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Abstract

We study a class of preferences that we call Heterothetic Cobb-Douglas (HCD). They feature
unitary own-price elasticity and non-unitary income effects so that differences in expenditure
shares for a given good are solely due to income effects. HCD preferences generate a tractable
demand system that can be introduced in standard general equilibrium models, yielding rich
results. We illustrate HCD’s properties with different applications. First, we show that under
HCD preferences, the money-metric cost of inflation in a cross-section of households can be com-
puted with information on prices, expenditure shares, and total expenditures. Second, applied
to growth theory, we show that HCD preferences strengthen and generalize the classic results
by Kongsamut et al. (2001) and Foellmi et al. (2008). Third, when applied to economic geogra-
phy and international trade, we show how HCD preferences yield new insights in the Krugman
(1991) core-periphery model, the class of spatial economy models of Allen and Arkolakis (2014)
and Redding (2016), and the monocentric city model (Alonso, 1964; Mills, 1967; Muth, 1969).
Here, the combination of unitary own-price elasticity and equalization of utility over space plays
a crucial role in making the analysis tractable.

Keywords: Cobb-Douglas, Nonhomothetic Preferences.

JEL Codes: D11, F11, O40, R10.

1 Introduction

Rich and poor households consume very different baskets of goods. For example, the expenditure

share in food, energy, and other essential goods is well known to be larger for poor than for

rich households. In technical terms, this implies that their demands are nonhomothetic. A vast

amount of literature has documented the importance of nonhomotheticities in demand, starting

from the seminal work of Engel (Engel, 1857).1 Despite nonhomotheticities being extensively well-

documented, their applications to fields that rely on applied general equilibrium models, such as

∗Clement Bohr, Northwestern University; e-mail: cebohr@u.northwestern.edu. Mart́ı Mestieri, UPF-CREI-BSE,
FRB of Chicago and CEPR; email: mestieri.marti@gmail.com. Frédéric Robert-Nicoud, Université de Genève and
CEPR; e-mail: frederic.robert-nicoud@unige.ch.

1An ensuing extensive literature confirmed Engel’s initial findings on food consumption and extended it to other
items in the consumption basket (e.g., Houthakker, 1957). Modern neoclassical demand systems have also extensively
documented the presence of nonhomotheticities, e.g., through the so-called (q)aids demand systems (Banks et al. 1997;
Deaton and Muellbauer 1980a).
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macroeconomics or international trade, have remained relatively marginal. This inconspicuous

usage of nonhomothetic demands is probably due to a large extent to the technical difficulty of

dealing with them, in contrast to homothetic demands—which assume that prices are the only

determinant of relative consumption choices.2

In this paper, we study a nonhomothetic demand system that we call Heterothetic Cobb-Douglas

(HCD) and illustrate its tractability by presenting various applications. The distinctive feature of

this demand system is that it features a unitary own-price elasticity and non-unitary income effects.

As a result, differences in expenditure shares for a given good are solely due to income effects. HCD

preferences generate a highly tractable demand system that can be introduced in standard general

equilibrium models, yielding rich results. Despite having been noticed as early as in Hanoch (1975),

to our knowledge, it was only first used in an applied general equilibrium model by Bohr et al.

(2021).

The goal of this paper is two-fold. First, we present this demand system in detail and provide

an analysis complementary to Bohr et al. (2021). Second, to illustrate its analytical simplicity, we

apply HCD to various classic frameworks in economic growth, international trade, and economic

geography. When augmented with HCD preferences, we can show how the foundations of these

well-known models are, in some cases, strengthened and generalized (e.g., Kongsamut et al., 2001),

also yielding new insights in most cases (e.g., Krugman, 1991). We also show its convenience for

inferring welfare-relevant measures for the cost of inflation.

The roadmap for this paper is as follows. Section 2 lays out the foundations of Heterothetic

Cobb-Douglas preferences. We show its basic properties and provide sufficient conditions for HCD

preferences to be well-defined. Section 3 applies HCD preferences to computing a money-metric

welfare change in the cost of living. We show that under HCD preferences, it is possible to compute

the monetary change required to attain a certain level of utility due to a change in the cost of living

(price changes) for a cross-section of households, using only data on prices, household expenditure

shares, and total household expenditures.

Sections 4 and 5 apply HCD preferences to the growth models of Kongsamut et al. (2001) and

Foellmi et al. (2008), respectively. We show that HCD preferences extend the celebrated result in

Kongsamut et al. (2001) on the existence of a balanced growth with underlying structural change

in three sectors driven by nonhomothetic preferences. Incorporating HCD preferences circumvents

a main criticism of the original paper of relying on a knife-edge condition that links preferences and

relative prices. Instead, under HCD preferences, we obtain that a balanced growth path (BGP)

exists generically without making any other change to the original setup. In Section 5, we show that

the model of Foellmi et al. (2008) can be adapted to feature the consumption cycles emphasized in

the paper under endogenous technological change along the lines of Bohr et al. (2021).

2Abstracting from nonhomotheticities in demand can come at the substantial cost of distorting our conclusions in
many quantitative analyses. Indeed, during the last decade, several papers have shown the shortcomings of abstracting
from nonhomotheticities in the study of different economic phenomena, e.g., structural change (Boppart, 2014; Alder
et al., 2022; Comin et al., 2021), the patterns of international trade (Fieler, 2011; Caron et al., 2014; Fajgelbaum
et al., 2011) or measuring welfare differences across agents due to price changes (Fajgelbaum and Khandelwal, 2016;
Jaravel, 2019; Argente and Lee, 2021; Jaravel and Lashkari, 2022).
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Sections 6 through 9 apply HCD preferences to canonical international trade and geography

models: the gains-from-trade result of Arkolakis et al. (2012), the general-equilibrium spatial econ-

omy of Allen and Arkolakis (2014) and Redding (2016), the core-periphery model of Krugman

(1991), and the monocentric city model of Alonso (1964), Mills (1967), and Muth (1969). We

demonstrate how HCD preferences can seamlessly incorporate income effects in standard set-ups

and yield new intuitions for each application. For example, for the monocentric city model, we

show that it provides a natural explanation for why rich people live closer to the Central Business

District if housing is a necessity. In the core-periphery model, we can perform comparative statics

on the level of productivity (rather than the commonly done transportation cost) to assess under

which conditions structural change leads to the emergence of regional disparities. In the spatial

economy model, we show how to extend the standard framework to nonhomothetic preferences. A

key simplification that HCD preferences afford is that since agents, in equilibrium, are indifferent

across locations, they must obtain the same utility and thus have the same expenditure shares

across locations. Section 10 concludes.

2 Heterothetic Cobb Douglas: Definition and Properties

We start introducing the Heterothetic Cobb-Douglas (HCD) utility function and its associated

demand derived from the consumer’s problem. Let N ≡ {1, ..., N} denote the set of goods available

to a consumer, and (c1, · · · , cN ) the associated consumption vector. The Heterothetic Cobb-Douglas

(HCD) utility function U (c1, · · · , cN ) is implicitly defined by

lnU =
∑
i∈N

αi (U) ln (ci) , (1)

where α1(U), · · · , αN (U) denote N functions of U .3 Note that, if for all i ∈ N , αi(U) is a con-

stant independent of U, then we recover the standard homothethic Cobb-Douglas preferences. To

simplify our analysis, we assume throughout that αi(·) is continuously differentiable. We start by

characterizing the solution to a consumer’s problem with HCD utility and derive the demand for

each good i. We proceed under the assumptions that i) (αi(U))Ni=1 ensure that the solution to (1)

is unique, and ii) that U is monotone and quasi-concave in (ci)
N
i=1. We provide sufficient conditions

for this to be the case below.

Consider the consumer’s expenditure minimization problem of choosing a consumption vector

3For the sake of concreteness, we consider a set of finite and countable goods in our baseline exposition. The results
extend to uncountable sets N ⊆ R, as we show in some of the examples below. In this case, additional assumptions
may be imposed to ensure that the integration involving the definition of HCD is well-defined. In particular, the
weighting functions αi(·) may be required to be Lipschitz continuous or uniformly continuous.
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(ci)
N
i=1 taking prices (pi)

N
i=1 as given,4 subject to obtaining a certain utility level Ū ,

min
(ci)

N
i=1

∑
i∈N

pici s.t. ln Ū =
∑
i∈N

αi
(
Ū
)

ln (ci) .

The first order condition of this problem for good i yields pici = λαi(Ū), where λ is the Lagrange

multiplier on the constraint. Denoting total expenditure by E =
∑

i∈N pici, we find that the

equilibrium expenditure share on good i and the Lagrange multiplier are equal to

si
(
Ū
)
≡ pici

E
=

αi
(
Ū
)∑

j∈N αj
(
Ū
) , λ

(
Ū
)

=
E∑

j∈N αj
(
Ū
) . (2)

The result in Equation 2 highlights the key property of this demand system. Expenditure shares

only depend on the level of utility Ū . Thus, conditional on reaching the same level of utility,

differences in the prices of goods (pi)
N
i=1 do not affect consumers’ expenditure shares.

For example, if we set αi(U) = exp(aiU), then expenditure shares in (2) take a “multinomial

logit” form,

si(U) =
exp(aiU)∑
j∈N exp(ajU)

. (3)

If we instead set αi(U) = Uai , we obtain the expenditure shares,

si(U) =
Uai∑
j∈N U

aj
. (4)

These expenditure shares coincide with those characterized for the nonhomothetic CES in Comin

et al. (2021) when the elasticity of substitution tends to one. They would also coincide with the

“multinomial logit” shares derived above, Equation (2), under the utility transformation lnU = V

and are thus observationally equivalent.

2.1 Expenditure Function

The expenditure function associated to HCD preferences is derived by substituting the demand

function (2) in the definition of HCD (1), yielding

lnE = ln Ũ +
∑
i∈N

si (U) ln

(
pi

si (U)

)
, (5)

where Ũ ≡ U/
∑

i∈N αi(U). This formula implies that the indirect utility function for HCD co-

incides with that of homothetic Cobb Douglas preferences (conditional on taking the expenditure

shares as given).5 Also, Equation (5) makes clear that a useful cardinalization of preferences (as in

4We follow Berthold Herrendorf’s suggestion of presenting the derivation using cost minimization on the grounds
of being the most transparent way to derive the demand system of implicitly-defined preferences. Maximizing utility
subject to the budget constraint yields the same demand. We also note that it is possible to have alternative definitions
of HCD preferences instead of Equation (1), some of these are presented in the applications below.

