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Abstract

The Covid-19 pandemic has accelerated the trend of many colleges moving to test-
optional, and in some cases test-blind, admissions policies. A frequent claim is that
by not seeing standardized test scores, a college is able to admit a student body that
it prefers, such as one with more diversity. But how can observing less information
allow a college to improve its decisions? We argue that test-optional policies may
be driven by social pressure on colleges’ admission decisions. We propose a model of
college admissions in which a college disagrees with society on which students should
be admitted. We show how the college can use a test-optional policy to reduce its
“disagreement cost” with society, regardless of whether this results in a preferred student
pool. We discuss which students either benefit from or are harmed by a test-optional
policy. In an application, we study how a ban on using race in admissions may result
in more colleges going test optional or test blind.
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1. Introduction

With college admissions in the United States under increasing scrutiny, there is a vibrant
debate about the role of standardized test scores. The last decade has seen an increase in
colleges going test optional, i.e., not requiring applicants to submit standardized test scores.
The University of Chicago made waves when it adopted this policy in 2018, and by 2019,
one third of the 900+ colleges that accepted the Common Application did not require test
scores.

For obvious reasons, the Covid-19 pandemic dramatically increased the adoption of test-
optional policies: in the 2021–22 application season, 95% of Common-Application colleges
did not require test scores. But even after the pandemic’s physical disruptions receded in the
U.S., most colleges have decided to stay test optional, at least for the near term. None of the
Ivy league schools currently require tests; Harvard University has extended its test-optional
policy until at least 2026, and Columbia University recently announced that it is permanently
test optional. Furthermore, although our paper emphasizes college admissions, the shift away
from requiring standardized tests is also pervasive in other segments of education.1

Proponents of test-optional admissions often cite concerns that standardized testing may
disadvantage low-income students and students of color. Indeed, many schools that go test
optional claim to do so in order to increase the racial and income diversity on campus.2 But
private schools, at least, always had a choice of how to use test scores in admissions. A
test-mandatory college is free to admit students with low test scores if they are strong on
other dimensions. Moreover, test scores are unlikely to be completely uninformative, and
other components of applications, including letters of recommendation and college essays,
may also be subject to racial and income disparities.3 Indeed, MIT reinstated its testing re-

1 According to Forbes magazine in January 2022, “The most public break-up [with standardized tests] has
been in undergraduate admissions and the SAT/ACT, but kindergarten, high school, and graduate school
admission offices have also been rejecting standardized tests . . . [there is a] near-universal shift away from
standardized tests that started before the pandemic but has accelerated in the last eighteen months.”

2 For example, when George Washington University went test optional in 2015, a school official explained
that “The test-optional policy should strengthen and diversify an already outstanding applicant pool and will
broaden access for those high-achieving students who have historically been underrepresented at selective
colleges and universities, including students of color, first-generation students and students from low-income
households”.

3 In a 2016 Washington Post opinion titled ‘Letters of recommendation: An unfair part of college ad-
missions,’ John Boeckenstedt from DePaul University argues that: “If you wanted to ensure that kids from
more privileged backgrounds have a better chance to get into the schools with the most resources, letters of
recommendation would be one of the things you’d start with.”
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quirement for the 2022-23 admissions cycle, arguing that “standardized tests help us identify
socioeconomically disadvantaged students who lack access to advanced coursework or other
enrichment opportunities that would otherwise demonstrate their readiness for MIT.” Simi-
larly, a 2020 report by the University of California found that standardized test scores help
predict student success, across demographic groups and disciplines, even after controlling for
high school GPA (UC Academic Senate, 2020).

Hence a puzzle: if a college can use test scores as it would like, why would it choose
not to have access to a student’s score? Why throw away potentially valuable information?
We make this point formally in Section 2. We show that under a broad set of conditions—
including differential costs of test preparation and different distributions of test scores for
reasons unrelated to ability—a college that can freely use information cannot benefit from
going test optional.4 The reason is straightforward: a college has the option of replicating
test-optional outcomes in a test-mandatory environment.5

So why, then, would a college choose to go test optional? After discussing a few alternative
theories in Section 2, we propose that social pressure may be a driving force. When, say,
Harvard admits a low-scoring student while rejecting a high-scoring student with an otherwise
similar GPA, it may be subject to social pressure from a community that disagrees with the
weight that Harvard puts on tests versus legacy status or racial diversity. Indeed, in a 2022
PEW research survey, only 26% of respondents thought that race or ethnicity should be even
a minor factor in college admissions, with 25% for legacy status. By contrast, 39% thought
that test scores should be a major factor, and an additional 46% thought they should be a
minor factor. Such social pressure is exemplified by two lawsuits challenging the admissions
policies of Harvard and the University of North Carolina, which are currently under review
by the U.S. Supreme Court.

We develop the argument that a college can combat social pressure by going test optional.
Broadly, by hiding score disparities among students who do not submit their test scores, the
college can lower the cost of disagreement with society. The lower disagreement cost may
also allow the college to admit students it likes more, based on diversity, extracurriculars,

4 Our conditions do preclude prohibitive costs of sitting, as opposed to studying, for the test. As elab-
orated in Section 2, we do not find the cost of sitting for a test to be a compelling rationale for going test
optional. In fact, prior to the Covid-19 pandemic, 25 U.S. states required either the SAT or ACT for high
school graduation.

5 This presumes that colleges can commit to their admissions policy, which is our focus in this paper.
But Section 2 notes that if a school lacks commitment power, then under natural conditions, a test-optional
policy would unravel to all students submitting scores.
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or legacy preferences. Importantly, our argument does not rely on any naivety: we assume
that society is Bayesian and understands that students who don’t submit scores tend to have
lower scores. Also important, we show that being test optional can help a college regardless
of whether, for any given group of students, it wishes to be less selective than society (i.e., to
use a lower test-score threshold) or more selective (a higher threshold). In one application
of this framework, we study when the inability to use race in admission decisions may result
in more schools becoming test optional or even test blind.

In more detail, our model in Section 4 has a college with preferences over which students
to admit, based on both their non-test observable characteristics (e.g., GPA, race, SES,
extracurriculars, and legacy status) and test scores. Society has its own preferences. Society
does not make any strategic decisions, but the college places some value on minimizing
disagreement between its admission decisions and those that society would make. The college
commits to an admissions policy: an acceptance rule mapping observables and test scores
into an admission decision, and also—in a test-optional regime—an imputed test score that
it assigns to students who don’t submit scores (as a function of non-test observables). A
student submits their test score if and only if it is higher than the score the college would
impute. Society passively assesses test scores in a Bayesian manner: non-submitters are
evaluated based on their expected test score, given non-test observables and submission
behavior.

Whenever society disagrees with the college’s admission decision, the college incurs a
disagreement cost. If the college accepts an applicant that society wants to reject, this cost is
proportional to society’s disutility from acceptance. If the college rejects an applicant society
wants to accept, this cost is proportional to society’s disutility from rejection. The college
chooses its admissions policy—both the imputation and acceptance rules—to maximize its
ex-ante expected utility from admissions decisions less disagreement costs.

When a college can freely choose its imputation rule, the college can’t be worse off under
test optional than test mandatory. It could simply replicate the test-mandatory outcome by
imputing a low enough test score that all students submit. Our key insight, though, is that
the college can benefit—strictly—from going test optional.

To see how, consider the case of a student with non-test observables such that the college
is less selective than society: the college has a lower test-score bar than society to admit this
type of applicant. For instance, take students who excel in fencing and suppose the college
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values able fencers more than society.6 One option for the college is to impute a very high test
score for fencers, with the policy of admitting all those with the imputed score (or higher).
Then none of the fencers submit their scores, and all of them are admitted. The cost for the
college is that it may be admitting some very low-scoring fencers. The benefit, though, is
that bringing high-scoring fencers into the non-submission pool reduces disagreement costs
from admitting some fencers that the college wanted but society did not. Indeed, if society
is willing to accept fencers with average test scores, then imputing a very high score allows
the college to accept all of these now-undifferentiated fencers at zero disagreement cost. At
the extreme, if the college prefers to admit every fencer regardless of test score, it obtains
its first best for this group—they are all admitted, with no disagreement cost.

Now consider students with observable characteristics at which the college is more selective
than society. Suppose the college prefers to admit applicants from New Jersey only if they
score above 55, whereas society loves the Garden State and would like to admit any of its
students with a score above 25. If test scores are submitted, the college incurs a disagreement
cost for any rejected applicant with a score above 25. Consequently, under test mandatory,
the college uses a score threshold between 25 and 55, say 40. Under test optional, however,
the college can do strictly better among New Jerseyans by imputing a score between 40 and
55 and then rejecting non-submitters. Imputing the score of 40 would replicate the test-
mandatory admissions outcome but lower the disagreement cost because all New Jerseyans
with scores below 40 don’t submit; now there is no differentiation between those below 25,
where there is no disagreement, and those in the 25–40 range, where there is disagreement.
The college may do even better by imputing a score strictly above 40, which would improve,
from its perspective, its New Jerseyan student body.

We show in Subsection 6.2 that the above examples encapsulate the general logic for
how a college can benefit from going test optional. Notice that in these examples, fencers
benefit—some weakly and some strictly—from a school going test optional, whereas New
Jerseyans are hurt. Subsection 6.2 establishes that these consequences for student welfare
hold generally: student groups for whom the college is less selective than society benefit from
test optional, while student groups for whom the college is more selective are hurt.

For test optional to never harm a college, the college must judiciously choose its imputation
rule. In practice, we see many schools promising that non-submitters will be treated “fairly”.
The University of Southern California’s statement is representative: “applicants will not

6 The New York Times reports in October 2022 that “a way with the sword can help students stand out
in the college admissions game. . . because each good school, especially Ivy League schools, have fencing.”
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be penalized or put at a disadvantage if they choose not to submit SAT or ACT scores.”
Although it is ambiguous what such policies really mean, we propose that they correspond
to a no adverse inference imputation rule: a student who does not submit a test score is
imputed their expected test score given other observables, but crucially, not conditioning on
non-submission. Subsection 6.3 studies test-optional outcomes under this or some other given
imputation rule. We establish a sense in which students with good non-test observables (and
low test scores) benefit when a college goes test optional because it increases their admission
rate. Students with intermediate observables (and intermediate scores) are harmed. Other
students are unaffected.

When constrained to use an imputation rule like no adverse inference, colleges may be
worse off under test optional than test mandatory (by contrast with flexible imputation).
Determining whether test optional is attractive to the college requires more structure on the
environment. We turn to an extended example in Section 7, where we study how affirmative-
action regulations affect a college’s preference over test-score regimes. Our interest stems
from the ongoing U.S. Supreme Court cases on college admissions, which are widely expected
to result in the Supreme Court severely limiting race-conscious admissions.

Our extended example considers a college with affirmative-action preferences: conditional
on all other characteristics (test scores and some non-test observables), it also has preferences
over a student’s group membership, e.g., their race. Society has the same preferences as the
college over other characteristics, but its preferences are group-neutral. Our specification is
such that when affirmative action is allowed—the college can condition its admissions rule on
group membership—the college will choose the test-mandatory regime. The college can use
different score thresholds for admitting students of different groups, and it values test scores
enough to outweigh the disagreement cost. If affirmative action is banned, however, then
the college may switch to test blind.7 The intuition is that if students in the college’s favored
group have lower test scores, then the college values tests less when it cannot condition on
group membership, and so it now prefers to go test blind to reduce disagreement costs. We
discuss how banning affirmative action may thus backfire: society prefers the college use
tests but not use group membership in admissions, but society may be better off when the
college uses both rather than neither. Interestingly, commentators have suggested that if the
Supreme Court rules affirmative action illegal, colleges like Harvard may make their current
test-optional policies permanent (New Yorker, January 2022).

7 Test blind is when students simply cannot submit tests scores, or the college ignores test scores entirely.
In our model, this is equivalent to test optional in which non-submission is imputed as the highest test score.
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Related literature. There are empirical papers studying test-optional (or test-blind) col-
lege admissions, using data from prior to the Covid-19 pandemic (e.g., Belasco, Rosinger,
and Hearn, 2015; Saboe and Terrizzi, 2019; Bennett, 2022). In a recent review, Dynarski,
Nurshatayeva, Page, and Scott-Clayton (2022, pp. 53–54) conclude from these studies that
test-optional policies have had limited effect on increasing diversity and applications, but
may have helped colleges boost their public rankings by raising the average (submitted)
standardized test score of enrolled students.

Economic theory has also studied how standardized test scores should be used in college
admissions. Krishna, Lychagin, Olszewski, Siegel, and Tergiman (2022) propose pooling test
scores into coarse categories to reduce the wasteful costs of test preparation. Lee and Suen
(2023) study how low-powered selection—such as putting less weight on test scores—may
help a college by reducing students’ incentives to improve their test scores.8 Garg, Li, and
Monachou (2021) assume that some students have no access to standardized tests, which
means that a test-optional/blind policy broadens the applicant pool even though it provides
less information about those who do apply. Borghesan’s (2022) structural analysis of college
admissions also emphasizes students’ costs of taking standardized tests: going test blind
reduces a college’s information but allows students with high test-taking costs to apply. He
predicts that this policy would reduce student quality at top schools without increasing
diversity. Related to costly test-taking is Ottaviani’s (2020) model of prize allocation with
costly application. He shows that using more noisy measures of applicant quality can enlarge
the applicant pool; while he is motivated by the allocation of grants, the logic can also be
applied to selective colleges’ admissions.

In contrast to the papers in the preceding paragraph, our argument for why colleges
benefit from going test optional does not rely on the cost of obtaining or improving test
scores, nor on the cost of applying to a college. While we discuss these factors in Section 2,
our model of social pressure assumes that students are simply endowed with a test score and
application is costless. Indeed, at least prior to Covid-19, 25 U.S. states required students
to take the SAT or ACT in order to graduate high school.9

8 More broadly, in a “muddled information” framework (Frankel and Kartik, 2019), Ball (2022) and
Frankel and Kartik (2022) explore how a decisionmaker should commit to underutilize manipulable infor-
mation to improve decision accuracy.

