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Abstract

Poverty and mortality are the two major sources of well-being losses.

We propose new summary indicators of well-being that account for mor-

tality while being (i) conceptually sound, (ii) easily interpretable and

implementable and (iii) sensitive to the distribution of well-being. Our

main indicator is the poverty-adjusted life expectancy index. Follow-

ing the expected life-cycle utility approach a la Harsanyi, it is based on

a single normative parameter that transparently captures the trade-o�

between poverty and mortality. Empirically, we compare countries over

time and focus on these situations in which mortality is in con�ict with

poverty. Once we assume that being poor is (at least weakly) preferable

to being dead, we �nd that about a third of these con�icting comparisons

can be unambiguously ranked by the poverty-adjusted life expectancy

index. Finally, this indicator naturally de�nes a new and simple index

of multidimensional poverty, the expected deprivation index, which also

accounts for unequal lifespans.
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1 Introduction

Do people have a better life in a society compared to another? Answering

this fundamental question in a simple, meaningful and unambiguous manner

is not obvious, as well-being is multidimensional. Following a long tradition

in economics, at least two fundamental dimensions of welfare need to be taken

into account: the quality and the quantity of life (Sen, 1998; Deaton, 2013).

However, accounting for the quantity of life (or mortality) is challenging. Are

societies in which people live short but comfortable lives better o� than those

in which people live longer but under worse conditions?

Mainstream methods for answering this simple question fail to satisfy si-

multaneously the three following requirements: (i) they should provide an

answer which is easy to communicate and interpret, (ii) they should be easily

and widely implementable and (iii) their aggregation of the quality and the

quantity of life should be related to preferences. In this respect, social welfare

functions have both strong theoretical foundations and allow in principle for a

full ranking of societies. However, their technicality implies that they do not

lend themselves to straightforward interpretations and, by lack of appropriate

data, cannot be implemented in many societies. Their use tends therefore to

remain essentially limited to academic circles. Simpler summary measures,

such as the GDP per capita, dominate the public debates in spite of their in-

trinsic weaknesses. In particular, GDP per capita ignores mortality and does

not capture the distribution of consumption across individuals. Another strat-

egy is to compare societies using a dashboard of dimension-speci�c indicators

(say poverty rate and life expectancy), which is certainly useful but remains

limited to certain applications. Indeed, a dashboard can only yield a partial

ranking of societies and thus cannot address the question above. Moreover, a

list of diverging indicators is hard to communicate and use in public debates,

unlike a single yardstick of well being. Finally, one can compare societies by

aggregating all relevant dimensions into a single indicator, such as the Hu-

man Development Index (HDI) (UNDP, 1990), the Global Multidimensional

Poverty Index (Alkire et al., 2015) or the Human Poverty Index (Watkins,

2006). By construction, these indicators allow for a full ranking but they are

not all easily interpretable. More importantly, they either ignore the direct

impact that mortality has on the quantity of life, or they aggregate the quality

and the quantity of life in a way which is unrelated to preferences (Ravallion,

2011a,b; Ghislandi et al., 2019).

In this paper, we propose new summary indicators of well-being that ac-

count for the impact that mortality has on the quantity of life while striking a

good balance between (i) aggregating in a theoretically sound way mortality

with well-being in a given period, (ii) being easily interpretable, (iii) being

readily implementable given the available data and (iv) accounting for the

distribution of well-being. Furthermore, under a mild normative assumption,
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we show that some of their comparisons are robust to all plausible values

of their normative weight even when mortality is in con�ict with the other

dimensions of well-being.

Mortality is a particular dimension of well-being as it a�ects the quantity of

life, whereas other dimensions of (instantaneous) well-being such as income or

health determine the quality of life.1 Mortality requires a speci�c aggregation

based on the trade-o�s individuals make between the quality and the quantity

of their lives, i.e., a life-cycle perspective. In this respect, a key feature of

mortality is that it is mutually exclusive of other dimensions of well-being. A

dead person cannot simultaneously su�er (anymore) from other bad outcomes

a�ecting the quality of her life. As a result, a (risk-neutral) SWF can aggregate

separately the quantity and quality of life, before aggregating these two aspects

together.2

Our main indicator is normatively grounded on the expected life-cycle

utility, the measure of social welfare proposed by Harsanyi (1953). Following

Harsanyi, social welfare in a given period can be understood as the life-cycle

utility expected by a newborn when drawing at random a life that re�ects the

outcomes observed in that particular period.

Our main simpli�cation is to consider a binary quality of life: in any

period, an individual is either poor or non-poor.3 Following this approach,

our summary indicators aggregate welfare losses from two sources: poverty

reduces the quality of life while mortality reduces the quantity of life.

Considering a binary quality of life comes with obvious limitations, but

provides an easy to interpret indicator. Indeed, the period takes only two

values, one high when non-poor and one low when poor. Our main summary

index, the poverty-adjusted life expectancy, PALEθ, normalizes the expected

life-cycle utility when one expects, throughout her lifetime, to be confronted

by the poverty and mortality prevailing in the current period. This index

simply counts the number of years that a newborn expects to live but weighs

down the periods that she expects to live in poverty. Mathematically, our

index is obtained by multiplying life expectancy at birth by a factor one mi-

nus the fraction of poor, where the fraction of poor receives a lower weight.

This (normative) weight θ, which captures the trade-o� between poverty and

mortality, corresponds to the fraction of the period utility lost when poor.

Alternatively, 1/θ represents the number of years spent in poverty that cor-

1Although the direct impact of mortality is to shorten the lifespan of the deceased,
mortality also has an indirect impact on the quality of lives of the deceased's relative. We
focus here on the direct impact.

2In this sense, the mutual exclusivity of mortality and poverty implies that our main
indexes satisfy a form of �path independence� (Foster and Shneyerov, 2000).

3Clearly, we do not claim that our index is superior to Harsanyi's approach, but it is a
plausible measure of expected life-cycle utility when considering poverty as the main factor
reducing the quality of life. Also, the poverty status we consider here could also be a two-
statuses measure resulting from some aggregation of di�erent dimensions of the quality of
life.
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respond to the same welfare loss as one year of life lost to mortality. When

being poor has no utility cost, θ takes the value zero and PALE0 corresponds

to life expectancy at birth. When being poor is as bad as losing one year of

life, θ = 1 and our index PALE1 then corresponds to the poverty-free life

expectancy at birth (Riumallo-Herl et al., 2018), i.e. the number of years of

life a newborn expects to live out of poverty.

As we make clear later, our index is closely related to the concept of

life expectancy, and its interpretation is based on similar assumptions. Our

index thus corresponds to the �expectation� whereby a newborn assumes to

experience throughout her lifespan the poverty and mortality observed in the

current period. It is therefore not a forecast or a record of the actual average

life-cycle utility of the cohort born in a particular period. Unless a society

is stationary, it cannot be interpreted as the expected life-cycle utility of

a newborn. (However, as discussed in Section 2.3, stationarity is, from a

normative point of view, a reasonable assumption to make in our context.)

Some pairs of societies cannot be compared using a dashboard because

poverty and mortality evolve in opposite directions. This happens for instance

if one society has less poverty but higher mortality than the other. For part of

these comparisons, the assessment given by PALEθ will depend on the value

of θ. However, for other comparisons, PALEθ provides a robust assessment

for all values of θ between zero and 1, that is as long as being poor is not

worse than being dead. Under this mild assumption (discussed in Section 2.1),

PALEθ improves on the partial ranking associated to a dashboard for all

plausible values of its normative weight. (As we show below, a necessary and

su�cient condition for such unambiguous ranking is that the index makes the

same comparison for the two extreme values for its weight.)

Consider for instance two societies A and B such that B has a larger

fraction of poor � 15% instead of 5%� but a higher life expectancy at birth �

68 years instead of 60 years. These di�erences are such that one may expect

to spend more years in poverty in B than in A (10 instead of 3 years), but also

more years out of poverty in B than in A (58 instead of 57 years). If being

poor is not worse than being dead, life-cycle utility is larger in B, regardless

of the weight given to years in poverty, because individuals on average live

more years of both types in B. Hence, our index unambiguously ranks A and

B, which a dashboard approach is unable to do, and our index increases the

set of pairs of societies that can be unambiguously compared. As long as the

larger number of years spent in poverty is more than compensated by a longer

life expectancy, PALEθ and, therefore, welfare can only increase.

