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1. Introduction

Figuring out what is the correct or most reliable theory underlying the data has always
been the cornerstone of macroeconomic research. The empirical business cycle literat-
ure has tried to inform and support the theory by providing various stilized facts and
representations of the macroeconomy.

At the origins of the modern empirical macroeconomic debate, Blanchard and Quah
(1989) (BQ henceforth) draw a sketch of the macroeconomy as driven by two shocks, a
permanent shock and a transitory one, interpreted as supply and demand, respectively.
Both shocks are depicted as important sources of business cycle fluctuations.

In the following 30 years, empirical research moved away from the idea of a compre-
hensive representation of the macroeconomy, focusing mainly on partial identification and
the study of single, more specific sources of fluctuation, such as technology shocks (Galì,
1999), news shocks (Beaudry and Portier, 2006), noise shocks (Blanchard et al., 2013),
uncertainty shocks (Bloom, 2009), credit shocks (Gilchrist and Zakrajšek, 2012), to name
just a few of the most important.

A couple of recent papers, however, departing from the widespread partial identi-
fication approach, go back to seeking a general and parsimonious representation of the
macroeconomy. Angeletos et al. (2020) (ACD henceforth) look for the shock that most
explains the business cycle —the so called “main business cycle shock”. The authors,
using a frequency-domain identification method in the context of structural VARs, argue
that the bulk of cyclical fluctuations in real economic activity can be explained by a single
shock. This shock is not the technology shock of the RBC model (Kydland and Prescott,
1982), since it has no long run effects on output. However, it cannot be considered a
standard demand shock either, because it has no effect on prices.

The second paper is Avarucci et al. (2021) (ACFZ henceforth). Within a large factor
model framework, ACFZ finds that just two shocks are enough to describe all macroe-
conomic variables, thus confirming, albeit with a different method, a previous important
result by Onatski (2009). Moreover, it suggests that such shocks could be a temporary
demand shock and a permanent supply shock.

The present paper is close in spirit to BQ, ACD and ACFZ. What we do is to provide
a general picture of the main forces driving the US macroeconomy, at both cyclical and
long run frequencies, with the goal of identifying empirical regularities which theoretical
models should feature in order to be consistent with the data.

Our working hypothesis is that there are two main shocks, as suggested by the above
factor model literature, and that these can be identified as textbook-type demand and
supply shocks. The former should move prices and quantities in the same direction and
have only transitory effects on real activity variables, while the latter should move prices
and quantities in the opposite directions and have permanent effects. What we have in
mind is a simple AD-AS model, or a New Keynesian model where the macroeconomy is
described in terms of an aggegate demand curve (AD) and a Phillips curve (NKPC) which
we refer to as the “traditional view”. In a nutshell, our main result is that this hypothesis
is confirmed by the data.

We use a dataset of 114 quarterly US time series, covering the period 1961-I to 2019-IV
and assume that the data follow a large-dimensional Structural Dynamic Factor model,
as introduced by Stock and Watson (2005) and Forni et al. (2009), which is naturally

2



designed to describe a large number of time series with a relatively small number of
common shocks. Having a large dataset, we can study the impulse response functions
of all relevant macroeconomic variables within a unified framework; moreover, the rich
information environment enables us to avoid the well-known noninvertibility problem
affecting SVAR analysis (Hansen and Sargent, 1991; Lippi and Reichlin, 1993, 1994).

From a methodological point of view, we contribute to frequency domain analysis by
providing a fairly comprehensive treatment of structural identification in the frequency
domain. We extend the approach used in ACD1 (see also Sarno et al., 2007; DiCecio
and Owyang, 2010; Giannone et al., 2019) in several directions. In particular, in order to
implement our identification scheme, we show how to jointly target variances of different
variables and target covariances on a given frequency band.

Our identification strategy unfolds in two steps. In the first step, we select the two
shocks maximizing the explained variance of the main macroeconomic variables, at all
frequencies of macroeconomic interest, that is, excluding fluctuations with period of less
than 18 months, of little interest for macroeconomic analysis. In so doing, we do not
target a single variable at a time, as in ACD, but target jointly several variables. More
specifically, we include in the target the variances of the main trending real activity
variables (GDP, consumption, investment, TFP and labour productivity) as well as the
variances of other important real and nominal variables (the unemployment rate, hours
worked, the inflation rate, the federal funds rate and the S&P500 stock price index).

We find that these two shocks are successful in explaining the bulk of the variance
of the main macroeconomic aggregates at both business cycle and long run frequencies,
providing a fairly complete picture of the US macroeconomy. Adding a third shock in-
creases only marginally the explained variance of the main real and nominal variables.

In the second step, we rotate the two main shocks in order to give them an eco-
nomic interpretation. We implement two different identification schemes. In the first
one (Identification I) we define a demand shock and a supply shock with a completely
novel criterion. The demand shock is obtained by maximizing the covariance of GDP and
inflation at business-cycle frequencies. The supply shock is automatically identified, by
the orthogonality condition, as the shock minimizing the above covariance. In the second
scheme (Identification II) we define a permanent and a transitory shock. Precisely, we
define the permanent shock as the one that explains most of the long run variance of
trending real activity variables (i.e. GDP, TFP, consumption, investment and labor pro-
ductivity). The transitory shock is automatically identified by the orthogonality condition
as the one minimizing the explained long run variance of the above variables.

In a sense, this procedure is close in spirit to BQ. Just like BQ, we provide a general
picture of the forces driving the macroeconomy. By reducing the number of shocks of
interest in the first stage, and identifying all of these shocks in the second stage, our
method can be regarded as a global identification exercise, as opposed to the prevailing
partial identification approach.

Our main results are the following. First, the two identification schemes provide the
same outcomes. The inflationary demand and the deflationary supply shocks of Identific-
ation I are almost identical to the transitory and permanent shocks of Identification II,

1ACD show how to identify the shock which maximizes the explained variance of a given variable on
a specific frequency band. This method is the frequency domain version of Uhlig (2004), who identifies
two shocks that maximize the majority of the k-step ahead prediction error variances in real GNP for
horizons between 0 and 5 years.
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respectively. Hence, we show empirically that demand shocks have transitory effect on
real economic activity. Second, both shocks, demand and supply, explain sizable fractions
of business cycle fluctuations. Third, the demand shock is the most important cyclical
shock for output, investment and unemployment, while private consumption fluctuations
are mostly explained by supply shocks. Finally, our demand shock is to a large extent
a credit shock, since it explains almost all cyclical variance of the risk spread and is the
main driver of interest rates at all frequencies; moreover, the supply shock has the fea-
tures of a news technology shock. It accounts for almost all the long run and the long
cycles (between 8 and 20 years) of real activity and is the main driver of the consumer
confidence index.

The above findings are broadly consistent with BQ’s ones, but complete BQ’s scketch
with a large body of new evidence about prices, interest rates, consumption, investment
and other macroeconomic variables. Differently from BQ, where long run neutrality of
demand shocks is assumed, here it shows up as a result. Several papers have shown that
special demand side shocks, such as monetary policy shocks or financial shocks, have
transitory effects on output. But no one, to our knowledge, have shown that shocks
identified as standard demand shocks have no long run effects on real activity.

By focusing on just two shocks, demand and supply, we do not want to deny that
there is a plurality of sources of fluctuations, nor deny the importance of specific shocks
analyzed in the literature. Rather, we think that such shocks can be grouped into the
broader supply and demand categories: for instance, the technology shock is of course a
supply shock, whereas uncertainty and credit shocks are best seen as transitory demand
shocks. Our idea is that shocks having different nature but belonging to the same group,
demand or supply, do have similar effects on the main macroeconomic aggregates, so that
grouping them can produce meaningful results, in terms of impulse response functions
and variance decomposition.

Our results are in line with the evidence in ACFZ and partially at odds with the picture
emerging from ACD. With respect to the latter paper, we agree that the demand shock
is the most important cyclical shock and is disconnected with long run real activity. On
the other hand, our demand shock is inflationary and our supply shock explains a sizable
fraction of the cyclical variance of output. Our paper is also related to Furlanetto et al.
(2021), since our identification scheme, albeit based on frequency domain techniques, is
similar to theirs from a substantive economic point of view. In contrast with their findings,
where the demand shock is found to have long run effects, our demand shock does not
affect real per-capita GDP and labour market in the long run.

The paper is structured as follows. In Section 2 we present the factor model setup and
a comprehensive treatment of frequency domain identification. In Section 3 we present
the design of our empirical analysis, with special focus on our two-stage identification
procedure. In Section 4 we present the results. Section 5 concludes.
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2. Identification in the frequency domain

2.1. The Structural Dynamic Factor Model

Let xt be a n-dimensional, stationary vector of observable economic variables. The vector
xt is part of an infinite dimensional panel of time series. Each variable xit, i = 1, . . . , n,
is decomposed into the sum of two mutually orthogonal unobservable components, the
common component, χit, and the idiosyncratic component, ξit:

xit = χit + ξit. (1)

The idiosyncratic components are interpreted as sources of variation that are specific to
one or just a small group of variables, like regional or sectoral shocks, plus measurement
error. In particular, for macroeconomic variables like GDP, investment or consumption,
in which all local and sectoral shocks have been averaged out, the idiosyncratic part can
be interpreted essentially as only containing measurement error. The idiosyncratic com-
ponents are allowed to be mildly cross-sectionally correlated, thus they have a covariance
matrix which is not necessarily diagonal (see Forni et al., 2009, Assumption 5).2 The com-
mon components, on the contrary, account for the bulk of the co-movements among mac-
roeconomic variables. This is because they are different linear combinations of the same
r < n common factors, not depending on i, i.e. they span a r-dimensional vector space
(see Stock and Watson, 2002a,b; Bai and Ng, 2002). Then there exist an r-dimensional
weakly stationary vector process Ft = (F1t . . . Frt)′, orthogonal to ξt = (ξ1t . . . ξnt)′, and
loadings λij, j = 1, . . . , r, such that

χit = λi1F1t + . . . + λirFrt or χt = ΛFt. (2)

The unobservable coordinates of Ft are called the static factor and Λ, the factor loading
matrix, is of size n × r. We require the factors to be pervasive i.e. to have non-negligible
effects on most of the variables xit (see Forni et al., 2009, Assumption 4). Combining (1)
and (2), we get a static equation linking the n observable variables xit to the r factors
and the idiosyncratic components

xit = λi1F1t + . . . + λirFrt + ξit or xt = ΛFt + ξt. (3)

Equation (3) is the static factor representation, where the factors have only contem-
poraneous effect on the common components. The dynamic nature of the model comes
from the fact that the static factors Ft follow a VAR(p) driven by a q-dimensional vector
of orthonormal structural white noise, or common shocks ut = (u1t, . . . , uqt)′, with q ≤ r.