9 In their empirical studies, Goodman (2016) and Hyman (2017)) find that such policies increase college
enrollment rates of low-income students, either because the students discover they are higher-achieving than
they thought or because colleges discover and then recruit students through such testing. More generally,
scholars have suggested that eliminating application barriers for low-income students can increase the number
of students that apply to and enroll in selective colleges (Hoxby and Avery, 2012; Hoxby and Turner, 2013;
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Some theoretical papers on college admissions have also studied the specific issue of affir-
mative action (e.g., Abdulkadiroglu, 2005; Chade, Lewis, and Smith, 2014; Fershtman and
Pavan, 2021; Brotherhood, Herskovic, and Ramos, 2022), which we take up in Section 7.10

Most related to our work is Chan and Eyster (2003), who model a college that values both
student quality and diversity. When affirmative action is banned, the college may adopt an
admission rule that puts less weight on academic qualifications, such as standardized test
scores, in order to promote diversity. The logic is related to that of statistical discrimination
(Phelps, 1972; Arrow, 1973), except that instead of race serving as a signal of qualification,
qualification serves as a signal of race. Notably, Chan and Eyster (2003) do not provide a
rationale for why a college strictly benefits from not observing test scores; in their model,
being test blind is equivalent to being test mandatory and putting zero weight on tests.
By contrast, in our model, social pressure can lead a college to strictly prefer test-blind (or
test-optional) admissions to test mandatory.

Our paper also contributes to the large literature on voluntary disclosure of verifiable
information. The canonical result here is that of “unravelling” (Grossman, 1981; Milgrom,
1981), which corresponds to all students submitting their scores even when it is optional.
It is reported, however, that fewer than half of U.S. college applicants who applied early
decision in Fall 2022 submitted test scores. Unraveling does not arise in our model because
we assume the college can commit to how it will treat students who do and do not submit
their score.

Finally, in our model, the college’s and society’s information depends on which students
submit test scores. This is determined by the testing regime and, under test optional, the
college’s imputation rule. Our work is thus related to the large and growing literature on
Bayesian persuasion and information design (Kamenica and Gentzkow, 2011; Bergemann and
Morris, 2019). For example, Liang, Lu, and Mu (2022) explore how a designer may ban the
use of certain inputs, such as test scores, because of a disagreement with how a decisionmaker
would use those inputs. As is standard with Bayesian persuasion, their designer only cares
about information insofar as it affects the decisionmaker’s actions. In our model, by contrast,
the college both controls information and makes admission decisions; but society observes
the same information, which affects the college’s social pressure costs. To put it differently,

Goodman, Gurantz, and Smith, 2020).
10 Various other papers model aspects of college admissions that we do not address, such as early ad-

missions (e.g., Avery and Levin, 2010), managing enrollment uncertainty (e.g., Che and Koh, 2016), college
tuition determination (e.g., Fu, 2014), and which colleges a student should apply to (e.g., Chade and Smith,
2006; Ali and Shorrer, 2021).
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Liang et al. (2022) explain why society may choose to prevent a college from using test scores;
we show why a college may itself choose to not see test scores. Like us, Liang et al. (2022)
also discuss why a college may choose to not see test scores if society bans affirmative action;
rather than social pressure, their mechanism involves a conflict of preferences between the
college and it admissions officers.

2. A Puzzle

This section formalizes our motivating puzzle: under a broad set of conditions, a college
can always do at least well under test mandatory as under test optional. The intuition is
simply that more information cannot hurt the college, if it is free to use information as it
would like—even though how the college uses information can affect choices students make.
By making explicit a set of assumptions behind the result, our formalization also allows us
to discuss various reasons why the result may fail. Readers primarily interested in seeing
our analysis of social pressure can skip forward to Section 3.

2.1. An Impossibility Result

A student is considering applying for admission to a college. If the student applies, the
college will choose whether to admit this student based on their non-test observables and, if
submitted, their test standardized scores.

Prior to taking a standardized test, the student is endowed with publicly observable char-
acteristics x; privately observed characteristics z; a “holistic” component h that is observed
by the college (if the student applies) but not the student; and an underlying ability level a
that isn’t directly observed by the student or the college. The exogenous variables x, z, h,
and a follow some commonly known joint distribution, which may have arbitrary correlation
across variables. The college has some net utility uc(x, z, h, a) for admitting the student,
with its preferred admission threshold normalized to uc = 0.

We think of the public observables x as representing features that the college can see in the
student’s application: GPA and other measures of classroom performance, extra-curricular
achievements, legacy status, etc. The private characteristics z represent features that the
college cannot directly observe: aspects of the student’s interests and upbringing, say. Some
features such as race or socioeconomic status might lie in x or in z, depending on what
information the college collects on its application. The holistic variable h can be anything
the college assesses that the student does not know when applying, e.g., match quality, or
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some unpredictability in how the college evaluates the student’s personal characteristics.
Finally, we interpret ability a as representing some aspect of how well a student will perform
in college, if admitted.

The college can make inferences about ability a (and the private characteristics z) through
any correlation it has with x and h. The college can also potentially learn additional infor-
mation from a standardized test score t, and from a supplementary cheap-talk message m

that the student submits with their application. This supplementary message can represent
a component of the student’s personal statement. The game is as follows.

1. One of the test-mandatory, test-optional, or test-blind testing regimes is determined.

2. The college publicly commits to a mapping from x, m, h, and t (if observed), to a
probability of admission.

3. The student’s features x, z, h, and a are realized, and the student learns x and z.

4. The student chooses test-preparation effort e at a cost φeffort(e|x, z) that depends arbi-
trarily on e, x, and z. This effort choice will not be observable to the college.

5. The student realizes a test score t drawn from a distribution that depends arbitrarily
on x, z, h, a, and e.

6. The student chooses whether to apply to the college at a cost φapply(x, z, e) that depends
arbitrarily on x, z, and e.11 If the student applies:

(a) In the test-optional regime, the student chooses whether to disclose the test score
t. The test score is automatically disclosed in the test-mandatory regime, and is
not disclosed in the test-blind regime.

(b) The college observes x and h. The student may also send an arbitrary supple-
mentary message m at no cost.

7. If the student applies, admission is determined by the college’s admission rule. The
student gets a gross payoff vadmit(x, z, e) if admitted, and a gross payoff 0 otherwise.
They also incur the costs φeffort and, if they applied, φapply. So, for example, an
admitted student’s net payoff is vadmit(x, z, e)− φeffort(e|x, z)− φapply(x, z, e).

In this game, we show below that it is impossible for the college to strictly prefer test-

11 We could also allow for the cost φapply to depend on an endogenous “application effort” that generates
an additional signal for the college; we omit that for simplicity.
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optional or test-blind admissions to test-mandatory.12 To be clear, we do not interpret this
impossibility result as implying that colleges in the real world cannot benefit from going test
optional or test blind. Rather, the model and result point us to the assumptions that must
be violated when a college might in fact benefit from going test-optional.

Proposition 1. The college prefers test mandatory to test optional, and prefers test optional
to test blind. In particular, for any test-optional equilibrium, there is a test-mandatory equi-
librium in which the college’s expected payoff is (weakly) higher. For any test-blind equilib-
rium, there is a test-optional equilibrium in which the college’s expected payoff is (weakly)
higher.

The proof of the proposition is almost trivial, given the assumptions. Here is how test
mandatory can replicate the test-optional outcome. (An analogous argument shows that test
optional can replicate test blind.) Take any test-optional equilibrium, which consists of the
college’s admission rule and the student’s strategy. Now suppose the college chooses (perhaps
sub-optimally) a test-mandatory admissions rule that sets an acceptance probability equal to
what a student with the same x, h, and t would have gotten in the test-optional equilibrium.
More precisely, the college asks the student to report in their supplementary message m

whether they would have disclosed under test optional, along with any other supplementary
information they were previously submitting.13 If the student would have submitted, the
college assigns them the test-optional acceptance probability for a student with that test
score (and given everything else the college observes); if not, the college assigns them the
acceptance probability for a student who did not submit a score. This college strategy
ensures that the incentives for the student to choose test-preparation effort, to apply, and to
(report whether they would) submit a test score are identical to those under the test-optional
equilibrium. It is thus a best response for the student to act the same as under test optional,
and we have replicated that outcome.

The above argument only establishes that the college cannot do worse with test mandatory

12 For simplicity, we adopt Bayes Nash equilibrium as our solution concept, but the argument applies with
any standard concept.

13 We assume that doing so is feasible under the test-mandatory message space: this is assured, for
example, if the college chooses the message space in each regime. Note that we only need the student to
indicate whether they would have submitted under test optional if the college cannot predict that based
on its observation of x and t. But in those cases, allowing the supplementary cheap-talk message could
play an indispensable role. Albeit in a different model, Hancart (2023, Section 2.1) shows that a form of
test optional can do strictly better than test mandatory in the absence of cheap talk; when cheap talk is
permitted, however, even in his model there would be no benefit from going test optional.
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than test optional, but one would generally expect that observing more information about
the test score would allow the college to do strictly better.

2.2. Ways Out of the Puzzle

In light of Proposition 1, we now discuss how breaking some of its underlying assumptions
might—or might not—lead the college to prefer test-optional admissions over test mandatory.

College lacks commitment power. We assumed the college can commit to its admis-
sion rule. Suppose the college lacks such commitment power: no matter what the college
announces about its admission rule, these claims are unenforceable and students know not
to believe them. The college ends up admitting students according to what it finds ex-post
optimal given the information provided. We expect that under reasonable monotonicity as-
sumptions, a college without commitment power still cannot do better under test optional
than test mandatory. The logic is now quite different from that of Proposition 1, however.
The issue now is that the test-optional equilibrium unravels, as in classic voluntary-disclosure
models (e.g., Milgrom, 1981). Despite a nominally test-optional policy, all students end up
submitting their scores because not submitting will, in equilibrium, be met with the skep-
ticism of a low score and hurt admission. Such unraveling suggests that a lack of college
commitment power is unlikely, on its own, to explain why colleges might go test optional.

Additional costs. We allowed for the students to have arbitrary type-dependent costs of
studying for the test and of applying to the college. We did not allow for a direct cost of
sitting for the test, however, nor of submitting a test score.

It is easy to see how adding these costs breaks our replication argument and can in fact flip
the result. A student who pays a cost of sitting for the test and/or submitting the test score
can avoid these costs only if the college is test optional or test blind. In the presence of such
costs, colleges potentially face a genuine tradeoff: requiring test scores deters applications
while yielding more information about students who do apply (cf. Garg et al., 2021).

There is, of course, a large cost of sitting for the test during a pandemic—even infinite,
when test centers are shut down. But both prior to the Covid-19 pandemic, and after its
effects have receded, our view is that this cost is not particularly large.14 (Let us reiterate

14 For instance, the SAT takes about 3 hours to sit—about half a day of school, while a typical U.S.
student is expected to go to school for about 180 days a year for 12 years prior to college. The SAT currently
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that this test-sitting cost would be separate from any costs of studying and preparing for
test, which we view as significant but are already part of the model.) We also note that,
if the cost of sitting—as opposed to preparing for—the test or the cost of submitting the
score were the main benefits for a college being test optional, then subsidizing test-taking
or score-submission for the relevant groups of applicants, as is already done to some extent,
would likely be a more efficient way to increase participation. All that said, we acknowledge
that students may still perceive these costs as significant.

Non-equilibrium behavior. A related way that the impossibility result can fail is if
students don’t follow our predictions of equilibrium behavior. Students may make different
application or test-preparation decisions when facing a test-optional college rather than a
test-mandatory college with the same acceptance probabilities. For instance, colleges would
certainly want to switch from test mandatory to test optional if many students happened
to follow the behavioral rule that they will not apply to test-mandatory colleges.15 Even
a student who plans on taking the test and submitting their score to test-optional colleges
might, for reasons of principle, be unwilling to apply to a test-mandatory college.

Constraints on the college’s admissions rule. Our replication argument assumed that
the college was able to choose any admission rule it wanted. If the college is constrained
in setting this rule, the impossibility result could fail. As an extreme case, imagine that
the college has no flexibility at all: it is required to evaluate students with a test score
by one rule, and students without a test score by another rule. If the admission rule for
students with test scores were to put too much weight on tests, the college might very well
prefer not to see tests at all. Such an exogenous admission rule might be prescribed by the
government, or it might be that admissions officers make decisions according to their own
views and cannot be incentivized to act differently. Our view is that government policies
are not a major constraint on colleges, at least as long as a college is private and is not
violating civil rights laws. And on the organizational side, colleges invest a lot of money

has a monetary cost of $60, but low income students in the US can get this fee waived; fee waivers are
automatic for students eligible for federally subsidized school lunches. Students can then submit their SAT
scores to four colleges at no cost and they pay $12 per submission after that, but again these fees are waived
for low income students. (Fees link.)

15 In the context of applications to graduate schools, Dr. Kim Yi Dionne, a professor at UC Riverside,
writes on Twitter: “Students at the minority-serving institution where I work are ABSOLUTELY taking
schools off their list if they require the GRE.”
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into their admission process and presumably can direct their admissions offices to at least
approximately follow the rules they want.16

Social pressure. The story we seek to explore is related to the previous one, but milder.
We posit that colleges do have the flexibility to choose arbitrary admission rules, but that
their choices may be costly. In particular, we suppose that colleges face pressure from some
third party—we call this “society”—over their admissions decisions. “Society” here represents
any external group that might scrutinize admission decisions, and have preferences over who
ought to be admitted: alumni, parents, local governments, the popular press, and even the
judicial branch. If the college’s admissions decisions disagree with society—the college rejects
students that the society thinks should be admitted, or accepts students that society thinks
should not be accepted—then the college has to pay some cost of social pressure.

In the limit as these disagreement costs go to infinity, this model effectively converges
to one where the college simply follows an exogenous rule (in this case, society’s admission
rule). When disagreement costs are less extreme, though, the college faces a choice over how
to try and maximize its “underlying utility” over the admitted students while minimizing
disagreement costs.

Before turning to our formal model of how social pressure affects admissions decisions
under different testing regimes, the next section provides an illustrative example showing
how a college subject to social pressure can be strictly better off by not seeing information.