5Furthermore, the indirect utility function V = V (p,E) is defined as the fixed point of V =
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its homothetic counterpart) is
∑

i∈N αi(U) = 1. In this case, Ũ = U and the demand equation (2)

and the expenditure function (5) further simplify to

si(U) = αi(U), lnE = lnU +
∑
i∈N

si (U) ln

(
pi

si (U)

)
. (6)

Note also that the expenditure function (5) implies that it is possible to obtain the level of

utility U with knowledge of total expenditure, expenditure shares, and prices. See Section 3 for

further discussion on this point and how to use this result to assess the cost of inflation.

Expenditure Elasticities It is useful to decompose the expenditure elasticity of this demand

system as follows6

ηsiE ≡
∂ ln si
∂ lnE

=
∂ ln si
∂ lnU

∂ lnU

∂ lnE
≡ ηsiU η

U
E . (7)

This decomposition is intuitive: the expenditure elasticity is the product of the elasticity of ex-

penditure shares to utility (by which percent expenditure shares change if one increases U by one

percent) times the elasticity of utility with respect to total expenditure (by which percent U in-

creases if one increases total expenditure by one percent). The decomposition in Equation (7)

implies that
ηsiE
η
sj
E

=
ηsiU
η
sj
U

.

That is, the ratio of expenditure elasticities is the same as the ratio of utility elasticities. Thus,

we can use the expression of si(U) from Equation (2) to recover all relative behaviors for a given

increase in U . For example, under Equations (3) and (4) we have that

ηsiE
η
sj
E

=
ai − ā
aj − ā

, where ā ≡
∑
i∈N

siai.

Remark: HCD as a Production Function We may also apply this functional form to non-

homothetic production functions, as in Hanoch (1975). Appendix A provides the details.

2.2 Monotonicity and Quasi-concavity of HCD Preferences

Next, we turn our attention to the monotonicity and quasi-concavity of HCD preferences. A

sufficient condition for the consumer problem to be well defined is that preferences are monotone

and quasi-concave (Mas-Colell et al., 1995). To be sure, less stringent conditions can be imposed,

E
∏
i∈N (si (V ) /pi)

−si(V ). Also, it is readily verified that the indirect utility function is homogeneous of degree

zero in
(

(pi)
N
i=1 , E

)
, decreasing in each pi, and increasing in E.

6For convenience, we work with the expenditure share elasticity. Note that this elasticity is related to the expen-
diture elasticity in levels by ηsiE = ηpiciE − 1.
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e.g., local non-satiation of preferences.7

First, we analyze under which conditions we have monotonicity of U(·). Given the assumption

of continuous differentiability of αi(·), we can generically apply the implicit function theorem to

(1). We find that strict monotonicity holds,8 i.e., d lnU
d ln ci

> 0 for all i ∈ N if and only if

1

αi(U)
−
∑
i∈N

d lnαi(U)

d lnU
ln ci > 0, ∀i ∈ N . (8)

This condition can hold under different sets of mutually exclusive assumptions. For example, a

sufficient set of assumptions is that αi(U) > 0, α′i(U) < 0 and ci ≥ 1. This condition highlights that

the choice of units for consumption measurement may not be innocuous. In practice, this requires

ensuring that, at the equilibrium prices and total expenditure, the household choices satisfies ci ≥ 1

for all i ∈ N .9 This condition is analogous to the requirements of attaining a sufficient level of

consumption in the case of Stone-Geary preferences with a subsistence requirement, or of PIGL

preferences, in the sense that it imposes conditions linking preferences with prices and expenditure

levels. Importantly, note that the monotonicity condition also ensures that the indirect utility

function is increasing in total expenditures, and that the expenditure function is increasing in

utility (see Propositions 3.D.3 and 2.E.2 in Mas-Colell et al., 1995).

In addition to other sets of sufficient conditions (which we refrain from listing here to avoid a

taxonomic analysis), it is worth mentioning the result presented in Bohr et al. (2021), which points

out to the existence of alternative assumptions that ensure monotonicity. They consider the case

in which N = R+ and the weights αi correspond to weights of an exponential distribution, αi(U) =
e−i/U

U , with i ≥ 0. In their setup, it can be verified that d lnU
d ln ci

> 0 and thus monotonicity is satisfied

(note that αi(·) does not satisfy the example of sufficient condition stated above).10

Second, we turn to the analysis of quasi-concavity. We assume that monotonicity is satisfied,

i.e., Equation (8) holds. Notice that for any given conjectured level of utility U, the indifference

curves between any pair of goods ci and cj correspond to that of a homothetic Cobb-Douglas utility

7Monotonicity ensures that we can globally disregard the existence of “bads”. However, allowing for this possibility
can be potentially interesting.

8It can be verified that d lnU
d ln ci

= 1
1

αi(U)
−
∑
i∈N

d lnαi(U)
d lnU

ln ci
if αi(U) 6= 0.

9The choice of units is without loss of generality in the following sense. Consider the following specification of
HCD preferences

lnU =
∑
i∈N

αi(U) ln

(
ci
zi

)
, (9)

where zi > 0 for all i ∈ N denotes a normalization constant. The demand for each good i is still given by (2), and
it is thus independent from zi. This implies that, for given any vector of prices and total expenditure, it is always
possible to find zi so that condition (8) is satisfied.

10In light of this discussion around monotonicity, another potentially interesting generalization of HCD preferences
is to add a minimum, non-divisibility requirement in consumption, by defining

lnU =
∑
i∈N

αi(U) ln (max {ci, 1}) . (10)

This formulation allows to have zero consumption of certain goods, while preserving the unit price elasticity and
optimal choices, e.g., Equation (1), for the set of goods with consumption greater than one.
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function with expenditure shares given by Equation (1). Homothetic Cobb-Douglas preferences

are well-known for displaying convex upper envelopes of the indifference curves. Moreover, note

that monotonicity implies that increasing consumption of any good shifts the indifference curves

outwards from zero. These two facts taken together imply quasi-concavity of preferences.

3 Exact Price Index and Money Metric of Inflation Costs

In this section, we start from the observation that HCD preferences yield a price index that can

be constructed using readily available data on total expenditure, expenditure shares, and prices.

Since these preferences are nonhomothetic, knowledge of household price indices is not sufficient

to directly assess welfare changes. This is in contrast to homothetic aggregators (see, e.g., Deaton

and Muellbauer 1980b). We then show how to make the information contained in the price indices

operational to compute a money metric of welfare changes in a cross-section of households.

From the household problem, we have already established in Equation (5) that, under the

normalization
∑

i∈N αi(U) = 1, the expenditure function satisfies

lnE −
N∑
i=1

si ln

(
pi
si

)
= lnU.

Thus, we can interpret the second term in the left-hand side above as a price index:

lnP ≡
N∑
i=1

si ln

(
pi
si

)
. (11)

Note that Equation (11) is the Kullback-Leibler divergence or relative entropy between the expendi-

ture shares and prices (since the sum of prices can be normalized to one, it can also be interpreted

as a distribution). Moreover, we note that lnP = lnPStone + lnS, where the first term is the

well-known Stone price index (which is widely used in empirical work, e.g., in the estimation of

the AIDS demand as suggested by Deaton and Muellbauer, 1980a), while the second is an entropy

measure of the dispersion of the expenditure shares

lnPStone ≡
N∑
i=1

si ln pi, lnS ≡ −
N∑
i=1

si ln si.

Recovering the Money-Metric True Cost-of-Living Index Number Suppose we observe a

panel of households for two periods (or two repeated cross sections). This panel contains information

on household total expenditures, expenditure shares, and the prices they face at two different

points in time. To simplify our analysis, assume that total expenditures follow a distribution,

E ∼ F (E), with support going from zero to infinity and dense in its entire support (e.g., the

lognormal distribution). Assuming that all households have the same preferences, given by Equation

7



(5), we now show how to recover the household-specific money-metric cost of price changes. We

denote with superindices the time dimension in the panel.

It follows from our previous discussion that the distribution of log utilities at time t can be

computed using:

lnU t = lnEt − lnP
(
Et,
(
pti
)N
i=1

, (sti)
N
i=1

)
, ∀E ∈ (0,∞) .

We assume that lnP is bounded above and below, so that, by construction, lnU t ∈ (−∞,+∞) for

all t (since expenditures go from zero to infinity). Thus, the range of utilities is time-invariant.

This result simplifies the exposition (without loosing the economic insight of the exercise). Note

that even though the range of utilities is time-invariant, it does not mean that household utility

remains constant over time.

We are interested in quantifying the change in the cost of living for different households asso-

ciated with a change of prices from (p1i )
N
i=1to (p2i )

N
i=1. To fix ideas, suppose we are interested in

computing the change in the cost of living that household x with expenditures at time 2, E2
x, has

experienced. We can proceed as following three steps.

1. Compute the utility level associated with E2
x at time t = 2 prices. This is done by carrying

out the operation lnU = lnE2
x − lnP

(
E2
x, (p

2
i )
N
i=1, (s

2
x,i)

N
i=1

)
, where the price index is given

by Equation (11).

2. Using that the mapping of E to U is exhaustive on all the reals, find the expenditure at

time 1, E1
y , yielding the same utility level as in step 1 at time t = 1 prices. That is, the

utility satisfying lnU = lnE1
y − lnP

(
E1
y , (p

1
i )
N
i=1, (s

2
y,i)

N
i=1

)
. We have found the expenditure

required at time 1 to attain U. Note that, this expenditure at time 1 can correspond to that

of another household, denoted y.

3. The change in the cost of living is given by E2
x

E1
y
. Note that we have constructed E1

y so that we

are holding the level of utility at household’s x in period t = 2. That is, U
(
E1
y , (p

1
i )
N
i=1

)
=

U
(
E2
x, (p

2
i )
N
i=1

)
. We note that this is what Deaton and Muellbauer (1980b) refer to as the true

cost-of-living index, E2(U, (p2i )
N
i=1)/E

1(U, (p1i )
N
i=1) where U refers to the utility level attained

at time t = 2 by household x.

