

middle of year t to the middle of year t + 1. As such, the investment return timing matches

the stock return timing as close as possible.

5.2 Matching cross-sectional moments only

We first estimate the investment-based model using only the cross-sectional moments given

by Equation (8), as in LWZ. Column (1) in Table 1 reports the parameter estimates and

goodness of fit measures. The parameter estimates, capital share, α = 0.25, and the ad-

justment cost parameter, c = 10.94, are economically plausible. In addition, consistent with

LWZ, the model does a very good job in explaining the cross-sectional variation in average

returns of the 10 BM portfolios (value premium). The mean absolute cross sectional error,∣∣∣eXS
∣∣∣, given by equation (14) is 1.35% per annum. The mean absolute high-minus-low cross

sectional error,
∣∣∣eXS

H−L

∣∣∣, given by equation (15) is 2.32% per annum. The XS−R2 is 73%, and

hence the model is able to capture the value spread in the cross-section quite well. Finally,

the χ2 test examines the joint errors of 10 cross-sectional moments, and the model is not

rejected statistically (p-value of 0.60).
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[Table 1 here]

In contrast with the good cross-sectional fit, the model is unable to explain the time-

series variation of the stock returns of the 10 BM portfolios. Panel A in Table 2 shows that,

although the mean and standard deviation of stock and investment returns match reasonably

well, the stock and investment returns have a very low correlation for every portfolio, with an

average time-series correlation of 8%. This is in sharp contrast with the model prediction that

stock returns and investment returns should be perfectly correlated. As a result, the stock

returns and the residuals are strongly positively correlated in the time series (correlation is

on average 66% across portfolios) which means that most of the time-series variation of stock

returns is captured by the residuals, not by the predicted investment returns.

[Table 2 here]

Column (1) in Table 1 provides additional evidence for the poor time-series fit of the

model when the model is estimated using cross-sectional moments only. The mean absolute

time series error,
∣∣∣eT S

∣∣∣, given by Equation (17) is about 24% per annum which is greater

than the magnitude of the average returns of the portfolios. The TS −R2 is negative, −90%.

The principal components analysis of the residuals also show that the residuals of the

model exhibit a strong systematic component. The results in the last column of Table 2

reveal that about 72% of the time series variation of the residuals can be explained by the

first principal component. This large systematic component in the residuals suggests that

the poor time-series fit of the model is unlikely due to random noise in the data.

Figure 1 plot the stock returns of 10 BM portfolios at each point in time against the lev-

ered investment returns (left panel) and the error terms (right panel). This figure illustrates

in a clear manner the model’s overall poor time-series fit. If the model performs perfectly,

all the observations in the left panel should lie on the 45-degree line. However, the left panel

shows that the scattered points of stock and investment returns are largely random with a

pooled correlation of 0.11. In sharp contrast with this pattern, the scattered points of stock
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returns and the error terms on the right panel are well aligned along the 45-degree line, with

a pooled correlation of 0.64. Thus, almost all of the time series variation in stock returns of

each portfolio is explained by the model residual, not by the model-implied fitted investment

return.

[Figure 1 here]

5.3 Matching cross-sectional and time-series moments jointly

To improve the time-series fit of the model, we add the time-series moments to the GMM

estimation and re-evaluate the model fit.

Table 1 reports the results. As we increase the relative weight of the time series moments

in the estimation from column (1) (zero weight on TS moments, all weight on XS moments)

to column (8) (all weight on TS moments, zero weight on XS moments), the fit on the

cross-sectional moments deteriorates significantly: the mean absolute cross-sectional error

(alpha) monotonically increases from 1.35% per annum when only cross-sectional moments

are used in the estimation (column 1), to 3.93% when only time series moments are used in

the estimation (column 8); the mean absolute high-minus-low cross-sectional error increases

from 2.32% per annum (column 1) to 16% (column 8), and the XS −R2 decreases from 73%

(column 1) to −137% (column 8). Going in the opposite direction, as expected, there is an

improvement in the fit of the model in the time-series: the mean absolute time series error

(almost) monotonically decreases from 23.90% per annum (column 1) to 17.98% (column

8) and the TS − R2 increases from −90% (column 1) to −3% (column 8). Thus, these

results uncover a novel trade-off between cross-sectional fit and time-series fit: the baseline

investment-based model cannot fit both sets of moments simultaneously. The top (XS −

R2 and TS − R2) and bottom (mae, mean absolute error) panels in Figure 2 illustrates this

trade-off.

[Figure 2 here]
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More importantly, even when only the time-series moments are used in the estimation

(column 8), the model fit on the time series is still poor, with a TS − R2 = −3%. Thus, the

standard investment-based model with one (physical) capital input and quadratic adjustment

costs is not able to capture the time series behavior of stock returns in the data, even when

the estimation is designed to maximize its time series fit.

6 Potential empirical reasons for the poor time series

fit

We investigate two potential empirical reasons for the poor fit of the baseline investment-

based model in the time-series, despite its good fit in the cross-section. We focus on empirical

reasons here because to take the model to the data, it is necessary to map the model vari-

ables to the data, and the required empirical assumptions might not be correct even if the

underlying theoretical model is valid. We then discuss the broader model implications of our

findings for future research in investment-based asset pricing in the Conclusion Section 9.

6.1 Aggregation bias

We start by investigating the role of portfolio-level aggregation for the results. As noted in

BGSV and GXZ, the portfolio aggregation procedure in LWZ suffers from an aggregation bias

because the portfolio-level investment return and stock returns, which the estimation tries

to match, are not computed in a consistent manner because the investment-returns are not

properly aggregated. Specifically, as discussed in section 4.1, the portfolio-level investment

return in LWZ is obtained by first computing each portfolio-level characteristic separately

(e.g., the portfolio-level investment rate, marginal product of capital), and then plug each

of these characteristics directly in the investment return formula to obtain the portfolio-

level investment return at any given point in time. In turn, the estimation matches this

portfolio-level investment return to the equal-weighted average of firm-level stock returns
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in the portfolio. However, given the non linearity of the investment return formula, these

two variables should not be equal, and hence the estimation procedure does not recover the

structural parameters of the model.

To properly estimate the model and recover the structural parameters, as in GXZ, the

portfolio-level investment return should be computed in the same way as the portfolio-level

stock return. Specifically, given the nonlinear nature of investment returns, we should first

compute the investment return for each firm (indexed by the subscript j), and then compute

the portfolio-level (indexed by the subscript i) investment return as the equal-weighted

average of the firm-level investment returns of the firms in the portfolio as rI
it = 1

N

N∑
j=1

rI
ijt. In

turn, this should be matched with the corresponding portfolio i equal-weighted stock return

computed as rS
it = 1

N

N∑
j=1

rS
ijt. (We focus on equal-weighted returns here to be consistent with

the approach in LWZ and GXZ, but our results are similar if we use value-weighted returns.)

To investigate if the aggregation bias induced by the LWZ portfolio-level aggregation can

help explain the poor time-series fit of the baseline model documented in the previous section,

we perform two sets of analysis. First, we use simulated data in which the model holds by

design at the firm-level, and re-estimate the model to evaluate the theoretical impact of the

aggregation-bias on the model fit. Second, we do a proper portfolio-level aggregation in the

real data, and re-estimate the model to re-evaluate its time-series fit.