3. An Illustrative Example

Consider a single student who has applied to a college. (An alternative interpretation
is that of a mass of students who share common observable characteristics.) The student’s
test score t is drawn from a uniform distribution between 0 and 100. Society’s utility from
admitting the student is us(t) = t − 40, and its utility from not admitting the student is
normalized to 0. So, ignoring indifference, society wants to admit the student if and only if
their test score is above 40. The college receives some information about the student’s test
score—we will consider different possibilities below—and then chooses whether to accept or

16 Admittedly, admission officers might put more weight on test scores than the college seeks, owing to
their intrinsic preferences or beliefs. Or, they might do so due to incentives and moral hazard: evaluating
test scores may be easier than evaluating more subjective features, and admission officers may only find it
worthwhile to conduct the costly holistic assessment when they lose access to test scores.
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Figure 1 – Disagreement cost from accepting (A = 1) and rejecting (A = 0) an student.

reject the student. Society then judges the college’s decisions given the available information.
Importantly, the college and society have the same information; information asymmetry
between them is not our driving mechanism. Rather, what is crucial is that the college faces
disagreement costs from social pressure for making decisions that society disagrees with.

Disagreement cost. The disagreement cost is proportional to the extent of society’s dis-
agreement with the college’s decision, given the available information. If the college accepts
the student and society would also prefer to accept them (i.e., E[us(t)] > 0), or the college
rejects the student and society would also prefer to reject (E[us(t)] < 0), then the college
bears no disagreement cost. That is, in each of those cases, the respective disagreement costs
dA=1 and dA=0 are both 0, where A = 1 denotes acceptance and A = 0 denotes rejection.
However, if the college rejects the student when society prefers to accept, the college bears
a disagreement cost of dA=0 = E[us(t)] > 0. Likewise, if the college accepts an student that
society prefers to reject, the disagreement cost is dA=1 = −E[us(t)] > 0. See Figure 1.

Why not observe test scores? We now illustrate how the college can reduce disagree-
ment costs by not observing test scores.

First consider test mandatory : the student’s test score is observed. If the college chooses to
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accept regardless of the test score, it bears a disagreement cost of 40−t whenever the score is
below 40 (and 0 otherwise), and so the the expected disagreement cost is

∫ 40

0
1

100
(40−t)dt = 8.

Analogously, if the college instead chooses to reject regardless of test score, it bears an
expected disagreement cost of

∫ 100

40
1

100
(t− 40)dt = 18.

Now consider test blind : the student’s test score is not observed. Here, having no infor-
mation beyond the uniform prior over the test score, society evaluates the student as if their
test score were equal to the expected value E[t] = 50. If the college chooses to accept the
student, it now faces a disagreement cost of 0: absent test score information, society agrees
that the student should be accepted. So if the college were going to accept the student
regardless of their test score, then hiding the test score reduces its expected disagreement
cost from 8 to 0.

If the test-blind college rejects the student, it does face a disagreement cost: society’s
expected utility from admitting the student is E[t]− 40 = 10, and so the college’s disagree-
ment cost from rejection is 10. Nonetheless, hiding the test score reduces the expected
disagreement cost of rejecting all applicants from 18 to 10.

The upshot is that, for either decision the college makes—so long as it is independent of
the test score when that is observed—the college can reduce expected disagreement cost by
hiding the test score, i.e., going test blind. The fundamental reason is that both disagreement
cost curves dA=1(t) = max{40 − t, 0} and dA=0(t) = max{t − 40, 0} are convex, as seen in
Figure 1. Mathematically, the reduction of expected disagreement cost by going test blind
is simply a consequence of Jensen’s inequality.

A tradeoff. The downside of going test blind is that the college may want to condition
its decisions on test scores. We have not specified the college’s preferences over admission
decisions here, either gross or net of the disagreement cost it bears. But perhaps the college
seeks to admit only those students with test scores above, say, 20 (which is a lower threshold
than society) or 60 (a higher threshold). Either way, not observing the test score harms the
quality of decisions the college can make.

In the rest of the paper, we explore the tradeoff a college faces between reducing disagree-
ment cost and using information to make better decisions in the context of test-optional (or
test-blind) policies. We study how test-optional colleges decide which applicants to admit,
how students choose whether to submit test scores, and how the resulting outcomes differ
from a test-mandatory benchmark.
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4. A Model of Admissions under Social Pressure

We model a student applying to a college, with a broader “society” playing a passive role.
(The student can be viewed as being a representative applicant from a mass of students,
and we will sometimes use the plural students for exposition.) The student is endowed with
some publicly-observable characteristics and a test score, which is their private information.
In a test-mandatory regime, the student mechanically submits their test score, making it
public to the college and society. In a test-optional regime, the student chooses whether
to submit their score. In either regime, the college chooses whether to admit the student
based on their observable characteristics and, if submitted, their test score. Both the college
and society have preferences over whether the student should be admitted as a function of
their observables and their true test score. The college also places some weight on reducing
disagreement between its admission decision and the decision society would want it to make,
given all available information.

4.1. Model Primitives

Observables and test scores. Formally, the student/applicant has a type (x, t) ∈ X ×R,
where x is an observable (or vector of observables) and t is the test score. The distribution
of observables is given by Fx and the test score has conditional distribution Ft|x.17

The observable x is public information to all players. The test score t is private information
to the student, which may be submitted (S = 1) or not (S = 0). Submitting the score makes
it observable to all other players. Our primary interest is in two college-admission regimes:
test mandatory, in which test scores must be submitted, and test optional, in which scores
may be submitted. We will also talk about test blind, wherein the score cannot be submitted.

Preferences. The college decides whether to admit the student (denoted A = 1) or not
(A = 0), based on observables x and, if submitted, the test score t. The student strictly
prefers a higher probability of being admitted. Society’s utility and the college’s material or

17 More precisely, X is a measurable space and Fx is a probability measure on that space. To simplify
some technicalities, we assume that for each x, Ft|x is either continuous or is discrete with no accumulation
points, and that all relevant expectations exist.
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“underlying” utility if the student is accepted are given, respectively, by

us(x, t) := vs(x) + ws(x)t,

uc(x, t) := vc(x) + wc(x)t,

where the superscripts have the obvious mnemomic (society and college), and each wi(·) > 0

for i = s, c. We view monotonicity of these preferences in the test score as natural; the affine
specifications aid subsequent interpretation and tractability. Both society’s and the college’s
underlying utility are normalized to 0 if the student is not admitted.

In addition to its underlying utility, the college suffers disutility from social pressure on
its admission decision. To formalize that disutility, let ts denote the test score society treats
the student as having; this will be determined endogenously. Anticipating equilibrium, think
of ts = t if the score is submitted, and ts = E[t|x, S = 0] under non-submission. For any ts,
society’s disagreement with the college’s decision is given by

d(x, ts, A) :=

max{us(x, ts), 0} if A = 0,

max{−us(x, ts), 0} if A = 1.
(1)

The assumed linearity of us(x, t) in the test score t means that we can interpret us(x, ts) as
society’s expected benefit from admitting the student when ts is the expected test score given
all available information. Hence, society’s disagreement can be understood as follows: there
is no disagreement if, given the available information, society’s preferred decision is the same
as the college’s decision; but when there is a conflict in preferred decisions, then disagreement
is linear in the magnitude of society’s expected benefit from its preferred decision. As before,
the monotonicity here is natural; linearity is for tractability.

The college’s overall payoff U c is its underlying utility less the (scaled) disagreement:

U c(x, t, ts, A) := Auc(x, t)− δd(x, ts, A), (2)

where δ > 0 is a parameter capturing the extent of social pressure on the college. We refer
to δd(·) as the disagreement cost to the college.

Imputation and admission policies. The college’s admissions policy has two compo-
nents, one of which—how to treat students who don’t submit test scores—is irrelevant under
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test mandatory.

First, given the student’s observable x, we assume that the college treats non-submission
of a test score as equivalent to some specific test score, which we call the imputation. More
precisely, there is an imputation rule τ : X → [−∞,+∞],18 with τ(x) the imputation for
observable x. We will be interested in two settings: either the college can choose the imputa-
tion rule arbitrarily, which we call flexible imputation, or the imputation rule is exogenously
given, which we call restricted imputation.

Second, the college chooses an acceptance rule α : X × [−∞,+∞] → [0, 1], where α(x, t̂)

is the probability of admitting a student with observable x and imputed/submitted test
score t̂. We stress that the acceptance rule cannot (directly) condition on the student’s true
test score, and it does not distinguish between imputed and submitted scores—this captures
our notion that imputing a score means treating a non-submitting student as if they have
submitted that imputed score. As in Chan and Eyster (2003), we assume that α must be
monotonic in the sense that for any x, α(x, ·) is weakly increasing.

College’s problem. Since the college’s acceptance rule is monotonic, there is a simple
best response for the student: submit their score if t > τ(x) and don’t submit if t ≤ τ(x).
We restrict attention to the student playing this strategy. Given this student strategy, we
assume society is Bayesian in evaluating the student. In particular, if the student submits
their test score, then ts = t; if the student does not submit, then ts = L(τ(x)|x), where L

(mnemonic for “lower expectation”) is defined by

L(t̃|x) := E[t|t ≤ t̃, x].19

The college’s problem is to choose—commit to—its imputation rule τ (under test optional
with flexible imputation) and its acceptance rule α, to maximize its expected payoff U c,
anticipating the student’s best response and society’s Bayesian inferences.

18 The co-domain is the extended reals for technical convenience when test scores can be arbitrarily small
or large; if test scores lie in a compact set, then we could take the co-domain of τ to be that compact set.

19 For t̃ ≤ inf Supp[Ft|x], we set L(t̃|x) = inf Supp[Ft|x].
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4.2. Ex-Post Utility

Observe that when ts = t, as will be the case if the student submits their score, Equation 1
and Equation 2 imply that the college’s net benefit from admitting the student is given by

U c(x, t, t, 1)− U c(x, t, t, 0) = uc(x, t)− δ [d(x, t, 1)− d(x, t, 0)]

= uc(x, t) + δus(x, t)

∝ 1

1 + δ
uc(x, t) +

δ

1 + δ
us(x, t)

=: u∗(x, t). (3)

We refer to u∗(x, t) as the college’s ex-post utility. For a score-submitting student, our dis-
agreement cost formulation implies that the college’s net benefit from admission is equivalent
(i.e., proportional to) to a convex combination of the college’s underlying utility and society’s
utility. If the student submits their score, the college’s payoff is maximized by admitting the
student if and only if (modulo indifference) u∗(x, t) > 0.

For i ∈ {c, s}, we refer to ti(x) such that ui(x, ti(x)) = 0 as the college/society’s test-score
bar for admission: it is the score threshold such that each would—if unencumbered by social
pressure—prefer to admit the student with observable x if and only their score is above that
threshold. We denote the ex-post utility bar by t∗(x); it is defined by u∗(x, t(x)) = 0 and
is the threshold above which, accounting for social pressure, the college wants to admit the
student.20 We say that the college is less selective than society at observable x if tc(x) < ts(x),
while it is more selective if tc(x) > ts(x). In either case, the ex-post utility bar t∗(x) is in
between the two parties’ bars, and it monotonically shifts from tc(x) to ts(x) as the social-
pressure intensity parameter δ increases.

Figure 2 illustrates with a leading specification in which x ∈ R, and for each i ∈ {c, s},
ui(x, t) = ai + x + wi × t. In this specification, the college weights test scores more than
society when wc > ws, and weights test scores less than society when wc < ws. The three
lines indicate the respective test-score bars at each x. When the college weights test scores
less, as in the figure’s left panel, at low x it is more selective (has a higher bar) than society,
but at high x it is less selective (has a lower bar); and the reverse when the college weights
test scores more than society, as in the right panel.

20 More explicitly, since ui(x, t) = vi(x)+wi(x)t and u∗(x, t) = (uc(x, t) + δus(x, t)) /(1+ δ), we compute
ti(x) = −wi(x)/vi(x) and t∗(x) = − (wc(x) + δws(x)) / (vc(x) + δvs(x)).
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Figure 2 – Test score admission bars for society (ts), the college’s underlying utility
(tc), and ex-post utility (t∗). For this figure, x ∈ R and ui = ai + x+ wi × t.

4.3. Discussion of the Model

4.3.1. Restricted imputation rules

With flexible imputation, the college can arbitrarily choose how to impute missing test
scores. With restricted imputation, we consider the other extreme, in which an imputa-
tion rule is exogenously specified. Although our analysis will not have any results tied to
particular restricted imputation rules, we allow for them to cover some colleges’ practice of
publicly promising not to “penalize” or “disadvantage” students who don’t submit scores. We
interpret such promises as mapping to some version of what we call the no adverse infer-
ence imputation rule, τ(x) = E[t|x]. Contrast this expression to the Bayesian imputation
rule used by society, in which ts = E[t|x, S = 0]: no adverse inference updates based on
observables but not on the choice not to submit. That is, the college imputes test scores as
if students who did not submit chose to do so non-strategically.21

Even when ignoring the submission decision, the college might condition its expectation
not on the full vector of observables but on some subset of relevant components. For in-
stance, if the observable vector x = (x0, x1) has component x1 corresponding to “grades” and

21 After switching to test optional in 2020, Dartmouth announced “Our admission committee will review
each candidacy without second-guessing the omission or presence of a testing element.”
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component x0 corresponding to “demographics” (race, gender, family income, neighborhood
of residence), the college might impute τ(x) = E[t|x1]. This gives the expectation of t con-
ditional on grades but not on demographics (and not on the decision to submit). Indeed,
certain features such as race or gender may be legally protected categories, in which case
it might be forbidden to impute scores differently based on these factors—even if they are
in fact predictive of test scores.22 In the limiting case, a college might deem all observables
irrelevant, in which case it would impute τ(x) = E[t] identically for all applicants. This
constant imputation rule can be thought of as “scaling up” the importance of all the non-test
factors for those who do not submit. Imputing τ(x) = E[t|x] corresponds instead to scaling
up observables that predict test scores, which might end up putting extra weight on academic
versus nonacademic factors.