Empirically, we combine data sets provided by the World Bank data on

income poverty (PovCalNet) and an internationally comparable data set on

mortality data (the Global Burden of Disease) from 1990 to 2019. Again

assuming that one year spent in poverty is (weakly) preferred to one year
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of life lost, we show that PALEθ is able to solve a nontrivial number of

ambiguous comparisons across time or between countries for which the two

dimensions are con�icting. For instance, when comparing all possible pair

of countries in each year, across all years, there are about 21 percent of such

comparisons for which mortality and poverty move in opposite directions. Out

of these ambiguous cases, PALEθ is able to solve 35 percent of them. We also

investigate the evolution of each country in the data set, by comparing the

situation in a particular year to that prevailing �ve years later. We �nd that,

out of 27 percent of con�icting comparisons, PALEθ is able to solve 38 percent

of them.

Finally, we show how PALEθ generalizes to account for the distribution

of well-being. In its simplest form, PALEθ only accounts for the distribu-

tion of quality of life (through poverty). We thus propose a generalization of

PALEθ that also accounts for the distribution of lifespans. More precisely, we

de�ne a new indicator of multidimensional poverty that also captures depri-

vation in the quantity of life, which requires the introduction of a normative

age threshold â below which one is considered as deprived, i.e., a de�nition

of premature mortality. This new index, which we call the expected depriva-

tion index (EDθâ), is a weighted sum of the number of years that a newborn

expects to lose prematurely and the number of years she expects to spend

in poverty, using the same weight as in PALEθ. (Again, these expectations

imply that a newborn assumes to be exposed throughout her lifespan to the

poverty and mortality observed in the current period.) We show that this

index enjoys the same advantages as PALEθ and can usefully complement

PALEθ if one is concerned with unequal lifespans. In particular, it also in-

creases the set of pairs that can be unambiguously compared when considering

each dimension separately. In its spirit, EDθâ is similar to the Generated De-

privation index recently proposed by Baland et al. (2021), and they are in fact

identical in stationary societies. We show that, in non stationary societies,

EDθâ is more reactive to contemporaneous policies (e.g. in the case of per-

manent mortality shocks), simpler to interpret and less data demanding than

Generated Deprivation. However, neither PALEθ nor EDθâ account for the

unequal distribution of lifecycle utilities implied when the same individuals

cumulate poverty and premature mortality. We discuss in the conclusion how

to modify our indicators in order to account for such cumulation as well as

the larger data requirements.

The poverty-adjusted life expectancy is reminiscent of several indicators

proposed in health economics, like the quality-adjusted life expectancy (QALE)

or the quality-adjusted life year (QALY).4 Following Sullivan (1971), these two

indicators account for the quality and quantity of life, by weighting down the

4See for instance Whitehead and Ali (2010) for an economic interpretation of QALYs, or
Heijink et al. (2011); Jia et al. (2011) for applications of the QALE index to comparisons
of health outcomes across populations.
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quantity of life for periods with low quality. We show that they directly follow

from the expected life-cycle utility approach in stationary societies. Our in-

dex accounts for a major dimension of well-being other than health, which is

poverty. Also, PALEθ takes advantage of the existence of the well-established

concept of a poverty threshold, which splits the population into poor and

non-poor, thereby transforming the quality of life into a binary variable. This

transformation is key to the simple interpretation of our index. There is, to

the best of our knowledge, no immediate equivalent of such threshold in health

economics.

There also exist other indicators of a society's well-being which are con-

ceptually superior to the one we propose. Yet, these indicators either rely on

techniques that are not mature yet, require many arbitrary assumptions or

cannot be readily applied on a large scale using existing data. For instance,

Becker et al. (2005) and Jones and Klenow (2016) follow more sophisticated

versions of Harsanyi's expected life-cycle utility approach by imposing a spe-

ci�c structure on preferences. Alternatively, Fleurbaey and Tadenuma (2014),

in the case of well-being, or Decancq et al. (2019), for poverty, propose to ag-

gregate di�erent dimensions using individual preferences.5 A large literature

also discusses the weights to be given to di�erent dimensions of well-being

(Benjamin et al., 2014; Decancq and Lugo, 2013). In this respect, our indica-

tors are much simpler to apply and interpret, which makes them better suited

in order to inform public debates outside academic circles.

The remainder of the paper is organized as follows. In Section 2, we

present the theory supporting our PALEθ index and provide some empirical

implications. In Section 3, we present the EDθâ index, which we compare to

PALEθ and Generated Deprivation. Section 4 concludes.

2 A transparent index of welfare

Our objective is to propose a simple indicator to measure and compare the

level of human development of di�erent societies in a given period. In partic-

ular, we would like this indicator to aggregate two major sources of welfare

losses: mortality, which reduces the quantity of life, and poverty, which re-

duces the quality of life. This aggregation should follow from the way individ-

uals aggregate these losses and therefore be related to life-cycle preferences.

The rationality requirements of decision theory provide a structure on

admissible life-cycle preferences. Rational preferences over streams of con-

sumption have been axiomatized by Koopmans (1960) and later generalized

by Bleichrodt et al. (2008). Such preferences must be represented by a dis-

counted utility function, which aggregates these streams as a discounted sum

5The limits of these di�erent approaches are reviewed in Fleurbaey (2009).
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of period utilities

U =
d∑

a=0

βau(ca) (1)

where d ∈ N is the age at death, β ∈ [0, 1] is the discount factor, ca is

consumption at age a and u is the period utility function.

Building on this representation of preferences, Harsanyi (1953) proposes

to measure the welfare of a society by aggregating life-cycle utilities over the

whole society. According to Harsanyi (1953), behind the veil of ignorance,

each newborn faces a lottery whereby she ignores whether and when she will

be poor and for how long she will live. When evaluating her life-cycle utility,

she considers the life of a randomly drawn individual in that society. Following

the formulation of Jones and Klenow (2016), her expected life-cycle utility is

given by

EU = E
a∗−1∑
a=0

βau(ca)V (a), (2)

where V (a) is the (unconditional) probability that the newborn survives to

age a, a∗ is the maximal lifespan one can reach and the expectation operator

E applies to the uncertainty with respect to consumption ca. The period

utility when being dead is normalized to zero. As a result, mortality is valued

through its opportunity cost: death reduces the number of periods during

which a newborn expects to consume.

Although this approach has solid theoretical foundations, it does not seem

that the indicator de�ned by Eq. (2) could be directly used as a summary

measure of human development. Indeed, this indicator requires the choice

of a particular expression for the period utility function u(). Moreover, the

trade-o� between the quantity and quality of life that underlies this indicator

depends on the de�nition of u and remains relatively obscure. And, �nally,

this indicator, being expressed in utility-units, does not lend itself to a direct

interpretation.

2.1 The PALEθ index

In order to improve on these issues, we consider two assumptions that sim-

plify Eq. (2) into a simple index of human development. Our �rst simplifying

assumption is to ignore discounting, i.e. β = 1. We argue that such assump-

tion is necessary in order to assign equal weights to all individuals, regardless

of their age. Indeed, Eq. (2) equates a society's welfare in a given period

to the expected life-cycle utility of individuals born in that period. Clearly,

the expected life-cycle utility of newborns is related to the society's welfare

in a given period only when one assumes that their expected lives re�ect at

each age the outcomes observed for individuals of that age during the period
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considered. Discounting with a factor less than one would give less weight to

the outcomes of older individuals.

Our second simplifying assumption is to transform consumption into a

binary variable, i.e., ca can be either being non-poor (NP ) or being poor (P ).

This is obviously a very strong assumption because we ignore the impact on

period utility of consumption di�erences within these two categories.

However, it captures the distribution of consumption in a way that is easy

to interpret. As we show below, consumption in the period can then simply

be measured by the fraction of poor individuals. Admittedly, this is a crude

way of capturing the distribution of consumption, but its simplicity largely

explains its popularity.6 We view this assumption to be the �conceptual�

price to pay in order to account for the distribution of consumption without

sacri�cing too much in terms of interpretation.7

Taken jointly, these two assumptions require the use of a simple indicator,

which we call the poverty-adjusted life expectancy (PALEθ). Our second

assumption implies Eu(ca) = π(a)uP + (1− π(a))uNP where uNP = u(NP ),

uP = u(P ) and π(a) is the probability to be poor at age a conditional on being

alive at age a. As, by de�nition, life expectancy at birth is LE =
∑a∗−1

a=0 V (a),

we can rewrite Eq. (2) as

EU = uNPLE − (uNP − uP )
a∗−1∑
a=0

V (a)π(a). (3)

In Section 2.3, we show that these two assumptions are su�cient to de-

�ne PALEθ. We now provide a simple illustration showing how these two

assumptions naturally lead to our index under a third assumption of �inde-

pendence�. Under the latter assumption, the conditional probability of being

poor at each age a is a constant equal to the fraction of poor in the popu-

lation, i.e., π(a) = H for all a ∈ {0, . . . , a∗ − 1} where H is the head-count

ratio. (Clearly, this independence assumption does not hold when mortality

is selective, for instance when the poor die younger than the non-poor. We

discuss this limitation in more details in Section 2.3.) We can then normalize

Eq. (3) as
EU

uNP
= LE

(
1− uNP − uP

uNP︸ ︷︷ ︸
θ

H

)
.