2A factor structure with mildly correlated idiosyncratic components is more realistic than a structure
with orthogonal ones. However, in this case common and idiosyncratic component can be disentangled
only as n → ∞. This is what characterizes the large approximate dynamic factor model and motivates
the assumption of an infinite number of variables. In the traditional dynamic factor model (Sargent
and Sims, 1977; Geweke, 1977), on the other hand, the idiosyncratic components are orthogonal to each
other; ξt = (ξ1t . . . ξnt)′ has no cross-sectional dependence, a more restrictive assumption but estimation
is possible even if the cross-sectional dimension is finite.
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Precisely:

xt = ΛFt + ξt (4a)
C(L)Ft = ϵt (4b)

ϵt = Rut (4c)

where ϵt is the residual of the VAR on Ft, E(ϵtϵ
′
t) = Σϵ, C(L) is an r×r, stable polynomial

matrix and R is r × q and has maximum rank q. As a consequence, R has a left inverse
and the vector ut belongs to the space spanned by Ft−s, s ≥ 0, that is, ut is fundamental
for Ft. By inverting the matrix C(L) we get Ft = C(L)−1ϵt = C(L)−1Rut, so that the
dynamic relationship between ut and the common components is

χt =
[
ΛC(L)−1R

]
ut = B(L)ut. (5)

Then, by merging (1) and (5), we have the structural dynamic representation

xit = bi(L)ut + ξit or xt = B(L)ut + ξt, (6)

where the macroeconomic variables are represented as driven by a few pervasive structural
shocks, loaded with the impulse response functions in B(L), plus measurement error. We
are interested in the effect of structural shocks on the common components χt of some
key series, i.e. on the variables obtained by removing measurement errors, so we are
neglecting the idiosyncratic components. Notice that representation (6) is not unique,
since the impulse response functions are not identified. Forni et al. (2009) (Proposition
2), show that identification is achieved up to orthogonal rotations, just like in structural
VAR models.

Let us consider the linear mapping in (4c), ϵt = Rut. We define R = SH, where S is
the Cholesky factor of Σϵ , such that SS ′ = Σϵ, and H is an orthonormal matrix, namely
a matrix such that H−1 = H ′. We can then rewrite (5) as

χt =
[
ΛC(L)−1S

]
Hut = D(L)Hut = B(L)ut (7)

where D(L) = ΛC(L)−1S encapsulates the Cholesky impulse response functions and
B(L) = D(L)H collects the structural IRFs. Then, the effect of the j-th structural shock
on the k-th variable is given by the (k, j) element of the matrix B(L) = D(L)H, that is,
the product of the k-th row of D(L) and the j-th column of H. On the other hand, the
structural shocks are related to the VAR residuals by the relation ut = R−1ϵt = H ′S−1ϵt =
H ′ηt, ηt being the vector of the Cholesky shocks. Hence the j-th structural shock is given
by the product of the j-th row of H ′ and ηt. Since we are interested in identifying the
shocks, we deal with the choice of H. This is usually done as in standard SVAR analysis,
which mainly employs an appropriate number of exclusion or sign restrictions motivated
on economic grounds. Here we discuss an alternative approach: shock identification in
the frequency domain.3

3This is not the first paper using frequency domain techniques to identify structural shocks —in
addition to ACD, let us mention Christiano et al. (2006), Sarno et al. (2007), DiCecio and Owyang
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2.2. Frequency band targets

We discuss two approaches to identify structural shocks in the frequency domain. The
former is based on the maximization/minimization of the contribution of the structural
shock to the variance or the comovements of a set of variables of interest in a given
frequency band, which we refer to as targeted frequency band covariances. This is the
approach we follow in this paper. The latter is based on restrictions on the sign of the
comovements within a given frequency band. In this subsection we define the objects
to be restricted to reach identification. In the two following subsections we show how to
implement the identification.

Let us go back to representation (7). Letting
[
θ, θ

]
be a band of frequencies such that

0 ≤ θ ≤ θ ≤ π, the comovements between the components of χt with period between
2π/θ and 2π/θ are measured by the frequency band covariance matrix

V
(
θ, θ

)
=
∫ θ

θ
ℜ
(

D
(
e−iθ

)
D
(
eiθ
)′
)

dθ

where ℜ (z) denotes the real part of z.4 The matrix V (θ, θ) captures the entire frequency
band volatility of the variables. The variance (or covariance) contribution of any generic
shock h′ηt, where h is such that h′h = 1, to V

(
θ, θ

)
is:

Ψ
(
θ, θ

)
=
∫ θ

θ
ℜ
(

D
(
e−iθ

)
hh′D

(
eiθ
)′
)

dθ. (8)

Our identification approach consists of imposing restrictions on the contribution of the
shock to the elements of the frequency band covariance matrix. The l, k element of
Ψ
(
θ, θ

)
, is simply Ψlk

(
θ, θ

)
= ElΨ

(
θ, θ

)
E ′

k where El is the l-th row of the n-dimensional
identity matrix. Using equation (8), we have5

Ψlk

(
θ, θ

)
= h′

[∫ θ

θ
ℜ
(

D
(
e−iθ

)′
E ′

lEkD
(
eiθ
))

dθ

]
h.

This is the objective function to be restricted to reach identification, in the case of a
single target. The specification of the objective function can be properly defined for
different targets (l, k) and/or frequency band, according to the identification scheme. For
instance, if the interval [θ, θ] is the cyclical band, the diagonal element Ψ11

(
θ, θ

)
is the

cyclical variance of x1t attributable to the combination h′ηt. This is the objective function
used in ACD to identify the business cycle shock. The off-diagonal term Ψ12

(
θ, θ

)
is the

(2010), Giannone et al. (2019), Dieppe et al. (2021). It is however, to our knowledge, the first paper
providing a comprehensive theory of identification in frequency domain.

4The diagonal elements of the spectral density matrix are real while the off-diagonal elements, the
cross-spectra, are typically complex, with a real part, called co-spectrum, and an imaginary part. The
integral of the co-spectrum of two variables over a given frequency band is the covariance of the two
variables over that band, while the integral of the cross-spectrum is the cross covariance.

5To see this, notice that ElD
(
e−iθ

)
h is a scalar so that it is equal to h′D

(
e−iθ

)′ E ′
l . The same

reasoning applies to h′D
(
eiθ
)′ E ′

k
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cyclical covariance between variable x1t and x2t attributable to the same shock. In the
empirical section below, one of our identification schemes targets the covariance between
GDP growth and inflation.

It is also possible to target more than one element of Ψ
(
θ, θ

)
. This multiple-target

approach is a key point to implement the identification strategy used in the empirical
section below. Letting (M1, N1), (M2, N2), . . . , (Mm, Nm) be the m entries of interest, we
can target a weighted sum of such entries. For instance, we can take the simple sum of the
variances of different variables, or a weighted sum, with weights equal to the reciprocals
of the standard deviations (which is equivalent to taking the sum of the variances of the
standardized variables). The contribution of the shock h′ηt to a weighted sum is given by

h′
[∫ θ

θ
ℜ
(

D
(
e−iθ

)′ m∑
k=1

ωkE ′
Mk

ENk
D
(
e−iθ

))
dθ

]
h

where ωk are the weights, to be chosen by the researcher.
Finally, notice that ∑m

k=1 ωkE ′
Mk

ENk
= P ′

MΩPN , where PM =
(
E ′

M1 , E ′
M2 , . . . , E ′

Mm

)′

and PN =
(
E ′

N1 , E ′
N2 , . . . , E ′

Nm

)′
are n × m matrices, and Ω = diag (ω1, ω2, . . . ωm) is a

m × m matrix. Hence the above equation can be re-written as

m∑
k=1

ωkΨMkNk

(
θ, θ

)
= h′OMN

(
θ, θ

)
h (9)

where
OMN

(
θ, θ

)
=
∫ θ

θ
ℜ
(

D
(
eiθ
)′

P ′
MΩPND

(
e−iθ

))
dθ.

This is the objective function of our identification problem, in the case of multiple targets.
Of course, this objective function reduces to the single target objective function in the
case m = 1.

An example of multiple-target identification is the cyclical variance of a set of real
economic activity variables: one could jointly maximize the cyclical variance of GDP
growth and unemployment. Assuming that GDP growth and unemployment are the first
two variables in xt, we have m = 2, M1 = N1 = 1 and M2 = N2 = 2,

PM = PN =



1 0
0 1
0 0
... ...
0 0

 , Ω =
(

ω1 0
0 ω2

)
.

In this case, a reasonable choice for the weights is to take the reciprocals of the cyclical
variances of the variables, i.e. ω1 = 1

V11(θ,θ) and ω2 = 1
V22(θ,θ) .

8



2.3. Quantitative constraints

The first identification strategy is based on quantitative restrictions and is the one pursued
in this paper.

Let us assume that the shock of interest is the first one, u1t, and that such shock is
the one maximizing Ψlk

(
θ, θ

)
, in the case of a single target, or ∑m

k=1 ωkΨMkNk

(
θ, θ

)
, in

the case of multiple target. In this case h1, the first column of the matrix H, is formally
given by

h1 = arg max
h∈Rn

h′ OMN

(
θ, θ

)
h s.t. h′h = 1. (10)

It is easily seen that h1 is equal to the eigenvector associated to the largest eigenvalue
of the matrix OMN(θ, θ) (Uhlig, 2004), and delivers the shock u1t = h′

1ηt. This is a
generalization of the approach used in ACD to identify the business cycle shock. In that
paper, a single target is used, with k = l, so that the objective function is Ψll

(
θ, θ

)
. We

can then retrieve the corresponding structural IRFs as

B(L) = D(L)h1 =
[
ΛC(L)−1S

]
h1. (11)

If the researcher is interested in identifying more than one shock, the procedure can
be extended to identify multiple shocks sequentially: first, obtain the shock with the
largest contribution to the frequency band covariance, then obtain the shock orthogonal
to the first, solving another maximization problem, and so on. Suppose, without loss of
generality, that the shocks u1t, u2t, ..., uqt, have to be identified. The vector h1 is found
according to equation (10). The vectors hj with 1 < j ≤ q are found solving the following
maximization problem:

hj = argmax
h∈Rn

h′ OMN

(
θ, θ

)
h s.t.

h′h = 1,

h′hℓ = 0, ℓ < j.
(12)

Notice that the objective function can in principle be appropriately redefined for each
shock by changing the targets (M, N) and/or the frequency band

[
θ, θ

]
, according to the

identification scheme (even if for notational simplicity we avoid to explicit the possible
dependence on j of M, N, θ and θ).

Here are some examples.
For instance, we could identify the aggregate supply shock as the one maximizing

the long run variance of GDP growth and then identify the aggregate demand shock as
the shock orthogonal to the supply shock, which maximizes the cyclical variance of GDP
growth. In this case, we change the frequency band of interest in the two maximization
problems. Another example is the identification of a real and a nominal shock. We could
first maximize the variance of GDP growth and then maximize the variance of inflation.
In this case, the target would change in the two maximization problems. Moreover, we
might be interested in identifying the two main business cycle shocks: first, the shock with
the largest contribution to the frequency band covariance, then the shock orthogonal to
the first with the second largest contribution. In this case, the target and the frequency
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band are assumed to be the same for all shocks.
It is also possible to use the sequential procedure just explained to nest two sets of

quantitative constraints, i.e. two step procedure, by maximizing the appropriate target
functions on the corresponding frequency band. For instance, in the first step, two main
shocks are obtained by maximizing the appropriate target function on the band [0 2π/6],
which excludes fluctuations of less than 18 months, of little interest for macroeconomic
analysis. In the second step two structural shocks are found by combining the two shocks
obtained in the first step. This is the route we follow in this paper and the specific
approach will be discussed below.

Of course, in the above problems, the argmax can be replaced by the argmin. For
instance if we want to identify a shock that has only transitory effects on a given variable,
the long run variance of such a variable has to be minimized.

2.4. Qualitative constraints

The second identification strategy we discuss relies on qualitative restrictions imposed
on the entries of the matrix Ψ(θ, θ). More specifically, sign restrictions can be imposed
on the off-diagonal elements of the frequency covariance matrix. This is a quite natural
approach to restrict the sign of cyclical or long run comovements.