4.3.2. Key assumptions

Simplifications. Relative to the framework discussed in Section 2, the current model
makes a number of simplifying assumptions in order to focus on the channel of social pressure
as an explanation for going test optional. For instance, we abstract away from a student’s
decision of how much to study for, or whether to even take, the test. Instead, we endow
students with a test score. We then give the college and society a reduced form preference
over these test scores rather than microfounding any inference over underlying ability. We
also don’t model the student’s application decision.

One other simplifying assumption to flag is that we model the college as having a fixed
underlying utility threshold for admission. In particular, even if a switch from test mandatory
to test optional leads to a different number of admitted students, the college does not raise
or lower its threshold for admission in order to keep its class size constant. We return to this
point in the Conclusion.

Student submission behavior. We assume that students submit a test score if their
true score t is strictly above the college’s imputed value τ(x), and they withhold the score
if t is weakly below τ(x). Higher test scores can only help admission chances.23 So, as

22 Society, too, might only factor in certain components of observables: for instance, setting ts =
E[t|x1, S = 0]. We discuss this sort of non-Bayesian updating rule for society in the Conclusion.

23 Recall the assumption that, at each observable x, the college’s acceptance probability must be weakly
increasing in the test score. In fact, we can show that dropping this monotonicity assumption would not
change our results. But it is both plausible for the setting and simplifies the student submission behavior.
The monotonicity assumption can also be microfounded by allowing “free disposal” of test scores, i.e., a
student with test score t can costlessly reduce it to any value less than t.
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discussed, this strategy guarantees a student the highest chance of admission. While there
may be other optimal student strategies (when submitting a test score t would lead to the
same acceptance probability as not submitting),24 a student can safely follow the strategy
we focus on even if they do not know which (monotonic) acceptance rule the college is using.

Of course, while the strategy is robust to a student’s uncertainty over the college’s ac-
ceptance rule, it is sensitive to the student’s knowledge about their imputed test score. In
the real world, students face uncertainty about about how colleges treat missing test scores.
Our model makes an admittedly strong assumption of “equilibrium knowledge” here. One
interpretation of our model is that it captures a hypothetical world in which test-optional
colleges ask for test scores on the last line of an electronic college application, and that same
line states the score that would be imputed if the student chose not to submit.

5. Test-Mandatory Admissions

In a test-mandatory regime, the college faces a simple problem, as both the college and
society always know the student’s score. In light of social pressure, the college simply max-
imizes its ex-post utility for each (x, t); its admission decision is determined by the ex-post
bar.

Proposition 2. In a test-mandatory regime, the college admits a student with observable x

if u∗(x, t) > 0 (equivalently, t > t∗(x)) and rejects the student if u∗(x, t) < 0 (equivalently,
t < t∗(x)).

As the social-pressure intensity parameter δ increases, the college becomes less selective at
observable x if, based on its underlying utility, it is more selective than society (tc(x) > ts(x)),
and conversely if it is less selective than society. Plainly, the student with observable x

benefits in the former case and is harmed in the latter case.25

24 In particular, when t = τ(x), the student is necessarily treated identically regardless of whether they
submit; the behavior of these student types is immaterial if there are no mass points in the score distribution
at t = τ(x).

25 Benefit/harm here is in the sense of set inclusion. For example, suppose the college is more selective
than society at x. Then a student with that observable may be rejected when social pressure intensity is
low, and admitted when intensity is high; or they may receive the same outcome at both intensities.

22



6. Test-Optional Admissions

6.1. Optimal Acceptance Rule

In a test-optional regime, our college has two instruments: the imputation rule and the
acceptance rule. Only the imputation rule affects students’ score submission, and in turn
the college’s and society’s information. Moreover, the only decision that students make is
whether to submit their score. So, no matter the imputation rule, the college’s optimal
acceptance rule simply maximizes its ex-post utility given students’ submission behavior.
Formally, recalling that L(τ(x)|x) is the average test score of non-submitters with observable
x given the imputation τ(x):

Lemma 1. Consider a test-optional regime with any imputation rule τ . The college has an
optimal acceptance rule in which a student with observable x and imputed/submitted score t̂

is accepted if (i) t̂ > τ(x) and u∗(x, t̂) > 0 or if (ii) t̂ = τ(x) and u∗(x, L(τ(x)|x)) > 0, and
is rejected otherwise.

Any optimal admission rule must have the college making ex-post optimal decisions on
path. The lemma’s acceptance rule also specifies rejecting any student who has a test score
below the imputed level but who chooses, off path, to submit. When the non-submitters are
accepted, we could replace this behavior with any other monotonic rule and the outcome
would be the same. When the non-submitters are rejected, though, monotonicity of the
admission rule requires the college to also reject any score submission below the imputed
score. In this latter case, commitment to the policy may be necessary: off path, the college
may be rejecting students that it ex-post prefers to accept. For example, suppose test scores
at some observable x are distributed uniformly between 0 and 100, and the imputation is
τ(x) = 50. Students with scores between 0 and 50 don’t submit, leading to an average score
of 25 for non-submitters. If the college’s ex-post bar for acceptance is in between 25 and 50,
say t∗(x) = 40, then the college will reject the non-submitters. The college must then reject
all off-path submissions of scores below 50, including—ex-post suboptimally—those above
its ex-post bar of 40.

6.2. Flexible Imputation

We now turn to studying optimal admission policies under flexible imputation. Clearly,
the college can ensure that it is no worse off than under test mandatory: after all, the
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imputation rule τ(·) = −∞ ensures that all students submit their scores. But when and how
can the college do better?26

In choosing its imputation τ(x) for some observable x, the college trades off making better
admission decisions with reducing disagreement cost. Raising τ(x) leads fewer students to
submit their test scores. The cost is that the college now has less information with which to
make admissions decisions. The benefit is that by pooling together a larger set of test scores
(those of the non-submitters), the college can reduce the disagreement cost it bears with
society, as we saw in Section 3. In particular, consider two students who are both rejected
or both accepted. If their test scores are either both below society’s bar ts(x) or both above,
the disagreement cost is the same regardless of whether these students submit their scores
or are pooled together. But if these students are on opposite sides of society’s bar, then the
disagreement cost is lower when the students are pooled together.

When solving for the optimal admissions policy, the college’s problem is separable across
observables. That is, we can optimize at each observable x and then “stitch” together the
solutions across x’s to get the globally optimal admission policy.

Given some fixed x, it is useful to consider separately the case in which the college is
less selective than society (tc(x) < t∗(x) < ts(x)) and the case in which it is more selective
(ts(x) < t∗(x) < tc(x)).27 For both cases, we will assume that the imputation level τ(x)
is set such that any submitted score t > τ(x) is accepted. This is without loss: if the
college were to reject imputed/submitted scores up to some threshold t′ > τ(x),28 then it
could instead raise the imputation level to t′, still reject non-submitters, and now accept all
submitted scores. This alternative policy leads to the same admission decisions but weakly
lowers disagreement costs by pooling a superset of scores. Note that, by Lemma 1, optimally
accepting any t > τ(x) implies τ(x) ≥ t∗(x).

26 Lemma 1 says that given an imputation rule, admission decisions are made to maximize the ex-post
utility (on path). We caution, however, that the lemma does not imply that solving for the optimal imputa-
tion rule is a problem of “Bayesian Persuasion” (Kamenica and Gentzkow, 2011)—even with the constraint
of information being generated by an imputation rule—in which the receiver’s decisions are determined by
the ex-post utility and the sender has some utility function over the “unknown state” t and the receiver’s
decision. The reason is that, as illustrated in Section 3, different information structures can lead to different
disagreement costs even when the same set of students is admitted.

27 The remaining case, tc(x) = t∗(x) = ts(x), is trivial, as there is no disagreement at the observable x.
The first-best is achieved when the college uses imputation τ(x) = t∗(x) and accepts a student if and only
they submit a score t > τ(x).

28 Lemma 1 implies that we can restrict attention to deterministic (and monotonic) acceptance rules; each
such rule is described by some threshold such that a student is admitted if and only if they submit a score
above that threshold.
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College is less selective than society. When the college is less selective, setting τ(x) =

t∗(x) and rejecting non-submitters replicates not only the test-mandatory admission deci-
sions, but also the college’s test-mandatory payoff. This is because all of the scores being
pooled together are below society’s acceptance threshold ts(x). Furthermore, the college does
worse if it sets τ(x) > t∗(x) and then rejects non-submitters: it is now rejecting students
that it preferred to accept even if it had to pay a disagreement cost to do so. Altogether,
if the college rejects non-submitters, then it cannot improve on setting τ(x) = t∗(x) and
replicating the test-mandatory outcome.

The college might improve on test mandatory, however, by accepting non-submitters at
some observable. Monotonicity of the acceptance rule means that the college would then
accept all students with this observable. With all of these students being accepted, the
college would minimize disagreement costs by setting the imputation level to infinity, so that
none of these students submit scores.29 Of course, relative to test mandatory, the college
would then be admitting too many low-scoring students. Hence:

Proposition 3. Consider flexible imputation and some observable x. When the college is
less selective than society (tc(x) < t∗(x) < ts(x)), it is optimal for the college to either:

1. Impute τ(x) = ∞ and accept students regardless of imputed/submitted score t̂; or

2. Replicate the test-mandatory outcome by imputing τ(x) = t∗(x), rejecting students with
imputed/submitted score t̂ ≤ t∗(x), and accepting students with t̂ > t∗(x).

Figure 3a and Figure 3b illustrate the two possibilities.

College is more selective than society. Let us turn to observables at which the college
is more selective than society. Unlike when the college is less selective, the college can
improve on test mandatory by imputing the ex-post optimal bar, rejecting non-submitters,
and accepting submitters. Pooling together the scores of all the rejected students now
reduces disagreement cost because society prefers to reject some of those students (those
with t < ts(x)) and accept others (t ∈ (ts(x), t∗(x)). In general, the college might do even
better by choosing a higher imputation, altering the set of admitted students.

Proposition 4. Consider flexible imputation and some observable x. When the college is
more selective than society (ts(x) < t∗(x) < tc(x)), the college optimally chooses imputation

29 If E[t|x] > ts(x), then any large enough τ(x) would also be optimal as that would ensure that society
prefers to accept the pool of non-submitters, resulting in zero disagreement cost.

25



(a) The college’s payoff is maximized by setting τ = ∞ and accepting non-submitters.
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(b) The college’s payoff is maximized by setting τ = t∗ and rejecting non-submitters.
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t− tc, us(x, t) = t− ts, and δ = 1, implying t∗ = 1
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Figure 3 – College’s test-optional payoff as a function of the imputed test score, when
the college is less selective than society.
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τ(x) ∈ [t∗(x), tc(x)]; it rejects students with imputed/submitted score t̂ ≤ τ(x) and it accepts
students with t̂ > τ(x).

The proposition’s proof establishes that the optimal τ(x) is determined by comparing the
function L(·|x), which gives the average test score of non-submitters, with society’s bar ts(x).
Specifically, letting t◦ be the score at which L(t◦|x) = ts(x),30 the college sets

τ(x) =


t∗(x) if t◦ ≤ t∗(x)

t◦ if t◦ ∈ (t∗(x), tc(x))

tc(x) if t◦ ≥ tc(x).

For the intuition behind Proposition 4, let us consider the case in which t◦ ∈ (t∗(x), tc(x)).
The optimal admissions policy then involves setting τ(x) = t◦, rejecting non-submitters, and
accepting submitters.31 This imputation makes society indifferent over whether to accept the
pool of non-submitters, as their expected test score is L(τ(x)|x) = ts(x). Moreover, society
wants to accept any submitter, since their score is t ≥ τ(x) > ts(x). So the disagreement cost
is zero. Now consider a marginal change of the imputation level τ(x) from t◦ to t′. On the one
hand, raising the imputation level τ(x) to t′ > t◦ cannot help. Doing so and then rejecting
the larger pool32 yields the same set of admitted students and the same disagreement cost
as setting τ(x) = t◦ and then rejecting students with scores t ∈ (t◦, t′]; there is no benefit
from pooling the scores of these marginal students with those below t◦ since society does not
strictly prefer to reject the pool of non-submitters. But the latter policy is dominated by the
originally proposed policy of setting τ(x) = t◦ and accepting students with scores t ∈ (t◦, t′],
as they provide positive ex-post utility. On the other hand, lowering the imputation level
to t′ < t◦ also cannot help. Doing so and then rejecting students with t ∈ (t′, t◦] yields the
same set of admitted students but higher disagreement cost, since society strictly prefers to
reject the pool of non-submitters when τ(x) = t′; doing so and then accepting applicants

30 If L(·|x) is everywhere below ts(x), let t◦ = −∞, and if L(·|x) is everywhere above ts(x), let t◦ = ∞.
Otherwise, for simplicity of discussion here, we assume that there is a unique solution to L(t◦|x) = ts(x), as
is guaranteed when the distribution of t|x is atomless and has interval support.

31 To see why this acceptance policy is optimal given the imputation τ(x) = t◦, notice that disagreement
cost is zero regardless of whether non-submitters are accepted or rejected, because L(τ(x)|x) = ts(x). Since
t◦ < tc(x), it is better for the college to reject non-submitters at this imputation level. It is better to accept
submitters, on the other hand, because t◦ > t∗(x).

32 For any marginal change, the college will still prefer to reject the pool, since the expected test score of
non-submitters is strictly below t∗(x).
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with t ∈ (t′, t◦] yields a worse set of admitted students from the college’s perspective, as
t < tc(x), but identical (zero) disagreement cost.

Figure 4 illustrates two examples of Proposition 4. Panel 4a shows a case in which the
optimal τ(x) is in (t∗(x), tc(x)). Panel 4b shows a case in which the optimal τ(x) is equal to
tc(x), and the college achieves its first best: it accepts students if and only if t > tc(x), and
it incurs no disagreement cost. Although not illustrated in the figure, it is also possible that
the optimal τ(x) = t∗(x).

How are students affected? The outcomes of a college-optimal admissions policy under
test-optional admissions have clear-cut and intuitive implications for student welfare relative
to the outcomes of test-mandatory admissions.