This last expression de�nes the poverty-adjusted life expectancy index:

PALEθ = LE(1− θH). (4)

6The headcount ratio remains a crude indicator of poverty with well-known limitations
(?).

7This assumption is also used by Decerf et al. (2021) in a study of the impact of the
Covid-19 pandemic on poverty and mortality. They compare the relative sizes of poverty
and mortality shocks, whereas we derive here an indicator of well-being.

8



The monotonicity of the period utility function implies that uNP ≥ uP . More-

over, if we assume that being poor is not worse than being dead (see below),

we have uP ≥ 0. The parameter θ, which captures the fraction of utility lost

when a non-poor individual becomes poor in a given period, is therefore such

that θ ∈ [0, 1]. Importantly, this parameter directly captures the trade-o�

between poverty and mortality. Indeed, as the period utility of being dead uD

is normalized to zero, we have 1
θ = uNP−uD

uNP−uP
. Hence, the ratio 1

θ measures, for

a non-poor individual, the number of periods in poverty that are equivalent

to being dead for one period.

We argue that it is particularly relevant for our purpose to assume that

being poor is not worse than being dead. Clearly, one can always come up

with particularly extreme situations of deprivation that most people would

deem worse than being dead. However, we think that these situations are

quantitatively insigni�cant when assessing well-being in a population, in par-

ticular because suicide remains a potential option for those individuals. More

generally, we believe that this assumption would command near unanimous

support for typical poverty standards.

PALEθ has a simple expression: its �rst factor measures life expectancy,

whereas its second factor captures the fall in the quality of life due to poverty.

This reduction depends on the value assigned to the parameter θ. When θ = 0,

becoming poor does not a�ect the quality of life and PALE0 corresponds to

life expectancy at birth. When θ = 1, being poor is equivalent to being dead

and PALE1 corresponds to the Poverty Free Life Expectancy (PFLE), an

indicator proposed by Riumallo-Herl et al. (2018),which measures the number

of years that an individual expects to live free from poverty.8 For other values

for θ, PALEθ corresponds to the number of years of life free from poverty

that provides the same life-cycle utility as that expected by a newborn.

PALEθ aggregates a measure of mortality, LE, with a measure of poverty,

H, in a way consistent with life-cycle preferences. This is a progress over most

composite indices, but PALEθ also relies on a normative parameter, θ, that

weights these two dimensions. Thus, one may wonder whether aggregating

the two component indices is very useful given that there is a priori no con-

sensus on the value that this parameter should take. Indeed, the welfare

comparison of two societies based on PALEθ may depend on the particular

value assigned to the parameter θ. We show that a nontrivial part of these

comparisons does not depend on the parameter value even for some pairs not

related by domination. In other words, there exist pairs of societies such that

8Riumallo-Herl et al. (2018) do not relate their PFLE index to a formal notion of social
welfare. As our theory makes clear, the PFLE index re�ects an extreme view on the trade-
o� between poverty and mortality, namely that being poor is as bad as being dead. One
key di�erence between our work and Riumallo-Herl et al. (2018) is that, through our formal
framework, we provide a sound theoretical basis for the aggregation process, even when
mortality is selective, solve a number of �con�icting� situations and derive a parallel index
of multidimensional deprivation.
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one is poorer but the other has a higher mortality rate, that can be ranked

by PALEθ unambiguously, in the sense that this comparison holds for all ad-

missible values of θ. Hence, the structure of expected life-cycle utility allows

to extend comparisons beyond those associated to domination independently

of the particular value assigned to θ.

We illustrate this property in Figure 1. Without aggregation, domination

alone allows comparing society A with the northwest quadrant (where societies

have more poverty and more mortality) and the southeast quadrant (where

societies have less poverty and less mortality). For any value of θ, we can draw

the iso-PALEθ curves passing through A. The iso-PALE0 curve (associated to

θ = 0) is a vertical line since poverty has no welfare costs and life expectancy

is the sole determinant of welfare. Note however that the iso-PALE1 curve

(associated to θ = 1) is not a horizontal line. This de�nes two additional

areas for which welfare can be unambiguously compared with that of society

A. The iso-PALEθ curves associated to intermediate values of θ ∈ [0, 1] are

indeed all located in the area between the iso-PALE0 curve and the iso-PALE1

curve. The area in the NE quadrant below the iso-PALE1 curve yields an

unambiguously higher welfare than A, even though these societies have a

higher poverty than A. The area in the SW quadrant above the iso-PALE1

yields an unambiguously lower welfare than A, even though these societies

have a lower poverty than A. The size of these new areas depends on the

marginal rate of substitution of PALE1 at A. For society A and PALE1,

this marginal rate of substitution is given by LE(A)(1−H(A))
(LE(A))2

. If LE(A) = 70

and H(A) = 20, this marginal rate of substitution is equal to 0.011, meaning

that one additional year of life is exactly compensated by an increase in the

head-count ratio H of 1.1% percentage points.

LE
0

LE(A)

H(A)
bB

A

θ = 1

θ = 0

0 < θ < 1

Dominates A
Smaller EU
than A

Larger EU
than A

b

Dominated by A

H

1

Figure 1: A simpli�ed version of Harsanyi's expected life-cycle utility ap-
proach increases unambiguous comparisons.
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We now provide some intuition for these additional unambiguous com-

parisons. They follow from (i) the fact that expected life-cycle utility sums

period utilities and (ii) the assumption that a period in poverty is not worse

than a period lost (i.e. uP ≥ uD). For simplicity let us compare the life-cycle

utility of two individuals iA and iB, who respectively live in societies A and

B depicted in Figure 1. Assume that the larger poverty and smaller mortality

of society B is such that the life of iB has more periods in poverty than that

of iA, and the life of iB also has more periods out of poverty than that of iA.

As both types of period are positively valued (ii), the value selected for the

weight does not matter anymore. Indeed, iB has a larger expected life-cycle

utility because her life has more periods in each consumption status than the

life of iA. In other words, the larger poverty rates in society B is more than

compensated by a longer life expectancy, so that an individual in society B

always expect to live more years out of poverty than in society A. Conversely,

in the SW quadrant above the iso-PALE1, societies exhibit lower poverty rates

but the fall in life expectancy in these societies is so large compared to society

A that, despite the redution in poverty rates, an individual expects to live

fewer years out of poverty and society A is unambiguously preferred.

As an illustration, Table 1 below reports the situation of Pakistan and

Bangladesh in 2019. Note that Life Expectancy can trivially be decomposed

into Poverty Expectancy (LE*H) and PALE1 (LE*(1-H)) which corresponds

to Poverty Fee Life Expectancy. Pakistan has a lower headcount ratio than

Bangladesh, but life expectancy is also lower in Pakistan. Therefore, it is

a priori di�cult to rank those two societies. Assuming that poverty and

mortality remain unchanged, an individual born in Bangladesh can expect

to spend 4.9 years of his life in poverty and 68.8 years out of poverty. In

Pakistan, he can expect 2.8 years in poverty and 62.1 years out of poverty.

Hence, a newborn in Bangladesh can not only expect to spend more years in

poverty, but also more years out of poverty since the longer life expectancy

there more than compensates for the higher poverty rate. As a result, PALEθ

ranks Bangladesh above Pakistan for all possible values of θ.

Table 1: An example of unambiguous comparison: Pakistan and Bangladesh
in 2019.