The implementation of this identification strategy is very similar to the one in time
domain. We draw rotation vectors, i.e. h, (or rotation matrices) and then retain the
draws satisfying the desired restrictions on the elements of interest of the frequency band
covariance.

3. Empirical Approach

3.1. Data and estimation procedure

Coming to the empirical application, we use the quarterly dataset for high dimensional
macroeconomic analysis recently developed by (Granese, 2023).

The N × T dataset is made up of 114 US quarterly series, covering the period 1961-I
to 2019-IV. Most series are from the FRED-QD database.6 TFP data series are from John
Fernald’s website (Fernald, 2012) while the Confidence data are available on the Michigan
survey of consumer website.7 Following standard practice, consumption includes non-
durables and services, while investment has been broadly defined to include consumer
durables. Both measures are deflated. Monthly data, like the macroeconomic uncertainty
measure estimated by Jurado et al. (2015), have been aggregated to get quarterly figures.
Finally, it is worth noting that most series are expressed in per capita terms, dividing by
population aged 16 years or more (civilian non-institutional population series) and stock
market data have been deflated by the GDP deflator. We transform each series to reach

6The FRED-QD is a large (248 series) quarterly macroeconomic database developed by McCracken
and Ng (2020).

7http://www.sca.isr.umich.edu/
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stationarity. The complete list of variables and transformations is provided in Appendix
(B).

The analysis focuses on a subset of 13 macroeconomic series of interest: (1) the log
difference of the real per capita GDP; (2) the log difference of real per capita consumption,
defined as the sum of non-durable consumption and services; (3) the log difference of real
per capita investment, computed as the sum of fixed investment and durable consumption;
(4) the unemployment rate, (5) the log of real per capita hours worked; (6) the inflation
rate, defined as the log difference of the GDP deflator; (7) labour productivity; (8) the
cumulated sum of the utility-adjusted total factor productivity; (9) the Federal Funds
rate; (10) the risk spread between Moody’s Baa Corporate Bond Yeald and the 10-Year
Treasury Constant Maturity Rate; (11) Shiller’s real S&P500 stock price index; (12) the
measure of macroeconomic uncertainty by Jurado et al. (2015) at the three-month hori-
zon and (13) the Michigan University confidence index component concerning expected
business conditions for the next five years (BC5Y).8

In order to compute the spectra and the objective function for our maximization
problems we proceed as follows. We estimate the first two equations (4a)-(4b) using the
two step estimation technique discussed in Forni et al. (2009), which we briefly review
here.

First Step. We set a value for the number r of the static factors, using the criterion
by Bai and Ng (2002) with the penalty modification proposed in Alessi et al. (2010),
finding a number of static factors r̂ = 11.9 The static factors Ft = (F1t . . . Frt)′ are
estimated by the first r̂ principal components of the variables in our dataset, and the
factor loadings, λij, j = 1 . . . r, by the associated eigenvectors. Thus, the estimated
loading matrix, Λ̂, is the n × r̂ matrix having on the columns the normalized eigenvectors
corresponding to the r̂-largest eigenvalues of the sample covariance matrix of the data,
Σ̂x. The estimated common component vector is given by χ̂t = Λ̂F̂t.

Second Step. We run a VAR(p) for the estimated factors F̂t to get estimates Ĉ(L)
and ϵ̂t of C(L) and the VAR innovations ϵt. The estimated Moving Average representation
is F̂t = Ĉ(L)−1ϵ̂t. The number of lags p is determined according to the BIC criterion
(p̂BIC = 1). In the robustness section we repeat the analysis with different lags order.
To orthogonalize the shocks we use the Cholesky factor Ŝ of Σ̂ϵ. Therefore, the Cholesky
IRFs of the common components are obtained according to (7) as

D̂(L) = Λ̂[Ĉ(L)−1Ŝ].

From this matrix we estimate the spectral density of the common components at the
Fourier frequencies θ = 2πs/T , s = 1, . . . , T , and take the real part, so that the resulting
off-diagonal terms are co-spectra rather than cross-spectra. This is useful when we take
an off-diagonal term as a target, since the integral of the co-spectrum of two variables
over a given frequency band is the covariance of the two variables over that band. Finally,

8BC5Y summarizes responses to the following forward-looking question: “Turning to economic con-
ditions in the country as a whole, do you expect that over the next five years we will have mostly good
times, or periods of widespread unemployment and depression, or what?”. The anticipation properties
of this variable on future movements in economic activity in general and TFP in particular are widely
discussed in Barsky and Sims (2012) and Beaudry and Portier (2006).

9In the robustness section, we take into account the uncertainty in estimating the number of static
factors, and repeat the analysis with different specifications of r̂.
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we compute V
(
θ, θ

)
by replacing the integral with the simple average of the real part

of the spectral density matrix, across the frequencies belonging to the relevant interval.
Ψ(θ, θ) and OMN

(
θ, θ

)
are estimated in a similar way.

We do not apply the rank reduction step (see the on-line Appendix A) as this will be
part of the identification strategy discussed below.

To conclude this section, let us look at the common-idiosyncratic variance decomposi-
tion of the key variables above with r̂ = 11 static factors, shown in Table 1. The common
variance of the main macroeconomic aggregates like GDP, consumption, investment and
unemployment rate are 94, 82, 90 and 94 percent of total variance, respectively. These
numbers seem compatible with the measurement error interpretation of the idiosyncratic
components.

3.2. Identification: A two-step procedure

Aim of this work is to provide a global and parsimonious description of the main forces
driving the macroeconomy overall, at both cyclical and long run frequencies. There are
two main questions we want to address. First, how many shocks are needed to explain
the bulk of fluctuations in the main macroeconomic aggregates? Second, what are they
and what are their effects? To address these two questions we develop a two-step strategy
based on the econometric theory presented in the previous section.

First Step. First of all, we find the q shocks which explain the bulk of cyclical and
long run variance of the main macroeconomic aggregates, both real and nominal. To do
this, we solve maximization problems (10) and (12) with a multiple target and in the
frequency interval [θ θ] = [0 2π/6] (the trend-cycle band henceforth), which corresponds
to periodicities greater than 18 months, thus excluding high frequency fluctuations of
less than 18 months, of little interest for macroeconomic analysis.10 More specifically we
include in the target the variances of the growth rates for trended real activity variables
(i.e. GDP, consumption, investment, TFP, labour productivity) as well as the variances
of other real and nominal variables (i.e. unemployment rate, hours worked, inflation
rate, Federal Funds Rate and S&P500 stock price index). The weights are given by the
reciprocals of the (frequency band) variances of the variables, computed as the average
of the spectral densities in the relevant frequency interval. Let us set M1 and N1 equal
to the position of GDP in the data set, M2 and N2 equal to the position of consuption,
etc., and call gj, for j = 1, ..., q, the q vectors solving the maximization problem gj =
arg max g′OMN

(
θ, θ

)
g subject to g′g = 1 and g′gl = 0 for l < j; we obtain a matrix

G = [g1 g2 . . . gq] of dimension r×q. We show below that two shocks are enough to explain
the bulk of cyclical and long run fluctuations in the main macroeconomic aggregates.

Second Step. The shocks g′
1ηt, ..., g′

qηt lack of any economic interpretation: they
are simply the largest contributors to the frequency band variances ordered in decreasing
order of importance. We therefore move on to the second step and identify two structural
shocks. We use two identification schemes.

Identification I. We identify a demand shock and a supply shock using a novel ap-
10The band [0 2π/6] includes: business-cycle frequencies, [2π/32 2π/6], corresponding to cycles between

18 months and 8 years, long cycles, [2π/80 2π/32), which includes waves ranging from 8 and 20 years,
and the long run, [0 2π/80), corresponding to cycles of 20 years or more, with quarterly data.
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proach. The demand shock is obtained by maximizing the covariance of GDP growth
and the inflation rate at business cycle frequencies. The supply shock is automatic-
ally identified by the orthogonality condition as the shock minimizing such covari-
ance. This identification scheme is related to the one recently used by Furlanetto
et al. (2021), in that the demand shock is defined on the basis of the comovements
of output and inflation and can in principle affect output in the long run.11

Identification II. We identify a permanent and a transitory shock. The permanent
shock is identified as the one that explains most of the long run variance12 of trending
real activity variables, i.e. GDP growth, TFP, consumption growth, investment
growth and labor productivity. The transitory shock is automatically identified by
the orthogonality condition as the one minimizing the explained long run variance
of the above variables. The effects on cyclical variance are left unrestricted, so that
the two shocks can explain whatever fraction of business cycle fluctuation in the
real activity variables, as well as the cyclical volatility of inflation and interest rate.

To impose the identifying restrictions in the second step we solve a problem very
similar to the one of equation (10). The only difference is that now we rotate just the q = 2
main shocks obtained from the first step rather than the r̂ Cholesky shocks. Formally, let
G = [g1 g2] and consider the n × q matrix D∗(L) = D(L)G. We combine the columns of
D∗(L) and the shocks G′ηt by solving the following maximization problem:

h∗
1 = argmax

h∗∈Rq
h∗′ O∗

MN

(
θ, θ

)
h∗ s.t. h∗′h∗ = 1

O∗
MN

(
θ, θ

)
=
∫ θ

θ
ℜ
(

D∗
(
e−iθ

)′
P ′

MΩPND∗
(
e−iθ

))
dθ

(13)

where now h∗ and h∗
1 are 2-dimensional orthonormal vectors. In a context with two

structural shocks, the solution to (13) is enough to identify simultaneously both h1 =
Gh∗

1 and, similarly, h2 = Gh∗
2 since the vector h∗

2 is pinned down by the orthogonality
restrictions. The structural impulse-response function are the entries of B(L) = D(L)H,
where H = [h1 h2] and the structural shocks are ut = H ′ηt. For the two identifications,
the specification of the objective function is the following:

Identification I: the frequency interval is [θ θ] = [2π/32 2π/6]. M is the position of
GDP and N the position of inflation in vector xt.

Identification II: the frequency interval is [θ θ] = [0 2π/80], and M = N is the vector
whose elements are the positions of the real variables in the vector xt.

11Note that unlike our identification scheme, the one used by Furlanetto et al. (2021) is implemented
in the time domain.

12The long run is defined as frequencies in the interval [0 2π/80), corresponding to cycles of 20 years
or more.
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4. Results

4.1. Two shocks

As explained above, in the first step of our procedure we select the two shocks maximizing
the explained variance of the main macroeconomic variables on the trend-cycle band, that
is, on a frequency band that includes all the frequencies of main interest for macroeconomic
analysis. Table 2 reports, for each variable, the percentage of variance jointly explained
by the two shocks on the whole trend-cycle band, on the business-cycle frequencies and
on the long run, along with the variance explained by the shock with the third largest
contribution. The aim is to see how large is the explained variance when only two shocks
are selected and how large is the variance we lose with respect to the specification with
three shocks.

The percentage of cyclical variance jointly explained by the two shocks is about 76
for real per capita GDP growth, 70 for consumption, about 79 for investment and unem-
ployment rate. We also see that two shocks are enough to capture about 86% of cyclical
inflation fluctuations, about 76% of the federal funds rate and more than 82% of the
risk spread, the JLN uncertainty measure and BC5Y. We conclude that two shocks are
enough to provide an accurate description of the business cycle fluctuations in both real
and nominal variables.

Turning to the long run, we see that the percentage of variance jointly explained by
the two shocks is 81 for real per capita GDP growth, 82 for unemployment rate, about
76 for consumption and about 66 for TFP. Two shocks account for about 85% of inflation
fluctuations, 86% of the FFR and risk spread, and about 91% of uncertainty. Thus, two
shocks not only account for the bulk of business cycles fluctuations, but also explain the
long run.