6.1.1 The impact of aggregation bias in simulated data

We simulate data from a model economy in which the assumptions of the baseline investment-

based model hold, and hence firm-level stock and investment returns are equal by construc-

tion. To generate the data in a simple manner, we use the real data on firm-level charac-

teristics (such as, sales-to-capital, investment rate) as inputs to construct the model-implied

investment and stock returns. We set the true model parameter values for capital share as

α = 0.04, and the adjustment cost parameter as c = 0.8, and compute the model-implied

firm-level investment return using Equation (5) and the actual data on firm characteristics.
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These investment returns are also the firm-level stock return according to Equation (7). As

in the empirical analysis, we then create 10 BM portfolios which we use to replicate the

GMM estimation of the model. The parameter values used generate a value premium in the

artificial data that is similar to the one in the real data (11% per annum, not tabulated).8

To examine the impact of aggregation bias on the evaluation of the model, we replicate

the LWZ portfolio aggregation method using the simulated data. Panel A in Table 3 confirms

the aggregation bias in the parameter estimates, consistent with the results of BGSV: the

estimation fails to recover the true parameter values. Another evidence of the aggregation

bias is that the parameter estimates vary with the set of moments used (columns 1 to 5).

The aggregation bias is also able to break the perfect correlation between stock return and

investment return: Panel A in Table 3 shows that the maximum TS − R2 the model can

achieve is 1%. This poor fit using the simulated data gives hope that the aggregation bias

alone might be an important contributor for the poor empirical time-series fit of model when

estimated using the LWZ portfolio aggregation procedure.

The results using the simulated data also show that the time-series moments are more

powerful at detecting the aggregation error, than the cross-sectional moments. When esti-

mating and testing using only the cross-sectional moments as in column (1) in Table 3, the

mean absolute cross sectional error and the mean absolute high-minus-low cross sectional

error are both low, the XS − R2 is high, about 51%, and the model is not rejected by the χ2

test with a p-value on testing the joint errors of 10 cross-sectional moments of 0.52. That is,

the incorrectly estimated model can easily match the cross-sectional moments. In contrast,

when estimating and testing the model using the time-series moments as in column (5) in

Table 3, both the cross-sectional fit and time-series fit of the model are poor, and the p-value

of the χ2 test on the joint errors of 10 time-series moments is only 0.17, indicating a poor

model fit stemming from, in this case, aggregation bias.
8In untabulated results, we confirm that GMM with a correctly specified model (homogeneous of degree

one) and with proper firm-level aggregation recovers the true model parameters. In addition, the model fit
is perfect, and using cross sectional moments or time series moments in the estimation makes no difference
in the estimation and evaluation of the model.
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[Table 3 here]

6.1.2 The impact of aggregation bias in real data

Next, we investigate the model fit in the data using a proper portfolio-aggregation (which we

label as firm-level aggregation because portfolio-level returns are properly constructed from

firm-level returns). Panel A in Table 4 reports the estimation results from this analysis.

Although the time-series fit of the model improves with the correct aggregation, it remains

very poor. Even when the estimation only targets the time-series moments, the TS − R2 is

−13%.

[Table 4 here]

Taken together, the results from these analyses suggest that the portfolio-level aggregation-

bias issue does not appear to be the main cause for the inability of the baseline model to

capture the time-series behavior of stock returns in the real data.

6.2 Misalignment between asset price data and real quantities

As a second possible empirical reason for the poor time series fit of the baseline investment-

based model, we address the possibility that real quantities (e.g. investment) and asset

prices are misaligned in the data. For example, stock prices (and hence stock returns) might

respond instantaneously to aggregate shocks, whereas firm investment might take more time

to adjust, in which case investment returns lag stock returns (see, for example, Lamont 2000,

for a more formal analysis of this issue). But if the misalignment in the data is relatively

short lived, the misalignment should be less relevant for longer-horizon returns (i.e., for

time-smoothed data). Thus, we conjecture that multi-year compounded investment and

stock returns should be significantly less affected by data misalignment issues than one year

horizon returns.
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6.2.1 The impact of data misalignment in simulated data

We use simulated data to test the conjecture that compounded (here, using a five-year

horizon) investment and stock returns should be less affected by the data misalignment

issues than annual return data.

As in the previous sub-section, we first generate simulated data from a specification of

the model in which the equality between investment and stock returns holds (using the same

parameter values as in the previous analysis), and introduce misalignment in the estimation.

To evaluate the impact of data misalignment, we then estimate the model using annual

returns and (annualized) five-year compounded returns, and compare the results. To identify

the impact of misalignment on the results, we estimate the model at the portfolio-level using

the proper aggregation method. In this case, the only reason for the imperfect time series

fit of the model is due to data misalignment, and not due to the aggregation bias.

We introduce misalignment in the simulated data as follows. If investment lags stock

returns in the real data, we can capture this feature in the simulated data in a simple manner

by estimating the model matching stock returns at t+1 (rS
it+1) with lagged investment returns

at t (rIw
it ), and use this timing to construct the cross-sectional and the time-series moments.

Panel B in Table 3 shows that the data misalignment alone breaks significantly the expected

perfect time-series fit of the model. The mean absolute time series error becomes sizable,

and the TS − R2 is very low, 11% (in column 10, even when the model is estimated on

time-series moments only), which is more consistent with the data. This suggest that data

misalignment is potentially a good candidate explanation for the poor empirical time-series

fit of the model using annual return data.

In the presence of data misalignment, using annualized compounded returns in the es-

timation should mitigate the impact of the misalignment and improve the time-series fit

of the model. To verify this conjecture, we perform the estimation of the model using an-

nualized 5-year compounded stock and investment returns in the time-series moments. In

particular, annualized 5-year compounded stock and investment returns are computed as
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(
rS

it+1r
S
it+2...r

S
it+5

)1/5
and

(
rIw

it+1r
Iw
it+2...r

Iw
it+5

)1/5
, respectively. Panel C in Table 3 report the

results. The mean absolute time series error drops significantly, and the TS − R2 increases

significantly to around 71% (in column 15). Taken together, this result show that, consis-

tent with our conjecture, the issues introduced by data misalignment should be significantly

mitigated if we estimate the model using compounded returns, that is, if we focus on the

model-implied relationship between stock and investment returns at longer horizons (i.e.

time-smoothed data).

6.2.2 The impact of data misalignment in real data

In light of the previous analysis using simulated data, we investigate the time series fit of the

baseline investment-based model when we use annualized 5-year compounded returns in the

real data. Panel B in Table 4 reports the results. When we use long horizon compounded

returns in the estimation, the time-series fit of the model remains far from satisfactory.

The TS − R2 remains very low at −10% (see column 10, even when only the time-series

moments are used in the estimation). Taken together, the results from this analysis suggest

the misalignment between price and investment data (at least the type of misalignment

specification examined here) also does not appear to be the main cause for the inability of

the baseline model to capture the time series behavior of stock returns in the real data.

7 Specification-free tests

The analysis so far has been based on the specification of the investment-based model with

homogeneous of degree one operating profit and adjustment cost functions (the so-called

Hayashi (1982) conditions), in which case stock returns and levered investment returns should

be equal at each point in time as in Equation (7). This result underlies the moment condi-

tions in Section 4.2 which we use to estimate and test the baseline investment-based model.

Because these Hayashi conditions are strong assumptions and should be more properly in-
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terpreted as an approximation of the reality, it is natural to question its validity, especially

in light of the poor time-series fit of the baseline investment-based model reported in the

previous sections.9

7.1 A specification-free estimation approach

Here, we propose a more general approach to evaluate the performance of investment-based

asset pricing models that can be used even when the Hayashi conditions do not hold. We

label this more general method as a specification-free approach to evaluate investment-based

models because it does not rely so heavily on functional form restrictions. As a result, this

approach is useful to test a broader set of specifications of the investment-based model.

The Hayashi conditions might not hold due to several reasons such as decreasing returns

to scale, fixed adjustment costs and operating costs, and time-to-build. In these cases, in

general, the stock-investment return equality does not hold and hence it cannot be used

to construct the moment conditions used to estimate and test the model in the previous

sections.