In sum, we have shown how we can recover the change in the cost of living for all households

between two periods. This method can be analogously applied if we take as reference the utility

level in the first period instead of the second. Importantly, this procedure only requires observed

information available in the standard data (household expenditures and expenditure shares, and a

vector of prices) under the assumption, customary in this literature, that households face the same

prices.

In this derivation, we have imposed that the set of goods available to the consumer is constant

over time. However, it is immediate to show that the same result goes through if the set of goods is

also indexed by time—in this sense, this derivation bypasses the Feenstra (1994) correction for new

8



goods. We have made some convenient assumptions of having households at all income levels in both

periods. In practice, it may be necessary to interpolate (and extrapolate) the data on expenditures

and utilities since an exhaustive mapping between E and U is, by definition, unavailable with finite

data.

4 Structural Change under Exogenous Balanced Growth

Kongsamut et al. (2001) provided a simple model of the US economy which was both consistent

with Kaldor’s facts on economic growth, and with sectoral reallocation of labor from agriculture

to services along the growth path. This model is still often used as a baseline for understanding

structural change that is driven by nonhomotheticities in demand. However, the model relies

on an exact cross-restriction on preferences and technology. Moreover, the income effects which

drive the structural transformation are due to the initial conditions of the model and disappear

asymptotically. Replacing the original Stone-Geary preferences with HCD preferences provides an

equally simple model which does not rely on a knife-edge condition, while also featuring income

effects in the long run (if desired). We briefly review the original model and compare it to our

version with HCD preferences.

Production The production side features three sectors i ∈ {A,M,S}. Each sector produces its

own output Y i using an identical production function F (·, ·), up to a factor of total productivity

Bi, that is continuous, homogenous of degree one, concave, and increasing in both of its arguments,

capital K and labor N .

Y i
t = BiF (φitKt, N

i
tXt).

Here, φi and N i denote the shares of the total labor and capital stock that are used by sector i (the

labor stock is normalized to one). Xt denotes labor augmenting technological progress, which grows

at an exogenous fixed rate g. The agricultural and service outputs are used purely for consumption,

Y i = Ci for i ∈ A,S, while the manufacturing output is used for both consumption and investment,

YM
t = CMt + K̇t + δKt.

Since all sectors use the same production function up to a scalar and inputs are fully mobile,

the cost-minimizing allocation implies an identical relative use of inputs by each sector. Sectors

are competitive and prices are equal to their marginal costs, which only differ by their total factor

productivities, Bi. Letting the manufacturing good be the unit of account, the prices become

PA = BM/BA, PM = 1, and PS = BM/BS .

Balanced growth with Stone-Geary Preferences (Kongsamut et al., 2001) Preferences

across time are discounted and aggregated according to

U =

∫ ∞
0

e−ρt
C1−σ
t − 1

1− σ
dt. (12)

9



The intratemporal utility function for the consumption bundle Ct is given by the Stone-Geary

aggregator

Ct =
(
CAt − Ā

)β (
CMt

)γ (
CSt + S̄

)θ
,

where Ā, S̄, ρ, σ, β, γ, θ are all strictly positive, and β + γ + θ = 1, as laid out in the original paper.

Using the fact that production across sectors uses the same relative inputs and only differ by their

total scale, we can write the budget constraint the household faces as

CMt + K̇t + δKt + PAC
A
t + PSC

S
t = BMF (Kt, Xt) .

Using this budget constraint, Kongsamut et al., 2001 characterize the optimal consumption

allocations over time. They show that a balanced growth path (defined as an equilibrium with a

constant real interest rate) exists under the preference-technology cross-restriction that

Ā

BA
=

S̄

BS
. (13)

Along the balanced growth path, the sectoral growth rates are the following:

ĊMt
CMt

= g,
ĊAt
CAt

= g
CAt − Ā
CAt

,
ĊSt
CSt

= g
CSt + S̄

CSt
.

This balanced growth path features initially declining labor share in agriculture and a rising

labor share in services. Asymptotically the shares stabilize, so the structural change is a feature

of the initial conditions of the economy. Though some primitive relation between preferences and

technology may be justified, Ngai and Pissarides (2007) point out that the cross-restriction imposed

in (13) is particularly sharp and does not hold generically since it requires the ratio of Stone-Geary

parameters, Ā/S̄, to be equal to the ratio of relative productivities, BA/BS .

Balanced Growth with HCD Preferences We can formulate a heterothetic Cobb-Douglas

function to mimic the features of the Stone-Geary balanced growth path, with the advantage of

balanced growth existing for a range of parameter values rather than the singleton implied by

Equation (13). Preferences across time are the same as in the original paper and are defined in

(12). Instead, intra-temporal preferences are given by the following HCD specification

lnCt = β (Ct) lnCAt + γ lnCMt + θ (Ct) lnCSt ,

10



where β(Ct) is decreasing in Ct, and β(Ct)+γ+θ(Ct) = 1, which implies that θ(Ct) is increasing.11

The optimal consumption choices imply the following balanced growth path:

ĊMt
CMt

= g,
ĊAt
CAt

= g +
β̇t
βt
,

ĊSt
CSt

= g +
θ̇t
θt
,

which is again defined by a constant interest rate.

This balanced growth path also features a declining labor share in agriculture and a rising labor

share in services. Whether this income effect asymptotically disappears or not is freely chosen

based on the functional forms of β(·) and θ(·). As anticipated, the cross-restriction (13) required

in the original paper is no longer needed.

5 Continuous Sectoral Take-off under Endogenous Growth

Foellmi et al. (2008) provided the first endogenous growth model featuring continuous unbalanced

growth across an ever-expanding number of sectors while maintaining balanced growth in the

aggregate. In their model, using hierarchical preferences, newly innovated products start as luxuries

and are consumed in small amounts. As income grows, these products are consumed in increasing

amounts and gradually evolve into necessities. At the same time, newer, more income-elastic

products are created. Moreover, as more sectors come into existence, the consumption shares of

the initial sectors eventually begin to decline. The model beautifully features an ever-expanding

array of sectors that come into existence, and whose expenditure shares rise and fall. We briefly

outline their model to then juxtapose our extension, which substitutes hierarchical with HCD

preferences.

Engel’s Consumption Cycles under Hierarchical Preferences (Foellmi et al., 2008)

Household intratemproal preferences over an infinite continuum of sectors, ε ∈ [0,∞) is given

by

u
(
{cε,t}∞ε=0

)
=

∫ ∞
0

ε−γ
1

2

[
s2 − (s− cε,t)2

]
dε,

where γ ∈ [0, 1] controls the degree of income effects across the sectors, and s defines the saturation

level for any specific sector. Intertemporal preferences are the same as in the previous section,

Equation (12), with an elasticity of intertemporal substitution 1
σ and time discounting ρ. Households

can allocate consumption intertemporally via an asset with an interest rate rt, which represents

the total value of all firms.

11An example of a parametrization is β(Ct) = (1− γ) exp(−Ct) and θ(Ct) = (1− γ) (1− exp(Ct)). The sufficient
condition for monotonicity, Equation (8), is satisfied if min

{
CAt , C

S
t

}
≥ 1. Satisfying this monotonicity condition

imposes a restriction on the initial wage and price level (note that if it is satisfied at the initial time, the condition is
going to be satisfied going forward because there is aggregate growth and monotonicity is ensured). This condition is
analogous to the condition imposed in Kongsamut et al. (2001) to ensure that the minimum subsistence requirement
is met in the Stone-Geary demand system.
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The technologies governing production and innovation are linear in the single factor of produc-

tion, labor, whose supply is inelastic and normalized to one. Both technologies feature aggregate

knowledge spillovers from the total number of innovated sectors at time t, Nt,

Yε,t = NtL
Y
ε,t, Ṅt = βNtL

R
t ,

where β is a positive parameter, and LYε,t, L
R
t are the amount of labor allocated to production in

sector ε or to innovation, respectively. In their model a firm acquires a patent of finite duration ∆ by

innovating in a new product. Once the patent expires, the sector becomes perfectly competitive.

There is free entry into innovation. Thus, new products will be innovated until the sum of the

future discounted profit from the patent equals the cost of innovating it. We refer the reader to

the original paper for further details on their framework.

This model features multiple balanced growth path equilibria. Foellmi and Zweimuller argue

that this is inherent to the hierarchical preferences and finite duration of patents. Also, their clean

results on how any sector’s income elasticity devolves from being a luxury into a necessity rely on an

alternative version of their model with exogenous growth. The model also features innovation only

on the extensive margin; that is, no innovation takes place within a sector, only for the development

of new sectors, circumventing the concept of within-sector innovation.

Using a Logit-HCD functional form instead of hierarchical preferences, we can augment their

model to feature endogenous sector-specific innovation of varying intensities across all sectors. Fur-

thermore, the Logit-HCD formulation provides clean analytical results on each sector’s unbalanced

growth dynamics and the evolution of income elasticities that do not rely on the alternative exoge-

nous growth version offered in the original paper.

Engel’s Consumption Cycles with Directed Technical Change under HCD Preferences

We impose a few changes to the framework of Foellmi et al. (2008), which despite making the

framework seemingly more complex, lead to simpler analytical results. Arguably, our adjustments

also benefit from being more closely aligned to what is “standard” in the endogenous growth

literature. First, we let firms claim a perpetual patent on a newly innovated product (an assumption

that is customary but counterfactual, unlike Foellmi and Zweimuller’s). Second, we expand the

product space to have a within-sector margin as well, (ε, i) ∈ [0,∞) × [0, Nε,t], where Nε,t is the

number of products in sector ε.12 Lastly, we let households have logit-HCD preferences across

sectors, where the sectoral expenditure shares are given by αε(ut) = u−γt exp(−u−γt ε), where γ > 0

also the controls the strength of the non-homotheticities as in Foellmi et al. (2008),

In sum, we have the following nested demand system,

0 =

∫ ∞
0

αε (ut) ln

(
cε,t
ut

)
dε, cε,t = N

− 1
θ−1

ε,t

(∫ Nε,t

0
c
(θ−1)/θ
εi,t di

)
θ/(θ−1),

12In Bohr et al. (2021) we allow for a sector-specific mechanism rather than the aggregate knowledge spillovers
in production, making the existence of balanced growth more demanding. However, this generates sectoral price
dynamics that are consistent with those observed in the data.
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where the within-sector price elasticity of substitution is given by θ > 1. We mute the gains-from-

variety effect in the CES aggregator above through the term N
− 1
θ−1

ε,t to maintain a closer parallel

with Foellmi et al. (2008). Instead we maintain their aggregate knowledge spillovers in production,

Yεi,t = NtLεi,t,

where Lεi,t denotes the amount of labor used in production of product εi.