The variance that we lose by selecting two shock instead of three is negligible for
almost all variables, so the third shock is not large or pervasive enough to be considered
as a main driver of the US economy. The third shock capturs essentially the cyclical
fluctuations of TFP, which are of little interest for our analysis, because we are mainly
interested in the long-run fluctuations of TFP.

All in all, our findings depict a picture of the US macroeconomy where two shocks
provide a complete and parsimonious characterization at both cyclical and long run fre-
quencies. This is in line with existing factor model evidence. As pointed out in the
introduction, Onatski (2009), using his test for the number of shocks in a large dynamic
factor model, cannot reject the null that there are 2 shocks against the alternative that
there are from 3 to 7. ACFZ propose a new consistent estimator for the number of shocks,
the “Dynamic eigenvalue Difference Ratio estimator” (DDR), that can be applied to single
frequencies as well as to frequency bands, and finds that the US macroeconomy is well
described by two major shocks. These results are in line with the evidence provided in
papers such as Sargent and Sims (1977) and Giannone et al. (2005). To further corrob-
orate our results, we apply the DDR estimator to our dataset on the whole interval [0 π]
and on the trend-cycle band. The criterion selects two shocks on both bands.13

13To compute the DDR estimator, we set the bandwidth parameter MT = ⌊a
√

T ⌋ with a = 0.5.
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4.2. Identification I: explained cyclical and long run variances

Table 3 presents the results for Identification I, where we identify a supply and a demand
shock based on the cyclical covariance between the inflation rate and per capita GDP
growth. The table reports the cyclical and long run variances explained by the identified
shocks. Notice that under this identification scheme both the long run and cyclical vari-
ance contributions are left unrestricted. Thus, we can verify whether the supply shock is
permanent or not and whether the demand shock is transitory or not.

A first key result is that the demand shock explains a negligible fraction of the long run
variance of trending real activity variables. It account for about 3% of GDP growth, less
than 9% of consumption and hours worked, about 5% of investment, 11% of unemployment
and less than 1% of TFP. Hence, unlike Furlanetto et al. (2021), we do not find evidence
of hysteresis effects on output and labor market. On the other hand, our demand shock
explains most of the long run variance in the inflation rate (about 65%) and the federal
funds rate (about 84%).

The supply shock explains the bulk of the long run variance of real activity variables.
It explains 78% of output growth, about 70% of consumption, investment and unemploy-
ment, and 55% of hours worked. Note that the percentage of TFP long run variance
explained by the supply shock is about 65%, in line with the view that supply shocks
include an important technological component.

Turning to the explained variances at business cycle frequencies, we see that the
demand shock is the main source of cyclical fluctuations in output growth. It accounts
for about 49% of GDP fluctuations. Still, the supply shock explains a sizable fraction of
GDP cyclical variance, about 27%. As for inflation fluctuations, both demand and supply
shocks explain an important part of cyclical variance. The former captures about 44%
while the latter explains 42%.

An interesting result emerges when comparing the importance of the two shocks for
GDP, consumption, investment, unemployment and hours worked. The supply shock
is dominant for consumption. It accounts for about 41% of business cycle fluctuations,
whereas the demand shock explains less than 30%. This result can easily be explained
in the light of permanent income theory: consumption is mainly driven by permanent
income, and permanent shocks have much larger effects on permanent income than trans-
itory shocks (Quah, 1990).

The demand shock is also dominant for unemployment and investment. The cyclical
variance of unemployment explained by our demand shock is about 50%, whereas the
variance due to the supply shock is 29%. This result is in line with the evidence in
Blanchard and Quah (1989), where the aggregate demand shock, the transitory one,
plays a major role for unemployment fluctuations. As for investment, the demand shock
accounts for about 55% of the cyclical variance, whereas the permanent shock accounts
for only 24%. A possible explanation is that private investment is closely related to credit
market conditions, which in turn are largely driven by demand. Indeed the demand shock
explains almost all cyclical variance of the risk spread – about 77%, as against a scanty
11% explained by the supply shock. These numbers suggest that our demand shock is to
a large extent a credit shock.

A few additional observations are in order. First, the forward-looking measure of
consumer confidence (BC5Y) is mostly explained by the supply shock, both at business
cycle frequencies and in the long run. This finding seems consistent with Barsky and Sims
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(2012) and with the “news” interpretation of confidence indicators: consumer confidence
is likely to reflect information about future productivity rather than animal spirits.

Second, the federal funds rate is explained almost exclusively by the demand shock,
both at cyclical frequencies and in the long run. This is consistent with the idea that
monetary policy follows a systematic rule according to which the nominal rate reacts
positively to current inflation and real activity changes, in order to stabilize cyclical
fluctuations. Supply shocks induce negative comovements of inflation and GDP growth,
so that monetary policy react weakly to them.

Finally, both demand and supply have a sizable role in explaining JLN uncertainty
at cyclical frequencies. Demand shocks explain 46% while supply shocks explain about
37%. If we interpret exogenous uncertainty shocks as demand shocks, we are left with
a lower bound of approximately 40% of endogenous uncertainty fluctuations, induced by
non-uncertainty shocks (that is, supply shocks and other demand-side shocks, such as
credit or monetary policy shocks). Therefore, JLN macroeconomic uncertainty can be
considered endogenous to a considerable extent. This finding is broadly consistent with
Ludvigson et al. (2021).

Figure 1 summarizes the above findings by reporting the variance decomposition for
the variables of interest. The figure reports the percentage of explained variance of each
shock, frequency by frequency. The pink area is the long run frequency band, the lilac
area is the business cycle frequency band. The blue line refers to the permanent shock
and the red line to the transitory shock. The yellow line is the sum of the two.

The figure also provides additional information about the “long cycles” frequency
band, i.e. fluctuations of periodicity between eight and twenty years that fall in the white
area between the long run and the business cycle frequency bands. The upper-left panel
refers to GDP growth: long cycles are explained almost exclusively by the supply shock.
The same result applies to all real activity variables but unemployment. It follows that
if the business cycle were defined by including longer cycles, e.g. cycles with periodicity
between 6 and 50 quarters as suggested by Beaudry et al. (2020), the importance of the
supply shock in explaining real activity fluctuations would increase.14

4.3. Identification I: impulse response functions

Figure 2 reports the impulse response functions to the supply shock, Identification I. The
black solid lines are the point estimates, while the dark and light gray areas are the 68%
and 90% confidence band, respectively. The shock has a large positive permanent effect
on GDP and its components and generates a temporary hump-shaped response of unem-
ployment and hours worked. GDP increases immediately by around 0.2%, peaks around
the 10th quarter and converges to 1.2% in the long run. The effect on consumption
appears to be slightly larger and persistent, reaching a maximum of about 2%. Unem-
ployment behaves counter-cyclically and reaches a minimum of about -0.2% around the
8th quarter. The supply shock generates a negative comovement between inflation rate
and output growth. The former immediately falls by around -0.2% and the effect is re-
latively short lived. The response of stock prices is positive and persistent, peaking at

14Beaudry et al. (2020) show that many macroeconomic aggregates appear to have a peak in their
spectral densities at periodicities between 32 and 50 quarters and that the implied movements coincide
with NBER cycle dating. For this reason, they argue that the definition of the business cycle should be
modified accordingly.

16



0.9 percent, while the risk premium, after a nearly zero impact effect, decreases with a
temporary hump-shape, reaching a minimum of about -0.14%.

A few additional observations are in order. First, we see that systematic monetary
policy, as proxied by the federal funds rate, reacts negatively to the supply shock on
impact, with an insignificant response after about one year. This suggests that systematic
policy reacts more to inflation than real activity. However, the effect of the unit variance
supply shock is really small, the maximum being about 10 basis points, as against the 21
basis points of the demand shock (Figure 3). Second, the response of TFP to the supply
shock has an S shape which resembles the one typically found for the news technology
shock, with a relatively small impact effect (about 0.4) and a much larger long run effect
(about 1.2). This suggests that the supply shock includes an important news shock
component as in Beaudry and Portier (2006). The significant positive impact effect of
the supply shock on the consumer confidence component BC5Y, documented above, is
in line with this interpretation, given the anticipation properties of this variable about
future technology. Finally, JLN uncertainty decreases immediately in response to positive
supply shocks, with a maximum effect at horizon one of about -0.25%. These movements
in macro uncertainty persist for about two years after the shock.

Figure 3 reports the impulse response functions to the demand shock, Identification
I. The responses of real economic activity variables are temporary and hump-shaped,
peaking at horizon 3 or 4 (one year after the shock). The effects are no longer statistically
significant after about 2-3 years. GDP has a positive impact effect of 0.4% and a peak of
about 0.8%. Unemployment falls at a minimum of around -0.2%, then shows a significant
and short lived rebound effect between the 12th and the 20th quarter, with a peak of about
0.1%. Investment shows a similar, albeit less pronounced and not significant rebound
effect.

The response of inflation and the interest rate are very similar, in terms of both
shape and magnitude. The former increases on impact by about 0.15%, peaks at 0.2%
and converges to zero afterward. The effect appears to be more persistent than that of
the permanent shock. The interest rate increases in a hump-shaped pattern, reaching
a maximum of about 0.23%. As noted above, this suggests a very active behavior of
monetary policy, consistent with standard Taylor rules, implying a systematic policy
reaction to inflation and output. As expected, TFP essentially does not react to the unit
variance demand shock, the effect being not significant at all horizon. For stock prices
the effect is positive but very short lived, being significant only on impact (about 0.5%).
Thus, the stock market reacts more to supply shocks than demand shocks. The effects
on the risk premium are much larger and short lived for demand shocks than for supply
shocks. The shape of the impulse response function of the risk premium, with a maximum
effect on impact and at lag 1 (about -0.35%), closely resembles the one of the excess bond
premium obtained in Gilchrist and Zakrajšek (2012). This again suggests that shocks
related to credit and financial conditions are an important component of the demand
shock.

4.4. Identification II

Let us now turn to Identification II, where we identify a permanent and a transitory shock
on real variables. Here the co-spectrum of inflation and GDP growth is left unrestricted,
so that, looking at the impulse-response functions, we can verify whether the permanent
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shock is a supply shock and the transitory shock is a demand shock.
More importantly, the two identification schemes provide very similar outcomes. The

matching is really striking: the correlation of the demand (supply) shock of identification
I and the transitory (permanent) shock of Identification II is higher than 0.99.

Table 4 presents results for the variance decomposition. Notice first that Identification
II is successful in isolating a transitory shock. Indeed, the percentage of GDP growth,
consumption and TFP long run fluctuations accounted for by the transitory shock is
negligible (1.7, 5.9 and 1.6% respectively). The variance decompositions in the table
are very similar to the ones of Identification I. Once again, both shocks are important
sources of business cycle fluctuations in real economic activity. The permanent shock
is more important for consumption, while the transitory shock is more important for
output growth, unemployment and investment. Concerning inflation, both transitory and
permanent shocks explain a large percentage of cyclical fluctuations. In particular, the
transitory shock is not disconnected from inflation, in that it accounts for about 49% of
cyclical variance, contrary to what found in ACD. This result is not at all implied by our
identification.