Most investment-based asset pricing models, however, imply a close relationship between

a firm’s equilibrium stock return and its characteristics Xit+1. We can investigate the strength

of these relationships using simple linear regressions of the form:

rS
it+1 = βXit+1, (21)

in which Xi is a vector of firm (or portfolio-level) characteristics.10 Analogous to the estima-

tion of the model in the previous sections, this stock return-firm characteristics regression
9Building on Abel and Eberly (1994), Zhang (2005a) shows that the stock-investment return equality still

holds as long as the operating profits and the adjustment-cost functions are homogeneous of the same degree,
not necessarily one. In addition, Zhang (2005a) provides a broad discussion of the necessary conditions for
the equality to hold.

10We approximate the model-implied link between stock returns and firm characteristics using a linear
specification without much loss of generality because higher order terms can always be included as an
additional firm-characteristic.
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can be estimated both in the time-series (using panel data), and in the cross-section (using

the time series average of stock returns and firm characteristics). In the baseline neoclassical

model in which the Hayashi conditions hold, the key firm characteristics Xit+1 in the invest-

ment return formula in Equation (5) include current profitability (sales-to-capital ratio), and

current and lagged investment rate. In other investment-based models, the key relevant firm

characteristics might be different, but as long as the firm characteristics can be measured

both in the data and in the model, we can evaluate if a given model generates a relationship

between realized stock returns and firm characteristics that is consistent with the data (in

terms of slope coefficients and goodness of fit).

Similar arguments have been made in the investment-q literature. Eberly, Rebelo, and

Vincent (2008) show that when the Hayashi conditions do not hold, Tobin’s q is not a suffi-

cient statistic for investment, but the optimal investment from a model featuring decreasing

returns to scale and a fixed cost can still be well approximated by a log-linear function of q.

Gala, Gomes, and Liu (2020) show that even under very general assumptions about the na-

ture of markets, production and investment technologies, optimal investments are functions

of and well captured by the relevant state variables such as firm size and productivity.

The stock return-firm characteristics regressions can be used to evaluate investment-based

models in at least two different ways. First, it can be used as out-of-sample moments to

evaluate the time-series implications for stock returns of a given calibration of the model. We

follow this approach here. More generally, the stock return-firm characteristics regressions

can be used to simultaneously estimate the structural parameters and test the model. The

estimation can be done using alternative estimation methods such as the Simulated Method

of Moments (SMM), adding the stock return-firm characteristics regression results estimated

in the actual data as a set of target moments for the model estimation. The estimation using

SMM is outside the scope of our paper, however. Our goal here is to show how future research

can incorporate the time-series and cross-sectional implications of investment-based models

to evaluate and test these models along a broader set of moments.
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7.2 The specification-free approach in practice

To show how the specification-free approach can be used to evaluate investment-based mod-

els, we estimate the time-series and cross-sectional relationships between stock returns and

firm characteristics defined in Equation (21) both in the data, and also in simulated data

generated from two different specifications of the investment-based model.

The first specification is the baseline investment-based model in which, as in the previous

sections, the Hayashi conditions hold, and thus stock returns and investment returns are

equal. We label it as homogeneous of degree one model, or HD1 model. We generate data

from this model in the same way as in the previous Section 6. This specification of the

model is useful here because we already know that in this model stock returns and firm

characteristics are closely linked by Equation (7). We can then investigate if this nonlinear

relationship is preserved in the linear approximation of this relationship captured by the

stock return-firm characteristics regressions.

The second model is an off-the-shelf investment-model based on Lin and Zhang (2013)

in which the Hayashi conditions do not hold. We focus on this model given its good fit on

matching key moments of real quantities and asset prices in simulated data, hence it serves

as a natural laboratory to show how to implement our approach in practice. Specifically,

a firm i’s operating profit function features decreasing returns to scale and a positive fixed

cost:

Πit = XtZitK
α
it − f, (22)

in which 0 < α < 1 is the curvature parameter, and f > 0 is a positive fixed cost. Xt and Zit

are aggregate and idiosyncratic profitability shocks respectively. Capital investment entails
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the following adjustment costs:

Φ (Iit, Kit) =



a+Kit + c+

2

(
Iit

Kit

)2
Kit Iit > 0

0 Iit = 0

a−Kit + c−

2

(
Iit

Kit

)2
Kit Iit < 0

, (23)

where a− > a+ > 0 and c− > c+ > 0 capture non convex and asymmetric adjustment costs.

We label this model as non-homogeneous of degree one model, or non-HD1 model. To

generate simulated data from this model, we calibrate the model as in Lin and Zhang (2013)

to match average quantities and asset prices moments both at the aggregate-level and in the

cross-section, including the value premium. In the online appendix we provide a detailed

description of the calibration of this model, including the specification of the stochastic

processes.

Table 5 reports the stock return-firm characteristics regression results in the real data, and

using simulated data from the two investment-based models. Consistent with the previous

analyses, we run the regressions at the portfolio-level (using 10 book-to-market portfolios)

to reduce noise in the firm-level data, and in which each portfolio-level characteristic is

computed as the equal-weighted average of the characteristic across firms in the portfolio, to

avoid the aggregation bias. We consider the following characteristics: profitability (Y Kit+1 ≡
Yit+1
Kit+1

), investment rate (IKit+1 ≡ Iit+1
Kit+1

) and its squared term, lagged investment rate (IKit ≡
Iit

Kit
), and size (Kit ≡ logKit) at each point in time, and also in the cross-section, in which

case we average all variables (stock returns and characteristics) over time for each portfolio.

Since the non-HD1 model does not feature leverage, we use unlevered stock returns in the

real data and in the HD1 model in all the analyses here to allow for a meaningful comparison.

We unlever portfolio stock returns in the data by multiplying levered returns with one minus

portfolio-level average leverage. We normalize both the dependent and the independent

variables using pooled data.
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[Table 5 here]

Columns (1) and (2) in Table 5 report the results using the simulated data from the

baseline investment-based model in which the Hayashi conditions hold (HD1 model). As

discussed before, this model predicts that stock returns and investment returns are equal

at any given point in time, and hence the model implies a perfect non-linear relationship

between stock returns and firm-characteristics. This tight relationship is preserved in a linear

approximation of the relationship, given the high XS − R2 (91%), and the high TS − R2

(90%). So, the simple linear functional form relationship preserves the model implied strong

(non-linear) link between stock returns and firm-characteristics.

Columns (3) and (4) in Table 5 report the results using simulated data from the Lin and

Zhang (2013) non-homogeneous of degree one model. Interestingly, even though this model

does not predict the equality between stock returns and investment returns, this model also

implies that stock returns and firm-characteristics are highly correlated, both in the cross-

sectional (XS −R2 of 96%), and in the time-series (TS −R2 of 87%). This result shows that

the strong link between stock returns and firm characteristics (at least using data aggregated

at the portfolio-level) appears to be a more general feature of investment-based models, that

is, it is not restricted to specifications of the model in which the Hayashi condition holds.

The next step in the evaluation of the investment-based model is to compare the stock

return-firm-characteristic regression results in the model, with those in the real data. Columns

(9) and (10) in Table 5 report the regression results in the real data. Consistent with both

the baseline investment-based model and the Lin and Zhang (2013) non-homogeneous of

degree one model, the cross-sectional fit in the real data is quite high, about 71%. But the

time-series fit of the stock return-firm characteristics regression in the real data is very poor,

with a TS − R2 of about 5%, and the coefficients on the firm-characteristics are mostly

insignificant.

We also re-investigate the impact of data misalignment between price and investment

data on the time-series relationship between stock returns and firm characteristics at short-
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and long-horizons. Analogous to the analysis in Section 6, Columns (5) and (6) show the

annual regression results when we introduce misalignment in simulated data from the baseline

investment-based model in which the Hayashi conditions hold. The XS −R2 remains high at

about 93%, and the TS −R2 drops significantly, from 90% without misalignment as reported

in column (2) to 13% as reported in column (6), thus getting the model closer to the real

data, which has a TS − R2 of 5% as reported in column (10). As before, we then replicate

the regressions using long-horizon (time smoothed) variables to mitigate the impact of data

misalignment. Columns (7) and (8) show that when we use annualized 5-year compounded

returns and 5-year average characteristics in the simulated data with misalignment, the

XS − R2 remains high, and the TS − R2 improves significantly to 66%, as reported in

column (8). However, when we replicate the same long-horizon regressions in the real data,

column (12) shows that the TS − R2 using long horizon data is still very low, about 10%.