The results of the model are sketched out below. The price of each product i in any sector ε is

a markup over the marginal cost of production, pεi,t = θ
θ−1

Wt
Nt

, where Wt is the wage rate. Given

the symmetry of prices and the lack of gains from variety, the sectoral price-index coincides with

the price of products in the sector, pε,t = pεi,t.

There is free entry into innovation, and the cost of innovation is identical across sectors. Firms

enter into all sectors until the future discounted profits of an additional new product in every sector

are the same and equal to the labor cost of innovating. Since this will be true at any moment in time,

profits at any moment are equalized across sectors too (i.e., the Hamilton Jacobi Bellman equation

holds). The Hicksian demand for any given sector is given by cε,t = p−1ε,tαε(ut)Et, where Et denotes

total expenditures. Given the free entry condition, there will be more innovation in sectors where

demand is increasing the most. Since this entry happens until profits πt are equalized across sectors,

we can invert a firm’s profit condition to find exactly how many products will be innovated in each

sector. The distribution of products across sectors ends up perfectly mirroring the expenditure

share distribution,

Nε,t = Ntαε (ut) , Nt =

∫ ∞
0

Nε,tdε =
1

θ

Et
πt
.

As a result, the sectoral price distribution is the inverse of the exponential distribution of the

number of products across sectors. Since there is less demand for higher ε sectors due to their

higher income elasticities, less innovation has occurred in them, and therefore they feature higher

prices. The ideal price index implied by the logit-HCD preferences delivers a log-linear mapping

between utility and aggregate innovation, u1+γt = e−1LY,tNt, where LY,t is the total labor allocated

to production aggregated across sectors. Under the normalization of the price index to 1,

lnP =

∫ ∞
0

αε(C) ln

(
Pε

αε(C)

)
dε = 0,

the household Euler equation is identical to that in standard one-sector growth models:

Ėt
Et

=
1

σ
(rt − ρ).

We can then define an aggregate balanced growth path, as in standard endogenous growth

models, which is characterized by a constant interest rate and constant shares of labor allocated to

production and innovation.

Under this aggregate behavior, however, innovation will be directed toward more income-elastic
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sectors, as demand is shifted toward these more income-elastic sectors relative to less income-elastic

sectors, making them grow faster. The expenditure elasticity of sector ε, ηε,t ≡ ∂ ln pεcε
∂ lnE , the sector’s

growth rate, and the moment the sector’s value-added share peaks are given by

ηε,t = 1− γ

1 + γ
(1− u−γt ε),

Ṅε,t

Nε,t
= ηε,t

Ṅt

Nt
, εpeak = uγt ,

respectively. As utility grows, the income elasticity of any sector falls. While aggregate growth

is constant along the balanced growth path, the sectoral growth rate is determined by its income

elasticity at that time. When the expenditure elasticity has fallen and equals unity, i.e., the moment

the sector pivots from a luxury to a necessity, is also when the a sector’s value-added share in the

economy peaks.13 In sum, by introducing HCD preferences, we can parsimoniously characterize

the sectoral behavior, which is qualitatively similar to that in Foellmi and Zweimuller where sectors

take off one after another according to their sectoral index.

6 Gains From Trade in a Ricardian Trade Model with Income

Effects

In this section, we revisit the celebrated gains-from-trade formula from Arkolakis et al. (2012)

(ACR) and Eaton and Kortum (2002), applied to the multi-sector Ricardian model of Costinot et al.

(2012) (CDK). The introduction of nonhomotheticities to the CDK set-up implies that the effects

of trade policy changes on welfare in a country depend on the interaction between its comparative

advantage and its endogenous expenditure share. At a broad level, this has been already pointed

out, for example by Caron et al. (2014)—see for example Equation (16) in their paper.

In this case, the introduction of HCD preferences allows us to obtain a very crisp result. Let us

write the indirect utility function V as a function of income w

lnV = lnw −
∑
i∈N

si (V ) ln pi =
∑
i∈N

si (V ) ln
Ai
πi
,

where Ai denotes the exogenous TFP of sector i, and πi denotes the own trade shares in the country

under study. Let x′ denote the counterfactual value of x under the unobserved autarky regime, and

let and let V̂ ≡ V ′/V . We obtain the following augmented ACR formula

13To see how this model can be further generalized to other expenditure distributions, non-unitary own-price
elasticity across sectors, as well as alternative drivers of growth and prosperity, see Bohr et al. (2021), who lay out a
broader growth framework. In fact, the model here may be viewed as a simplified, alternative version of this paper,
which can be pieced together from its appendices.
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ln V̂ =
∑
i∈N

si
(
V ′
)

ln
Ai
π′i
−
∑
i∈N

si (V ) ln
Ai
πi

=
∑
i∈N

si (V ) lnπi︸ ︷︷ ︸
standard ACR

+
∑
i∈N

[
si
(
V ′
)
− si (V )

]
lnAi︸ ︷︷ ︸

novel

, (14)

where the second equality uses π′i = 1 (the autarky trade shares are equal to one).

The novel effect arises because expenditure shifts with utility. Importantly, the sign of the novel

term, which results from nonhomothetic preferences, depends on the correlation between TFP (i.e.,

absolute advantage) and the income elasticity of demand for the various goods. The standard ACR

term is negative (returning to autarky reduces welfare by foregoing gains from trade). The sign of

the novel term is ambiguous.

In the generalized ACR formula of Equation (14), the si’s and the πi’s are observed, and we

can infer the Ai’s by assuming perfect competition and observing goods and factor prices, but the

counterfactual expenditure shares are not observed. However, we can bound this novel effect since

the shares are, by definition, a number in the unit interval and sum up to one. We plan to explore

this quantitative question in the future.

7 General Spatial Equilibrium with Income Effects

Virtually all quantitative general spatial equilibrium models assume homothetic Cobb-Douglas

preferences for its tractability. The key property of these preferences that make such models

tractable is the unitary own-price elasticity of demand. Though useful, the unitary income elasticity

of demand is unnecessary for that purpose. We show that HCD preferences, combined with utility

equalization over space, lead to a nearly as tractable a framework because this combination of

assumptions ensures that expenditure shares are equalized across space regardless of the spatial

variation of consumer prices.

We illustrate this point by encapsulating HCD preferences into a general spatial equilibrium

model a-la Allen and Arkolakis (2014) and Redding (2016) in this section and into Krugman (1991)

in Section 8.

7.1 Topography of the Spatial Economic Geography with Income Effects

Housing is a major component of virtually any household’s expenditure or portfolio, and the income

elasticity of housing is well below unity (Combes et al., 2018). It follows, then, that the equilibrium

mobility response of households, which depends on this key elasticity, depends, in turn, on their

economic well-being. To make this point, we build a quantitative general spatial equilibrium model

a-la Allen and Arkolakis (2014) and Redding (2016) featuring housing as a necessity.

We denote by C the set of cities / regions. We reset our notation and use subscript i to denote
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cities. Consider two goods, housing (not traded), whose unit price is ri, and the traded good,

with consumer price index Pi. We also allow for consumption amenities Bi > 0, which enter the

expenditure function in a multiplicatively separable way; that is to say, higher amenities imply that

the level of expenditure required to attain utility level ui at prices (Pi, ri) is lower. The expenditure

function is thus:

lnE (Pi, ri, u) = − lnBi + si ln

(
Pi
si

)
+ (1− si) ln

(
ri

1− si

)
+ lnui, si ∈ (0, 1) , (15)

where si denotes the expenditure share on the traded good.

Individuals supply labor, are free to move across cities, and consume housing and the traded

good; local landowners own land and consume the traded good only. Let Li denote the (endogenous)

population in i, with ∑
i∈C

Li = L, (16)

where L is total population (exogenous). Let wi denote the wage in location i, and let Hi denote

the inelastically supplied stock of housing in i.14 Then, local housing markets clear if and only if

the value of supply is equal to the value of demand:

riHi = (1− si)wiLi. (17)

In equilibrium, expenditure Ei is equal to labor wage wi. Together with (15), (17) this yields

si lnwi + lnBi = si ln

(
Pi
si

)
+ (1− si) ln

(
Li
Hi

)
+ lnui. (18)

Clearly, a higher population in i or a higher price for tradables must be compensated by a higher

wage in the same location to offset higher living costs.

For convenience, let the traded good be differentiated by origin (the Armington hypothesis),

with a constant elasticity of substitution of σ > 0. The sector is competitive and produces with a

constant unit cost of wi/Ai, where Ai denotes TFP. Let Tij > 1 denote the iceberg transportation

cost from i to j. The value of exports from i to j is equal to

Xij =

(
Tijwi
AiPj

)1−σ
wjLj , (19)

which requires σ > 1 for trade volumes to fall with trade costs (and thus distance), as is empirically

relevant. The price index obeys

P 1−σ
j =

∑
i∈C

(
Tij

wi
Ai

)1−σ
. (20)

14We assume an inelastically supplied housing stock for simplicity. This assumption can be easily relaxed to make
housing supply elastic.
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7.2 Equilibrium

Housing markets clear if (17) holds. Utility of mobile workers is equalized across space if it exists

a u > 0 such that wi = E (Pi, ri, u) whenever Li > 0, and wi ≤ E (Pi, ri, u) otherwise.15 That

is, in a spatial equilibrium, wages must cover expenditure given local prices in all locations with

a positive population. It also follows from ui = u that si = s, for some s ∈ (0, 1). Thus, at any

spatial equilibrium:

Li > 0 ⇒ lnE (Pi, ri, u) = lnwi = −1

s
lnBi + lnPi +

1− s
s

ln

(
Li
Hi

)
+

1

s
lnu− ln s. (21)

The market of traded good i clears if the following expression holds:

wiLi =
∑
j∈C

Xij =

(
wi
Ai

)1−σ∑
j∈C

(
Tij
Pj

)1−σ
wjLj , (22)

where the second equality uses (19). Finally, full employment (16) holds.