Turning to the impulse response functions, Figure 4 and Figure 5 compare results of
Identification II with those of Identification I. Figure 4 overlaps the responses to the supply
shock of Identification I and the permanent shock of Identification II, whereas Figure 5
overlaps the responses to the demand shock of Identification I and the transitory shock
of Identification II. The solid black lines are the point estimates for Identification I, the
cyan dashed lines are the point estimates for Identification II and the dark and light gray
areas are the 68% and 90% confidence band, respectively, relative to Identification I.15 The
correspondence between the two identification schemes is striking. The key message is that
our expansionary transitory shock raises inflation, whereas our expansionary permanent
shock reduces inflation, in line with New Keynesian textbook models and thus supporting
the traditional view.

4.5. Discussion

The general picture emerging from our empirical analysis is the following. US data are
consistent with a view of the macroeconomy as driven by two main shocks: a deflation-
ary supply shock having long-lasting effects on real economic activity and an inflation-
ary demand shock having only transitory effects. Both shocks explain a sizable part of
business-cycle fluctuations.

This picture is clearly incompatible with the standard RBC model and largely in line
with BQ, where transitory shocks are found important in explaining the business-cycle
fluctuations of economic activity. Our findings are also incompatible with the view put
forward by Beaudry and Portier (2006) that news shocks capture the bulk of cyclical
fluctuations in real activity. Rather, they are consistent with Barsky and Sims (2011) and
Forni et al. (2014), where the news technology shock explains a minority, albeit sizable,
part of business cycle fluctuations.

Our evidence, far from being at odds with the partial identification literature, provides
evidence in favor of some of the studies cited in the introduction. In particular, the
response of TFP to the supply shock has an S shape which resembles the one typically

15The IRFs of Identification II with their confidence bands are reported in Appendix C.
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found for the news technology shock (Beaudry and Portier, 2006), suggesting that news
shocks are the dominant component of supply shocks. Moreover, the explained variance
and the shape of the impulse response function of the risk premium to the demand shock
are very much similar to the ones found in the credit shock literature (Gilchrist and
Zakrajšek, 2012) consistently with the idea that credit shocks are the dominant component
of demand shocks (even if they could include an exogenous uncertainty component).

As already observed, our results are partially at odds with the picture emerging from
ACD. The finding that the bulk of cyclical fluctuations are not driven by a permanent
shock is in line with ACD: the demand shock is the most important business cycle shock
for output growth and is largely disconnected from the long run of real economic activity.
On the other hand, the ACD’s hypothesis that most of the business cycle fluctuations
of real activity can be explained by just one shock, a non-inflationary demand shock
affecting all real activity variables with the same dynamics, is rejected here: our supply
shock explains a sizable part of cyclical fluctuations and is the main business-cycle driver
for consumption, suggesting that at least two shocks are needed to explain the bulk of
cyclical fluctuations in real economic activity variables. This important point is studied in
detail in Granese (2023). Moreover, the demand shock is not disconnected from inflation
at both cyclical and long run frequencies. These last two results are broadly in line with
ACFZ.

4.6. Robustness

In this subsection we conduct a few robustness exercises for Identification I. Robustness
results for Identification II are similar and are reported in Appendix C.

First, we test robustness to the inclusion of additional lags with respect to the one
lag baseline specification. We estimate the model with two, three (as suggested by the
AIC) and four lags, respectively. Table 5 reports the cyclical (top panel) and long run
(bottom panel) variances accounted for by the identified supply and demand shocks. The
first two columns correspond to our baseline specification, p = 1, while the remaining are
for the alternative specifications, p = 2, 3, 4. In addition, Panel (a) of Table 7 summarizes
the above findings by reporting, for each variable and shock, the maximum and minimum
shares of explained variance, as the lag order changes.

As for the business cycle, baseline results appear to be quite robust with respect to
changes in specification. The GDP growth variance explained by the supply shock ranges
from a minimum of 27% (baseline) to a maximum of 30% (4 lags specification), while for
the demand ranges from 47% (3 lags) to 51% (4 lags). The investment variance explained
by the supply shock ranges from a minimum of 24% (baseline) to a maximum of 34%
(4 lags specification), while for the demand ranges from 49% (4 lags) to 55% (baseline).
The finding that consumption fluctuations are mostly explained by supply shocks is a
fully robust result. In the 3 lags specification, it explains 51% of the consumption cyclical
variance, while only 20% is explained by the demand shock, a difference of 31 percentage
points. All in all, the demand shock is still the most important cyclical shock for real
activity, but the increase in the number of lags seems to enhance the cyclical footprint
of the supply shock, reinforcing our view that the business cycle is driven by two main
shocks.

The only sensitivity analysis worth noting is the following. As lags increase, the de-
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mand shock appears less tightly connected, in terms of variance contributions, to inflation
fluctuations. The cyclical variance explained by the demand shock ranges between a min-
imum of 17% (4 lags specification) to a maximum of 44% (baseline) while for the supply
shock it ranges from 42% (baseline) to 63% (4 lags). The demand shock is partially dis-
connected from inflation only in the 4 lags specification in which, however, it accounts for
17% of inflation, as against the 7% found in ACD. For the transitory shock of Identifica-
tion II, the percentage of explained variance of inflation is somewhat more robust across
lag specifications, ranging between 29 and 49% (see Appendix C).

Turning to the long run, the variance decomposition displays figures fairly close to
the baseline for most of the variables. For example, the output growth long run variance
explained by the supply shock varies from 67% (4 lags) to 78% (baseline), while for the
demand shock ranges from about 3% (3 lags and baseline cases) to 11% (4 lags). The
main conclusions about the long run contribution of the two shocks are confirmed, except
one: the finding that demand shock explains most of the long run fluctuations in inflation
(64% vs. 20% of the supply shock) is not robust: for the 2, 3 and 4 lags specifications,
demand explains 36, 21 and 13% percent, respectively, while supply explains 34, 26 and
36%.

Figures 6 and 7 display the impulse response functions to the supply and the demand
shocks, respectively, for different lag specifications. The solid black lines (point estimates)
and confidence bands are those obtained in the baseline exercise. All in all, the dynamic
responses to supply shocks are similar to those obtained in the baseline exercise, most of
them lying within the baseline confidence bands. As for the demand shock, the magnitude
of responses is slightly smaller only for inflation and interest rate, with similar shapes.

Finally, we check the robustness of the results as the number of static factors increases.
In particular, we compare the results of our baseline specification (r = 11) with four
alternatives: r = 13, 15, 17, 20. Table 6 reports the cyclical (top panel) and long run
(bottom panel) variances accounted for by the identified supply and demand shocks. As
the number of static factors changes, the contribution of the identified shocks to the
cyclical and long run variances of the main macroeconomic variables does not change
much. As in the previous exercise, panel (b) of Table 7 summarizes the above findings by
reporting, for each variable and shock, the maximum and minimum shares of explained
variance obtained as the factor specification changes. For example, the percentage of
cyclical variance explained by the demand shock varies between 49 and 52 for GDP,
depending on the specification of r, 25 and 29 for consumption, 53 and 55 for investment,
and so on. The results become slightly sensitive only when the number of static factors
becomes very large with respect to the benchmark. For example, the consumption cyclical
variance explained by the supply shock ranges between a minimum of about 26% (r = 17
and r = 20) to a maximum of 41% (baseline case): when r = 17 and r = 20, supply is
no longer dominant for consumption, although demand alone still cannot explain most of
the cyclical fluctuations.

The same robustness is found when considering the IRFs. Figures 8 and 9 display the
impulse response functions to the supply and the demand shocks, respectively, obtained
in this exercise. The responses are very much similar to the baseline. All in all the results
are fairly robust to different specifications.
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5. Summary and conclusions

In this paper we provide a comprehensive and stylized description of the U.S. mac-
roeonomy and investigate whether the traditional view has support in the data. The
evidence shows that this is the case.

The result is obtained assuming that data follow a Structural Dynamic Factor Model
and using a novel identification technique in the frequency domain. Our identification
strategy unfolds in two steps. In the first step, we select the two shocks with the largest
contribution to the cyclical and long run variance of the main real and nominal macroe-
conomic variables. We show that adding a third shock would only marginally increase the
explained variance. In the second step, we rotate the two main shocks in order to give
them an economic interpretation. We implement two different identification schemes: in
the first one we define a demand and a supply with a completely novel criterion based
on the covariance between inflation and output, while in the second scheme we define a
permanent shock on real activity and a transitory one in a way that is very close to BQ.

The two identification schemes provide strikingly similar outcomes in terms of both
variance decomposition and impulse response functions. The US macroeconomy is driven
by two main forces: a supply shock, which is permanent and generates a negative co-
movement between prices and quantities, and a demand shock, which is transitory and
generates a positive comovement between prices and quantities. We show empirically
that demand shocks have only transitory effect on real economic activity. Both demand
and supply are important sources of business cycle fluctuations. The demand shock is
closely related to credit market conditions and is the main business-cycle shock for out-
put, investment and unemployment, while the supply shock is to a large extent a news
technology shock and is the main business cycle shock for private consumption. Finally,
supply shocks not only account for almost all the long run fluctuations of real activity,
but also for long cycles (between 8 and 20 years).

All in all, the evidence strongly support the very standard view of the macroeconomy
where fluctuations in real economic activity and prices arise from shifts in the aggregate
demand and aggregate supply curves. From our perspective, theory should look at the
U.S. macroeconomy through the lens of a two-shock, New Keynesian textbook framework,
in order to be consistent with the data.
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Tables

Variables χ ξ

GDP 94.33 5.67
Consumption 81.62 18.38
Investment 89.54 10.46
Unemployment Rate 94.17 5.83
Hours Worked 83.53 16.47
Inflation 90.47 9.53
Labor Productivity 89.31 10.69
TFP 80.91 19.09
FFR 97.92 2.08
Baa-GS10 Spread 78.05 21.95
S&P500 94.47 5.53
JLN Uncertainty 3M 83.81 16.19
BC5Y 75.87 24.13

Table 1: Percentage of the variance explained by the estimated common and
idiosyncratic components of selected variables. Baseline specification: r = 11
static factors. We run the test proposed by Alessi et al. (2010).

Variables Trend-Cycle band Cyclical band Long Run band

First two Third First two Third First two Third

GDP 77.9 1.9 76.2 2.0 81.0 0.7
Consumption 70.8 1.0 69.7 0.6 75.6 1.6
Investment 79.9 0.5 78.9 0.6 72.3 0.2
Unemployment Rate 83.7 3.9 78.5 1.6 82.0 7.3
Hours Worked 65.3 14.6 58.1 12.6 63.5 16.6
Inflation 85.5 6.3 86.1 7.2 85.4 5.8
Labor Productivity 47.3 30.8 46.9 31.0 63.4 10.8
TFP 31.6 54.0 27.4 58.0 66.1 20.0
FFR 83.8 1.1 75.5 3.6 85.9 0.3
Baa-GS10 spread 85.0 0.8 87.8 0.3 86.1 1.0
S&P 500 real 55.0 2.0 57.1 1.3 30.9 6.0
JLM uncertainty 3M 85.4 1.2 82.9 1.3 91.8 2.0
BC5Y 85.5 6.8 89.1 2.4 83.4 9.2

Table 2: Percentage of variance explained by the first two main shocks and
by the third for a few selected variables, by frequency band. Business cycle
frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with periodicity
between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80],
corresponding to periodicity greater than 20 years, with quarterly data.
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Variables Cyclical variance Long Run variance
Supply Demand Sum Supply Demand Sum

GDP 27.1 49.1 76.2 77.7 3.3 81.0
Consumption 40.6 29.2 69.7 66.9 8.7 75.6
Investment 23.6 55.3 78.9 67.8 4.5 72.3
Unemployment Rate 29.0 49.5 78.5 70.9 11.0 82.0
Hours Worked 26.3 31.9 58.1 54.7 8.8 63.5
Inflation 41.8 44.3 86.1 20.0 65.4 85.4
Labor Productivity 22.5 24.4 46.9 60.1 3.3 63.4
TFP 21.0 6.4 27.4 65.2 0.9 66.1
FFR 13.3 62.2 75.5 2.3 83.6 85.9
Baa-GS10 10.8 77.0 87.8 44.0 42.1 86.1
S&P500 33.3 23.8 57.1 30.4 0.5 30.9
JLN Uncertainty 3M 37.4 45.5 82.9 54.5 37.3 91.8
BC5Y 69.1 20.1 89.1 74.8 8.6 83.4

Table 3: Identification I. Percentage of variance explained by the supply (de-
flationary) shock and the demand (inflationary) shock for a few selected vari-
ables, by frequency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years. Long
run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than
20 years, with quarterly data.