Taken together, the specification-free approach that we propose here allows us to inves-

tigate if a candidate investment-based model match the relationship between realized stock

returns and firm-characteristics observed in the data. Our findings confirm that the baseline

investment-based model with one (physical) capital input and homogeneous of degree one

technology, and a more general version of the one capital input model with decreasing re-

turns to scale, non-convex and asymmetric adjustment costs, and operating fixed costs, fail

to capture the time-series properties of stock returns in the data.

8 Alternative approaches and robustness checks

We present alternative approaches to estimate and test investment-based models, such as

the use of alternative time-series moments, higher order moments, and also the estimation

of investment-based models in levels (valuation ratios), and discuss why we adopted our

approach. In addition, we discuss the results from several robustness checks including a

sub-sample analysis, and the use of alternative test assets. To save space, we report most of
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the results from these analyses in the online appendix, and we briefly summarize the main

conclusions here.

8.1 Alternative time-series moments

There are several alternative ways of incorporating time-series implications of investment-

based models in the estimation. We discuss two alternative approaches here.

A first alternative approach is to use the first order conditions of the NLLS optimiza-

tion problem as the moment conditions in GMM, instead of the NLLS objective function.

Specifically, NLLS minimizes the sum of the squared differences between stock returns and

levered investment returns across N portfolios:

θ = argmin
1
N

1
T

N∑
i=1

T∑
t=1

(
rS

it+1 − rIw
it+1

)2
, (24)

in which θ ≡ (α, c). The first order conditions of this minimization problem are:

gT S−F OC = 1
N

1
T

N∑
i=1

T∑
t=1

[(
rS

it+1 − rIw
it+1

) ∂rIw
it+1

∂θ

]
= 0. (25)

These first order conditions, by definition, should be zero at the minimum, and hence can

directly be used as moment conditions in GMM. Indeed, that is the standard approach used

to map NLLS into GMM (see, for example, Cochrane (2009), Chapter 11).

Following this procedure, when the estimation is just identified (using 2 first order con-

ditions as moments to estimate 2 parameters), the weighting matrix does not matter for the

results because all the moment conditions can be zero. Hence, the GMM estimates using the

NLLS first order conditions yield exactly identical estimates to the NLLS estimation (ap-

plied to all portfolios in a pooled sample), and the results are easy to interpret given that the

parameters are simply the NLLS estimates. But when the model is over-identified, as is the

case in our applications here because we also use cross-sectional moments in the estimation

and apply NLLS separately to each portfolio, it is impossible to force all the NLLS first order
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conditions to hold at the same time, and hence the choice of the weighting matrix affects the

results. As a result, the model fit is difficult to interpret because the deviations from the first

order condition (residuals) do not have a natural interpretation. For completeness, however,

we also re-estimate the model using the alternative NLLS first order moment conditions as

the time-series moments, and obtain results that are very similar to the ones obtained here.

A second potential alternative way of incorporating time-series restrictions in the esti-

mation of investment-based models is to augment the set of moment conditions by adding

instruments (variables that should be orthogonal to the error terms) in a manner that is

analogous to the estimation of conditional asset pricing moments. This approach is well

suited for model-implied moment conditions in which the errors at each point in time are

expectation errors such as in, for example, the moment conditions implied by investment

Euler equations. This is because when the error term is an expectation error, this error

term should be orthogonal to any variable (called instrument) in the agent’s information

set. In turn, this orthogonality condition gives rise to a set of unconditional moment condi-

tions that incorporate the time-series implications of the model, and can be estimated using

standard GMM. In our approach, however, the error term inside the moment conditions are

not expectation errors because the model predicts that stock and levered investment returns

should be equal state-by-state without any error. The error terms in our approach arise due

to, for example, measurement or misspecification errors, and hence the theory does do not

imply orthogonality conditions in the same way that expectation errors do. Therefore, we

do not follow this approach here.

8.2 Higher-order moments

The investment-based model also has implications for higher order moments of stock and

levered investment returns which can also be tested in the data. For example, LWZ inves-

tigates if the baseline investment-based model can match the cross-section of stock return

variances, which should be equal to the cross-section of levered investment return variances.
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The variance moment conditions can be defined as:

gV ar
i = E

[(
rS

it+1 − E
[
rS

it+1

])2
−

(
rIw

it+1 − E
[
rIw

it+1

])2
]

= 0. (26)

The use of higher order moments might suggest that this moment can help improve the

fit of the model in the time series as well. But a simple inspection of the previous moment

condition reveals that minimizing the variance errors is not equivalent to minimizing the

sum of squared residuals because the variance moment ignores the time-series correlation

between stock returns and investment returns. As an extreme example, take two time series

with the same variance but that move in opposite direction to each other. The model fit

on the variance moments will be perfect, but the time series fit will be poor because the

correlation between the two variables is −1.

To show that the variance moments do not significantly improve the model fit in the time-

series in the data, we re-estimate the model combining the cross-sectional moments and the

variance moments in the estimation of the baseline investment-based model using GMM.

Panel C in Table 4 reports the results. As we increase the weights of the variance moments

in the estimation from column (11) (zero weights on variance moments, label Only XS) to

column (15) (all weights on variance moments, label Only Variance), the improvements on

the mean absolute time series error and the TS − R2 are quite limited compared with the

improvements observed when we use our time-series moments, as reported in Table 1.

8.3 Estimation in levels

Following BGSV, we can also estimate and test the investment-based model by examining

its ability to match the behavior of valuation ratios, which can be interpreted as testing

the model in levels, as opposed to examining the ability of the model to explain stock

returns, which can be interpreted as testing the model in first-differences. Arguably, levels

are more precisely measured than first-differences, and hence focusing on these moments
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can potentially provide a more powerful set of tests of investment-based models. Thus, we

investigate the model’s fit both in the cross-section and in the time-series of valuation ratios

at the portfolio level.

We proceed as follows. The first-order condition from maximizing the objective function

in Equation (4) with respect to Iit implies the standard result that the market value of the

firm is given by:

Pit + Bit+1 =
[
1 + (1 − τt) c

(
Iit

Kit

)]
Kit+1, (27)

where Pit ≡ Vit − Dit is the ex-dividend equity value. Based on this result, we define

the observed valuation ratio (aka Tobin’s q) as qit ≡ (Pit + Bit+1) /Ait, in which Ait is

total assets, which we compare with the model-implied valuation ratio, denoted as q̂it =(
1 + (1 − τt) c

(
Iit

Kit

))
Kit+1

Ait
. We use qit and q̂it instead of stock returns and levered investment

returns to construct the moment conditions as in the baseline estimation approach, and

investigate if the model can match the cross-section and the time-series of the valuation

ratios across 10 book-to-market portfolios. We find that the time-series fit of the baseline

investment-based model on valuation ratios is poor, and the model is rejected by the χ2

test with a p-value of 0.04. In the main analyses, we focus our tests on the implications of

the model for stock returns because that has been the focus of the investment-based asset

pricing literature, allowing us to also connect our findings to the large empirical asset pricing

literature.

8.4 Sub-period analysis

Andrei, Mann, and Moyen (2019) show that the relation between aggregate investment and

Tobin’s q has become remarkably tight in recent years by running investment regressions.

Thus, we investigate whether we observe similar improvement in the stock and investment

return relation. We split the sample into 1963-1994 and 1995-2020 sub-periods, and find

that the time-series fit of the baseline model also improves in the more recent sample period,
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from TS − R2 = −3.6% to TS − R2 = 10.71%, when the model is estimated on time-series

moments only. This TS −R2 in the more recent period is still too low, so the conclusion that

the investment-based model is unable to capture the time-series properties of stock returns

is consistent across the two sub-periods.