Together, (21) and (22) yield what is known as the wage equation in the “New Economic

Geography”:16

Liw
σ
i A

1−σ
i =

∑
j∈C

(
Tij
Pj

)1−σ
wjLj

= sσ−1u−
σ−1
s

∑
j∈C

T 1−σ
ij wσj B

σ−1
s

j H
(σ−1)(1−s)

s
j L

1− (σ−1)(1−s)
s

j . (23)

By the same token, combining (18) with the price index (20) yields the so-called consumer market

access equation:

w1−σ
i

(
Li
Hi

) (σ−1)(1−s)
s

B
−σ−1

s
i = sσ−1u−

σ−1
s

∑
j∈C

(
Tji

wj
Aj

)1−σ
. (24)

We show in Appendix B that, if trade costs are quasi-symmetric, then dividing both sides of

15That is, ui = u for all i and some u > 0, in a spatial equilibrium with free mobility. Thus the expenditure share
is constant across space, too (i.e., si = s for all i and some 0 < s < 1), which is broadly consistent with the empirical
observation of Davis et al. (2011), even though preferences are not homothetic Cobb-Douglas.

16Guide to calculations:

Liw
σ
i A

1−σ
i = s

∑
j∈C

(
Tij
Pj

)1−σ

wjLj = sσu−
σ−1
s

∑
j∈C

T 1−σ
ij wσ−1

j B
σ−1
s

j

(
Hj
Lj

) (σ−1)(1−s)
s

wjLj

= sσu−
σ−1
s

∑
j∈C

T 1−σ
ij wσj B

σ−1
s

j H
(σ−1)(1−s)

s
j L

1− (σ−1)(1−s)
s

j .
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(23) by those of (24) yields:17

L
σ̃
s
i H

−σσ̃(1−s)
s

i A
−(σ−1)σ̃
i B

−σσ̃
s

i = sσ−1u−
σ−1
s

∑
j∈C

T 1−σ
ij Aσσ̃j B

(σ−1)σ̃
s

j H
(σ−1)σ̃(1−s)

s
j L

[1−σ(1−s)] σ̃
s

j , (25)

where

σ̃ ≡ σ − 1

2σ − 1
∈
(

0,
1

2

)
.

Three results follow. First, given u (and hence s), a unique equilibrium exists by σ (1− s)) > 0.18

Second, with s as an endogenous outcome, the conditions for equilibrium existence uniqueness are

different from these papers. We conjecture that conditions for existence are rather generic, but

that conditions for uniqueness may be quite involved; we leave them for future work. Third, the

equilibrium elasticity of Li with respect to fundamentals (Ai, Bi, Hi) is governed by σ and s; treating

the right-hand side of (25) as constant in a first-order approximation

∂ lnLi
∂ lnAi

≈ (σ − 1) s,
∂ lnLi
∂ lnBi

≈ σ, ∂ lnLi
∂ lnHi

≈ σ (1− s) .

That is to say, the migration response to a local improvement in productivity (or to a reduction

of the housing supply) is increasing in s (and decreasing in the housing expenditure share 1 − s).
When economic well-being increases, then s increases and the absolute value of these elasticities

increases. This argument implies that mobile workers become more reactive to heterogeneous local

conditions.

8 Regional Disparities and Structural Change

Krugman (1991) introduces a two-region, two-sector, two-factor model featuring factor mobility,

trade costs, and increasing returns to scale internal to (manufacturing) firms. He shows in a parsi-

monious way how regional disparities can emerge when transportation costs fall, even among oth-

erwise similar regions. In Krugman’s model, and in the entire so-called New Economic Geography

(henceforth NEG) literature that ensued, a high share of manufacturing in GDP is associated with

stronger agglomeration forces (since only manufacturing displays localized external scale economies

by assumption) and higher regional disparities. Krugman’s paper uses homothetic preferences.,

Hence the share of manufacturing in national income is invariant in real per capita incomes. As a

result, the model cannot be used to study the interaction between structural change and regional

disparities. Here, we show how we can use heterothetic Cobb-Douglas preferences to do just this

exercise in a parsimonious way. In particular, we show that as technical progress lifts incomes, the

expenditure share on manufacturing increases, and, in turn, regional disparities emerge.

17Trade costs are said to be quasi-symmetric if Tij = 1 for j = i, and, for i 6= j, (i) Tji = TiTjDji and (ii)
Dji = Dij .

18That is, the exponent of Li on the left-hand side of (25) is larger than that of Lj on its right-hand side. The
proof follows that of Theorem 1 in Allen and Arkolakis (2014) and Proposition 1 in Redding (2016).
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NEG models that venture beyond the combination of the following assumptions are unwieldy,

and only a few analytical results are available. These assumptions are two symmetric regions,

iceberg transportation costs, and Cobb-Douglas preferences. It turns out that the key property of

the latter that leads to analytically tractable result is the unit price elasticity of demand. The HCD

preference system is the only system of nonhomothetic preferences featuring a unit price elasticity

of demand. Hence it is also unique in enabling us to study the endogenous joint emergence of

regional disparities and structural change in a NEG framework.

8.1 Model

Consider two regions, i, j ∈ {1, 2} having access to identical technologies, two sectors, agriculture

A and manufacturing M , and two factors, unskilled labor L and skilled labor or human capital H

(alternatively, L can be interpreted as land and H as labor).

Preferences For analytical simplicity, unskilled workers consume the manufacturing good only.

Skilled workers have Heterothetic Cobb-Douglas preferences over A and M , with equilibrium ex-

penditure shares 1 − s (u) and s (u), respectively, where u denotes the level of utility of skilled

workers. Manufacturing is the luxury good (Agriculture is the necessary good) so that s′ (u) > 0.

They also have CES preferences over the varieties produced by M , and σ > 2 denotes the elasticity

of substitution.19

Endowments Both regions host L/2 immobile unskilled workers. Region 1 hosts λH skilled

workers (Region 2 hosts (1− λ)H skilled workers). Skilled workers move to the region that offers

the highest real returns, hence λ is an endogenous variable of the model; as we shall see in Subsection

8.2 below, λ ∈
{

0, 12 , 1
}

are typical equilibrium outcomes in this model.20 Finally, we set L = H = 1

without loss of generality.

Technology, trade, and migration Agriculture uses labor L only, under constant returns to

scale, and A = aLA, where A denotes agriculture TFP, a > 0 is labor productivity, and LA is

labor used in agriculture. Using labor in region 1 as the numeraire, we get p1 = 1/a. Its output

is freely traded, hence pj = 1/a and wj = 1, j = 1, 2. Workers are geographically immobile, but

move freely across sectors. Manufacturing is composed of firms producing a differentiated good.

Each firm needs one unit of human capital as a startup cost, and each unit of output requires aM

units of labor, hence the cost function of any manufacturing firm is Cj (x) = πj + aMwjx, where

πj denotes human capital wage and x denotes output; without loss of generality, we choose units

19Two comments are in order. First, if s (u) = µ, for some µ ∈ (0, 1), then preferences correspond to homothetic
Cobb-Douglas and this version of the model features the same equilibrium properties as Krugman’s original model,
as well as many others (Robert-Nicoud, 2005). Thus, the only meaningful departure from Krugman’s model is the
introduction of nonhomothetic Cobb-Douglas preferences. Second, we impose σ > 2 to avoid a typology of cases.

20The model assumes two regions endowed with identical fundamentals, hence λ = 1
2

is always an equilibrium. The
model also famously features self-enforcing agglomeration mechanisms, hence λ = 0 and its mirror-image λ = 1 are
also equilibrium outcomes under some parameter configurations. Subsection 8.2 provides details.
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for M such that aM = 1− 1/σ, so that the FOB price is 1 in equilibrium. This good is traded at

an iceberg cost T > 1. Let φ ≡ T 1−σ denote a free-ness of trade measure, where φ = 0 when trade

costs are prohibitive, and φ = 1 when Regions 1 and 2 are fully integrated. Then, the price-index

for manufacturing varieties in Region j, Pj , obeys

P 1−σ
j = λj + T 1−σ (1− λj) = λj + φ (1− λj) . (26)

Technical progress We model technical progress as an exogenous increase in a. We show below

that an increase in labor productivity a will result in an increase in the manufacturing expenditure

share s at any given equilibrium spatial configuration.21

8.2 Equilibrium

As is customary in this literature, we solve for the equilibrium in two steps. First, take the location

of mobile skilled workers as given, i.e., treat λ as parametric. Under the assumptions of Section

8.1, it is straightforward to show that market clearing in manufacturing in Region j requires:

σπj =
λjπjsj + 1

2

λj + φ (1− λj)
+ φ

λiπisi + 1
2

λi + φ (1− λi)
, λi + λj ≡ 1. (27)

The left hand side of this expression is the revenue of a typical manufacturing firm in j (with

Dixit-Stiglitz monopolistic competition, the return to the fixed factor is a constant fraction 1/σ of

this revenue), and the right-hand side is sales in Regions j and i 6= j, respectively. Using (6) and

letting u = Us−s (1− s)−1+s, expenditure in Region j is equal to

lnE (pj , Pj , u) = − (1− sj) ln (a) + sj ln (Pj) + lnu, (28)

where sj is increasing in u by assumption. Since E is increasing in u, it follows that an exogenous

increase in a results in an increase in u, given E. In turn, s increases since manufacturing is the

income-elastic good.

Second, we let skilled workers search for the highest real wage, and hence let λ be an equilibrium

outcome. A spatial equilibrium arises whenever uj ≤ u, some u > 0, for all j ∈ {1, 2}, with equality

if λj > 0. In order to boost economic intuition, it is useful to introduce some change of variables

before we start with the conditions for the latter outcome to be an equilibrium.