Students benefit from test optional at observables where the college is less selective than
society. Specifically, at these observables, Proposition 3 implies that either the college repli-
cates the test-mandatory admissions, or it admits all students. In the latter case, high-
scoring students (with t > t∗(x))) are indifferent between test optional and test mandatory,
but low-scoring students (t < t∗(x)) strictly benefit.

By contrast, students are harmed by test optional at observables where the college is more
selective than society. Specifically, Proposition 4 implies that when the optimal imputation
is τ(x) = t∗(x), the test-mandatory outcome is replicated for all students. But when the
optimal imputation is τ(x) > t∗(x), intermediate-scoring students (with t ∈ (t∗(x), τ(x)])
are rejected under test optional while they would have been accepted under test manda-
tory, whereas the outcomes for low- and high-scoring students (t < t∗(x) and t > τ(x),
respectively) are unchanged.

6.3. Restricted Imputation

We now turn to test-optional admissions when the imputation rule τ(·) is exogenously
given. The college only optimizes over its acceptance rule. As discussed in Subsection 4.3.1,
many colleges announce publicly a policy that we interpret as no adverse inference imputa-
tion. Restricted imputation also subsumes test-blind admissions, as that is equivalent to the
imputation rule τ(·) = ∞.

The optimal acceptance rule. As with flexible imputation, we can solve for the optimal
acceptance rule under restricted imputation separately for each observable x. We can readily
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(a) The college’s payoff is maximized by setting τ ∈ (t∗, tc) and rejecting non-
submitters.
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(b) The college achieves its first best by setting τ = tc and rejecting non-submitters.
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Fix some observable x. The distribution of test scores given x is t ∼ U [0, 100]. Utilities are uc(x, t) =
t− tc, us(x, t) = t− ts, and δ = 1, implying t∗ = 1
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c + ts).

Figure 4 – College’s test-optional payoff as a function of the imputed test score, when
the college is more selective than society.
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deduce an optimal acceptance rule using Lemma 1:

Proposition 5. Consider some observable x and imputation level τ(x). An optimal accep-
tance rule for the college is as follows. A student with submitted score t > τ(x) is accepted
if and only if t > t∗(x); a student with submitted score t < τ(x) is rejected; and a student
with imputed/submitted score τ(x) is accepted if and only if L(τ(x)|x) > t∗(x).

The proposition says that the college’s acceptance rule on path is determined by comparing
a student’s expected score—the score itself if submitted, or L(τ(x)|x) if not submitted—
with the ex-post bar. (Submission of t ≤ τ(x) only occurs off path.) Whether the college
is more or less selective than society does not affect the college’s optimal acceptance rule;
the distinction matters under flexible imputation (Subsection 6.2) only because it affects the
optimal imputation.

To better understand the admissions policy under restricted imputation, we can consider
exogenously varying the imputation τ(x) at a given x. In that case, there is a threshold T (x)

such that if τ(x) < T (x), then it is optimal to reject non-submitters, whereas if τ(x) > T (x),
then it is optimal to accept non-submitters.33 Figure 3 and Figure 4 illustrate, at some fixed
observable x, how the college’s payoff and its decision of whether to accept non-submitters
may depend on the imputation level.

How are students affected? Whether students at an observable x benefit from test
optional under restricted imputation (relative to test mandatory) depends on how the im-
putation level τ(x) and the lower expectation L(τ(x)|x) compare with the ex-post bar t∗(x).
To understand how these vary with observables, we must make further assumptions.

Accordingly, define a path of increasing observables as a parameter q ∈ [0, 1] determining
the observable x(q), with the following properties: (i) uc(x, t) = vc(x) + t and us(x, t) =

vs(x) + t, with vc(x(q)) and vs(x(q)) both increasing in q; (ii) the distribution of t|x(q) is
MLRP-increasing in q,34 and (iii) τ(x(q)) is increasing in q. Property (i) guarantees that
the ex-post bar t∗(x(q)) is decreasing in q, while properties (ii) and (iii) guarantee that the

33T (x) ≥ min{ts(x), tc(x)}, implying that if the imputation is below both the college’s and society’s bars,
then it is optimal to reject non-submitters. In fact, T (x) = ∞ if E[t|x] ≤ t∗(x). If E[t|x] > t∗(x), then so
long as the distribution of test scores conditional on x has full support and is atomless, T (x) is the unique
solution to L(T (x)|x) = t∗(x).

34 I.e., for each x, there is a test-score density/probability mass function f(t|x) such that the monotone
likelihood ratio property (MLRP) holds: q > q′ and t > t′ imply f(t|x(q))f(t′|x(q′)) ≥ f(t′|x(q))f(t|x(q′)).
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expected test score conditional on not submitting, L(τ(x(q))|x(q)), is increasing in q.35 Note
that property (iii) is implied by property (ii) when τ is the no adverse inference rule defined
by τ(x) = E[t|x].

A path of increasing observables yields straightforward implications for which students
benefit or are harmed by test-optional admissions with restricted imputation, as can be seen
using Figure 5. Students with “low” observables (those with q such that τ(x(q)) < t∗(x(q)))
are unaffected. Under both test-optional and test-mandatory admissions, these students are
accepted if and only if their test score is above the ex-post bar. Students with “medium”
observables (q such that τ(x(q)) > t∗(x(q)) but L(τ(x(q))|x(q)) < t∗(x)) are harmed. If
their test score is low (t ≤ t∗(x)) then they are rejected under both regimes, and if their
test score is high (t > τ(x)) then they are admitted either way. But if their score is in
between, they are accepted under test mandatory and rejected under test optional. Finally,
students with “high” observables (q such that L(τ(x(q))|x(q)) > t∗(x)) benefit. If their test
score is high (t > t∗(x(q))) then they are admitted under both regimes. If their score is low
(t ≤ t∗(x(q))), they are rejected under test mandatory and are accepted without submitting
their score under test optional.

Restricted vs. flexible imputation. Under restricted imputation, given a path of in-
creasing observables, students with good observables benefit under test optional while stu-
dents with medium observables are harmed. By contrast, under flexible imputation, it is
students with observables at which the college is less selective than society that benefit and
those with observables at which the college is more selective that are harmed. Looking back
at Figure 2, we see that these predictions may go in the same qualitative direction, or may
go in opposite directions.36 In the figure’s left panel, where the college weights tests less than
society, the college is less selective than society at higher observables. Hence, students with
higher observables benefit from test optional under both flexible and restricted imputation.
In Figure 2’s right panel, where the college weights tests more than society, we have the re-

35 t∗(x(q)) is decreasing in q from the definition of t∗ and that property (i) immediately implies that
tc(x(q) and ts(x(q)) are both decreasing in q. L(τ(x(q))|x(q)) is increasing in q given properties (ii) and
(ii) because of the well-known fact that if t ∼ G, t′ ∼ G′, and G′ MLRP-dominates G, then for any two
thresholds t̂ ≤ t̂′, it holds that E[t|t < t̂] ≤ E[t′|t′ < t̂′].

36 For the example in Figure 2, utilities were defined as ui(x, t) = ai+x+wit, with x ∈ R and wi > 0; we
can rescale these utilities as ui(x, t) = ai

wi +
x
wi + t. Then take x(q) to be any increasing function. We have

a path of increasing observables as long as test scores are MLRP-increasing in q and τ(x(q)) is increasing as
well. The simplest case satisfying both requirements is when the distribution of test scores is independent
of observables and τ(x) = E[x|t] = E[t] is the no adverse inference imputation rule.
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Figure 5 – Restricted imputation along a path of increasing observables.

verse: the college is more selective at higher observables. In this case, the predictions about
which students benefit from test optional flip depending on whether imputation is flexible
or restricted.

Under flexible imputation, the college always benefits (at least weakly) from going test
optional. Notably, this benefit accrues at every observable x. By contrast, under restricted
imputation, the college may or may not benefit from going test optional at any specific x—it
depends on the imputation level τ(x). Consequently, aggregating across observables, the
college may or may not benefit from going test optional.

We now turn to an extended example in which we make specific assumptions that allow
us to say more about when a college benefits from not seeing test scores absent flexible
imputation. The example is in the context of a college’s response to a ban on affirmative
action.

7. Effects of a Ban on Affirmative Action

This section illustrates how, within our framework, banning affirmative action can push
a college from test-mandatory admissions to test-blind admissions.37 As discussed in the

37 We study test blind rather than test optional for simplicity; as noted previously, test blind is equivalent
to test optional when non-submitters are imputed sufficiently high test scores.
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Introduction, this is consistent with the view espoused by commentators.

In a nutshell, our idea is as follows. There are two groups of students. Relative to
society, the college has a preference for admitting students from the group that has lower
test scores on average. When affirmative action is allowed, the college can treat applicants
from different groups differently. In that case, the college always prefers test mandatory,
since observing test scores lets it better determine which applicants to accept from each
group. But if affirmative action is banned, the college must use a single admissions rule for
both groups. Now the college wants to put less weight on tests than does society, since a
low test score is associated with being from the college’s favored group. This disagreement
can push the college to want to switch to test blind.

7.1. A Model of Affirmative Action

There are two potentially observable non-test dimensions, x = (x0, x1). Dimension x0 is
binary, with realizations in {r, g} (red and green). Dimension x1, which may represent some
aggregate of GPA and/or extra-curricular achievement, takes continuous values in R. For
simplicity, test scores are binary, with values normalized to 0 and 1.

The college and society have identical preferences over all factors except for the type
dimension x0. Society does not care about this dimension, but all else equal, the college wants
to admit green types over red types.38 Specifically, extending our leading linear specification
discussed at the end of Subsection 4.2, we assume that

us(x, t) = x1 + t,

uc(x, t) = x1 + t+ β11x0=g − c,

with β > c > 0, and 11x0=g an indicator for green types. The parameter β scales how much
of a bonus the college gives to green types over red types. The parameter c is not essential
to our analysis, but it allows for the college and society to have different test-score bars for
both red and green students. It can be interpreted as the (opportunity) cost for a college
of admitting any student. We have normalized the analogous constant in society’s utility to
zero. The assumption β > c > 0 implies that the college has a lower test-score bar than
society for green types and a higher one for red types. Note that the the college’s ex-post

38 We could allow for society to have preferences over a student’s x0 dimension as well; what is important
is that the college favors green types more than society does.
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utility is

u∗(x, t) = x1 + t+
β

1 + δ
11x0=g −

c

1 + δ
.

Let x0 = g with probability q ∈ (0, 1) and x0 = r with probability 1 − q. We assume
that the distribution of test scores depends on x only through x0: Pr(t = 1|x = (x0, x1)) =

px0 ∈ (0, 1). Our primary interest is in the case of pr > pg, meaning that green types, which
are favored by the college, have a worse distribution of test scores. This may correspond
to green students being an underrepresented demographic group, for instance. But we also
allow for the opposite case of pr < pg, in which the college’s favored group has a better
test score distribution. Here, green students may correspond to those from rich families,
who have better access to test preparation, and are favored by the college because of donor
considerations. If the green students correspond to legacy applicants, it may be that either
pr < pg or pr > pg.

We take x1 to be independent of both x0 and t. For tractability, we also assume that
x1 is uniformly distributed over a large-enough interval. Specifically, x1 ∼ U [x1, x1], with
x1 < c − β − 1 and x1 > c. The inequality on x1 guarantees that there are students with
x1 low enough that neither the college nor society wants to admit them, even if they are
otherwise as desirable as possible (x0 = g and t = 1). The inequality on x1 guarantees that
there are students with x1 high enough that the college and society want to admit them even
if they are otherwise as undesirable as possible (x0 = r and t = 0).

We will consider the college’s choice over whether to be test mandatory or test blind in two
observability regimes. First, we allow both dimensions of x to be observable, which we call
affirmative action allowed. Then we consider only x1 to be observable, with the dimension
x0 unobservable; we call this regime affirmative action banned. We interpret the switch from
the first to the second regime as a policy change where society—which does not intrinsically
care about x0—bans the use of that dimension in admissions. This may represent a law or
court decision forbidding the use of race or legacy status in admissions.39

39 Note that we assume that when x0 is unobservable to the college, it is also unobservable to society.
While society does not value x0 directly, the observability of x0 to society could still matter for the calculation
of the college’s social costs. This is because, if society can observe x0 but cannot observe test scores, then
it would expect a different test score for green students (pg) than red students (pr). We assume that a
law preventing the college from making inferences of this form also stop society from making/penalizing the
college based on such inferences.
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7.2. Results

Affirmative action allowed. Consider first the case when affirmative action is allowed.

Under test mandatory, the college can choose a distinct threshold of x1 above which to
admit students at each (x0, t) pair.40 This threshold is determined by setting the ex-post
utility to 0. Since the college favors green students, its x1 threshold will be lower by β/(1+δ)

for green students than for red students at each score level t. From society’s perspective,
the college uses an x1 threshold that is too low for green students and too high for red
students—but crucially, the gap between society’s preferred threshold and what the college
uses does not vary with t.41

Under test blind, the college chooses an admissions threshold on dimension x1 that de-
pends on the student’s type x0 but not the test score t. However, x0 is informative about t:
the college and society evaluate students of type x0 as if they have the expected test score
E[t|x0] = px0 . If pr > pg, the college’s preference for green students is countered by the
fact that green students have lower test scores on average than red students. So the college
will now use a lower x1 threshold for green students than red students only if the preference
parameter β is sufficiently large: specifically, if and only if β/(1 + δ) > pr − pb. Regardless,
the gap between the college’s chosen x1 threshold and society’s preferred threshold is the
same as under test mandatory, for any test score t—that gap did not depend on the test
score, and utilities are linear in the test score.

We can now establish:

Proposition 6. If affirmative action is allowed, then the college prefers test mandatory to
test blind.

The reason is that going test blind leads to a set of students that the college prefers less,
but in the current specification there is never a countervailing benefit of reducing disagree-
ment cost. The latter point stems from two sources. First, as noted above, for any given x0

type (and test score, under test mandatory), the gap between society’s preferred x1 threshold
and what the college uses is independent of the regime, even though these thresholds do shift
across regimes. Second, our assumption of a uniform distribution of x1 means that the total
disagreement cost for students of a given x0 type (at a given test score, or averaging over
test scores) only depends on the size of the gap.