8.5 Other test assets

Finally, we also estimate and test the investment-based model using alternative testing port-

folios. Following LWZ and GXZ, we use ten portfolios sorted on standardized unexpected

earnings (SUE), ten portfolios sorted on corporate investment (CI), and ten portfolios sorted

on asset growth (AG). The results are largely consistent with our main findings. The time-

series fit of the baseline investment-based model is poor across these three set of portfolios,

with negative TS − R2’s.

9 Conclusion

Investment-based models imply that realized firm-level stock returns and firm characteristics

are strongly linked at any point in time, not just on average, as examined in previous work.

We incorporate this time-series prediction in the estimation and testing of investment-based

model using GMM. When applied to a standard specification of the investment-based model

with one-capital input and quadratic adjustment costs, our estimation results confirm that,

as in LWZ, this simple model is very successful at capturing the cross-sectional variation

in average stock returns across several portfolio sorts. However, we show that this model

fails to capture the time-series properties of stock returns in the data, generating a TS − R2

that is negative, even when the estimation tries to maximize the time-series fit of the model.

Using stock return-characteristics regressions, our estimation approach can be extended to

general specifications of investment-based models, and we show that the poor time-series fit

is also present in a specification of the investment-based model with decreasing returns to
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scale, non-convex and asymmetric adjustment costs, and operating fixed costs. We show that

aggregation bias in portfolio-data and possible misalignment between price and investment

data issues are not main causes for the poor time-series fit of these models in the data.

Our findings have implications for future research. Because we only test two specifications

of the investment-based model, our findings do not mean that the investment-based paradigm

cannot match the time-series stock return data well. Our findings suggest, however, that a

different specification of the model, or a change in the econometric procedures, is probably

needed to capture the time-series dimension of stock returns in the real data, which we

argue is an important dimension to match. Going forward, additional capital inputs such

as intangible capital as in Peters and Taylor (2017) and BGSV, quasi-fixed labor inputs

as in BGSV, or short-term and long-term assets as in GXZ, might be incorporated in the

model to improve its fit in the time-series. In addition, accounting for firm- or industry-

level heterogeneity in the technologies, which are assumed to be similar across firms in the

baseline analyses, as well as more general functional forms, should be investigated. Finally, it

could be useful to examine the impact of financial frictions as in Gomes, Yaron, and Zhang

(2006), or time-to-build features as in Kuehn (2009), on the correlation between realized

stock returns and firm characteristics. Taken together, by incorporating the time-series

implications into the structural estimation of investment-based models, our methodology can

be useful to better detect model misspecifications and hence help guide the improvements

in the specification of this class of models in future research.
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Table 1. GMM estimation and tests of the investment-based model

This table reports the one-step GMM results from estimating jointly the cross-sectional
moments and the time-series moments given by Equation (8) and (9) respectively, using
book-to-market deciles as the testing portfolios. Each column differs in the prespecified
weighting matrix, in which the first component refers to the weights on the cross-sectional
moments and the second component refers to the weights on the time-series moments. α
is the capital share and c is the adjustment cost parameter. The t-statistics, denoted [t],
test that a given parameter equals zero.

∣∣∣eXS
∣∣∣ is the mean absolute cross sectional errors

given by Equation (14).
∣∣∣eXS

H−L

∣∣∣ is the mean absolute high-minus-low cross-sectional errors
given by Equation (15).

∣∣∣eT S
∣∣∣ is the mean absolute time series errors given by Equation (17).

XS − R2 is the cross-sectional R2. TS − R2 is the time-series R2. χ2, d.f., and p are the
statistic, the degrees of freedom, and the p-value for the χ2 test on the null that all the errors
are jointly zero.

∣∣∣eXS
∣∣∣, ∣∣∣eXS

H−L

∣∣∣, ∣∣∣eT S
∣∣∣, and R2 are expressed as a percentage. Aggregation is

at the portfolio level as in LWZ. The sample is from 1963 to 2020.

Only Only
XS Both XS and TS Moments TS

Column: (1) (2) (3) (4) (5) (6) (7) (8)
Weights: [I 0] [I 0.1] [I 0.3] [I 0.5] [I I] [I 2] [I 10] [0 I]

Parameter estimates
α 0.25 0.19 0.17 0.15 0.14 0.14 0.13 0.13
[t] 3.65 6.38 7.83 7.96 7.53 6.95 6.56 4.68
c 10.94 5.63 3.22 2.33 1.47 0.96 0.52 0.41
[t] 1.92 2.52 2.07 1.62 1.04 0.66 0.37 0.37

Goodness of fit∣∣∣eXS
∣∣∣ 1.35 1.76 2.32 2.71 3.20 3.53 3.85 3.93∣∣∣eXS

H−L

∣∣∣ 2.32 7.05 10.25 11.73 13.41 14.56 15.68 16.00∣∣∣eT S
∣∣∣ 23.90 21.11 19.37 18.72 18.17 18.00 17.96 17.98

XS − R2 73.17 50.08 6.87 -21.07 -59.16 -89.12 -122.92 -137.02
TS − R2 -90.28 -44.91 -21.69 -13.69 -7.13 -4.37 -3.10 -2.98

χ2 6.40 16.44 17.29 17.00 15.89 15.48 15.49 13.00
d.f. 8.00 18.00 18.00 18.00 18.00 18.00 18.00 8.00
p 0.60 0.56 0.50 0.52 0.60 0.63 0.63 0.11
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Table 2. Description of stock returns, investment returns, and errors

This table reports the mean, standard deviation (Std), time-series correlation for stock re-
turns (rS

it), investment returns (rIw
it ), and errors (ϵit), in percentages. Errors are computed

as ϵit = rS
it − rIw

it . Investment returns are based on estimation results from one-step GMM
on the cross-sectional moments given by Equation (8), using book-to-market deciles as the
testing portfolios. Aggregation is at the portfolio level as in LWZ. Weighting matrix is an
identity matrix. The last column shows the principal components analysis (PCA) of the
residuals, and reports the percent variability explained by each principal component. The
sample is from 1963 to 2020.

Mean Std TS Correlation PCA
Portfolio rS

it rIw
it ϵit rS

it rIw
it ϵit (rS

it, rIw
it ) (rS

it, ϵit) (rIw
it , ϵit) ϵit

1 11.95 14.62 -2.67 26.50 18.86 32.02 3.28 80.83 -56.19 72.36
2 12.50 15.21 -2.71 22.65 21.67 31.23 0.75 72.01 -68.85 8.47
3 14.36 13.55 0.81 23.26 17.62 30.82 -11.97 82.33 -66.21 4.38
4 16.11 14.55 1.57 23.82 23.28 33.56 -1.52 72.03 -70.46 3.53
5 14.71 12.83 1.88 22.94 22.68 29.66 15.44 65.52 -64.52 3.19
6 16.06 17.09 -1.03 22.13 24.22 29.65 18.41 59.61 -67.94 2.51
7 16.94 15.21 1.73 23.44 20.77 33.32 -13.31 78.64 -71.69 1.90
8 16.92 16.30 0.62 22.15 24.95 28.01 29.70 52.60 -65.59 1.85
9 19.53 19.44 0.09 24.14 30.05 35.05 17.76 53.66 -73.51 1.07
10 23.02 23.37 -0.35 30.01 44.19 48.55 18.73 44.76 -79.45 0.75

Average 16.21 16.22 -0.01 24.10 24.83 33.19 7.73 66.20 -68.44 -

44
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Figure 1. Description of stock returns, investment returns, and errors

This figure scatter plots stock returns against investment returns, and stock returns against
error terms, based on the estimation results from one-step GMM on the cross-sectional
moments given by Equation (8), using book-to-market deciles as the testing portfolios. Ag-
gregation is at the portfolio-level as in LWZ. The sample is from 1963 to 2020.
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Figure 2. Cross-sectional fit versus time-series fit

The top panel plots the cross-sectional R2 (XS − R2) and the time-series R2 (XS − R2).
The bottom panel plots the mean absolute cross sectional errors (in percentage per annum)
given by Equation (14) and the mean absolute time series errors (in percentage per annum)
given by Equation (17). Horizontal axis shows the prespecified weighting matrix, in which
the first component refers to the weights on the cross-sectional moments and the second
component refers to the weights on the time-series moments, so that that the axis goes from
zero weight on time-series moments (only cross-sectional moments used) to all weight on
time-series moments (no cross-sectional moments used). Aggregation is at the portfolio level
as in LWZ. The sample is from 1963 to 2020.
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Internet Appendix for

Estimating and Testing Investment-based Asset Pricing Models

Frederico Belo Yao Deng Juliana Salomao

A: Additional analyses and robustness checks

This section reports additional analyses and robustness checks.