Let

δ (u) ≡ L/2

πjH + L/2
=
σ − s (u)

σ + s (u)
(29)

denote expenditure in the periphery relative to expenditure in the core for λj = 1, with 0 < δ (u) < 1

by σ > 2 and s (u) ∈ (0, 1). The second equality above comes from using (27) and from setting

21Note that modeling technical progress as an increase in the productivity in agriculture only is without loss of
generality. All meaningful results are isomorphic if one considers homogeneous increases in both Agriculture and
Manufacturing TFP. The reason for this result is the unitary elasticity of substitution between the two consumption
goods.
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H = L = 1. Above, δ (u) is a measure of the strength of dispersion forces in the model that stem

from immobile demand; δ (u) is equal to unity in the absence of agglomeration forces, and it is

decreasing in the expenditure share on the manufacturing good, s (u). Hence, δ is decreasing in u.

Let also

θ (u) ≡ s (u)

σ − 1
(30)

capture agglomeration economies that arise from cost linkages, with 0 < θ (u) < 1 by σ > 2 and

s (u) ∈ (0, 1). High-skilled workers are mobile and hence they care about both nominal factor

returns and local prices, and θ (u) captures the importance of the latter (if these workers cared

only about nominal returns, then θ (u) would be equal to zero). Here, θ is increasing in u.22

In such symmetric models, a symmetric equilibrium with λ1 = λ2 = 1
2 always exists. It may

not always be stable, though; we return to this question below. But a Core-Periphery equilibrium

with all skilled workers agglomerated in a single region, with λj = 1 and λi = 0, may also exist.

We turn to this case first.

Sustain Point What are the conditions that ensure λ ∈ {0, 1} is an equilibrium outcome? With-

out loss of generality, assume λ = 1. If the Core-Periphery configuration λ = 1 is an equilibrium,

then π1 (u) = E1 (u) (high-skill income in Region 1 covers the expenditure required to achieve

utility level u) and π2 (u) ≤ E2 (u) (high-skill income in Region 2 is insufficient to cover the level

of expenditure required to achieve u). The standard practice in the NEG is to find a threshold

value for φ in the unit interval, known as the “Sustain Point” φSust, such that the latter inequality

holds strictly for φ > φSust and is violated for φ < φSust. We show in Appendix C that such a

φS ∈ (0, 1) exists if σ > 2 (which ensures 0 < θ < 1). The (implicit solution) for the sustain point

is φSust ∈ (0, 1), where

φSust =
{
φ ∈ (0, 1) : 0 = δ + φ2 − [1 + δ]φ1−θ

}
. (31)

We show in Appendix C that utility u of mobile workers is increasing in the level of technology a

in the Core-Periphery equilibrium. Thus, the higher labor productivity a, the lower the trade cost

threshold (corresponding to φSus) below which regional disparities can emerge.

Break Point The symmetric configuration λ = 1/2 is always an equilibrium of this symmetric

model, but in may not be stable, in the following sense. The symmetric equilibrium is said to

be unstable if, following an exogenous migration shock λ̂, the change in income, π̂, is larger than

the change in expenditure required to maintain utility, Ê, and to be stable otherwise (here we use

“hats” to denote log changes). We are interested in the parameter configuration such that the two

effects are exactly equal at the margin, π̂ = Ê = sP̂ , in which case utility (and hence expenditure

22The attentive reader may have noticed that expenditure shares generically differ across locations. However, when
studying the symmetric or Core-Periphery equilibriums, there is a unique such share: in the symmetric equilibrium,
sj (u) = s, some u, all j ∈ {1, 2}, whereas in the Core-Periphery equilibrium, all mobile workers locate in a single
region, and the expenditure share of mobile workers in the other region is moot.
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shares) are invariant. The break point for φ is equal to

φBreak =
1− θ
1 + θ

δ, (32)

where the second equality comes from (29) and (30). The symmetric equilibrium is unstable if

φ > φBreak and stable otherwise. We show in Appendix C that this break point belongs to the

interior of the unit interval if a is high enough (φBreak = 1 and hence the symmetric equilibrium is

stable for any φ otherwise), and it is decreasing in u by ∂θ/∂u > 0 and ∂δ/∂u < 0.23 Finally, we

show in Appendix C that utility u of mobile workers is increasing in the level of technology a and

of trade free-ness φ in the symmetric equilibrium. Thus, the higher labor productivity a, the lower

the trade cost threshold (corresponding to φBreak) below which regional disparities must emerge is.

8.3 Regional Disparities and Structural Change

In our model, exogenous technical change in agriculture leads to both structural change and to the

emergence of regional disparities. To summarize the results of this section, we have shown:

Proposition 1. Regional Disparities and Structural Change. Consider the model in Section 8.1.

(i) The symmetric equilibrium is stable for any level of trade costs when labor productivity is low

enough. (ii) When labor productivity is high enough, the Core-Periphery outcome is an equilibrium

outcome if and only if trade costs are low enough. (iii) The higher labor productivity, the lower the

trade cost threshold below which regional disparities emerge.

Proof. In the text and in Appendix C.

A few remarks are in order. First, the expressions characterizing the spatial equilibria in (31)

and (32) are identical to those in Robert-Nicoud (2005) and Ottaviano and Robert-Nicoud (2006),

which establish that Krugman’s original model and many others are isomorphic once written in the

appropriate state space. The only difference between our current model and the models studied in

these papers is encapsulated in s alone: s is an endogenous variable that captures income effects

in our model, whereas s is a parameter under homothetic Cobb-Douglas preferences in all models

considered in these papers—in which income effects are not present by construction. Second, using

standard algebra, it is straightforward to show that the break and sustain points are both increasing

in the strength of dispersion forces δ (u) and decreasing in the strength of agglomeration forces θ (u),

making both the conditions for a Core-Periphery equilibrium to emerge and those for the symmetric

equilibrium be unstable more likely to hold as u rises. Thus, as technical progress advances, s rises

and the range of parameters other than TFP a that make the symmetric equilibrium unstable

increases: structural change fosters regional disparities. Third, if 1 < σ ≤ 2 then the symmetric

equilibrium is unstable (and the Core-Periphery equilibrium exists) for all values of s in the unit

23Importantly, (32) contains endogenous variables on both sides of the equation. The so-called break point is a
fixed point satisfying both (32) and (43). We show in Appendix (C) that a unique fixed point exists.
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interval. Finally, the model may also admit two interior, asymmetric equilibriums (symmetric to

one another) but, when they exist, they are unstable (Robert-Nicoud, 2005).

9 The Monocentric City Model with HCD Preferences

In this section, we study the standard monocentric city model of Alonso (1964); Mills (1967); Muth

(1969) (AMM). Each worker works at the Central Business District (CBD), and earns an idiosyn-

cratic, exogenous wages w drawn from a twice-continously differentiable cumulative distribution

F (w), with probability density function denoted f (w), and support Ω ≡ [1,W ], with W > 1 (the

normalization of the lower bound to unity is without loss of generality). There are N workers in

this city.

Preferences Workers supply their labor in the CBD, and consume housing services and a nu-

meraire good. This good is freely traded and, thus, the law of one price holds. Each worker residing

at distance x > 0 from the CBD has to incur a utility cost T (x) of commuting, with T (0) = 0 and

T ′(x) > 0. The unit price of housing, r(x), depends on distance to the CBD and it is determined

in equilibrium. The indirect utility function V (p, r (x) , w, x) is the implicit solution for u in

lnu = lnw − s (u) ln r (x)− T (x) . (33)

Housing is a necessity, hence, s′ < 0.

Bid Rent Curves and Spatial Income Sorting What is the willingness to pay for living at

distance x from the CBD of a worker with wage w and arbitrary level of utility u? Her bid rent

curve Ψ (x, u, w) provides the answer to this question. Substituting Ψ (x, u, w) for r (x) in (33),

differentiating the resulting expression , and setting du = 0, leads to the following slope of her bid

rent curve:24
∂ ln Ψ (x, u, w)

∂x
= − 1

s (u)
T ′ (x) , (34)

The right-hand side of this expression comprises an idiosyncratic component, s (u), and a common

component, T ′ (x). Observe that the right-hand side of (34) does not depend on w, which is a

consequence of HCD preferences. In what follows, we thus write the bid-rent curve as Ψ (x, u) for

short. The bid-rent curve of high-u individuals (who, in equilibrium, are high-w workers) is steeper

than the bid-rent curve of low-wage workers:

∂2 ln Ψ (x, u)

∂ lnx∂u
=

1

s (u)

∂ ln s (u)

∂u
T ′ (x) ,

24Or, equivalently, to its elasticity:
∂ ln Ψ (x, u, w)

∂ lnx
= − 1

s (u)

∂T (x)

∂ lnx
.
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which is decreasing by T ′ (x) > 0 and s′ (u) < 0. In equilibrium, then, high-wage workers live closer

to the CBD than low-wage workers. This pattern prevails in most European cities.

To close the model, we have to integrate the slope of the bid rent curve and to solve for the

assignment of workers, w, to locations, x. Appendix D provides the details.

10 Conclusion

This paper studies a class of preferences that we call Heterothetic Cobb-Douglas (HCD). These pref-

erences feature unitary own-price elasticity and non-unitary income effects. As a result, differences

in expenditure shares for a given good are solely due to income effects. HCD preferences yield

a simple demand whose tractability mirrors in many respects that of homothetic Cobb-Douglas

preferences. We illustrate the potential usefulness of HCD in various applications in different fields

(economic growth, international trade, economic geography, and inflation costs). We believe that

HCD preferences can help incorporate nonhomotheticities and deliver new economic insights in

many other settings—including some for which the use of nonhomothetic demand systems has

proven hard and remains anecdotical. We look forward to these applications, and we hope to

contribute to this endeavor in the future.
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A HCD as a Production Function

We may also apply the functional form introduced in Section 2 to nonhomothetic production

functions, as in Hanoch (1975).