40 Since we will be comparing test mandatory with test blind, it turns out to be convenient for our analysis
to take the perspective of x1 admissions thresholds rather than test score thresholds.

41 The gap is (β − c)/(1 + δ) for green students and c/(1 + δ) for red students.
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Affirmative action banned. Now consider the case when affirmative action is banned.

Under test mandatory, the observed test score is informative about a student’s type x0.
Specifically, since there are a fraction q of green types in the population and the probability
of test score t = 0 for a student of type x0 is 1−px0 , we compute the probability of a student
being green conditional on t = 0 as

P 0
g := Pr(x0 = g|t = 0) =

q

q + (1− q) 1−pr
1−pg

.

Analogously, conditional on t = 1, the probability of a green type is

P 1
g := Pr(x0 = g|t = 1) =

q

q + (1− q) pr
pg

.

Let ∆ := P 0
g −P 1

g be the difference between these two quantities, i.e., a low test score implies
a ∆ higher probability of x0 = g than a high test score. Note that ∆ > 0 if pr > pg, whereas
∆ < 0 if pr < pg. Based on the inference of x0 from t, the college’s underlying utility gives
a bonus of β∆ to students with low test scores relative to those with high scores. As a
result, the college now values a high test score 1−β∆ units higher than a low score, whereas
society still values it 1 unit higher. That is, unlike when affirmative action is allowed, the
gap between society’s preferred x1 admissions threshold and what the college chooses now
varies with the test score.42 We impose the assumption that β∆ < 1, so the college still
prefers students with higher test scores.

There is now an avenue for test blind to help the college. Under test blind, since the
college evaluates all students as having Pr(x0 = g) = q and E[t] = qpg + (1 − q)pr, it is
as if the college’s utility from any student is x1 + E[t] + qβ − c. Analogously, it is as if
society’s utility from any student is x1 + E[t]. If c = qβ, which means the college and the
society seek to admit the same number of students overall, then it is as if their utilities agree,
and the college implements its preferred admissions policy—subject to being test blind and
no affirmative action—at zero disagreement cost. More generally, the disagreement cost is
always lower under test blind than test mandatory. Whether the reduced disagreement cost

42 Absent affirmative action, it is as if the college’s underlying utility from a student is x1 + t+ βP t
g − c,

and so the college’s gain from a student with test score t = 1 over t = 0 is 1 + βP 1
g − βP 0

g = 1− β∆. Given

its underlying utility, the college’s ex-post utility from a student is x1 + t +
βP t

g−c

1+δ . The gap between the

college’s chosen x1 admissions threshold with society’s preference is the term βP t
g−c

1+δ , which varies with t so
long as P 0

g ̸= P 1
g , or equivalently ∆ ̸= 0.
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outweighs the allocative loss from being test blind depends on parameters, specifically the
intensity of social pressure δ and the college’s bonus to low-scoring students β∆.

Proposition 7. Suppose affirmative action is banned. If (1 + δ)(2β∆ − 1) ≥ (β∆)2, then
the college prefers test blind, and otherwise the college prefers test mandatory.

Recall we assume β∆ < 1. Proposition 7 implies that if β∆ ≤ 1/2, the college always
prefers test mandatory: the allocative losses (“admission mistakes”) from not observing test
scores are larger than those from simply implementing society’s preferred decision rule and
incurring no disagreement. When β∆ ∈ (1/2, 1), there is a trade-off, and test blind will be
preferred if the intensity of social pressure, δ, is sufficiently large. The following corollary
develops this and other comparative statics.

Corollary 1. Suppose that affirmative action is banned (x0 is unobservable) and that a low
test score is associated with x0 = g (∆ > 0).

1. There is some β∗ ∈
(

1
2∆

, 1
∆

)
such that the college prefers test mandatory when β < β∗

and prefers test blind when β > β∗.

2. There is some ∆∗ ∈
(

1
2β
, 1
β

)
such that the college prefers test mandatory when ∆ < ∆∗

and prefers test blind when ∆ > ∆∗.

3. There is some δ∗ such that the college prefers test mandatory when δ < δ∗ and prefers
test blind when δ > δ∗. If β∆ ≤ 1/2, then δ∗ = 0 (so the college prefers test mandatory
for all δ); if β∆ ∈ (1/2, 1), then δ∗ > 0 (so the college prefers test blind if and only if
δ is large enough).

7.3. Society’s Preferences

We now consider society’s payoff under different affirmative action and testing regimes.
Society’s realized utility for an individual student is Aus(x, t), where the dummy variable A

indicates whether the student is admitted. We assume that society’s objective is to maximize
its expected utility across the pool of applicants.

Proposition 8. Society’s preferences over affirmative action and testing regimes are as
follows:

1. Fixing the testing regime as mandatory or blind, society prefers banning affirmative
action to allowing affirmative action.
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2. Fixing affirmative action as banned or allowed, society prefers test mandatory to test
blind.

3. Suppose society chooses the affirmative action regime and then the college chooses the
testing regime. Then banning affirmative action can harm society. In particular, if
β∆ ∈ (1/2, 1), there exist thresholds 0 < δ ≤ δ < ∞ such that (i) if affirmative action
is banned, the college chooses test blind if δ > δ, and (ii) society is harmed by banning
affirmative action if δ > δ, while it benefits if δ < δ.43

The first two parts of the proposition are intuitive, since society does not want the ad-
mission decision to depend on whether a student is red or green (which suggests part 1) but
does want the decision to depend on the test score (which suggests part 2). If society could
choose both the testing and affirmative action regimes, it would ban affirmative action and
choose test mandatory. However, part 3 of the proposition cautions that if society chooses
the affirmative action regime and the college subsequently chooses the testing regime, society
can be worse off by banning affirmative action. Specifically, when δ is large enough, banning
affirmative action backfires because the college’s response of going test optional results in
a student pool that society likes less than under test mandatory and affirmative action al-
lowed. Indeed, as δ gets arbitrarily large, society’s payoff is arbitrarily close to society’s first
best when affirmative action is allowed and there is mandatory testing, while it is bounded
away when affirmative is banned and the college goes test blind. But when δ is intermediate
(between the thresholds δ and δ in Proposition 8 part 3), society is better off by banning
affirmative even though it results in the college going test blind.44

8. Conclusion

Our paper begins by asking why a college would choose to obtain less information about
students by using a test-optional (or test-blind) admissions policy. We formalize an impos-
sibility result in Section 2: under a broad set of conditions, a college that can use test scores
as it likes does at least as well with test-mandatory admissions. Our main contribution is to
offer a resolution to this “puzzle”: going test optional helps a college alleviate social pressure
regarding the students it admits. Specifically, we introduce and solve a model of college

43 If β∆ ≤ 1/2, the college never goes test blind, and so, by part 1 of the proposition, society always
benefits from banning affirmative action.

44 It is possible that δ = δ, in which case whenever a ban on affirmative action leads to test optional,
society is harmed by the affirmative-action ban.
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admissions in which a college faces costs from making admission decisions that an external
observer, society, disagrees with. Society has the same information as the college, and society
is Bayesian in how it assesses students who don’t submit scores. The college commits to an
imputation rule—stipulating, as a function of a student’s observable characteristics, the test
score assigned to non-submitters—and an acceptance rule specifying whether a student with
any given observables and test score is admitted.

Our results in Subsection 6.2 establish that when a college can flexibly choose its imputa-
tion rule, a test-optional regime is always weakly better for the college than a test-mandatory
one. Test optional is often strictly better, reducing the college’s cost from social pressure
and/or delivering a student body it likes more. In Subsection 6.3, we study restricted im-
putation rules. Here, we find that going test optional may or may not benefit a college.
For both flexible and restricted imputation, we identify which students benefit and which
students are hurt by test optional. In Section 7 we explore an extended example of restricted
imputation, illustrating that our framework can explain how a ban on affirmative action can
result in a college choosing to go test blind. We now close by discussing how our conclusions
would be affected by some alternative modeling assumptions.

8.1. Capacity Constraints

Our model assumes that a college admits any student that provides it a utility above
some fixed threshold, normalized to zero. This abstracts away from “capacity constraints”:
if a college accepts more applicants of one type, it may mechanically have to accept less
applicants of other types.

In general, introducing a capacity constraint would affect our analysis, because in our
model the number of students the college admits need not be the same under test optional
as test mandatory. It could be that in our model going test optional benefits students of
one group without affecting students in another group (e.g., this happens under flexible
imputation if the college is less selective than society for the former group but equally
selective for the latter group). But with a capacity constraint, if students from one group
benefit from test optional, then students from some other group will necessarily be harmed.
This externality could raise important equity concerns in practice.

8.2. Ex-post Optimal Acceptance

Next, suppose the college commits to evaluating non-submitters by their imputed score,
but cannot commit to its acceptance rule. That is, the college admits students ex-post
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optimally given their imputed/submitted scores.

In this case, a college’s acceptance decision is simply determined by whether a student’s
imputed/submitted score is above or below the ex-post optimal bar, t∗(x). Under flexible
imputation, it follows from Proposition 3 that the outcome is unchanged at observables at
which the college is less restrictive than society. But when the college is more restrictive,
the college can no longer set τ(x) > t∗(x) and reject non-submitters, which could have been
optimal (Proposition 4); the problem now is that the college must accept students who
submit scores above t∗(x). Consequently, the college now optimally sets τ(x) = t∗(x) and
rejects non-submitters.

This means that a test-optional college now accepts all the students it would under test
mandatory, and possibly additional ones (if, for some observable x at which it is less selective
than society, it chooses τ(x) = ∞ and accepts all students with observable x). Hence, all
students benefit, at least weakly, from test optional. Of course, this conclusion relies crucially
on the college not having a capacity constraint.

8.3. Alternative Restricted Imputation Rules

The restricted imputation rule we have highlighted is that of no adverse inference: τ(x) =
E[t|x]. There are at least two other rules that appear salient.

First, colleges’ claims to not punish non-submitters can be interpreted as a promise to
impute missing test scores as equal to those of an average submitted score: τ(x) = E[t|x, S =

1]. Notice that for any observable x, we cannot have a range of scores being submitted: a
student with the lowest such score would, instead, not submit their score. Hence, this form
of “equal treatment” effectively unravels to no student submitting their score.

Second, the reason that a college may not be able to flexibly impute missing scores is that it
lacks commitment power, and instead it can only impute via Bayes rule: τ(x) = E[t|x, S = 0].
Now, for any x, if there is a range of scores not being submitted, a student with the highest
such score would instead submit. Hence, this imputation rule effectively unravels to every
student submitting their score.

The upshot, then, is that under either of these alternative forms of restricted imputation,
test optional would collapse to either test blind or mandatory.
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8.4. Non-Bayesian Society

We have assumed that society is Bayesian: it evaluates non-submitters (S = 0) with
observable x as if they have the test score ts = E[t|x, S = 0]. This means that if students
from certain groups have lower scores on average than others, then society accounts for that.
We view Bayesian updating as a way of tying our hands, showing that our mechanism still
goes through even when society can’t be systematically misled. In practice, one source of
non-Bayesianism could be that society is unwilling to judge students based on the test score
distribution of their demographic group. For instance, if the observable vector x = (x0, x1)

has component x1 corresponding to grades and component x0 corresponding to demographics,
society might evaluate non-submitters as having test score ts = E[t|x1, S = 0].

A college that faces such a non-Bayesian society may get an additional benefit from going
test optional.
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Appendix

A. Proofs for Section 2 and Section 5
Proof of Proposition 1. Omitted, given the argument in the text after the proposition.

Proof of Proposition 2. Under test mandatory, the student’s score is always observed by
both the college and society. So the college’s problem for any observed (x, t) is to choose
A ∈ {0, 1} to maximize

AU c(x, t, t, 1) + (1− A)U c(x, t, t, 0).

From the definition of the ex-post utility function u∗(x, t) in (3), it is equivalent for the
college to maximize Au∗(x, t), which implies the result.

B. Proofs for Section 6
Proof of Lemma 1. Fix test optional with some imputation rule τ . Consider a student
with observable x and imputed/submitted score t̂. Given our assumption that the student
submits if they have score t > τ(x) and does not submit if t ≤ τ(x), whether the im-
puted/submitted score t̂ is on path or off path depends only on the support of the score
distribution Ft|x. If t̂ is off path, then any college acceptance decision is optimal. Since any
t̂ < τ(x) is necessarily off path, it is optimal to reject such t̂. There are two remaining cases:

1. t̂ > τ(x), and it is on path. Then the student must have submitted t̂, and so by the
logic of Proposition 2, it is optimal for the college to accept the student if u∗(x, t̂) > 0

and reject the student otherwise.

2. t̂ = τ(x), and it is on path. Then t̂ is an imputed score. By similar reasoning to
that in Proposition 2, the expected utility gain from accepting these students types is
proportional to the ex-post utility u∗(x, L(τ(x)|x)), and so it is optimal to accept if
that ex-post utility is positive and reject otherwise.

We note that the resulting acceptance rule is monotonic, as L(τ(x)|x) ≤ τ(x) and u∗(x, ·) is
increasing.

We next state and prove a lemma that will be used in the proof of Proposition 3 and
Proposition 4. We write 11Y to denote the indicator function for the event Y .
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Lemma 2. Fix observables x, and consider two possible imputation levels τ l < τh.45

1. It holds that

E[d(x, L(τh|x), A) · 11t≤τh ]

≤ E[d(x, L(τ l|x), A) · 11t≤τ l ] + E[d(x,E[t|t ∈ (τ l, τh]], A) · 11t∈(τ l,τh]]

≤ E[d(x, L(τ l|x), A) · 11t≤τ l ] + E[d(x, t, A) · 11t∈(τ l,τh]].

2. If E[t|x, τ l < t ≤ τh] ≤ ts(x) or ts(x) ≤ L(τ l|x), then

E[d(x, L(τh|x), A) · 11t≤τh ]

= E[d(x, L(τ l|x), A) · 11t≤τ l ] + E[d(x,E[t|t ∈ (τ l, τh]], A) · 11t∈(τ l,τh]].