A.1 Additional results with portfolio-level aggregation

Table IA.1: Matching the cross sectional and the time series moments jointly with the

original LWZ data.

Table IA.2: Matching the cross sectional and the time series moments jointly, second stage.

Table IA.3: Matching the cross sectional and the time series moments jointly using alterna-

tive testing portfolios.

Table IA.4: Matching the cross sectional and the time series moments jointly using alterna-

tive time series moments (NLLS first order conditions).

Table IA.5: Sub-sample analysis: Matching the investment return and stock return moments.

Table IA.6: Matching the valuation ratio moments.

[Table IA.1 - IA.6 here]

A.2 Additional results with firm-level aggregation

Table IA.7: Matching the cross sectional moments and the variance moments jointly, match-

ing the cross sectional and the time series moments jointly with compounded returns, and

using alternative time series moments (NLLS first order conditions).

Table IA.8: Sub-sample analysis: Matching the investment return and stock return moments.

Table IA.9: Matching the valuation ratio moments.
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[Table IA.7 - IA.9 here]

B: External validity specification test

When evaluating the investment-based asset pricing model, existing studies conduct the χ2

test using the same set of moment conditions as in the estimation. We argue that this

procedure has low power to reject the model when presented with model misspecification.

Thus, we develop a Wald test for model errors that are not used for estimation. It holds

the model to a higher standard than a simple test of over-identifying restriction and thus

accomplishes a purpose similar to that of an out-of-sample test.

Specifically, we ask the estimation to match the cross sectional moments as closely as

possible and evaluate how the fitted model matches the time series moments. Following

the procedure described in Cochrane (2009), we start to estimate the parameters by only

using gXS and obtain the distribution of all moments var (gT ). Denote var (gT )T S as the

block of time series moments in var (gT ), and we use it to compute the joint error for gT S

to incorporate sampling uncertainty about the parameters from their estimation stage and

correlation between the estimation moments and the evaluation moments. We want to test

the null hypothesis that gT S = 0. This hypothesis constitutes a test of the external validity of

the model, as it assesses the model’s ability to explain patterns in the data that are not used

to estimate its parameters. Under the null hypothesis that the model is correctly specified,

these moments should equal zero. Formally, the χ2 test is:

gT S′

T

[
var (gT )T S

]+
gT S

T ∼ χ2 (#moments − #paras) . (28)

We compare standard over-identifying tests with our proposed external validity specifi-

cation tests. Although the standard test has some difficulties in rejecting the model, the

external validity specification test increases the power of the tests and hence can be useful

in practice to detect possible model misspecifications.
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Table IA.10 reports the results. Columns (1) and (2) report the standard over-identifying

tests results in which the same set of moment conditions, the cross sectional moments, are

used in the estimation and tests. Columns (3) and (4) report the specification tests results

in which cross sectional moments are used in the estimation and time series moments are

used in the tests. Columns (1) and (3) report the results based on an identity weighting

matrix in the estimation, whereas columns (2) and (4) report the results based on the optimal

weighting matrix. Panel A, column (1) shows that the p-value on testing the joint errors of 10

cross sectional moments is 0.60 (0.56 with an optimal weighting matrix), far from rejecting

the model, despite the fact that the time series fit is very poor. In comparison, the p-value

on evaluating the joint errors of the 10 time series moments is 0.24 in column (3) (0.19 with

an optimal weighting matrix), getting the model much closer to rejection based on its time

series fit.

The poor time series fit is more prominent with the correct portfolio aggregation as

reported in Panel B in Table IA.10. Column (1) shows that the p-value on testing the joint

errors of 10 cross sectional moments is 0.33 (0.32 with an optimal weighting matrix). In

comparison, the p-value on evaluating the joint errors of the 10 time series moments is 0.07

in column (3) and (4), much more likely leading to a rejection of the model based on its time

series fit.

[Table IA.10 here]

C: Investment model with frictions

The model is closely related to Lin and Zhang (2013). Production only takes one input,

capital K, with decreasing return to scale. Firm i’s operating profit function is given by

Πit = XtZitK
α
it − f, (29)

in which 0 < α < 1 is the curvature parameter, and f > 0 is a positive fixed cost, captur-
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ing the existence of fixed outside opportunity costs each period. Production is subject to

both aggregate and idiosyncratic productivity shocks. The aggregate productivity Xt, has a

stationary Markov transition function. Let xt = logXt, the transition function follows

xt+1 = ρxxt + σxµt+1, (30)

in which µt+1 is an i.i.d. standard normal shock. Firm i’s productivity Zit has a transition

function follows

zit+1 = z̄ (1 − ρz) + ρzzit + σzνit+1, (31)

in which zit = logZit, and νit+1 is an i.i.d. standard normal shock. Two shocks are uncorre-

lated.

Firm i’s capital accumulates as

Kit+1 = Iit + (1 − δ) Kit, (32)

in which δ is the rate of depreciation. Capital investment entails adjustment costs

Φ (Iit, Kit) =



a+Kit + c+

2

(
Iit

Kit

)2
Kit Iit > 0

0 Iit = 0

a−Kit + c−

2

(
Iit

Kit

)2
Kit Iit < 0

, (33)

where a− > a+ > 0 and c− > c+ > 0 capture non convex and asymmetric adjustment

costs. Nonconvex part captures the cost independent of the size of investment. Convex part

captures higher cost for more rapid changes. Asymmetric part captures costly reversibility.

Firms face higher costs in contracting than in expanding.
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The stochastic discount factor is exogenously given, denoted by Mt+1

Mt+1 = β
eγ(xt−xt+1)

Et [eγ(xt−xt+1)] , (34)

in which 0 < β < 1, γ > 0 are constants. The risk-free rate is set to be constant.

Upon observing shocks, firms optimally choose investment to maximize the market value

of equity, given by

Vit ≡ V (Kit, Xt, Zit) = max
Iit

[Πit − Iit − Φ (Iit, Kit) + Et [Mt+1V (Kit+1, Xt+1, Zit+1)]] . (35)

At the optimum, Vit = Dit + Et [Mt+1Vit+1], with Dit ≡ Πit − Iit − Φ (Iit, Kit). Equiva-

lently, Et

[
Mt+1r

S
it+1

]
= 1 in which rS

it+1 = Vit+1/ (Vit − Dit) is the stock return. Similarly,

Et

[
Mt+1r

I
it+1

]
= 1, in which rI

it+1 is the investment return. However, in this investment

model with frictions, Hayashi (1982) conditions do not hold, thus investment returns do not

equal to stock returns.

The model is calibrated at annual frequency. The time discount factor, β = 0.9718, is

set to match the real risk-free rate of 2.9% per annum. The price of risk parameter, γ = 6,

is set to match the average Sharpe ratio. The persistence of aggregate corporate profits ρx

is set to be 0.90 and conditional volatility σx = 0.06. For the adjustment cost parameters:

a+ = 0.01, a− = 0.1, c+ = 10, and c− = 200; for the remaining parameters, ρz = 0.90,

σz = 0.10, z̄ = −0.98, α = 0.65, δ = 0.10, and f = 0.115.