Headcount Life Poverty Poverty Free
ratio Expectancy Expectancy Life Expectancy

(LE ∗H) LE ∗ (1−H) = PALE1

Pakistan 4.3% 64.8 2.8 62.1
Bangladesh 6.7% 73.6 4.9 68.8

Ignoring mortality leads to correct welfare comparisons whenever there is

domination, meaning that H and LE yield the same ranking. These cases

correspond to the NW and SE quadrants in Figure 1. (Clearly, when H yield

11



the same ranking as LE, PALE0 automatically yields the same ranking as

PALE1.) In the absence of domination (NE and SW quadrants in Figure 1),

ignoring mortality may lead to erroneous welfare comparisons. First there are

cases such that ignoring mortality always lead to unambiguously wrong com-

parisons, independently of the value assigned to the normative parameter θ.

In Figure 1, these cases correspond to the areas in the NE and SW quadrants

that are between the iso-PALE1 curve and the dashed horizontal line. For

other cases, disregarding mortality leads to correct or incorrect comparisons

depending on the value of θ. This occurs when PALE0 and PALE1 yield

opposite rankings, which corresponds in Figure 1 to the areas between the

iso-PALE0 and iso-PALE1 curves. Proposition 1 provides the conditions un-

der which ignoring mortality, i.e., comparing two societies based on H, always

leads to wrong welfare comparisons.

Proposition 1. (Unambiguous comparisons of welfare)

(i) For any two societies A and B, PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1]

if and only if

PALE0(A) < PALE0(B) and PALE1(A) < PALE1(B) (Condition C1)

(ii) There exist societies A and B for which PALEθ(A) < PALEθ(B) for all

θ ∈ [0, 1] even though H(A) < H(B). These societies are such that H(A) <

H(B) and LE(A) < LE(B).

Proof. See Appendix 5.1.

2.2 Applications of PALEθ

The data on population and mortality by country, age group and year comes

from the Global Burden of Disease database (2019). Comparable informa-

tion across countries and over time is available for the 1990-2019 period and

is, to our knowledge, the most comprehensive mortality data available for

international comparison.9 Data on alive deprivation come from the Povcal-

Net website which provides internationally comparable estimates of income

deprivation level. This data set is based on income and consumption data

from representative surveys carried out in low- and middle-income countries

between 1981 and 2019.10 In our empirical application, we follow the World

9To construct this database, population and mortality data are systematically recorded
across countries and time from various data sources (o�cial vital statistics data, fertility
history data as well as data sources compiling deaths from catastrophic events). These pri-
mary data are then converted into data in �ve years age groups, at year and country level
using various interpolations and inference methods (see Global Burden of Disease Collabo-
rative Network (2020) for more information on the GBD data construction). Following the
literature, we only consider the point estimate in the number of deaths (see also Hoyland
et al. (2012) for a critique of this approach).

10The website address is http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx.
Each country's income deprivation level in PovCalNet is computed on a three year basis,
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Bank's de�nition of extreme income deprivation, corresponding to the $1.9 a

day threshold (Ferreira et al., 2016). We merged the two databases at the

year and country level. Since the Global Burden of the Disease data are only

available since 1990, we focus on the 1990-2019 period for a total of 120 low-

and middle-income countries.

We �rst present in Figure 2 the evolution of life expectancy, the headcount

ratio and PALEθ for these countries during the period 1990-2019. When

θ = 1, life expectancy can be trivially decomposed into poverty expectancy

and poverty adjusted life expectancy: the di�erence between LE and PALE1

is the number of years a newborn expects to live in poverty. (For θ < 1, the

corresponding PALEθ curves all lie between life expectancy and the PALE1

curve.) Throughout the period, life expectancy increased from 62.3 in 1990 to

71.1 in 2019 but the decrease in poverty expectancy is even more spectacular,

from 27.9 years in 1990 down to 6.9 years in 2019. This decrease in poverty

combined with an increase in life expectancy resulted in a large increase in

PALE1, from 34.4 in 1990 to 64.2 years in 2019.

Figure 2: Evolution of PALE1 and Life Expectancy, 1990-2019
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Reading: in 1990, life expectancy was of 62 years, among which 34 are ex-
pected to be spent out of poverty. The headcount ratio was 45%.

We now attempt to quantify the value added of the PALEθ index as com-

and yearly data are obtained by linear interpolation. In order to keep the panel balanced,
we also extrapolate the data and keep countries for which only 5 years or less of data have
been extrapolated. A more detailed description of the data source is given in Chen and
Ravallion (2013).
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pared to a menu of two separate indicators (LE and H). To do this, we quantify

the number of situations for which the two indicators are �in con�ict� and the

percentage of these con�icting' situations that are unambiguously ranked by

PALEθ. We again assume that the weight θ is equal to one, which corre-

sponds to the most conservative approach consistent with the idea that being

poor is weakly preferable to being dead. (Choosing a lower maximal value for

θ, by decreasing the maximal weight given to the poverty component, would

mechanically increase the number of situations that we can unambiguously

compare with PALEθ.)

We �rst provide an empirical version of Figure 1 above by comparing the

situations of di�erent countries in 1990. The resulting diagram is presented in

Figure 3 below. The point of reference (point A in Figure 1) chosen for this

diagram is de�ned as a hypothetical reference country with a median head

count ratio and a median life expectancy at birth, which corresponds roughly

to the situation of Vanuatu in 1990. The iso-PALE1 curve is represented by

the dotted curve. All countries below this iso-PALE1 curve have a larger

PALE1 value than the reference country. Among these, some countries, lo-

cated in the southeast quadrant, are obviously better o�, with a larger life

expectancy and lower poverty levels. Others, located in the northwest quad-

rant, are unambiguously worse o�. In the other two quadrants, there is a

signi�cant number of countries for which the evolution of life expectancy and

poverty are con�icting as they go in opposite directions. Among these, those

represented by shaded triangles correspond to situations in which the compari-

son by PALEθ is unambiguous. In the northeast quadrant, PALEθ is always

larger, as higher poverty is more than compensated for by lower mortality.

In the southwest quadrant, PALEθ is unambiguously smaller, as the fall in

poverty is not large enough to compensate for the higher mortality. Countries

represented by a small dots are countries we cannot rank unambiguously, as

this ranking depends on the particular value assigned to θ.

Figure 4 replicates this exercise by comparing all pairs of countries for each

year between 1990 and 2019, and reports, among all these comparisons, the

proportion of cases which are ambiguous, and the share of these ambiguous

cases for which PALEθ provides an unambiguous answer. Out of 23 percent of

ambiguous comparisons, PALEθ is able to solve at least 37 percent of them.

The share of ambiguous comparisons that our index unambiguously solves

strongly increases over time due to the falling incidence of absolute poverty

in many countries.11

In Figure 5, we provide PALEθ comparisons within countries between

11The falling incidence of absolute poverty implies that di�erences in H across countries
in a given year become, on average, smaller over time. This explains why the share of
ambiguous comparisons that our index unambiguously solves increases over time. This
is easy to see when assuming that the di�erences in LE across countries in a given year
remain constant over time. Indeed, a smaller di�erence in H can be �over-compensated� by
a smaller di�erence in LE.
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Figure 3: Resolution of comparisons to a median country in 1990
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(worse) o� than the median country. Countries located in the other quad-
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median country's life expectancy can be unambiguously compared to the me-
dian country with PALE.
Note: for the sake of presentation, we only report in the �gure observations
for which life expectancy is larger than 40.

present and past situations. More precisely, for each year, we compare the

situation in period t to the situation prevailing in the same country �ve years

earlier. Given that each country's situation changed over time, we need to

adapt our graphical presentation to represent the set of situations for which

PALEθ stays constant over time. We again conservatively assume θ equal to

one.

By de�nition, PALE1 = LE(1 − H), and thus PALE1 increases if and

only if dLE/LE > d(1 − H)/(1 − H). This simple expression allows us to

contruct a �gure in the (dLE/LE, d(1−H)/(1−H)) plan, in which the rate

of growth of LE is measured on the horizontal axis, and the rate of growth

of (1−H), which we refer to as the �Non-poverty Headcount�, on the vertical

axis.12 We de�ne the �zero-growth PALE1� curve, which represents all the

combinations of the two growth rates such that PALE1 remains unchanged:

12For the sake of the graphical presentation, we excluded from the graph measures that
could be considered as outliers (growth in nonpoverty headcount larger or smaller than 100
percent, and growth rates in life expectancy larger than 90 percent or smaller than -40
percent). These are however adequately accounted for in the following graph.
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Figure 4: Evolution of the resolution of ambiguous inter-country compar-
isons, 1990-2019
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Reading: in 1990, countries had on average 23% of ambiguous comparisons,
out of which at least 26% were solved by the use of PALE.

dLE/LE = d(1−H)/(1−H) . Above this curve, PALE1 increases and below

this curve PALE1 decreases.