3. If τh ≤ ts(x) or ts(x) ≤ τ l, then

E[d(x,E[t|t ∈ (τ l, τh]], A) · 11t∈(τ l,τh]] = E[d(x, t, A) · 11t∈(τ l,τh]].

In words, Lemma 2 compares the disagreement incurred on the pool of non-submitters
with t ≤ τh (having expected test score L(τh|x)) to an artificial scenario in which this
pool is “broken up” into two distinct pools, one with t ≤ τ l (expected test score L(τ l|x))
and another with t ∈ (τ l, τh] (expected test score E[t|x, t ∈ (τ l, τh]]). The same admission
decision is made in the broken up pools as in the original pool. Breaking up the pools weakly
increases disagreement. But when it happens that society would make the same decision on
the low pool as the high pool—both of L(τ l|x) ≤ E[t|x, t ∈ (τ l, τh]] are on the same side of
ts—the disagreement is in fact unchanged. The lemma then shows that turning the second
pool on t ∈ (τ l, τh] into a separating region weakly increases disagreement further, but leaves
disagreement unchanged if both of τ l < τh are on the same side of ts.

Proof of Lemma 2. Part 1 follows from convexity of the disagreement function d(x, ts, A)

in ts. Part 2 and part 3 follow from the linearity of d(x, ts, A) on the domain ts ≤ ts and on
the domain ts ≥ ts. For part 2, we also apply the fact that L(τ l|x) ≤ E[t|x, τ l < t ≤ τh],
and hence the assumptions guarantee that L(τ l|x) and E[t|x, τ l < t ≤ τh] are both on the

45 Recall that L(t′|x) = E[t|x, t ≤ t′], and that disagreement is given by d(x, ts, A) for ts equal to the test
score that society treats a student as having and A ∈ {0, 1} the admission decision.
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same side of ts(x). For part 3, we similarly recall that τ l < τh, and hence the assumptions
guarantee that τ l and τh are both on the same side of ts.

Proof of Proposition 3. Fix some observable x at which the college is less selective than
society. To reduce notation, the rest of this proof omits the x argument in τ , tc, t∗, ts, and
L(t′) = E[t|x, t ≤ t′]).

The college’s payoff of imputing τ is constant over τ ∈ [−∞, t∗]: for any of these impu-
tations, Lemma 1 implies that the college rejects students with scores t ≤ t∗ and accepts
those with scores t > t∗; since t∗ < ts, Lemma 2 part 3 implies that the disagreement cost
does not change. To prove the result, then, it is sufficient to establish that the payoff from
imputing τ ∈ [t∗,∞] is decreasing (weakly) and then increasing (weakly).

Let t† := sup{t|L(t) ≤ t∗}. First, we will show that the college’s expected payoff is
decreasing in τ over the domain τ ∈ [t∗, t†). Note that when τ ∈ [t∗, t†), Lemma 1 implies
that it optimal for the college to reject students with imputed/submitted score t̂ ≤ τ . That
is, non-submitters are rejected. Submitters with t > τ are admitted, since τ ≥ t∗.

Consider any τ l < τh in the interval [t∗, t†). We seek to show that the college’s expected
payoff (among students with the given observable x) is higher from choosing τ = τ l than
τ(x) = τh. We consider three cases:

• Suppose τ l < τh ≤ ts. Then the college’s expected payoff E[Auc(x, t) − δd(x, ts, A)|x]
can be written as

E[uc(x, t) · 11t∈(τ,∞)|x]− δE[−us(x, t)11t∈(τ,ts)|x],

because the college only accepts students with t > τ and only incurs a disagreement
cost for the students it accepts with τ < t ≤ ts. (There is no disagreement cost for
rejecting the non-submission pool, which has E[t|t ≤ τ ] < ts, since E[t|t ≤ τ ] < t∗ for
all τ < t†; and there is no disagreement cost for accepting the applicants with t ≥ ts.)

Hence, the college’s expected payoff at τ = τ l minus that at τ = τh simplifies to

E[uc(x, t) · 11t∈(τ l,τh]|x]− δE[−us(x, t)11t∈(τ l,τh]|x]

= E[(uc(x, t) + δus(x, t)) · 11t∈(τ l,τh]|x]. (4)

Moreover, it holds that uc(x, t) + δus(x, t) > 0 for all t ∈ (τ l, τh], because uc(x, t) +

δus(x, t) has the sign of u∗(x, t), and u∗(x, t) > 0 at all t ≥ τ l ≥ t∗. Hence, expression
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(4) is non-negative.

• Suppose ts ≤ τ l < τh. Then the college’s expected payoff E[Auc(x, t) − δd(x, ts, A)|x]
can be written as

E[uc(x, t) · 11t∈(τ,∞)|x],

since the college only accepts students with t > τ and does not incur a disagreement
cost for any student. (There is no disagreement cost for rejecting the non-submission
pool, which has E[t|t ≤ τ ] < ts, since E[t|t ≤ τ ] < t∗ for all τ < t†; and there is no
disagreement cost for accepting the students with t > τ ≥ ts.)

Hence, the college’s expected payoff at τ = τ l minus that at τ = τh simplifies to

E[uc(x, t) · 11t∈(τ l,τh]|x],

which is non-negative because uc(x, t) > 0 for all t ∈ (τ l, τh] given that τ l ≥ ts > tc.

• Suppose τ l < ts < τh. This case is implied by the two above: Moving from τ l to τh is
a sum of a move from τ l to ts(x) (reducing payoffs, as in the first case), plus a move
from ts(x) to τh (reducing payoffs, as in the second case).

Next, we show that the college’s expected payoff is increasing in τ over the domain
τ ∈ [t†,∞]. Note that when τ ∈ [t†,∞], Lemma 1 implies that it is optimal for the college
to accept non-submitters (who have expected test score of L(τ) > t∗) as well as submitters
with t > τ . Hence, all students are accepted, no matter τ ∈ [t†,∞]. Moreover, pooling more
students by raising τ always weakly reduces disagreement costs, if raising τ does not change
acceptance decisions (Lemma 2 part 1). Hence, raising τ in this range benefits the college,
at least weakly.46

Proof of Proposition 4. Fix some observable x at which the college is more selective than
society. For notational simplicity, the rest of this proof omits the x argument in τ , tc, t∗, ts,
and L(t′) = E[t|x, t ≤ t′].

The college’s payoff of imputing τ is increasing over τ ∈ [−∞, t∗]: for any of these
imputations, Lemma 1 implies that the college rejects students with scores t ≤ t∗ and

46 Raising τ strictly reduces disagreement costs when τ > ts and L(τ) < ts, at least as long as τ is in the
support of t; this is where society wants to reject the non-submission pool but wants to accept students with
t ≃ τ . Raising τ does not change disagreement costs when L(τ) > ts or when τ < ts; in either case, society
wants the same decision for students with t ≃ τ as it does for the pool.
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accepts those with scores t > t∗; since ts < t∗, Lemma 2 part 1 implies that the disagreement
cost increases in the imputation. Without loss, then, we can restrict attention to τ ≥ t∗.

• First suppose L(t∗) ≥ ts. We claim that it is optimal to set τ = t∗. (If there is a
solution t◦ to L(t◦) = ts, then this corresponds to the case of t◦ ≤ ts.)

Under τ = t∗, Lemma 1 implies that the college rejects the pool of non-submitters with
t ≤ t∗ (since L(t∗) ≤ t∗) and accepts submitters with t > t∗. The college’s expected
payoff E[Auc(x, t)− δd(x, ts, A)|x] at τ = t∗ can be written as

E[uc(x, t) · 11t∈(t∗,∞)|x]− δE[us(x, L(t∗)) · 11t∈(−∞,t∗]|x]. (5)

Consider, instead, τ = τh > t∗. There are two possibilities:

– If L(τh) ≤ t∗, then the college rejects non-submitters (by Lemma 1), and so
(applying Lemma 2 parts 2 and 3) the college’s expected payoff can be written as

E[uc(x, t) · 11t∈(τh,∞)|x]− δE[us(x, L(τh)) · 11t∈(−∞,τh]|x]

= E[uc(x, t) · 11t∈(τh,∞)|x]− δE[us(x, L(t∗)) · 11t∈(−∞,t∗]|x]− δE[us(x, t) · 11t∈(t∗,τh]|x].
(6)

The expected payoff of setting τ = t∗ minus that of setting τ = τh is given by the
difference of expressions (5) and (6), which simplifies to

E[(uc(x, t) + δus(x, t)) · 11t∈(t∗,τh]|x].

We now observe that uc(x, t) + δus(x, t) has the sign of u∗(x, t), which is positive
on t > t∗, implying that the college prefers setting τ = t∗ to τ = τh.

– If L(τh) > t∗, then by Lemma 1, the college accepts non-submitters as well as the
submitters with t > τh. That is, it accepts all students. Since L(τh) ≥ L(t∗) ≥ ts,
it faces no disagreement costs, and its expected payoff is simply E[uc(x, t)|x].
Subtracting this from (5) yields the expected payoff difference of setting τ = t∗

and τ = τh:
−E[(uc(x, t) + δus(x, L(t∗))) · 11t∈(−∞,t∗]|x].

We now observe that this expression is positive by definition of the ex-post bar
t∗ (i.e., uc(x, t) + δus(x, t) ≤ 0 for t ≤ t∗), the linearity of us(x, ·), and L(t∗) ≤ t∗.
Hence, the college prefers setting τ = t∗ to τ = τh.
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• Second, suppose L(tc) ≤ ts. Then we claim that it is optimal to set τ = tc. (If there is
a solution t◦ to L(t◦) = ts, then this corresponds to the case of t◦ ≥ tc.)

The argument is straightforward: setting τ = tc gives the college its first-best payoff.
It admits students with t > tc, and it rejects students with t ≤ tc at zero disagreement
cost, since students with t ≤ tc don’t submit their test score and the pool has average
score L(tc) ≤ ts.

• Finally, suppose L(t∗) < ts and L(tc) > ts. In this case, we separately consider the
cases that the conditional distribution of test scores is continuous or is discrete.

– With a continuous distribution of test scores, L(t) is continuous, and so we can
find t◦ ∈ (t∗, tc) such that L(t◦) = ts. In this case, we will show that it is optimal
to set τ = t◦.

At τ = t◦, the college rejects non-submitters and faces no disagreement cost, so
the college’s expected payoff E[Auc(x, t)− δd(x, ts, A)|x] at τ = t◦ is

E[uc(x, t) · 11t∈(t◦,∞)|x]. (7)

At any τ ∈ [t∗, t◦), the college also rejects non-submitters and faces no disagree-
ment cost, so its expected payoff is

E[uc(x, t) · 11t∈(τ,∞)|x], (8)

which is clearly less than (7) because uc(x, t) < 0 on (τ, t◦].

At τ > t◦, we can consider two possibilities: L(τ) ≤ t∗ or L(τ) > t∗. If τ > t◦ and
L(τ) ≤ t∗, then the college rejects the pool of non-submitters, and its expected
payoff is

E[uc(x, t) · 11t∈(τ,∞)|x]− δE[us(x, L(τ))11t∈(−∞,τ ]]

= E[uc(x, t) · 11t∈(t◦,∞)|x]− E[uc(x, t) · 11t∈(t◦,τ ]|x]− δE[us(x,E[t|t ∈ (t◦, τ ]])11t∈(t◦,τ ]]

= E[uc(x, t) · 11t∈(t◦,∞)|x]− E[(uc(x, t) + δus(x, t)) 11t∈(t◦,τ ]] (9)

where the second equality applies Lemma 2 part 2 (breaking up the pool from
(−∞, τ ] into (∞, t◦]∪(t◦, τ ]) and the third applies part 3. Observing that uc(x, t)+

δus(x, t) > 0 on all t > t∗ implies that (9) is less than (7). Finally, if τ > t◦

and L(τ) > t∗, then the college accepts the pool of non-submitters and pays no
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disagreement costs, and its expected payoff is

E[uc(x, t)|x] = E[uc(x, t) · 11t∈(−∞,t◦]|x] + E[uc(x, t) · 11t∈(t◦,∞)|x], (10)

which is less than (7) since the first term is weakly negative.

– Now consider a discrete distribution of test scores. If there exists t◦ such that
L(t◦) = ts, then the argument follows exactly as in the continuous case. Other-
wise, let t− := max{t|L(t) < ts} ≥ t∗ and let t+ := min{t|L(t) > ts} ≤ tc. (Our
assumption that a discrete test score distribution does not have an accumulation
point ensures that t− and t+ are well defined; note also that there is no score
t ∈ (t−, t+) that is in the support of the distribution, since such t would solve
L(t) = ts.) An analogous argument as above shows that the college’s expected
payoff is increasing in τ for τ ≤ t−, and is decreasing in τ for τ ≥ t+. Hence, the
college’s payoff is maximized by setting τ equal to either t− or t+.

Proof of Proposition 5. Follows from Lemma 1.

C. Proofs for Section 7

As a preliminary observation, we can write the college’s loss relative to first best as its
allocative loss plus the cost of social pressure. At a given (x0, t) pair of test scores and group
memberships, the assumption of a uniform distribution over x1 implies that the college’s
allocative loss depends only on the difference between the college’s chosen x1-cutoff for
admission and the college’s ideal x1 cutoff. Specifically, let f := 1

x1−x1
be the (constant)

density of the x1 distribution on its support. If the college’s chosen cutoff is r above its ideal
cutoff, then its allocative loss on this (x0, t) pair is∫ r

0

fxdx =
f

2
r2. (11)

Society’s (allocative) loss is given by the same formula, when the chosen cutoff is r above
society’s preferred cutoff.

Proof of Proposition 6. Suppose that affirmative action is allowed. Here, there is no
interaction between the college’s decisions at different realizations of x0. So, it suffices to
show that test mandatory would be preferred to test blind for any fixed x0 = x′

0 in {r, b}.
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Fixing x0 = x′
0, let h := uc(x′

0, x1, t)− us(x′
0, x1, t) = β11x′

0=g − c be the difference between
the college’s and society’s utility for admitting an applicant of type x0 = x′

0, which does
not depend on x1 or t. It then holds that uc(x′

0, x1, t) − u∗(x′
0, x1, t) = δ

1+δ
h, and that

u∗(x′
0, x1, t) − us(x′

0, x1, t) = 1
1+δ

h. Given its information, the college sets x1 admissions
cutoffs at the value of x1 setting the expectation of u∗(x′

0, x1, t) to 0. Note that the college’s
ideal x1-cutoff for applicants in group x0 = x′

0 with test score t is −t− h, whereas society’s
ideal x1-cutoff is −t.