The model is solved with value function iterations on discrete state space. In total 1000

artificial samples are simulated from the model, each with 3000 firms and 500 years. The

first 450 years are dropped to neutralize the impact of the initial condition. The remaining

50 years of simulated data are treated as from the model’s stationary distribution. Empirical

tests are performed on each artificial sample and cross-simulation median results are reported

as model moments to compare with those in the real data. With the calibrated parameters,

the model produces a value premium of 4% per annum.
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Table IA.1. Matching the cross sectional and the time series moments jointly with the
original LWZ data

This table reports the one-step GMM results from estimating jointly the cross sectional
moments and the time series moments given by Equation (8) and (9) respectively, using
BM deciles as the testing portfolios, with the original LWZ data. Each column differs in
the prespecified weighting matrix, in which the first component refers to the weights on
the cross sectional moments and the second component refers to the weights on the time
series moments. α is the capital share and c is the adjustment cost parameter. The t-
statistics, denoted [t], test that a given parameter equals zero.

∣∣∣eXS
∣∣∣ is the mean absolute

cross sectional errors given by Equation (14).
∣∣∣eXS

H−L

∣∣∣ is the mean absolute high-minus-low
cross sectional errors given by Equation (15).

∣∣∣eT S
∣∣∣ is the mean absolute time series errors

given by Equation (17). XS − R2 is the cross sectional R2. TS − R2 is the time series R2.
χ2, d.f., and p are the statistic, the degrees of freedom, and the p-value for the χ2 test on
the null that all the errors are jointly zero.

∣∣∣eXS
∣∣∣, ∣∣∣eXS

H−L

∣∣∣, ∣∣∣eT S
∣∣∣, and R2 are expressed as a

percentage. Aggregation is at the portfolio level. The sample is from 1963 to 2005.

Only Only
XS Both XS and TS Moments TS

Column: (1) (2) (3) (4) (5) (6) (7) (8)
Weights: [I 0] [I 0.1] [I 0.3] [I 0.5] [I I] [I 2] [I 10] [0 I]

Parameter estimates
α 0.23 0.19 0.16 0.15 0.14 0.13 0.12 0.11
[t] 2.74 4.57 6.04 6.59 6.93 6.90 6.55 4.13
c 8.43 4.49 2.35 1.50 0.60 0.01 -0.55 -0.71
[t] 1.16 1.28 1.02 0.77 0.36 0.01 -0.42 -0.42

Goodness of fit∣∣∣eXS
∣∣∣ 2.47 2.49 2.94 3.31 3.91 4.43 5.14 5.45∣∣∣eXS

H−L

∣∣∣ 1.13 4.72 7.92 9.66 11.98 13.93 16.41 17.36∣∣∣eT S
∣∣∣ 24.14 22.34 21.14 20.71 20.32 20.12 20.02 20.04

XS − R2 65.20 58.12 40.40 26.49 3.54 -19.55 -56.73 -78.15
TS − R2 -86.30 -61.07 -45.02 -38.61 -32.41 -29.10 -27.00 -26.76

χ2 8.15 13.53 13.33 13.22 13.24 13.41 13.70 8.86
d.f. 8.00 18.00 18.00 18.00 18.00 18.00 18.00 8.00
p 0.42 0.76 0.77 0.78 0.78 0.77 0.75 0.35
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Table IA.2. Matching the cross sectional and the time series moments jointly, second stage

This table reports the second stage GMM results from estimating jointly the cross sectional
moments and the time series moments given by Equation (8) and (9) respectively, using BM
deciles as the testing portfolios. Each column differs in the first stage prespecified weighting
matrix, in which the first component refers to the weights on the cross sectional moments
and the second component refers to the weights on the time series moments. α is the capital
share and c is the adjustment cost parameter. The t-statistics, denoted [t], test that a given
parameter equals zero.

∣∣∣eXS
∣∣∣ is the mean absolute cross sectional errors given by Equation

(14).
∣∣∣eXS

H−L

∣∣∣ is the mean absolute high-minus-low cross sectional errors given by Equation
(15).

∣∣∣eT S
∣∣∣ is the mean absolute time series errors given by Equation (17). XS − R2 is the

cross sectional R2. TS −R2 is the time series R2. χ2, d.f., and p are the statistic, the degrees
of freedom, and the p-value for the χ2 test on the null that all the errors are jointly zero.∣∣∣eXS

∣∣∣, ∣∣∣eXS
H−L

∣∣∣, ∣∣∣eT S
∣∣∣, and R2 are expressed as a percentage. Aggregation is at the portfolio

level. The sample is from 1963 to 2020.

Only Only
XS Both XS and TS Moments TS

Column: (1) (2) (3) (4) (5) (6) (7) (8)
Weights: [I 0] [I 0.1] [I 0.3] [I 0.5] [I I] [I 2] [I 10] [0 I]

Parameter estimates
α 0.20 0.18 0.16 0.15 0.15 0.14 0.13 0.13
[t] 8.52 14.38 19.28 19.24 17.81 16.77 16.37 16.18
c 7.51 4.77 3.00 2.37 1.85 1.43 0.84 0.68
[t] 3.69 4.76 5.06 4.53 3.35 2.67 2.19 2.01

Goodness of fit∣∣∣eXS
∣∣∣ 1.88 1.99 2.45 2.72 3.00 3.22 3.61 3.72∣∣∣eXS

H−L

∣∣∣ 5.53 8.19 10.67 11.74 12.75 13.58 14.88 15.29∣∣∣eT S
∣∣∣ 22.18 20.49 19.18 18.72 18.35 18.12 17.95 17.93

XS − R2 55.88 37.27 -0.62 -21.65 -45.03 -65.57 -99.74 -113.86
TS − R2 -61.36 -36.45 -19.47 -13.82 -9.55 -6.69 -3.84 -3.34

χ2 6.41 16.55 17.33 17.00 15.99 15.47 15.44 13.14
d.f. 8.00 18.00 18.00 18.00 18.00 18.00 18.00 8.00
p 0.60 0.55 0.50 0.52 0.59 0.63 0.63 0.11
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Table IA.4. Matching the cross sectional and the time series moments jointly using alter-
native time series moments

This table reports the one-step GMM results from estimating jointly the cross sectional mo-
ments and the alternative time series moments given by Equation (8) and (25) respectively,
using BM deciles as the testing portfolios. Each column differs in the prespecified weighting
matrix, in which the first component refers to the weights on the cross sectional moments
and the second component refers to the weights on the time series moments. α is the capital
share and c is the adjustment cost parameter. The t-statistics, denoted [t], test that a given
parameter equals zero.

∣∣∣eXS
∣∣∣ is the mean absolute cross sectional errors given by Equation

(14).
∣∣∣eXS

H−L

∣∣∣ is the mean absolute high-minus-low cross sectional errors given by Equation
(15).

∣∣∣eT S
∣∣∣ is the mean absolute time series errors given by Equation (17). XS − R2 is the

cross sectional R2. TS −R2 is the time series R2. χ2, d.f., and p are the statistic, the degrees
of freedom, and the p-value for the χ2 test on the null that all the errors are jointly zero.∣∣∣eXS

∣∣∣, ∣∣∣eXS
H−L

∣∣∣, ∣∣∣eT S
∣∣∣, and R2 are expressed as a percentage. Aggregation is at the portfolio

level. The sample is from 1963 to 2020.