For example, with two factors, K,L, we can write

min
K,L

wL+ rK s.t. 0 = α(Y ) ln

(
K

τK (Y )Y

)
+ β(Y ) ln

(
L

τL (Y )Y

)
,

where Y denotes output, and α, β, τK , τL are functions of Y (the τ ’s provide a degree of freedom to

be used below). Let λ denote the Lagrange multiplier associated with the problem above.25 The

total cost of production is equal to

C ≡ wL+ rK = λ (α+ β) ,

25We obtain as first order conditions wL = λβ; rK = λα.
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and output is equal

lnY =
α

α+ β
ln

(
C

τKr

α

α+ β

)
+

β

α+ β
ln

(
C

τLw

β

α+ β

)
,

Let s ≡ α/ (α+ β), τK ≡ s, and τL ≡ 1 − s. We can invert this expression to obtain the cost

function:

lnC = lnY + s ln r + (1− s) lnw ⇔ C (Y,w, r) = Y rsw1−s.

The average and marginal costs are equal to

AC ≡ C

Y
= rsw1−s, MC ≡ ∂C

∂Y
= AC + Y

∂

∂Y
rsw1−s.

In this case, we have increasing returns to scale, MC < AC if and only if

∂

∂Y
rsw1−s < 0 ⇔ ln

( r
w

) ∂s

∂Y
< 0.

Thus, if we assume that production becomes more K-intensive as output grows, ∂s/∂Y > 0, this

condition requires r < w (which, being set in equilibrium, is external to the firm).
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B General Spatial Equilibrium with Income Effects

B.1 Guide to Calculations of Section 7

If trade costs are quasi-symmetric, then dividing both sides of (23) by those of (24) yields:26

w2σ−1
i H

(σ−1)(1−s)
s

i L
1− (σ−1)(1−s)

s
i B

σ−1
s

i A1−σ
i = κ, (35)

some κ ∈ R++.

Using (35) to substitute for wi in either (23) or (24) yields:27

L
σ̃
s
i H

−σσ̃(1−s)
s

i A
−(σ−1)σ̃
i B

−σσ̃
s

i = sσ−1u−
σ−1
s

∑
j∈C

T 1−σ
ij Aσσ̃j B

(σ−1)σ̃
s

j H
(σ−1)σ̃(1−s)

s
j L

[1−σ(1−s)] σ̃
s

j ,

which is (25) in the text, and where

σ̃ ≡ σ − 1

2σ − 1
∈
(

0,
1

2

)
.

26Guide to calculations. Let s̃ ≡ 1− (σ−1)(1−s)
s

, where s̃ < 1. Dividing both sides of (23) by those of (24) yields:

w2σ−1
i H1−s̃

i Ls̃iB
σ−1
s

i A1−σ
i =

∑
j∈C T

1−σ
ij wσjH

1−s̃
j Ls̃jB

σ−1
s

j∑
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1−σ
ji w1−σ

j Aσ−1
j
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wσi H
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i Ls̃iB
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i + T 1−σ
i

∑
j 6=iD
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ij T 1−σ
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j Ls̃jB
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i

∑
j 6=iD

1−σ
ij T 1−σ

j w1−σ
j Aσ−1

j

= w2σ−1
i H1−s̃

i Ls̃iB
σ−1
s

i A1−σ
i

1 + T 1−σ
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i

− 1

 .

27Guide to calculations:

LHS ≡ LiA1−σ
i

H (σ−1)(1−s)
s

i L
1− (σ−1)(1−s)

s
i B

σ−1
s

i A1−σ
i

κ

− σ
2σ−1

= L
1

2σ−1

[
2σ−1−σ+ (σ−1)(1−s)

s

]
i H

−σ(σ−1)(1−s)
(2σ−1)s

i A
− (σ−1)2

2σ−1

i B
− σ(σ−1)

(2σ−1)s

i κ
σ

2σ−1

= L
σ−1

(2σ−1)s

i H
−σ(σ−1)(1−s)

(2σ−1)s

i A
− (σ−1)2

2σ−1

i B
− σ(σ−1)

(2σ−1)s

i κ
σ

2σ−1
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B.2 Endogenous Amenities

Following Allen and Arkolakis, we now allow for spillovers in production (we omit spillovers in

consumption, since housing plays this role already):

Ai = AiL
α
i , (36)

where Ai is exogenous, and α > 0 captures positive spillovers. Note that we are abusing parameters,

since α here has nothing to do with the preferences parameters αi.

Remark 2. In an urban context, we can interpret α as the external returns to density by setting

Ai = Ai (Li/Hi)
α and redefining Hi and Ai accordingly.

We conjecture that the equilibrium is unique under conditions similar to those in Theorem 2 of

Allen and Arkolakis.

Imposing the conditions for a spatial equilibrium yields ui = u, Ui = U , and si = s for all i and

some {s, u, U}. Inserting (36) and ((25)) into (24) yields

w1−σ
i

(
Li
Hi

)(σ−1)(1−si)
Uσ−1B1−σ

i =
∑
j∈C

(
Tji

wj

Aj

)1−σ
L
α(σ−1)
j

and

Liw
2σ−1
i A

1−σ
j L

α(1−σ)
j = φ

(
Li
Hi

)(σ−1)(1−si)
Uσ−1B1−σ

i (37)

and

RHS ≡ sσ−1u−
σ−1
s

∑
j∈C

T 1−σ
ij

H (σ−1)(1−s)
s

i L
1− (σ−1)(1−s)

s
i B

σ−1
s

i A1−σ
i

κ

− σ
2σ−1

B
σ−1
s

j H
(σ−1)(1−s)

s
j L

1− (σ−1)(1−s)
s

j

= sσ−1u−
σ−1
s

∑
j∈C

T 1−σ
ij A

σ(σ−1)
2σ−1

j B
(σ−1)2

(2σ−1)s

j H
(σ−1)2(1−s)

(2σ−1)s

j L

[
1− (σ−1)(1−s)

s

]
σ−1
2σ−1

j κ
σ

2σ−1

= sσ−1u−
σ−1
s

∑
j∈C

T 1−σ
ij A

σ(σ−1)
2σ−1

j B
(σ−1)2

(2σ−1)s

j H
(σ−1)2(1−s)

(2σ−1)s

j L
[s−σ+1+sσ−s] σ−1

(2σ−1)s

j κ
σ

2σ−1 .

Thus:

L
σ−1

(2σ−1)s

i H
−σ(σ−1)(1−s)

(2σ−1)s

i A
− (σ−1)2

2σ−1

i B
− σ(σ−1)

(2σ−1)s

i = sσ−1u−
σ−1
s

∑
j∈C

T 1−σ
ij A

σ(σ−1)
2σ−1

j B
(σ−1)2

(2σ−1)s

j H
(σ−1)2(1−s)

(2σ−1)s

j L
[1−σ(1−s)] σ−1

(2σ−1)s

j .
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so that

= U1−σBσ−1
i H

(σ−1)(1−s)
i wσ−1i

∑
j∈C

T 1−σ
ji A

σ−1
j L

α(σ−1)
j w1−σ

j

= U1−σBσ−1
i H

(σ−1)(1−s)
i

[
φ

(
Li
Hi

)(σ−1)(1−s)
Uσ−1B1−σ

i A
1−σ
i L

−1+α(σ−1)
i

] σ−1
2σ−1

×
∑
j∈C

T 1−σ
ji A

σ−1
j L

α(σ−1)
j

[
φ

(
Lj
Hj

)(σ−1)(1−s)
Uσ−1B1−σ

j A
1−σ
j L

−1+α(σ−1)
j

] 1−σ
2σ−1

= U1−σ (BiH1−s
i

) σ
2σ−1 L

[(σ−1)(1−s+α)−1] σ−1
2σ−1

i A
(1−σ) 1−σ

2σ−1

i

×
∑
j∈C

T 1−σ
ji A

(σ−1) 3σ−2
2σ−1

j

(
BjH

1−s
j

)(σ−1)2/(2σ−1)
L
(ασ+σ−1) σ−1

2σ−1

j

so that

L
[σ(1−s)+1−α(σ−1)] σ−1

2σ−1

i = U1−σ (BiH1−s
i

) σ
2σ−1 A

(1−σ) 1−σ
2σ−1

i

×
∑
j∈C

T 1−σ
ji A

(σ−1) 3σ−2
2σ−1

j

(
BjH

1−s
j

)(σ−1)2/(2σ−1)
L
(ασ+σ−1) σ−1

2σ−1

j .

Remark 3. This expression is similar to Equation (13) in Allen and Arkolakis. Our model nests

theirs and, at the spatial equilibrium with an expenditure share that is uniform across space,

conditions for existence and uniqueness should mimic theirs; we have a housing market so that

s < 1 (where as s = 1 in their model), but no congestion spillovers (whereas they write Ui = U iL
ε
i ,

with ε < 0 when congestion dominates). Thus, our s plays the role of their ε.

C Spatial Structural Change and Geography with Income Effects

This Appendix contains the proofs and details to calculations pertaining to Section 8.

Sustain Point. If the Core-Periphery configuration λ = 1 is an equilibrium, then π1 (u) = E1 (u)

and π2 (u) ≤ E2 (u). The standard practice in the NEG is to find a threshold value for φ in the

unit interval, known as the “Sustain Point” φSust, such that the latter inequality holds strictly for

φ > φSust and is violated for φ < φSust.28 We may rewrite the conditions π1 (u) = E1 (u) and

28Guide to calculations. Using (27), we get the following expressions for the equilibrium return to high-skilled
workers in the Core (Region 1) and for the equilibrium shadow return to high-skilled workers in the Periphery
(Region 2):

π1 (u) =
1

σ
[π1 (u) s (u) + 1] =

1

σ − s (u)
, π2 =

1

σ

[
1

2φ
+ φ

(
π1 (u) s (u) +

1

2

)]
=

1

σ

[
1

2φ
+ φ

1

δ (u)

]
.

Turning to expenditure, and using (26) and (28), we get:

E1 (u) =
u

a1−s(u)
, E2 (u) =

u

a1−s(u)
T s(u) =

u

a1−s(u)
φ−θ(u).
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π2 (u) ≤ E2 (u) for λ = 1 as:

0 ≥ π2/E2

π1/E1
− 1 ∝ δ (u) + φ2 − [1 + δ (u)]φ1−θ(u) ≡ f (φ; δ, θ) ,

where “∝” stands for “of the same sign of.”29 By Laguerre’s general rule of signs, f admits at most

two positive roots for φ; by inspection, φ = 1 is one root. To find the other root, we use standard

algebra to find:

0 < θ < 1 ⇒ lim
φ→0

f = δ (u) > 0, lim
φ→0

∂f

∂φ
= −∞; lim

φ→1

∂f

∂φ
> 0.