The situations of interest are located in the northwest and in southeast

quadrants in which the two indicators move in opposite directions. In these

quadrants, there are two regions, one in the triangle below the curve in the

northwest quadrant, and one in the triangle above the curve in the southeast

quadrant for which PALEθ is able to provide a clear welfare comparison. In

these two areas, the shaded triangles represent situations in which, in a par-

ticular country, the situation either strictly improved (in the southeast quad-

rant) or deteriorated (in the northwest quadrant) compared to the situation

prevailing in the same country �ve years earlier.13

Finally, Figure 6 reports, using the same comparisons, the evolution over

time of the share of ambiguous situations in which life expectancy and poverty

moved in opposite directions in one country between t and t+5, and the share

of these ambiguous situations for which the most conservative de�nition of

PALEθ provides a clear ranking. Overall, the share of ambiguous comparisons

declines from about 30 to 20 percent over the period considered (with an

13Again, if being dead is strictly worse than being poor, so that θ is always strictly lower
than one, more situations can be strictly signed. They are located in the triangle above
the �zero-growth PALE1� in the NW quadrant, and in the triangle below the �zero-growth
PALE1� in the SE quadrant.
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Figure 5: Resolution of ambiguous countries' evolutions, 1990-2019
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the zero growth-PALE curve and the zero non poverty headcount growth line
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overall average of 27 percent). Out of these, we can solve an average of 38

percent of welfare comparisons, from about 20 in 1990 to more than 50 percent

in the last years considered.

2.3 PALEθ beyond the independence case

We have shown in Section 2.1 that PALEθ corresponds to a simpli�ed version

of expected life-cycle utility (Eq. (3)) under the assumption of independence.

However, independence is unlikely in practice: mortality is selective as the

poor die younger than the non-poor (Chetty et al., 2016). Canudas-Romo

(2018) points to this limitation when criticizing the PFLE index of Riumallo-

Herl et al. (2018), which corresponds to PALE1. This may cast some doubts

on whether PALEθ is a valid measure of the welfare losses su�ered in a given

period.

In this section, we show that, without the independence assumption,

PALEθ still corresponds to expected life-cycle utility as expressed in Eq.

(3) in any stationary society. We then argue that stationarity is a natural

normative assumption to make when aggregating welfare losses coming from

the poverty and mortality observed in a given period. This result thus shows
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Figure 6: Evolution of the resolution of ambiguous countries' evolutions,
1990-2019
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Reading: in the 1995, 35% of countries' evolutions was ambiguous. Among
these, 29% can be assessed with PALE.

that independence is not a necessary condition for PALEθ to correspond to

expected life-cycle utility as expressed in Eq. (3).

The particularity of a stationary society is that all outcomes observed in

one period are replicated in the following period. In our setting, a society

is stationary if natality, mortality and poverty are constant over time. As a

result, in a stationary society, one can perfectly infer his expected life-cycle

utility from the mortality and poverty prevailing at the time of his birth.

PALEθ is then a simple normalization of his expected life-cycle utility, even

when the independence assumption does not hold.14

Proposition 2 (Correspondence between Harsanyi and PALEθ).

For any stationary society, PALEθ =
EU
uNP

.

Proof. A formal statement and proof is provided in Appendix 5.2.

Clearly, in practice, populations are not stationary and we cannot in gen-

eral interpret PALEθ as the expected life-cycle utility of a newborn. Indeed,

the poverty and mortality observed at birth might not be good predictors for

the future, in particular as mortality and mortality decline over time with

14We discuss in the conclusion how to adapt PALEθ if the social planner is not indi�erent
to the fact that some individuals cumulate poverty and early mortality, which typically
happens when mortality is selective. Harsanyi's social welfare as de�ned in Eq. (2) is
indi�erent to such cumulation.
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medical progress or economic growth. Therefore, PALEθ should not in gen-

eral be interpreted as a projection or a forecast of the average life-cycle utility

that the cohort of individuals born in the period will enjoy during their lives.

This being said, the validity of PALEθ as an indicator of a society's welfare in

period t does not rely on whether this indicator correctly forecasts the future.

Our objective is to aggregate the welfare losses observed in period t using a

lifecycle utility approach. This aggregation should not depend on the future

evolutions of poverty and mortality.15 Rather, the way to aggregate the wel-

fare losses in period t that is consistent with a lifecycle utility approach is to

take the perspective of a newborn who assumes that she is born in a station-

ary population, i.e. that the poverty and mortality observed at the time of

her birth remain unchanged during her whole life. Proposition 2 shows that

PALEθ is a normalization of the expected life-cycle utility of a newborn who

makes this assumption. In other words, even if we had a perfect forecast of the

future average lifecycle utility of individuals born in a non-stationary society,

PALEθ provides a much better picture of the welfare losses in the period of

their birth.

It is worth noting that the same point can be made about life expectancy

at birth (LE). In practice, this measure is derived from the mortality vector

observed in a given period. As a result, this index does not correspond to

the average lifespan of a cohort born in that period if the society is not sta-

tionary. However, life expectancy corresponds to the number of years of life

that a newborn expects to live when she assumes she is born in a stationary

society. The way it aggregates current mortality rates is widely accepted as a

meaningful measure of period mortality.

We emphasize that Eq. (3) is based on risk-neutrality. More precisely, it is

una�ected by the distribution across individuals of periods spent in poverty or

lost to premature mortality. A social planner who cares for unequal lifespans

will not evaluate the welfare of a society based on Eq. (3). In section 3,

we generalize PALEθ in a way that accounts for unequal lifespans. In the

conclusion, we consider the more general case of a social planner who cares

for unequal lifetime utilities. Unequal lifetime utilies may for instance follow

from the causal relationship between poverty and mortality, which implys that

some individuals cumulate poverty and premature mortality.

3 A transparent index of deprivation

The normative relevance of one's death may depend on the age at which death

occurs. This judgment is implicit in several mainstream multidimensional

15For instance, a transitory mortality or poverty shock � due to war or to another disaster
� does reduce current welfare, even if the country fully recovers in the next period. In
contrast, the transitory nature of the shock implies that its consequences a�ect essentially
the current generations. Its impact on the actual expected life-cycle utility of newborns can
therefore be negligible, or nil if the shock did not a�ect the mortality rates of the newborns.
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indicators. For instance, the global Multidimensional Poverty Indicator only

accounts for deaths below 18 years old (Alkire et al., 2015), or the Human

Poverty Index only accounts for deaths below 40 years old (Watkins, 2006).

The widespread focus on child mortality follows the same logic.

This shows that one normative limitation of PALEθ is that it does not

re�ect the distributional concern in both its dimensions. Although PALEθ

does focus on a low quality of life due to poverty, PALEθ does not particularly

focus on a low quantity of life. Indeed, an additional year of life given to an

old individual has the same impact on PALEθ as an additional year of life

given to a young one. It is true that, in general, lifespans are distributed

less unequally than consumption (Peltzman, 2009), which slightly tunes down

the need to capture unequal lifespans when monitoring human development.

Nevertheless, concerns around unequal lifespans justify the use of an indicator

that is sensitive to very low lifespans.

In this section, we extend our welfare index to measure deprivation in both

the quality and quantity of life. As stressed in the introduction, multidimen-

sional poverty indices capturing the quality and quantity of life are plagued by

the same limitations as welfare indices. They typically lack solid theoretical

foundations and black box opaque trade-o�s (Ravallion, 2011b).

Two properties of a measure of deprivation require us to adapt the PALEθ

index. First, we must de�ne deprivation in the quantity of life. Borrowing

from a long tradition focusing on absolute poverty, we consider as deprived

an individual who dies prematurely, i.e. who dies before reaching a minimal

age threshold â. Following Baland et al. (2021), we call �lifespan deprived� an

individual who dies before reaching this age threshold. Second, deprivation

is the opposite concept of welfare, i.e. deprivation decreases when welfare

increases. As we now show, under these two properties, PALEθ naturally

leads to a particular index of deprivation.