Only Only
XS Both XS and TS Moments TS

Column: (1) (2) (3) (4) (5) (6) (7) (8)
Weights: [I 0] [I I] [I 5] [I 10] [I 20] [I 40] [I 100] [0 I]

Parameter estimates
α 0.25 0.25 0.23 0.21 0.19 0.18 0.18 0.12
[t] 3.65 3.62 3.81 4.40 5.18 5.68 5.99 10.72
c 10.94 11.10 10.35 8.72 7.23 6.47 6.11 0.40
[t] 1.92 1.92 1.94 2.06 2.24 2.36 2.45 0.73

Goodness of fit∣∣∣eXS
i

∣∣∣ 1.35 1.41 1.83 2.29 2.65 2.84 2.96 3.93∣∣∣eXS
H−L

∣∣∣ 2.32 2.37 3.35 4.86 6.31 7.10 7.51 16.05∣∣∣eT S
i

∣∣∣ 23.90 23.95 23.60 22.82 22.01 21.56 21.33 17.98
XS − R2 73.17 72.14 58.80 38.68 15.90 0.89 -9.01 -141.87
TS − R2 -90.28 -91.13 -84.53 -71.16 -58.33 -51.52 -48.17 -2.98

χ2 6.40 13.97 14.49 14.68 14.63 14.54 14.49 -
d.f. 8.00 10.00 10.00 10.00 10.00 10.00 10.00 -
p 0.60 0.17 0.15 0.14 0.15 0.15 0.15 -
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Table IA.5. Sub-sample analysis: Matching the investment return and stock return mo-
ments

This table reports the one-step GMM results from estimating jointly the cross sectional
moments and the time series moments given by Equation (8) and (9) respectively, using BM
deciles as the testing portfolios, in each subsample. Each column differs in the prespecified
weighting matrix, in which the first component refers to the weights on the cross sectional
moments and the second component refers to the weights on the time series moments. α
is the capital share and c is the adjustment cost parameter. The t-statistics, denoted [t],
test that a given parameter equals zero.

∣∣∣eXS
∣∣∣ is the mean absolute cross sectional errors

given by Equation (14).
∣∣∣eXS

H−L

∣∣∣ is the mean absolute high-minus-low cross sectional errors
given by Equation (15).

∣∣∣eT S
∣∣∣ is the mean absolute time series errors given by Equation (17).

XS − R2 is the cross sectional R2. TS − R2 is the time series R2. χ2, d.f., and p are the
statistic, the degrees of freedom, and the p-value for the χ2 test on the null that all the errors
are jointly zero.

∣∣∣eXS
∣∣∣, ∣∣∣eXS

H−L

∣∣∣, ∣∣∣eT S
∣∣∣, and R2 are expressed as a percentage. Aggregation is

at the portfolio level.

Panel A: 1963 - 1994 Panel B: 1995 - 2020
Only Both Only Only Both Only
XS XS and TS TS XS XS and TS TS

Column: (1) (2) (3) (4) (5) (6) (7) (8)
Weights: [I 0] [I I] [I 10] [0 I] [I 0] [I I] [I 10] [0 I]

Parameter estimates
α 0.20 0.14 0.12 0.12 0.28 0.15 0.14 0.14
[t] 4.25 6.94 7.24 6.92 2.59 6.38 5.39 4.39
c 6.09 0.44 -0.47 -0.59 13.95 2.69 1.54 1.40
[t] 1.68 0.36 -0.63 -1.41 1.74 2.15 1.05 1.20

Goodness of fit∣∣∣eXS
∣∣∣ 1.43 3.38 4.37 4.51 2.63 3.49 3.95 4.09∣∣∣eXS

H−L

∣∣∣ 2.10 13.34 17.22 17.82 5.60 15.60 17.07 17.24∣∣∣eT S
∣∣∣ 23.73 19.55 19.41 19.47 22.49 16.40 15.77 15.75

XS − R2 68.73 -52.10 -156.36 -187.49 12.31 -98.08 -141.02 -150.11
TS − R2 -61.41 -8.52 -3.79 -3.66 -110.47 5.47 10.72 10.71

χ2 3.82 10.46 10.66 8.70 6.04 9.12 9.01 7.95
d.f. 8.00 18.00 18.00 8.00 8.00 18.00 18.00 8.00
p 0.87 0.92 0.91 0.37 0.64 0.96 0.96 0.44
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Table IA.8. Sub-sample analysis: Matching the investment return and stock return mo-
ments, firm-level aggregation

This table reports the one-step GMM results from estimating jointly the cross sectional
moments and the time series moments given by Equation (8) and (9) respectively, using BM
deciles as the testing portfolios, in each subsample. Each column differs in the prespecified
weighting matrix, in which the first component refers to the weights on the cross sectional
moments and the second component refers to the weights on the time series moments. α
is the capital share and c is the adjustment cost parameter. The t-statistics, denoted [t],
test that a given parameter equals zero.

∣∣∣eXS
∣∣∣ is the mean absolute cross sectional errors

given by Equation (14).
∣∣∣eXS

H−L

∣∣∣ is the mean absolute high-minus-low cross sectional errors
given by Equation (15).

∣∣∣eT S
∣∣∣ is the mean absolute time series errors given by Equation (17).

XS − R2 is the cross sectional R2. TS − R2 is the time series R2. χ2, d.f., and p are the
statistic, the degrees of freedom, and the p-value for the χ2 test on the null that all the errors
are jointly zero.

∣∣∣eXS
∣∣∣, ∣∣∣eXS

H−L

∣∣∣, ∣∣∣eT S
∣∣∣, and R2 are expressed as a percentage. Aggregation is

at the firm level.

Panel A: 1963 - 1994 Panel B: 1995 - 2020
Only Both Only Only Both Only
XS XS and TS TS XS XS and TS TS

Column: (1) (2) (3) (4) (5) (6) (7) (8)
Weights: [I 0] [I I] [I 10] [0 I] [I 0] [I I] [I 10] [0 I]

Parameter estimates
α 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04
[t] 11.99 12.59 12.76 8.25 8.96 11.39 11.27 5.13
c 0.04 0.01 0.01 0.01 0.07 -0.03 -0.03 -0.03
[t] 0.09 0.02 0.04 0.08 0.25 -0.11 -0.14 -0.12

Goodness of fit∣∣∣eXS
∣∣∣ 1.30 1.34 2.32 3.16 2.18 2.15 1.98 2.03∣∣∣eXS

H−L

∣∣∣ 2.34 3.16 4.25 5.02 7.83 7.02 7.25 7.50∣∣∣eT S
∣∣∣ 19.93 19.89 19.75 19.71 17.71 17.08 17.06 17.07

XS − R2 64.19 61.98 31.11 -16.19 29.54 27.01 23.47 15.79
TS − R2 -9.61 -9.13 -8.43 -8.32 -17.02 -7.31 -7.05 -6.90

χ2 6.89 10.72 10.74 9.42 7.59 9.04 9.05 7.96
d.f. 8.00 18.00 18.00 8.00 8.00 18.00 18.00 8.00
p 0.55 0.91 0.91 0.31 0.47 0.96 0.96 0.44
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Table IA.10. External validity specification test

This table reports the external validity specification test results based on different sets of
moments used in estimation and tests. The cross sectional moments, denoted gXS, are
given by Equation (8). The time series moments, denoted gT S, are given by Equation (9).
Weighting matrix is either an identity matrix or an optimal weighting matrix. In Panels A,
aggregation is at the portfolio level, and in Panel B, aggregation is at the firm level. χ2, d.f.,
and p are the statistic, the degrees of freedom, and the p-value for the χ2 test on the null
that all the errors are jointly zero. The sample is from 1963 to 2020.

Estimation gXS gXS

Tests gXS gT S

Column: (1) (2) (3) (4)
Weights: [I 0] [S−1 0] [I 0] [S−1 0]

Panel A: Portfolio-level aggregation
χ2 6.40 6.75 10.31 11.16
d.f. 8.00 8.00 8.00 8.00
p 0.60 0.56 0.24 0.19

Panel B: Firm-level aggregation
χ2 9.19 9.24 14.63 14.66
d.f. 8.00 8.00 8.00 8.00
p 0.33 0.32 0.07 0.07
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