Variables Cyclical variance Long Run variance
Perm Trans Sum Perm Trans Sum

GDP 29.6 46.6 76.2 79.3 1.7 81.0
Consumption 43.9 25.9 69.7 69.7 5.9 75.6
Investment 25.5 53.4 78.9 67.2 5.1 72.3
Unemployment Rate 30.1 48.4 78.5 68.7 13.2 82.0
Hours Worked 29.2 29.0 58.1 57.3 6.3 63.5
Inflation 37.2 48.8 86.1 15.5 69.9 85.4
Labor Productivity 23.0 23.9 46.9 58.3 5.1 63.4
TFP 20.7 6.7 27.4 64.5 1.6 66.1
FFR 10.9 64.5 75.5 0.9 85.0 85.9
Baa-GS10 12.9 74.8 87.8 49.2 36.9 86.1
S&P500 36.2 20.9 57.1 30.2 0.7 30.9
JLN Uncertainty 3M 39.8 43.1 82.9 49.2 42.5 91.8
BC5Y 71.2 17.9 89.1 71.5 11.9 83.4

Table 4: Identification II. Percentage of variance explained by the permanent
shock and the transitory shock for a few selected variables, by frequency band.
Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with
periodicity between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤
2π/80], corresponding to periodicity greater than 20 years, with quarterly data.
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Variables
P=1 P=2 P=3 P=4

Percentage of Explained Cyclical Variance
Supply Dem Supply Dem Supply Dem Supply Dem

GDP 27.1 49.1 26.5 49.7 29.0 47.4 30.4 51.2
Consumption 40.6 29.2 45.6 21.2 50.7 20.1 46.5 25.9
Investment 23.6 55.3 25.2 53.3 30.4 49.9 34.2 49.2
Unemployment 29.0 49.5 31.8 51.4 37.3 44.2 41.8 40.1
Hours Worked 26.3 31.9 23.2 40.1 28.0 32.5 27.3 34.1
Inflation 41.8 44.3 54.2 33.2 57.9 23.1 62.8 16.5
Labor Productivity 22.5 24.4 25.1 30.6 21.9 38.5 15.9 40.7
TFP 21.0 6.4 20.5 8.7 16.6 14.0 12.7 10.9
FFR 13.3 62.2 21.6 55.6 27.0 41.0 32.2 36.8
Baa-GS10 10.8 77.0 14.0 72.9 22.1 60.1 23.4 55.9
S&P500 33.3 23.8 32.3 21.1 26.0 33.6 25.1 35.2
JLN Uncertainty 3M 37.4 45.5 41.5 42.4 44.0 41.3 47.6 38.3
BC5Y 69.1 20.1 68.4 20.9 68.8 19.9 69.4 21.1

Percentage of Explained Long Run Variance
Supply Dem Supply Dem Supply Dem Supply Dem

GDP 77.7 3.3 69.6 5.2 71.4 2.3 66.5 11.3
Consumption 66.9 8.7 52.8 10.9 57.9 2.8 52.0 9.8
Investment 67.8 4.5 74.5 1.1 77.3 1.1 76.7 4.2
Unemployment 70.9 11.0 81.2 6.0 84.6 4.6 85.7 4.9
Hours Worked 54.7 8.8 50.5 21.2 63.3 13.1 53.9 24.1
Inflation 20.0 65.4 33.6 36.3 26.3 20.8 36.3 13.2
Labor Productivity 60.1 3.3 65.1 0.5 76.4 0.2 74.0 5.0
TFP 65.2 0.9 60.3 0.7 67.1 1.3 63.8 5.5
FFR 2.3 83.6 12.4 66.5 9.2 42.6 18.8 39.0
Baa-GS10 44.0 42.1 23.6 35.3 27.9 14.7 21.2 18.0
S&P500 30.4 0.5 37.5 0.1 43.1 0.8 46.2 1.5
JLN Uncertainty 3M 54.5 37.3 70.8 21.5 68.8 17.6 80.5 9.5
BC5Y 74.8 8.6 85.5 1.0 88.2 1.3 91.8 0.4

Table 5: Identification I: Percentage of variance explained by the supply shock
and the demand shock for a few selected variables, by frequency band, accord-
ing to different lags order: p = [1 2 3 4]. Baseline specification: p = 1. Business
cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with period-
icity between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80],
corresponding to periodicity greater than 20 years, with quarterly data.
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Variables
R=11 R=13 R=15 R=17 R=20

Percentage of Explained Cyclical Variance
Supp Dem Supp Dem Supp Dem Supp Dem Supp Dem

GDP 27.1 49.1 22.2 51.8 23.8 49.0 18.2 50.9 18.0 50.8
Consumption 40.6 29.2 30.4 28.4 31.0 25.4 26.1 28.6 26.6 27.5
Investment 23.6 55.3 24.3 54.1 25.6 52.8 22.1 55.2 21.6 53.7
Unemployment 29.0 49.5 30.6 46.7 30.9 44.6 27.4 51.8 28.2 49.9
Hours Worked 26.3 31.9 19.8 32.3 23.5 28.4 18.2 29.7 19.2 31.5
Inflation 41.8 44.3 45.0 30.6 40.8 29.1 43.5 30.7 44.5 28.9
Labor Productivity 22.5 24.4 18.1 29.0 20.3 27.2 16.6 32.5 17.8 33.8
TFP 21.0 6.4 14.5 5.7 16.4 5.8 20.4 3.9 17.9 3.8
FFR 13.3 62.2 24.9 52.3 23.8 52.9 15.7 47.6 17.0 45.7
Baa-GS10 10.8 77.0 13.0 72.1 13.1 67.4 12.7 49.1 12.6 49.3
S&P500 33.3 23.8 25.6 32.3 26.9 31.7 19.7 38.0 16.7 36.9
JLN Uncertainty 3M 37.4 45.5 43.8 36.7 43.5 36.9 43.2 33.7 42.9 33.7
BC5Y 69.1 20.1 54.1 20.2 47.8 15.5 45.3 14.4 43.7 13.3

Percentage of Explained Long Run Variance
Supp Dem Supp Dem Supp Dem Supp Dem Supp Dem

GDP 77.7 3.3 74.7 6.1 75.4 5.6 67.9 4.8 69.1 6.5
Consumption 66.9 8.7 60.9 9.5 61.0 8.3 56.7 8.8 57.0 10.2
Investment 67.8 4.5 68.4 2.5 68.1 2.9 64.9 1.4 64.4 1.7
Unemployment 70.9 11.0 78.0 7.8 73.0 8.6 74.0 10.0 74.8 9.3
Hours Worked 54.7 8.8 52.8 12.6 50.9 11.0 55.8 10.3 53.8 10.9
Inflation 20.0 65.4 22.6 47.7 20.4 48.6 19.1 47.4 20.7 46.0
Labor Productivity 60.1 3.3 62.0 1.4 62.2 1.8 69.8 0.6 70.3 0.2
TFP 65.2 0.9 65.5 0.1 65.3 0.1 70.4 0.3 68.7 0.7
FFR 2.3 83.6 6.0 70.5 5.0 71.6 3.8 69.8 4.9 67.9
Baa-GS10 44.0 42.1 38.5 33.4 37.2 34.1 28.8 23.6 27.6 25.6
S&P500 30.4 0.5 29.7 1.9 29.0 1.8 22.6 1.2 22.4 1.0
JLN Uncertainty 3M 54.5 37.3 67.0 23.7 61.5 25.3 54.3 29.3 57.7 26.5
BC5Y 74.8 8.6 82.7 4.2 79.9 4.8 80.8 4.5 79.8 3.5

Table 6: Identification I: Percentage of variance explained by the Demand shock
and the Supply shock for a few selected variables, by frequency band, according
to the number of static factors: r = [11 13 15 17 20]. Baseline specification: r = 11
static factors. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding
to cycles with periodicity between 18 months and 8 years. Long run frequency
band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with
quarterly data.
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(a) Robustness Identification I: Maximum and Minimum percentage value
of explained variance according to different lags order: p = [ 1 2 3 4 ].
Baseline specification: p = 1 lag.

Variables
Cyclical Variance Long Run Variance

Supply Demand Supply Demand
Min Max Min Max Min Max Min Max

GDP 26.5 30.4 47.4 51.2 66.5 77.7 2.3 11.3
Consumption 40.6 50.7 20.1 29.2 52.0 66.9 2.8 10.9
Investment 23.6 34.2 49.2 55.3 67.8 77.3 1.1 4.5
Unemployment 29.0 41.8 40.1 51.4 70.9 85.7 4.6 11.0
Hours Worked 23.2 28.0 31.9 40.1 50.5 63.3 8.8 24.1
Inflation 41.8 62.8 16.5 44.3 20.0 36.3 13.2 65.4
Labor Productivity 15.9 25.1 24.4 40.7 60.1 76.4 0.2 5.0
TFP 12.7 21.0 6.4 14.0 60.3 67.1 0.7 5.5
FFR 13.3 32.2 36.8 62.2 2.3 18.8 39.0 83.6
Baa-GS10 10.8 23.4 55.9 77.0 21.2 44.0 14.7 42.1
S&P500 25.1 33.3 21.1 35.2 30.4 46.2 0.1 1.5
JLN Uncertainty 3M 37.4 47.6 38.3 45.5 54.5 80.5 9.5 37.3
BC5Y 68.4 69.4 19.9 21.1 74.8 91.8 0.4 8.6

(b) Robustness Identification I: Maximum and minimum value of explained
variance according to the number of static factors: r = [ 11 13 15 17 20 ].
Baseline specification: r = 11 static factors.

Variables
Cyclical Variance Long Run Variance

Supply Demand Supply Demand
Min Max Min Max Min Max Min Max

GDP 18.0 27.1 49.0 51.8 67.9 77.7 3.3 6.5
Consumption 26.1 40.6 25.4 29.2 56.7 66.9 8.3 10.2
Investment 21.6 25.6 52.8 55.3 64.4 68.4 1.4 4.5
Unemployment 27.4 30.9 44.6 51.8 70.9 78.0 7.8 11.0
Hours Worked 18.2 26.3 28.4 32.3 50.9 55.8 8.8 12.6
Inflation 40.8 45.0 28.9 44.3 19.1 22.6 46.0 65.4
Labor Productivity 16.6 22.5 24.4 33.8 60.1 70.3 0.2 3.3
TFP 14.5 21.0 3.8 6.4 65.2 70.4 0.1 0.9
FFR 13.3 24.9 45.7 62.2 2.3 6.0 67.9 83.6
Baa-GS10 10.8 13.1 49.1 77.0 27.6 44.0 23.6 42.1
S&P500 16.7 33.3 23.8 38.0 22.4 30.4 0.5 1.9
JLN Uncertainty 3M 37.4 43.8 33.7 45.5 54.3 67.0 23.7 37.3
BC5Y 43.7 69.1 13.3 20.2 74.8 82.7 3.5 8.6

Table 7: Percentage of variance explained by the supply shock and the demand
shock (Identification I) for a few selected variables, by frequency band. Busi-
ness cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with peri-
odicity between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80],
corresponding to periodicity greater than 20 years, with quarterly data.
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Figures

Figure 1: Identification I: Spectral Decomposition for a few selected variables,
frequency by frequency. The figure reports the percentage of explained vari-
ance. Blue line: Contribution of the supply shock; Red line: Contribution of
the demand shock; Yellow line: sum. Pink shadowed area: Long run frequencies
(>80 quarters); Lilac shadowed area: Business Cycle frequencies (6-32 quar-
ters).
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Figure 2: Identification I: Point estimates of the Impulse Response Functions
of the Supply Shock. The dark gray and light gray areas are the 68% and 90%
confidence bands, respectively.