3.1 Expected deprivation: The EDθâ index

We call expected deprivation at birth (EDθâ) the generalization of index

PALEθ in a deprivation context. The main di�erence is that EDθâ is based

on an indicator of mortality di�erent from LE. Indeed, when focusing on de-

privation in the quantity of life, only the years of life lost before reaching the

minimal age threshold â matter. We therefore de�ne another indicator of mor-

tality, the lifespan gap expectancy, which measures the number of years that

a newborn expects to lose prematurely.16 Letting nt(a) denote the number of

individuals born in period t who survive at least to age a and nt = nt(0), we

16LGEâ is a particular version of the Years of Potential Life Lost, an indicator used in
medical research in order to quantify and compare the burden on society due to di�erent
causes of death (Gardner and Sanborn, 1990).
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have:17

LGEâ =

â−1∑
a=0

(â− (a+ 1)) ∗ nt(a)− nt(a+ 1)

nt
.

We illustrate in Figure 7 the close connection between LGEâ and LE,

where LE =
∑a∗−1

a=0
nt(a)
nt

. In the �gure, we construct a counterfactual pop-

ulation pyramid by reporting for each age a the number nt(a) of newborns

who are still alive at age a. As explained in Section 2.3, this counterfactual

pyramid corresponds to the population pyramid in period t if the society is

stationary in period t.18 In the left panel of Figure 7, LE is proportional to

the area below the population pyramid. By contrast, LGEâ is proportional

to the area between this pyramid and the age threshold. The right panel

illustrates the property that, for large enough age thresholds, LGEâ is the

complement of LE. Formally, when â ≥ a∗, where a∗ is the maximal lifespan,

LGEâ = â− LE.

Figure 7: Life Expectancy and Lifespan Gap Expectancy
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nt ∗ LE

nt

Age

Number

0 1 2 43

indiv .

nt ∗ LGEâ
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Note: in the Left panel, the light grey area below the counterfactual �sta-
tionary� population pyramid is a multiple of LE and the dark grey area is a
multiple of LGEâ.

The expected deprivation index, EDθâ, aggregates the poverty and lifespan

deprivation expected by a newborn, if she considers facing, throughout her

life-cycle, the poverty and mortality prevailing at the time of her birth. It

combines a component for deprivation in the quality of life and a component

for deprivation in the quantity of life:

EDθâ =
LGEâ

LE + LGEâ︸ ︷︷ ︸
quantity deprivation

+ θ
LE ∗H

LE + LGEâ︸ ︷︷ ︸
quality deprivation

, (5)

where the parameter θ ∈ [0, 1] is de�ned in exactly the same way as for PALEθ

17See Proposition 5 for a mathematical expression for LGEâ that only depends on the
mortality observed in period t. See also Appendix 5.2 for more details on the formal
framework.

18In a stationary society, the current population pyramid can be obtained by successively
applying the current age-speci�c mortality rates to each age group.
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and the age threshold â ∈ N0 must respect a lower-bound â ∈ N0, such that

â ≥ â ≥ 0. The value for the lower bound â in�uences the set of comparisons

that are robust to the values selected for θ and â (see below).

The two normative parameters θ and â jointly de�ne the respective im-

portance attributed to poverty and mortality. Parameter θ determines the

relative weights of being dead or being poor for one period. In contrast, pa-

rameter â determines the number of periods for which �being prematurely

dead� is accounted for by the index. Hence, â also a�ects the relative sizes of

these two sources of welfare losses through its impact on LGEâ.

Both components have the same denominator, which measures a norma-

tive lifespan corresponding to the sum of LE and LGEâ. This normative

lifespan can be interpreted as the (counterfactual) life expectancy at birth

that would prevail if all premature deaths were postponed to the age thresh-

old. It is at least as large as LE, and corresponds to LE if the age threshold

is equal to 0. The numerator of each term measures the expected number

of years characterized by one of the two dimensions of deprivation. The nu-

merator of the quantity deprivation component measures the number of years

that a newborn expects to lose prematurely (when observing mortality in the

period) given the age threshold, â. The numerator of the quality deprivation

component measures the number of years that a newborn expects to spend in

poverty.

As said above, these expectations are correct in the case of independence

(see Section 2.1) or in stationary societies (see Section 2.3). As discussed

above, in a stationary population, the poverty and mortality rates prevailing

at its birth perfectly re�ect the poverty and mortality a new cohort will be

confronted to in the future. This restriction does not however invalidate the

use of EDθâ as an indicator of deprivation in the current period (see Section

2.3): again, a widely used index such as life expectancy su�ers from exactly

that same limitation but is nevertheless widely interpreted as if the society

was in a stationary state.

Finally, the de�nition of EDθâ is such that each year prematurely lost is

as bad as 1/θ years spent in poverty. This trade-o� between the relative costs

of poverty and mortality is the same as for PALEθ.
19 When θ = 1, EDθâ

has a transparent interpretation, as it computes the expected proportion of

the normative lifespan that a newborn expects to lose prematurely or spend

in poverty.

Unlike PALEθ, EDθâ accounts for the distributional concern in the mor-

tality dimension. The age threshold â, above which some deaths are nor-

matively irrelevant, is to mortality what the poverty line is to poverty. In

Proposition 3, we show that index EDθâ is a generalization of index PALEθ:

EDθâ ranks societies exactly in the same way as PALEθ as long as its age

19We assume here that the welfare cost of a year prematurely lost is equal to uNP .
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threshold â is at least as large as the maximal age a∗. For such values, the

age threshold becomes not binding, and all deaths become relevant in terms

of deprivation because they all occur at younger ages than the age threshold.

When the age threshold is binding (smaller than the maximal age a∗), the

rankings obtained under EDθâ do not correspond to the rankings obtained

under PALEθ.

Proposition 3 (EDθâ generalizes PALEθ).

For all â ≥ a∗ we have PALEθ = â(1− EDθâ), which implies that, for any

two societies A and B,

PALEθ(A) ≥ PALEθ(B) ⇔ EDθâ(A) ≤ EDθâ(B).

Proof. See Appendix 5.3.

Taken together, Propositions 2 and 3 show that EDθâ aggregates two

indices of mortality, LE and LGEâ, with an index of poverty, H, in a way

which is consistent with life-cycle preferences. This improves on standard

multidimensional poverty indices. However, EDθâ relies on two normative

parameters: (θ, â). Proposition 4 below provides the conditions under which

the ranking by EDθâ for some pairs of societies A and B does not depend on

the values selected for its normative parameters.

Proposition 4 (Unambiguous comparisons of deprivation).

(i) For any two societies A and B we have EDθâ(A) > EDθâ(B) for all

θ ∈ [0, 1] and all â ≥ â if and only if

ED0â(A) > ED0â(B) for all â ≥ â, and

ED1â(A) > ED1â(B) for all â ≥ â (generalized Condition C1)

(ii) For any â > 1, there exist societies A and B for which EDθâ(A) >

EDθâ(B) for all θ ∈ [0, 1] and all â ≥ â even though H(A) < H(B). These

societies are such that LE(A) < LE(B).

Proof. See Appendix 5.4 for the straightforward proof.

The �rst part of Proposition 4 tells us that EDθâ provides unambiguous

comparisons if ED0â and ED1â provide the same ranking for all age thresholds

â above â. The intuition for this result is essentially the same as that provided

in Proposition 1 above (since, when â ≥ a∗, EDθâ is equivalent to PALEθ).

The second part of the Proposition indicates when ignoring mortality and

focusing exclusively on H leads to deprivation comparisons that are unam-

biguously correct or wrong. When â < a∗, it no longer su�ces that H and

LE yield separately the same ranking for that ranking to be unambiguously

correct. The reason is that, when â < a∗, LE no longer contains all the
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relevant information on mortality: for instance, two societies can share the

same life expectancy at birth but one with several deaths occurring below â

while the other has all deaths occurring above â. Note also that the larger

the lower-bound â, i.e., the smaller the set of plausible values for â, the larger

the set of comparisons for which the generalized condition can be met.

We illustrate the above results in Figure 8.20 The vertical axis represents

the share of pairs of societies for which H and LE provide similar (at the

top) or opposite rankings (at the bottom). By de�nition, these rankings are

insensitive to the age threshold â considered. The horizontal axis represents

all possible values of â, the lower bound on the age threshold.

The left panel describes the share of cases in which EDθâ provides unam-

biguous rankings as a function of â. Lower values of â imply a fall in the share

of cases that EDθâ can rank unambiguously. Indeed, a larger age interval over

which EDθâ has to be computed implies a larger number of comparisons for

ED. As a result, the number of cases for which it can provide the same rank-

ing for all age thresholds falls. Second, if H and LE agree, EDθâ provides the

same ranking as H when â = a∗. Finally, as discussed above, when H and

LE disagree, a larger value of â implies that the share of cases for which H

provides an unambiguously wrong ranking gets larger.