It then follows that there exists a φSust ∈ (0, 1) such that the Core-Periphery configuration is an

equilibrium outcome if φ ≥ φSust, where

φSust (u) =
{
φ ∈ (0, 1) : 0 = δ (u) + φ2 − [1 + δ (u)]φ1−θ(u)

}
,

which is 31 in the text.

Plugging λ = 1 into (27), using (28), and π1 = E1, the level of technology a and equilibrium

utility u are related by

ln a =
ln (σ − s (u)) + lnu

1− s (u)
. (38)

We show in Appendix (C) that the right-hand side of (38) is increasing in s (and thus in u). We

show in Appendix (C) that utility u of mobile workers is increasing in the level of technology a in

the Core-Periphery equilibrium:
∂u

∂a

∣∣∣∣
λ=1

> 0.

Here, we are more interested in the role of the expenditure share s (which is parametric in most

of the NEG, including in Krugman 1991). We may rewrite the conditions for a sustainable Core-

Periphery equilibrium as

(1− θ) lnφ ≥ ln

(
δ + φ2

δ + 1

)
. (39)

The left-hand side of this expression monotonically increases from lnφ when s = θ = 0, to σ−2
σ−1 lnφ

29Intermediate steps:

0 ≥ π2/E2

π1/E1
− 1

=
σ − s (u)

2σδ (u)
φ−1+θ(u) [δ (u) + φ2]− 1

=
σ + s (u)

2σ
φ−1+θ(u)

[
δ (u) + φ2 − 2σ

σ + s (u)
φ1−θ(u)

]
∝ δ (u) + φ2 − [1 + δ (u)]φ1−θ(u) ≡ f (φ; δ, θ) .
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when s = 1. The right-hand side of this expression monotonically decreases from ln
(
1+φ2

2

)
when

s = 0 (and hence δ = 1), to ln
(
1+φ2

2 − 1−φ2
2σ

)
when s = 1. The inequality in (39) is then violated

for s = 0.30 Thus, there exists at most one threshold value of s, call it sSust such that this inequality

holds for s > sSust and is violated otherwise. The threshold value sSust belongs to the unit interval

if and only if φ > φSust1 , where φSust1 ∈ (0, 1) is the value of the sustain point derived in (31) for

s = 1.31 Hence, as labor productivity increases, the range of values for parameters T and σ (recall

φ ≡ T 1−σ) that fulfill this inequality expands.

To sum-up, we have shown:

Lemma 4. The Core-Periphery configuration λ = 1 is an equilibrium outcome if trade free-ness φ

and labor productivity a are high enough.

Proof. In the text above.

Break Point. The symmetric configuration λ = 1/2 is always an equilibrium of this symmetric

model, but in may not be stable, in a sense that we make precise shortly. In the symmetric

equilibrium, (26), (27), and (28) become:

P 1−σ =
1 + φ

2
, π =

1

σ
(πs+ 1) =

1

σ − s
, lnE = − (1− s) ln (a) + s ln (P ) + lnu,

where we have dropped region indices since xj = xi = x for all equilibrium variables x.

Here we use “hats” do denote log changes, and we define

Z ≡ 1− φ
1 + φ

=
1− T 1−σ

1 + T 1−σ ∈ (0, 1) .

Starting from the symmetric configuration λ = 1
2 , an increase in λj increases local market crowding

(i.e., reduces the market share of local firms and thence the returns to local skilled labor),

(1− σ) P̂j = Zλ̂j (40)

30Indeed, φ < 1+φ2

2
for any φ ∈ (0, 1).

31The threshold value sSust belongs to the unit interval if and only if

max
s

(
1− s

σ − 1

)
lnφ > min

s
ln

[
σ
(
1 + φ2

)
− s

(
1− φ2

)
2σ

]
,

that is, if and only if
σ − 2

σ − 1
lnφ > ln

φ2 (σ + 1) + (σ − 1)

2σ
.

Equivalently, if and only if
0 < (σ + 1)φ2 − 2σφ(σ−2)/(σ−1) + (σ − 1) .

The smaller positive root, φSust
1 ∈ (0, 1), is the value of the sustain point derived in (31) for s = 1.
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from (26); it increases local demand relative to exports,

(σ − Zs) π̂j = Z (s− Zσ) λ̂j +
1

1 + φ
(dsj + φdsi) (41)

from (27),32 and the minimum expenditure required to reach the equilibrium level of utility follows

the change in prices and the change in utility level,

Êj = sP̂j + Ûj − ln adsj (42)

by (28). The symmetric equilibrium is said to be unstable if, following an exogenous migration

shock λ̂, the change in income,π̂, is larger than the change in expenditure required to maintain

utility, Ê, and to be stable otherwise. We are interested in the parameter configuration such that

the two effects are exactly equal at the margin, π̂ = Ê = sP̂ , in which case utility (and hence

expenditure shares) are invariant. Hence, we set ûj = 0 = dsj = dsi; plugging these expressions is

(40) to (42) yields

(σ − Zs) s Z

1− σ
= Z (s− Zσ) .

Taking s as given, this equation admits two roots: Z = 0 (and hence φ = 1), and Z = s (2σ − 1) /
(
σ2 − σ + s2

)
,

which corresponds to the so-called break point. The break point for φ is equal to

φBreak =
1− θ
1 + θ

δ =
(σ − s) (σ − 1− s)
(σ + s) (σ − 1 + s)

,

which is (32) in the text, and where the second equality comes from (29) and (30). This break point

belongs to the unit interval by inspection, and it is decreasing in u by ∂θ/∂u > 0 and ∂δ/∂u < 0.33

Plugging for λ = 1
2 into (27), using (28), and π = E, we obtain that equilibrium utility u is

32Note that dsj and dsi are of the opposite sign but, unlike the other variables, dsj + dsi is not necessarily equal
to zero at the symmetric equilibrium.

33Importantly, (32) contains endogenous variables on both sides of the equation. The so-called break point is a
fixed point satisfying both (32) and (43). Let us invert (32) in order to get an expression relating the expenditure
share s to the level of trade free-ness φ, denoted by sbreak (φ), with

sbreak (0) > 1, sbreak (1) = 0,
∂sbreak

∂φ
< 0.

Let us also invert (43) to get an expression relating the expenditure share s to the level of technology a and the level
of trade free-ness φ, denoted by s (a, φ), with

∂s (a, φ)

∂a
> 0,

∂s (a, φ)

∂φ
> 0.

Unlike sbreak (φ), which holds at the break point only, s (a, φ) holds for any combination of parameters at the
symmetric equilibrium. It thus follows that we can write the break point is a combination of parameters satisfying
both sbreak (φ) and s (a, φ). This break point is unique, and we can write it as a frontier in the (a, φ)-space, denoted
by B (a, φ) = 0, with

dφ

da

∣∣∣∣
B(a,φ)=0

< 0.
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related to the level of technology a and trade free-ness by

ln a =

s(u)
σ−1 ln

(
2

1+φ

)
+ ln (σ − s (u)) + lnu

1− s (u)
. (43)

The left-hand side of this expression is increasing in a, while its right-hand side is decreasing in φ

and increasing in s (and thus in u).34 We thus conclude that utility u of mobile workers is increasing

in the level of technology a and of trade free-ness φ in the symmetric equilibrium:

∂u

∂a

∣∣∣∣
λ= 1

2

,
∂u

∂φ

∣∣∣∣
λ= 1

2

> 0.

D The Monocentric City Model with HCD Preferences

To close the model of Section 9, we have to integrate the slope of the bid rent curve and to solve

for the assignment of workers, w, to locations, x.

Let us first integrate the slope of the bid rent curve:

ln Ψ (x, u) = ln Ψ (0, u)− 1

s (u)
T (x) ,

or, equivalently,

Ψ (x, u) = Ψ (0, u) exp

{
−T (x)

s (u)

}
.

The housing price gradient, r (x), is the upper envelope of these individual bid rent curves.

Land at distance x is allocated to the highest bidder, denoted as w (x). Inverting this expression,

we obtain the assignment mapping from wages to any given location, x (w).

For simplicity, assume that households consume land directly (i.e., land is converted one-for-one

into housing services), and let h (x,w) denote the quantity of housing consumed at distance x by

worker w. The housing market clears locally if and only if dx = −Nh (x,w) f (w) dw, which gives

the slope of the assignment function. Integrating:

x (w) = N

∫ w

W
h (x, ω) dF (ω) ,

34Indeed, the right-hand side of (43) is equal to the right-hand side of (38), which we have shown to be increasing
in s (u) in the previous footnote, plus a term that is increasing in s (u) by 0 < φ < 1,

s(u)
σ−1

ln
(

2
1+φ

)
1− s (u)

.

Thus, the right-hand side of (43) is increasing in s (u) as well. As a corollary, note that if parameter values are such
that the Core-Periphery outcome and the symmetric equilibrium are stable equilibriums, then mobile workers are
better off in the former than in the latter, as they face a lower cost of living.
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with

h (x,w) = s (w, r (x))
w

r (x)
.

Above, s (w, r (x)) = s (u (w, r (x))), where u (w, r (x)) is from Equation (33).

Some Results under Particular Functional Forms With only two goods, there is a one-to-

one relationship between the level of utility, u, and the expenditure shares, s. Let p = 1 by choice

of the numeraire. Hence, we may rewrite equation (33), for instance, as

1− s
s

= lnw − s ln r (x)− T (x)

so that s is the solution of

1− s [1 + lnw − T (x)] + s2 ln r = 0.

Hence,

s =
1 + lnw − T (x)±

√
[1 + lnw − T (x)]2 − 4 ln r

2 ln r
.

Alternatively, if 1− s = lnw − s ln r (x)− T (x) ,then

s =
1− lnw + T (x)

1− ln r
,

which is decreasing in w if and only if 1 > ln r, and belongs to the unit interval if and only if

0 < lnw − T (x) < 1.
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