28



Figure 3: Identification I: Point estimates of the Impulse Response Functions
of the Demand Shock. The dark gray and light gray areas are the 68% and 90%
confidence bands, respectively.
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Figure 4: Impulse response functions of the Supply shock (Identification I, black
line) and the Permanent shock (Identification II, cyan dashed line). The dark
gray and light gray areas are the 68% and 90% confidence bands, respectively,
for Identification I.
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Figure 5: Impulse response functions of the Demand shock (Identification I,
black line) and the Transitory shock (Identification II, cyan dashed line). The
dark gray and light gray areas are the 68% and 90% confidence bands, respect-
ively, for Identification I.
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Figure 6: Identification I: Impulse response functions of the Supply shock, ac-
cording to different lags order: p = [1 2 3 4]. Baseline specification: p = 1.
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively. Black line and confidence bands: baseline specification.
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Figure 7: Identification I: Impulse response functions of the Demand shock,
according to different lags order: p = [1 2 3 4]. Baseline specification: p = 1.
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively. Black line and confidence bands: baseline specification.
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Figure 8: Identification I: Impulse response functions of the Supply shock, ac-
cording to different number of static factors: r = [11 6 9 13 15]. Baseline spe-
cification: r = 11. The dark gray and light gray areas are the 68% and 90%
confidence bands, respectively. Black line and confidence bands: baseline spe-
cification.
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Figure 9: Identification I: Impulse response functions of the Demand shock,
according to different number of static factors: r = [11 6 9 13 15]. Baseline
specification: r = 11. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively. Black line and confidence bands: baseline
specification.
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Appendix

A. Rank Reduction Step

In the standard estimation procedure the identification techniques are applied to the
residuals of the VAR estimated for Ft after estimating q, the number of common shocks,
and the rank reduction. The estimated factors F̂t are not exactly singular, as they contain
a residual of the idiosyncratic components that disappears completely only asymptotically.
As a consequence, the vector ϵ̂t has rank r > q, although the last r − q eigenvalues of Σ̂ϵ

are close to zero (Forni et al., 2020). In the standard procedure, singularity is forced on
ϵ̂t by means of rank-reduction techniques. In Forni et al. (2009), the rank reduction is
obtained by using the spectral decomposition of Σ̂ϵ, so that the vector ϵ̂t is replaced by
the q̂-dimensional vector V −1ϵ̂t, where V −1 is the matrix whose rows are the normalised
eigenvectors corresponding to the q-largest eigenvalues of the variance-covariance matrix
of ϵ̂t. This is equivalent to assume that the static rank of the common components is
r, which is the rank of its covariance matrix, while the dynamic rank is q, which is the
rank of its spectral density. In empirical situation, the number q of dynamic factors or
common shocks is unknown and has to be determined by existing information criteria. For
instance, the criterion proposed by Hallin and Liška (2007) is based on the properties of
dynamic eigenvalues of the data and looks for the value q that minimizes the contribution
of the idiosyncratic component. Alternative methods are proposed by Onatski (2009),
Amengual and Watson (2007) and Bai and Ng (2007). Recently, Avarucci et al. (2021)
introduce a novel consistent criterion to estimate the number of common shocks that
can be applied to single frequencies as well as to frequency bands. Such criteria, albeit
consistent, often give different results each other.

Forni et al. (2020) shown that the rank reduction step can be ignored with no con-
sequences on the (IRFs) estimation accuracy. Since different information criteria often
give different results, the estimation of q and the rank reduction can be a potential source
of error, in particular whether q̂ underestimates the true q, leading to large estimation
errors implied by a possible mis-specification of q. Therefore, we apply the identification
techniques to the not exactly singular Cholesky-transformed residuals of the estimated
VAR without reducing the rank.

Moreover, by reducing the number of shocks of interest in the first stage of our iden-
tification strategy, where we select the two shocks maximizing the explained variance of
targeted variables on the band [0 2π/6], rather than across all frequencies, we do not need
to implement the rank reduction step in our estimation procedure.
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B. Data Description and Data Treatment

For the description of each variable see McCracken and Ng (2020). For variables not
in the FRED-QD dataset, refer to the Mnemonic and note. Treatment codes: 1 = no
treatment; 2 = first difference, ∆xt; 4 = log(xt); 5 = log of the first difference, ∆ log(xt).

ID
FRED-QD

Mnemonic
Treatment

Note
ID code

1 1 GDPC1/CNP16OV 5
2 2 PCECC96/CNP16OV 5
3 3 PCDGx/CNP16OV 5
4 4 PCESVx/CNP16OV 5
5 5 PCNDx/CNP16OV 5
6 6 GPDIC1/CNP16OV 5
7 7 FPIx/CNP16OV 5
8 8 Y033RC1Q027SBEAx/CNP16OV 5
9 9 PNFIx/CNP16OV 5
10 10 PRFIx/CNP16OV 5
11 11 A014RE1Q156NBEA 1
12 12 GCEC1/CNP16OV 5
13 13 A823RL1Q225SBEA 1
14 14 FGRECPTx/CNP16OV 5
15 15 SLCEx/CNP16OV 5
16 16 EXPGSC1/CNP16OV 5
17 17 IMPGSC1/CNP16OV 5
18 18 DPIC96/CNP16OV 5
19 19 OUTNFB/CNP16OV 5
20 20 OUTBS/CNP16OV 5
21 (PCESVx+PCNDx)/CNP16OV 5
22 (PCDGx+FPIx)/CNP16OV 5
23 22 INDPRO/CNP16OV 5
24 23 IPFINAL/CNP16OV 5
25 24 IPCONGD/CNP16OV 5
26 25 IPMAT/CNP16OV 5
27 28 IPDCONGD/CNP16OV 5
28 30 IPNCONGD/CNP16OV 5
29 31 IPBUSEQ/CNP16OV 5
30 35 PAYEMS/CNP16OV 2
31 36 USPRIV/CNP16OV 2
32 38 SRVPRD/CNP16OV 2
33 39 USGOOD/CNP16OV 2
34 51 USGOVT/CNP16OV 2
35 57 CE16OV/CNP16OV (EMRATIO) 2
36 58 CIVPART 2
37 59 UNRATE 1
38 60 UNRATESTx 1
39 61 UNRATELTx 1
40 62 LNS14000012 1
41 63 LNS14000025 1
42 64 LNS14000026 1
43 74 HOABS/CNP16OV 4
44 76 HOANBS/CNP16OV 4
45 77 AWHMAN 1
46 79 AWOTMAN 1
47 81 HOUST/CNP160V 5
48 95 PCECTPI 5
49 96 PCEPILFE 5

Continued on next page
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Continued from previous page

ID
FRED-QD

Mnemonic
Treatment

Note
ID code

50 GDPDEF 5 GDP: Implicit Price Deflator
51 97 GDPCTPI 5
52 98 GPDICTPI 5
53 120 CPIAUCSL 5
54 121 CPILFESL 5
55 122 WPSFD49207 5
56 123 PPIACO 5
57 124 WPSFD49502 5
58 126 PPIIDC 5
59 129 WPU0561 5
60 130 OILPRICEx 5
61 135 COMPRNFB 5
62 138 OPHNFB 5
63 139 OPHPBS 5
64 140 ULCBS 5
65 142 ULCNFB 5
66 143 UNLPNBS 5
67 dtfp 1 Fernald’s TFP growth
68 dtfp util 1 Fernald’s TFP growth CU adjusted
69 dtfp I 1 Fernald’s TFP growth - Inv
70 dtfp C 1 Fernald’s TFP growth - Con
71 dtfp I util 1 Fernald’s TFP growth CU - Inv
72 dtfp C util 1 Fernald’s TFP growth CU - Con
73 144 FEDFUNDS 1
74 145 TB3MS 1
75 146 TB6MS 1
76 147 GS1 1
77 148 GS10 1
78 150 AAA 1
79 151 BAA 1
80 152 BAA10YM 1
81 156 GS10TB3Mx 1
82 BAA-AAA 1
83 GS10-FEDFUNDS 1
84 GS1-FEDFUNDS 1
85 BAA-FEDFUNDS 1
86 158 BOGMBASEREALx/CNP16OV 5
87 160 M1REAL/CNP16OV 5
88 161 M2REAL/CNP16OV 5
89 163 BUSLOANSx/CNP16OV 5
90 164 CONSUMERx/CNP16OV 5
91 166 REALLNx/CNP16OV 5
92 168 TOTALSLx/CNP16OV 5
93 188 UMCSENTx 1
94 Business Condition 12 Months 1 Michigan Consumer Survey
95 Business Condition 5 Years 1 Michigan Consumer Survey
96 Current Index 1 Michigan Consumer Survey
97 Expected Index 1 Michigan Consumer Survey
98 News Index: Relative 1 Michigan Consumer Survey
99 197 UEMPMEAN 1
100 201 GS5 1
101 210 CUSR0000SAC 5
102 211 CUSR0000SAD 5
103 212 CUSR0000SAS 5
104 213 CPIULFSL 5
105 245 S&P 500 5

Continued on next page
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Continued from previous page

ID
FRED-QD

Mnemonic
Treatment

Note
ID code

106 246 S&P: indust 5
107 S&P 500/GDPDEF 5
108 S&P: indust/GDPDEF 5
109 JLN Macro Unc 1-month 1 JLN Uncertainty
110 JLN Macro Unc 3-month 1 JLN Uncertainty
111 JLN Macro Unc 12-month 1 JLN Uncertainty
112 DPCCRC1Q027SBEAx/CNP16OV 5 Real PCE Excluding food and energy
113 DFXARC1M027SBEAx/CNP16OV 5 Real PCE: Food
114 DNRGRC1Q027SBEAx/CNP16OV 5 Real PCE: Energy goods
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C. Additional Results and Robustness

Tables

Frequencies DDR DGR DER
0 ≤ ω ≤ 2π/6 2 2 1
0 ≤ ω ≤ 2π/8 2 2 1
0 ≤ ω ≤ π 2 1 1

Table C.1: Number of estimated dynamic factors by DDR, DGR and DER eval-
uated at selected frequencies or frequency bands. The size of the spectral
window - bandwidth parameter - is MT = a

√
T with a = 0.5. DDR: Dynamic Differ-

ence Ratio Estimator; DGR: Dynamic Growth Ratio Estimator; DER: Dynamic
Eigenvalue Ratio Estimator.
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Variables
P=1 P=2 P=3 P=4

Percentage of Explained Cyclical Variance
Perm Trans Perm Trans Perm Trans Perm Trans