The right panel reports, for all values of â, the share of pairs of societies for

which PALEθ and EDθâ provide unambiguous rankings. Since PALEθ does

not depend on the age threshold, it is able to rank a larger set of comparisons.

As shown in Proposition 3, when â = a∗, the two indices are equivalent.

3.2 Mortality shocks and the evolution of EDθâ and PALEθ

We now brie�y contrast the impact of mortality shocks on PALEθ and EDθâ,

assuming that these mortality shocks are independent of the poverty status.

Consider a mortality shock that equalizes individual lifespans across the age

threshold â while keeping life expectancy LE constant. This lower dispersion

in mortality does not a�ect PALEθ, which only accounts for mortality through

LE. By contrast, this shock reduces EDθâ, since LGEâ is thereby reduced.

It is indeed easy to show that ∂EDθâ
∂LGEâ

> 0 (for θH < 1).

Consider instead a mortality shock that reduces mortality above the age

threshold â. Such shock increases LE but does not a�ect LGEâ. As a result,

PALEθ mechanically increases. It is also easy to show that deprivation, as

measured by EDθâ, decreases:
∂EDθâ
∂LE < 0, for θH < 1. Moreover, PALEθ is

more sensitive to this kind of shock than EDθâ, as the elasticity of PALEθ

to LE is equal to 1 while the elasticity of EDθâ to LE lies in (−1, 0). If the

mortality shock is such that it reduces mortality below the age threshold â,

20All graphs that follow are constructed using a lower bound on â equal to 1. Indeed,
for θ = 0 and â = 0, EDθâ is equal to zero for all societies and cannot therefore deliver
unambiguous comparisons.
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Figure 8: H may make unambiguously wrong deprivation comparisons when
â > 1.

Reading: The smaller the lower-bound â, the lower the share of societies
pairs unambiguously ranked by EDθâ even when H and LE agree with one
another. The higher the lower-bound â, the higher the share of societies pairs
unambiguously ranked by both EDθâ and PALEθ.

this shock simultaneously increases LE and reduces LGEâ. Again, PALEθ

improves and deprivation decreases since both LE increases and LGE de-

creases.

3.3 Empirical relation between EDθâ and PALEθ

Figure 9 reports the diagnostic delivered by PALEθ and EDθâ over all pair-

wise comparisons of countries in 2019 for which H and LE yield opposite

rankings, focusing on the share of these cases that can be ranked by EDθâ

and PALEθ independently of the value assigned to θ for a given age threshold.

Since PALEθ does not depend on the age threshold, the discrepancies be-

tween PALEθ and EDθâ across ages can only come from variations in EDθâ.

As is clear from the �gure, the share of cases solved by PALEθ is constant

but the share of cases solved by both PALEθ and EDθâ increases with the

age threshold. Since the age threshold acts as a form of weight on the poverty

component of EDθâ, the relative importance of poverty in EDθâ decreases as

â increases. When â ≥ a∗, mortality and poverty have the same weight in

EDθâ and PALEθ and the two indices yield exactly the same ranking (Propo-

sition 3). For lower age thresholds, the number of periods of life considered as

prematurely lost decreases, and EDθâ becomes more sensitive to its poverty

component. In the extreme case in which â = 0, EDθ0 can solve all the cases

for which H and LE yield opposite rankings since EDθ0 is unidimensional

and equal to θH.
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Figure 9: Resolution of ambiguous comparisons of PALEθ and EDθâ, by
age threshold
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Reading: For an age threshold of 50, 23% of comparisons are ambiguous for a
dashboard index. Out of these 23%, 16 percentage points are unambiguously
solved by either PALE or ED: 4.5 percentage points by ED only, 4.5 percentage
points by PALE only and 7 percentage points by both.

Figure 10 presents the evolution of EDθâ (with θ = 1 and â = 50) and

the head-count ratio, H, for the world. As can be seen from the �gure, the

incidence of poverty massively decreased over that period, while premature

mortality (that is, before the age 50) decreased at a much lower rate. As

a result, at the world scale, ED1,50 follows closely the evolution of H and

gets closer in the recent years. Overall, in 2019, a newborn can expect, un-

der stationarity, to lose 15% of his normative lifespan in poverty of through

premature mortality. The corresponding �gure in 1990 was as high as 50%.

The share of lifespan deprivation in expected deprivation increased from 20%

in 1990 to 31% in 2019. This last statistic illustrates an important practical

aspect of EDθâ, which PALEθ does not have. Indeed, EDθâ allows decom-

posing the well-being losses experienced in a given society between the losses

coming from mortality and those coming from poverty. Such decomposition

requires selecting some mortality reference. In the case of EDθâ, the mortality

reference is given by the age threshold â.
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Figure 10: Evolution of EDθâ and H, 1990-2019 (where θ = 1 and â = 50).
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Reading: In 1990, expected deprivation was 50%, 10 percentage points of
which were due to lifespan deprivation. Lifespan deprivation represented 20%
of expected deprivation.

3.4 Relation with other indices of deprivation

We limit here our comparison to other indices in the literature to the index

of generated deprivation (GDθâ) we proposed in a companion paper (Baland

et al., 2021). Generated deprivation is indeed the closest index to EDθâ,

and Baland et al. (2021) discuss in details the relationships between GDθâ

and other indices of multidimensional poverty. In short, EDθâ and GDθâ are

identical in stationary societies, but EDθâ has a simpler interpretation than

GDθâ, reacts faster to permanent mortality shocks and is less demanding in

terms of data. However, GDθâ is decomposable in subgroups whereas EDθâ

is not.

In any year t, the GDθâ index is de�ned as follows: 21

GDθâ =
Y Lt

Nt + Y Lt︸ ︷︷ ︸
quantity deprivation

+ θ
Nt ∗Ht

Nt + Y Lt︸ ︷︷ ︸
quality deprivation

, (6)

where θ ∈ [0, 1] and Nt =
∑a∗−1

a=0 nt−a(a) is the population observed in t. Y Lt

is the total number of years of life prematurely lost due to mortality in year

21Strictly speaking, the generated deprivation index proposed in Baland et al. (2021) is
1
θ
GDθâ, which is ordinally equivalent to GDθâ since θ is a constant.
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t, and can be de�ned as follows:

Y Lt =
â−2∑
a=0

nt−a(a) ∗ µt
a ∗ (â− (a+ 1)),

where µt = (µt
0, . . . , µ

t
a∗−1) stands for the vector of age-speci�c mortality

rates.22

The GDθâ index is also based on two components, one capturing quality

deprivation, measured by the number of person-years spent in poverty in year

t, and the other quantity deprivation, measured by all the years prematurely

lost in year t. When compared to EDθâ, the same normative weight is also

used for these two components. The components of GDθâ are however harder

to interpret. This is because GDθâ combines a number of poor with a number

of years of life prematurely lost. The rationale behind this aggregation is that,

in a given year, the total number of �poor individuals� in a given year also

corresponds to the total number of �years� lived in poverty in that year. This

equivalence also explains why the denominator of GDθâ sums a number of

individuals, Nt with a number of years Y Lt. By contrast, the numerators of

the two terms in EDθâ are more easily interpretable: they are the number of

years that a newborn expects to prematurely lose or spend in poverty (if she

expects mortality and poverty to stay at their currently observed levels).

The following proposition establishes that GDθâ and EDθâ are identical

in stationary societies:

Proposition 5 (EDθâ and GDθâ are identical in stationary societies).

For any stationary society,

LGEâ =
â−1∑
a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏
k=0

(1− µt
k), (7)

which yields GDθâ = EDθâ.

Proof. See Appendix 5.5.

EDθâ and GDθâ yield the same ranking for stationary societies. However,

societies are typically not stationary so that EDθâ and GDθâ may rank coun-

tries di�erently. The main di�erence between EDθâ and GDθâ comes from

the way the two indices compute the number of years prematurely lost. EDθâ

takes the perspective of a newborn who faces throughout her life the mortality

rates observed in t. In contrast, GDθâ computes the number of years that are

lost by the current population due to the premature mortality observed in t.

It records, over all premature deaths in t, the number of years prematurely

lost. Thus, if an individual dies at age 20 and the age threshold is 70, her pre-

mature death leads to a loss of 50 years of life in that year. EDθâ also counts

22They are more formally de�ned in Appendix 5.2.
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the number of years prematurely lost, but instead of being computed on the

actual population pyramid, EDθâ uses a counterfactual population pyramid,

which is the one that would prevail in a stationary society characterized by

the age-speci�c mortality rates observed in the period.