The college’s loss under test mandatory. At (x′
0, t), the college’s chosen x1-cutoff for

admission is δ
1+δ

h above its ideal point, yielding allocative loss (from (11)) of

f

2

h2δ2

(1 + δ)2
. (12)

Similarly, the college’s chosen x1-cutoff for admission is − 1
1+δ

h above society’s ideal point,
leading to an allocative loss for society of f

2
h2

(1+δ)2
. The college then pays a social pressure

cost equal to δ times that, or

f

2

δh2

(1 + δ)2
. (13)

Both of these expressions are independent of t, meaning that these expressions also represent
the college’s losses averaged over test scores.

The college’s loss under test mandatory, for applicants with x0 = x′
0, is the sum of (12)

and (13).

The college’s loss under test blind. With unobservable test scores, the players evaluate
applicants of type x0 = x′

0 as if they have the expected test score of px′
0
. The college’s chosen

x1 cutoff for applicants of type x0 = x′
0 sets u∗(x′

0, x1, px′
0
) to 0, i.e., a cutoff of x1 = −px′

0
− h

1+δ
.

To calculate the college’s allocative losses, we compare the college’s chosen (test-independent)
x1 admissions cutoffs to its (test-dependent) ideal cutoffs. Recall that the college’s ideal cut-
off at test score t is x1 = −t − h. So at t = 1, the college’s chosen cutoff is 1 − px′

0
+ δ

1+δ
h

above its ideal point; at t = 0, the college’s chosen cutoff is −px′
0
+ δ

1+δ
h above its ideal

point. The college’s expected allocative loss over test scores, once again plugging into (11),
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is therefore given by

px′
0

f

2

(
1− px′

0
+

δ

1 + δ
h

)2

+ (1− px′
0
)
f

2

(
−px′

0
+

δ

1 + δ
h

)2

=
f

2

h2δ2

(1 + δ)2
+

f

2
px′

0
(1− px′

0
).

(14)

To calculate social costs, we compare the college’s chosen x1 admissions cutoff not to
society’s ideal cutoff, but to society’s preferred cutoff given that test scores are not observed.
Society’s preferred x1-cutoff is given by −px′

0
. The chosen cutoff is − h

1+δ
above society’s

preferred cutoff. We can now plug into (11) to calculate society’s loss relative to its preferred
cutoff (given its information) as f

2
h2

(1+δ)2
. The college’s social pressure cost is δ times that, or

f

2

δh2

(1 + δ)2
. (15)

The college’s loss under test blind, for applicants with x0 = x′
0, is the sum of (14) and

(15).

Comparison. Comparing equations (13) and (15), the social pressure cost under test
blind is identical to that under test mandatory. And comparing equations (12) and (14), the
allocative loss is higher under test blind. Hence, the college prefers test mandatory.

Proof of Proposition 7. Suppose that affirmative action is banned. Let ET := E[t] =
qpr + (1 − q)pg be the average test score in the population, i.e., the share with test score
t = 1. Recall that P t

g = Pr(x0 = g|t). We will now calculate the college’s loss in each testing
regime.

In each case, we will evaluate the college’s allocative loss relative to a benchmark where
the college must make decisions independently of the unobservable x0 type. The college’s
ideal cutoff at test score t, given that it must pool together applicants across the two x0

types, is −t− βP t
g + c.

The college’s loss under test mandatory. Society’s ideal x1-cutoff for admitting a
student of with test score t is −t. The college’s chosen cutoff, setting the expected ex post
utility to 0, is −t− 1

1+δ
(βP t

g − c).
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To calculate the allocative loss, observe that the college’s chosen cutoff is δ
1+δ

(βP t
g − c)

above its ideal cutoff at test score t. Plugging into (11), its allocative loss across the two
test scores is given by

(1− ET )
f

2

(
δ

1 + δ
(βP 0

g − c)

)2

+ ET
f

2

(
δ

1 + δ
(βP 1

g − c)

)2

. (16)

To calculate the loss due to social pressure, observe that the chosen x1-cutoff is − 1
1+δ

(βP t
g−

c) above society’s preferred cutoff. The college’s expected loss due to social pressure (plugging
this difference into (11) for each test score, taking expectation over test scores to find society’s
loss, and then multiplying by δ) is therefore

δ(1− ET )
f

2

(
1

1 + δ
(βP 0

g − c)

)2

+ δET
f

2

(
1

1 + δ
(βP 1

g − c)

)2

. (17)

The college’s total loss is (16) plus (17).

The college’s loss under test blind. The average test score is ET , and so society’s
preferred x1-cutoff is −ET . The college’s chosen cutoff, setting the expected ex post utility
to 0, is −ET − 1

1+δ
(βq − c), where q is the probability of x0 = g.

Once again, we calculate the college’s allocative loss relative to its ideal point with ob-
servable t but unobservable x0. At test score t, the chosen cutoff minus the ideal cutoff
is

t− ET + βP t
g −

qβ

1 + δ
− cδ

1 + δ

Plugging into (11) and taking the expectation across test scores, the college’s allocative loss
is given by

(1− ET )
f

2

(
−ET + βP 0

g − qβ

1 + δ
− cδ

1 + δ

)2

+ ET
f

2

(
1− ET + βP 1

g − qβ

1 + δ
− cδ

1 + δ

)2

.

(18)

The difference between the college’s chosen cutoff and society’s preferred cutoff is − 1
1+δ

(βq − c).
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Plugging into (11) and multiplying by δ, the college’s loss from social pressure is

f

2

δ(βq − c)2

(1 + δ)2
. (19)

The college’s total loss is (18) plus (19).

Comparison. The net benefit of choosing test blind rather than test mandatory is given
by the loss from test mandatory minus the loss from test blind, i.e.,

(16) + (17) − (18) − (19).

Substituting in q = (ET )P 1
g + (1 − ET )P 0

g and ∆ = P 0
g − P 1

g and then simplifying with
routine algebra, we can rewrite this net benefit as

f

2

ET (1− ET )

1 + δ

(
(1 + δ)(2β∆− 1)− (β∆)2

)
.

The above expression is weakly positive if and only if (1 + δ)(2β∆− 1) ≥ (β∆)2.

Proof of Corollary 1. Suppose that affirmative action is banned. Proposition 7 establishes
that the college prefers test blind to test mandatory if and only if

(1 + δ)(2β∆− 1) ≥ (β∆)2. (20)

Recall we maintain the assumptions that β > 0, β∆ < 1, and for this corollary, ∆ > 0. We
prove each part of the corollary in turn:

1. Rewriting (20), the college prefers test blind if and only if

−∆2β2 + 2∆(1 + δ)β − (1 + δ) ≥ 0.

The LHS is a concave quadratic that is negative at β = 1
2∆

(equal to −1/4) and positive
at β = 1

∆
(equal to δ). Hence, there exists β∗ ∈ ( 1

2∆
, 1
∆
) such that the college prefers

test blind when β > β∗ and test mandatory when β < β∗. Using the quadratic formula,

β∗ =
1+δ−

√
δ(1+δ)

∆
.

2. Since (20) is symmetric with respect to β and ∆, the argument of the previous part

goes through unchanged after swapping β and ∆. We get ∆∗ =
1+δ−

√
δ(1+δ)

β
.
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3. If β∆ ∈ (0, 1/2), then the LHS of (20) is nonpositive (since 2β∆−1 ≤ 0) and the RHS
is strictly positive, implying that test mandatory is optimal.

If β∆ > 1/2, then we can rewrite (20) as δ ≥ (1−β∆)2

2β∆−1
, and hence the result holds for

δ∗ = (1−β∆)2

2β∆−1
> 0.

Proof of Proposition 8. As in equation (11), at a given (x0, t), society’s loss relative to
its first best when the college’s chosen x1-cutoff for admission is r above society’s ideal
cutoff is

∫ r

0
fxdx = f

2
r2. Society’s expected loss across all values of x0 and t is equal to

the expectation of f
2
r2 over the distribution of r, with r the difference between the chosen

cutoff (which may depend on x0 and t) and society’s ideal cutoff (which depends only on t).
Since the loss f

2
r2 is convex in r, mean-preserving spreads in the distribution of these cutoff

differences make society worse off.

Part 1. Fix any testing regime. The distribution of cutoffs at each test score when af-
firmative action is allowed is a mean-preserving spread of the distribution when affirmative
action is banned. Hence, society prefers banning affirmative action.

Part 2. First, suppose that affirmative action is allowed. Fix some type x0 = x′
0, at which

the college has a utility bonus of h := uc(x′
0, x1, t) − us(x′

0, x1, t) = β11x′
0=g − c relative to

society. Under test mandatory, at each test score, the chosen x1-cutoff is h
1+δ

above society’s
ideal cutoff. Under test blind, at t = 1, the chosen cutoff is 1 − px′

0
+ h

1+δ
above society’s

cutoff; and at t = 0, the chosen cutoff is −px′
0
+ h

1+δ
above society’s cutoff. Hence, under test

blind, at each type x′
0, the distribution of the chosen cutoff minus society’s cutoff is given by1− px′

0
+ h

1+δ
w/ prob px′

0

−px′
0
+ h

1+δ
w/ prob 1− px′

0
.

This distribution is a mean-preserving spread of the constant h
1+δ

. Hence, society is worse
off under test blind for each realization x′

0 of x0, and so is worse off in expectation.

Next, suppose that affirmative action is banned. As also defined in the proof of Proposi-
tion 7, we let ET := E[t] = qpr + (1− q)pg denote the average test score in the population,
i.e., the share of students with test score t = 1. At test score t, the college’s ideal x1-cutoff
is −t− βP t

g + c (recall P t
g = Pr(x0 = g|t)), and society’s ideal x1-cutoff is −t.
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Under test mandatory with affirmative action banned, the college’s chosen x1-cutoff is
− 1

1+δ
(βP t

g − c) above society’s ideal point at test score t. That is, a share ET of students
have cutoffs − 1

1+δ
(βP 1

g − c) above society’s ideal point, and a share 1 − ET have cutoffs
− 1

1+δ
(βP 0

g − c) above. Plugging in q = (ET )P 1
g + (1 − ET )P 0

g and ∆ = P 0
g − P 1

g , some
algebra yields that the distribution of chosen cutoffs minus society’s ideal cutoffs is− 1

1+δ
(βq − c) + (1− ET ) β∆

1+δ
w/ prob ET

− 1
1+δ

(βq − c)− ET β∆
1+δ

w/ prob 1− ET.
(21)

Under test blind with affirmative action banned, the college’s chosen x1 cutoff is −ET −
1

1+δ
(βq− c). This means that for the ET share of applicants with t = 1, the chosen x1-cutoff

is − 1
1+δ

(βq − c) + (1 − ET ) above society’s ideal cutoff of −1; for the 1 − ET share with
t = 0, the chosen cutoff is − 1

1+δ
(βq − c)− ET above society’s ideal cutoff of 0. That is, the

distribution of chosen cutoffs minus society’s ideal cutoffs is− 1
1+δ

(βq − c) + (1− ET ) w/ prob ET

1
1+δ

(βq − c)− ET w/ prob 1− ET.
(22)

Since β∆ < 1 (by assumption) and 1 + δ > 1, the distribution in (22) is a mean-preserving
spread of that in (21). Hence, when affirmative action is banned, society prefers test manda-
tory to test blind.

Part 3. From Proposition 7, if (1 + δ)(2β∆ − 1) < (β∆)2, then the college chooses test
mandatory under an affirmative action ban. If (1 + δ)(2β∆ − 1) > (β∆)2, which implies
β∆ > 1/2, the college chooses test blind under an affirmative action ban.

So, when β∆ ∈ (0, 1/2], society prefers to ban affirmative action: it prefers test mandatory
and no affirmative action to test mandatory with affirmative action (by part 1).

Now suppose that β∆ > 1/2. Let δ := (β∆)2

2β∆−1
− 1 be the solution to (1 + δ)(2β∆− 1) =

(β∆)2. For δ < δ, the college chooses test mandatory, in which case society prefers to ban
affirmative action. For δ > δ, the college chooses test blind. In this case, we need to compare
society’s payoff of test mandatory plus affirmative action versus test blind plus no affirmative
action.

The distribution of chosen x1-cutoffs minus society ideal cutoffs under test mandatory
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plus affirmative action is 
β−c
1+δ

w/ prob q

−c
1+δ

w/ prob 1− q.

Society’s corresponding payoff loss is

f

2(1 + δ)2
(
c2 − 2cqβ + qβ2

)
. (23)

The distribution of cutoffs minus society ideal points under test blind plus no affirmative
action is given by (22). Society’s payoff loss is correspondingly

f

2(1 + δ)2
(
(βq − c)2 + (1− ET )ET (1 + δ)2

)
, (24)

with ET = qpg + (1− q)pr.

The difference of (24) minus (23), which is positive when test mandatory plus affirmative
action is better than test blind with no affirmative action and negative when worse, is given
by

f

2(1 + δ)2
(
ET (1− ET )(1 + δ)2 − q(1− q)β2

)
. (25)

This expression has the same sign as ET (1 − ET )(1 + δ)2 − q(1 − q)β2. So, let δ′ :=

β
√

q(1−q)
ET (1−ET )

− 1 be the solution to ET (1 − ET )(1 + δ)2 − q(1 − q)β2 = 0. When δ > δ′,
society prefers test mandatory plus affirmative action to test blind plus no affirmative action;
when δ < δ′, society prefers test blind plus no affirmative action to test mandatory plus
affirmative action.

Finally, let δ = max{δ, δ′}. We now see that (i) when δ > δ, the college chooses test
blind if affirmative action is banned; and (ii) taking into account the college’s response in
choosing its testing regime, society prefers to ban affirmative action if δ < δ, and prefers to
allow affirmative action if δ > δ.
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