GDP 29.6 46.6 29.6 46.6 28.8 47.7 27.1 54.5
Consumption 43.9 25.9 50.4 16.5 52.7 18.1 51.3 21.0
Investment 25.5 53.4 27.1 51.4 30.0 50.3 30.2 53.2
Unemployment 30.1 48.4 31.8 51.4 36.4 45.1 36.4 45.5
Hours Worked 29.2 29.0 27.7 35.6 29.6 31.0 31.7 29.6
Inflation 37.2 48.8 44.0 43.4 52.1 28.9 43.6 35.7
Labor Productivity 23.0 23.9 26.1 29.5 22.0 38.5 17.4 39.2
TFP 20.7 6.7 19.1 10.0 17.3 13.3 16.3 7.3
FFR 10.9 64.5 15.0 62.2 23.1 44.9 17.9 51.2
Baa-GS10 12.9 74.8 16.2 70.7 21.6 60.6 20.0 59.3
S&P500 36.2 20.9 37.2 16.2 29.5 30.1 35.4 24.9
JLN Uncertainty 3M 39.8 43.1 43.7 40.2 44.0 41.2 45.0 40.9
BC5Y 71.2 17.9 72.5 16.8 70.6 18.1 71.0 19.5

Percentage of Explained Long Run Variance
Perm Trans Perm Trans Perm Trans Perm Trans

GDP 79.3 1.7 72.9 2.0 73.0 0.7 76.5 1.4
Consumption 69.7 5.9 57.6 6.1 59.2 1.5 59.4 2.4
Investment 67.2 5.1 73.3 2.2 76.9 1.5 79.6 1.3
Unemployment 68.7 13.2 80.1 7.1 83.9 5.3 83.9 6.7
Hours Worked 57.3 6.3 58.8 12.9 68.0 8.4 71.3 6.7
Inflation 15.5 69.9 24.2 45.8 22.0 25.0 22.3 27.2
Labor Productivity 58.3 5.1 64.1 1.5 76.4 0.2 78.9 0.1
TFP 64.5 1.6 60.2 0.7 67.4 0.9 68.3 1.1
FFR 0.9 85.0 5.6 73.3 5.9 45.8 5.6 52.2
Baa-GS10 49.2 36.9 31.6 27.3 31.2 11.3 31.5 7.7
S&P500 30.2 0.7 36.9 0.8 43.6 0.2 46.2 1.6
JLN Uncertainty 3M 49.2 42.5 59.8 32.4 62.5 23.8 61.0 29.0
BC5Y 71.5 11.9 81.6 4.9 85.7 3.8 86.8 5.4

Table C.2: Identification II: Percentage of variance explained by the permanent
shock and the transitory shock for a few selected variables, by frequency band,
according to different lags order: p = [1 2 3 4]. Baseline specification: p = 1.
Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with
periodicity between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤
2π/80], corresponding to periodicity greater than 20 years, with quarterly data.
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Variables
R=11 R=13 R=15 R=17 R=20

Percentage of Explained Cyclical Variance
Perm Trans Perm Trans Perm Trans Perm Trans Perm Trans

GDP 29.6 46.6 24.0 50.1 25.7 47.1 18.7 50.4 19.0 49.9
Consumption 43.9 25.9 33.3 25.4 33.3 23.1 27.1 27.6 28.3 25.8
Investment 25.5 53.4 25.5 53.0 26.8 51.6 22.4 54.9 21.9 53.4
Unemployment 30.1 48.4 30.7 46.5 31.3 44.1 26.9 52.3 27.3 50.8
Hours Worked 29.2 29.0 23.3 28.8 26.2 25.6 20.5 27.5 21.9 28.8
Inflation 37.2 48.8 36.9 38.6 34.4 35.5 36.7 37.5 34.5 38.8
Labor Productivity 23.0 23.9 18.3 28.8 20.4 27.1 17.3 31.9 18.8 32.8
TFP 20.7 6.7 13.6 6.6 15.4 6.8 19.9 4.5 17.3 4.4
FFR 10.9 64.5 18.3 58.9 18.1 58.6 11.6 51.8 10.7 52.0
Baa-GS10 12.9 74.8 14.4 70.7 14.2 66.3 13.7 48.2 13.7 48.2
S&P500 36.2 20.9 31.1 26.8 31.9 26.7 23.3 34.3 21.8 31.9
JLN Uncertainty 3M 39.8 43.1 46.7 33.8 45.8 34.6 44.3 32.5 44.2 32.4
BC5Y 71.2 17.9 56.1 18.1 50.1 13.1 47.7 12.1 46.8 10.2

Percentage of Explained Long Run Variance
Perm Trans Perm Trans Perm Trans Perm Trans Perm Trans

GDP 79.3 1.7 78.7 2.1 78.8 2.1 70.3 2.5 73.2 2.4
Consumption 69.7 5.9 65.6 4.8 64.9 4.4 59.9 5.6 62.0 5.2
Investment 67.2 5.1 68.3 2.5 68.0 3.0 64.6 1.7 64.8 1.4
Unemployment 68.7 13.2 74.8 11.0 70.2 11.4 71.4 12.6 70.9 13.2
Hours Worked 57.3 6.3 58.4 7.0 55.5 6.4 60.1 6.0 59.9 4.8
Inflation 15.5 69.9 15.1 55.3 14.0 54.9 13.4 53.1 12.3 54.4
Labor Productivity 58.3 5.1 59.4 4.0 59.8 4.2 68.1 2.3 68.0 2.5
TFP 64.5 1.6 64.4 1.2 64.3 1.2 70.1 0.6 68.7 0.8
FFR 0.9 85.0 2.1 74.5 1.8 74.8 1.3 72.3 1.0 71.8
Baa-GS10 49.2 36.9 46.5 25.4 44.4 26.9 33.9 18.5 35.3 17.9
S&P500 30.2 0.7 31.0 0.6 30.2 0.7 23.4 0.4 23.1 0.3
JLN Uncertainty 3M 49.2 42.5 57.9 32.8 53.8 33.1 47.1 36.5 47.1 37.2
BC5Y 71.5 11.9 77.5 9.4 75.4 9.2 76.8 8.5 74.2 9.1

Table C.3: Identification II: Percentage of variance explained by the Transitory
shock and the Permannent shock for a few selected variables, by frequency
band, according to the number of static factors: r = [11 13 15 17 20]. Baseline
specification: r = 11 static factors. Business cycle frequency band: [2π/32 ≤ ω ≤
2π/6] corresponding to cycles with periodicity between 18 months and 8 years.
Long run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater
than 20 years, with quarterly data.
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(a) Identification II: Maximum and Minimum percentage value of ex-
plained variance according to different lags order: p = [ 1 2 3 4 ].
Baseline specification: p = 1 lag.

Variables
Cyclical Variance Long Run Variance

Perm Trans Perm Trans
Min Max Min Max Min Max Min Max

GDP 27.1 29.6 46.6 54.4 72.9 79.3 0.7 2.0
Consumption 43.9 52.7 16.5 25.9 57.6 69.7 1.5 6.1
Investment 25.5 30.2 50.3 53.4 67.2 79.6 1.3 5.1
Unemployment 30.1 36.4 45.1 51.4 68.7 83.9 5.3 13.2
Hours Worked 27.7 31.7 29.0 35.6 57.3 71.3 6.3 12.9
Inflation 37.2 52.1 28.9 48.8 15.5 24.2 25.0 69.9
Labor Productivity 17.4 26.1 23.9 39.2 58.3 78.9 0.1 5.1
TFP 16.3 20.7 6.7 13.3 60.2 68.3 0.7 1.6
FFR 10.9 23.1 44.9 64.5 0.9 5.9 45.8 85.0
Baa-GS10 12.9 21.6 59.3 74.8 31.2 49.2 7.7 36.9
S&P500 29.5 37.2 16.2 30.1 30.2 46.2 0.2 1.6
JLN Uncertainty 3M 39.8 45.0 40.2 43.1 49.2 62.5 23.8 42.5
BC5Y 70.6 72.5 16.8 19.5 71.5 86.8 3.8 11.9

(b) Identification II: Maximum and minimum value of explained variance
according to the number of static factors: r = [ 11 13 15 17 20 ]. Baseline
specification: r = 11 static factors.

Variables
Cyclical Variance Long Run Variance

Perm Trans Perm Trans
Min Max Min Max Min Max Min Max

GDP 18.7 29.6 46.6 50.4 70.3 79.3 1.7 2.5
Consumption 27.1 43.9 23.1 27.6 59.9 69.7 4.4 5.9
Investment 21.9 26.8 51.6 54.9 64.6 68.3 1.4 5.1
Unemployment 26.9 31.3 44.1 52.3 68.7 74.8 11.0 13.2
Hours Worked 20.5 29.2 25.6 29.0 55.5 60.1 4.8 7.0
Inflation 34.4 36.9 35.5 48.8 12.3 15.5 53.1 69.9
Labor Productivity 17.3 23.0 23.9 32.8 58.3 68.1 2.3 5.1
TFP 13.6 20.7 4.4 6.8 64.3 70.1 0.6 1.6
FFR 10.7 18.3 51.8 64.5 0.9 2.1 71.8 85.0
Baa-GS10 12.9 14.4 48.2 74.8 33.9 49.2 17.9 36.9
S&P500 21.8 36.2 20.9 34.3 23.1 31.0 0.3 0.7
JLN Uncertainty 3M 39.8 46.7 32.4 43.1 47.1 57.9 42.5 32.8
BC5Y 46.8 71.2 10.2 18.1 71.5 77.5 8.5 11.9

Table C.4: Percentage of variance explained by the permanet shock and the
transitory shock (Identification II) for a few selected variables, by frequency
band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles
with periodicity between 18 months and 8 years. Long run frequency band: [0 ≤
ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with quarterly
data.
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Figures

Figure C.1: Identification II: Spectral Decomposition for a few selected vari-
ables, frequency by frequency. The figure reports the percentage of explained
variance. Blue line: Contribution of the permanent shock; Red line: Contribu-
tion of the transitory shock; Yellow line: sum. Pink shadowed area: Long run
frequencies (>80 quarters); Lilac shadowed area: Business Cycle frequencies
(6-32 quarters).
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Figure C.2: Identification II: Point estimates of the Impulse Response Functions
of the Permanent Shock. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively.
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Figure C.3: Identification II: Point estimates of the Impulse Response Functions
of the Transitory Shock. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively.
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Figure C.4: Identification II: Impulse response functions of the Permanent
shock, according to different lags order: p = [1 2 3 4]. Baseline specification:
p = 1. The dark gray and light gray areas are the 68% and 90% confidence
bands, respectively. Black line and confidence bands: baseline specification.
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Figure C.5: Identification II: Impulse response functions of the Transitory
shock, according to different lags order: p = [1 2 3 4]. Baseline specification:
p = 1. The dark gray and light gray areas are the 68% and 90% confidence
bands, respectively. Black line and confidence bands: baseline specification.
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Figure C.6: Identification II: Impulse response functions of the Permanent
shock, according to different number of static factors: r = [11 6 9 13 15].
Baseline specification: r = 11. The dark gray and light gray areas are the
68% and 90% confidence bands, respectively. Black line and confidence bands:
baseline specification.
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Figure C.7: Identification II: Impulse response functions of the Transitory
shock, according to different number of static factors: r = [11 6 9 13 15].
Baseline specification: r = 11. The dark gray and light gray areas are the
68% and 90% confidence bands, respectively. Black line and confidence bands:
baseline specification.
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