A major implication of this di�erence is that EDθâ is more reactive to

policy changes than GDθâ. Consider a permanent mortality shock. The pop-

ulation dynamics is such that a transition phase sets in during which the

population pyramid slowly adjusts to the new mortality rates. This transition

stops when a new stationary population pyramid is reached, typically after

a∗ periods. GDθâ records each step of this transition and therefore exhibits

inertia in its response to a permanent mortality shock. By contrast, EDθâ

immediately refers to the new stationary population pyramid and disregards

the inertia caused by these transitory demographic adjustments. We provide

an illustration of this property in Appendix 6.

Finally, Baland et al. (2021) show that GDθâ is essentially the only index

decomposable into subgroups to compare stationary societies in a way that

satis�es some basic properties. As a result, EDθâ cannot be decomposable into

subgroups.23 This is no surprise given that EDθâ is based on life expectancy,

which cannot be decomposed into subgroups. In Appendix 7, we also show

that EDθâ is essentially the only index that is independent on the actual pop-

ulation pyramid and compares stationary populations in a way that respects

basic properties of deprivation. As a result, the actual population pyramid

is irrelevant for EDθâ, the only information required for EDθâ is age-speci�c

mortality rates.

4 Concluding remarks

An important limitation of the two indices proposed in this paper, PALEθ

and EDθâ, is that they account for the distribution of well-being �dimension-

by-dimension�. More precisely, they account for the distribution of quality of

life and for the distribution of quantity of life, but not for the distribution of

life-cycle utilities. Indeed, our indices are insensitive to the allocation of years

of life prematurely lost between the poor and the non-poor. This allocation

may however have important implications for the distribution of life-cycle

utility. When poor individuals die early, they cumulate low achievements in

the two dimensions and the di�erence between their life-cycle utility and that

of non-poor individuals increases.

Without denying the importance of this limitation, let us �rst note that

this limitation is shared by most standard indices of human development.24

23In other words, if decomposability into subgroups is seen as a key property, one should
use GDθâ. Indeed, this index yields the same ranking as EDθâ in stationary populations.
In those populations, GDθâ thus yields the same ranking as PALEθ when all deaths are
normatively relevant (â ≥ a∗).

24To the best of our knowledge, the global MPI index is the only indicator that accounts,
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Second, addressing this limitation requires data that are typically not avail-

able. One natural way of accounting for such �concentration� of deprivations

on the same individuals would be to de�ne as �life-cycle poor� individuals

whose life-cycle utility is smaller than that of a reference life, e.g., a life char-

acterized by a lifespan of 40 years with no period of poverty. One can then

de�ne a summary index of well-being that would, for instance, correspond to

the expected fraction of newborns who will be �life-cycle poor�. This type of

index would not be ad-hoc, but would require better data, combining poverty

and mortality at the individual level, than what is currently available in most

countries. Moreover, this type of data, recording mortality up to a given

threshold, would necessarily be historical in nature, with little relevance to

the current situation. Alternatively, one may want to de�ne indices that are

less demanding in terms of information, and are based on the observed mo-

bility between poverty and non-poverty, as well as on mortality �gures for the

poor and the non-poor. Some additional assumptions would be required to

then translate this information into the lifecycle pro�les for newborns. We

emphasize that the indicators thus obtained would simply generalize PALEθ

and EDθâ since they would still aggregate mortality and poverty following

the lifecycle approach underpinning PALEθ and EDθâ.

Although our measures are indi�erent to the distribution of years of life

prematurely lost across poor and non-poor individuals, at least our measures

correctly capture direct impact of mortality, i.e., the total number of years of

life prematurely lost. In other words, they correctly capture the total extent

of well-being losses coming from the reduced quantity of life due to mortality.

Correctly capturing their extent is of �rst order importance. Capturing their

distribution across poor and non-poor individuals would clearly be a welcome

improvement, but we argue that such improvement is of secondary importance

(and is often impossible due to data-constraints). In our views, the fact that

our measures do not account for such distribution is thus not a su�cient

reason to stick with summary indices that completely ignore mortality or

only capture its indirect impacts.

We conclude with a remark on terminology. We called PALEθ and EDθâ

indicators of well-being, which may be disputed because they are based on

poverty. The sense in which we call them indicators of well-being is that they

satisfy the Pareto principle, i.e. they are monotonic in unanimous improve-

ments. This is for instance the case of the fraction of individuals who are

poor, which only decreases with unanimous improvements. In contrast, this

in an indirect way, for such concentration. In a nutshell, the deprivation-score of an indi-
vidual is increased if she lives in a household that has experienced the death of a less than
18 year child in the past �ve years. That is, the global MPI accounts for the indirect impact
of mortality on the quality of life of relatives, but ignores the direct impact of mortality on
the quantity of life of the deceased. Hence, like PALEθ and EDθâ, the global MPI does
not capture whether an individual who dies prematurely has spent a large fraction of her
life in poverty.
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is not the case of indicators of inequality, which may either increase or de-

crease after an unanimous improvement. In this light, one could justify the

widespread use of the poverty headcount ratio by the fact that it constitutes

an easy to interpret indicator of well-being, that accounts for the distribution

of consumption. This property may compensate for the crude way in which

it accounts for the distribution of consumption.
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5 Appendix: Proofs

5.1 Proof of Proposition 1

Proof of (i). We start by the �only if� part. Assume to the contrary that

PALE0(A) > PALE0(B) or PALE1(A) > PALE1(B). This directly implies

that PALEθ(A) > PALEθ(B) for some θ ∈ {0, 1} and therefore we cannot

have PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1].

We now turn to the �if� part. By de�nition of the PALEθ index, we have

to show that

LE(B)− LE(A) > θ ∗ (H(B)−H(A)), (8)

for all θ ∈ [0, 1]. As PALE0(A) < PALE0(B), we directly have that LE(B)−
LE(A) > 0 because PALE0 = LE. As PALE1(A) < PALE1(B), we have

LE(B)−LE(A) > H(B)−H(A). It immediately follows that the inequality

(8) is veri�ed for all values of θ smaller than 1.

Proof of (ii). From (i), proving (ii) only requires providing societies A and

B with H(A) < H(B) such that PALE0(A) < PALE0(B) and PALE1(A) <

PALE1(B). If H(A) = 0.2, H(B) = 0.4, LE(A) = 50 and LE(B) = 75

we have PALE1(A) = 40 and PALE1(A) = 45, the desired result because

PALE0 = LE.

5.2 Stationary societies and PALEθ

We �rst provide a formal de�nition of a stationary society. Consider a discrete

set of periods {. . . , t − 1, t, t + 1, . . . }. In each period, some individuals are

born and some individuals die (at the end of the period). All alive individuals

are assigned a consumption status for the period (P or NP ) . We de�ne the

life of an individual i as the list of consumption statuses li = (li0, . . . , lidi) she

enjoys between age 0 and age di ∈ {0, . . . , a∗ − 1} at which she dies, where

lia ∈ {NP,P}. The set of lives is thus L = ∪d∈{0,...,a∗−1}{NP,P}d+1.

The number of newborns in period t is denoted by nt. The pro�le of lives

for the cohort born in t is denoted by Ct = (li)i∈{1,...,nt}, where {1, . . . , nt}
is the set of newborns in t. Clearly, the pro�le of lives Ct contains all the

information necessary to compute a newborn's expected life-cycle utility (Eq.

(3)). Let nt(a) denote the number of individuals born in period t who are

still alive when reaching age a. In particular, we have nt(0) = nt. Let pt(a)

denote the number of individuals born in period t who are poor at age a,

with pt(a) ≤ nt(a). By de�nition, the probability that an individual born in

t survives to age a is given by Vt(a) =
nt(a)
nt

, and the conditional probability

that an individual born in t will be poor when reaching age a is πt(a) =
pt(a)
nt(a)

.

To compute Eq. (3), it is su�cient to know the distribution of the set of lives
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that Ct implicitly de�nes. We denote this distribution by Γt : L → [0, 1], with∑
l∈L Γt(l) = 1.

In period t, we cannot observe the pro�le of lives for the cohort born in

t. The only elements of Ct that we observe in that period are nt(0), pt(0)

and nt(1). However, we also have information about the pro�le of lives of

the cohorts born before t. Formally, let a society St be the list of pro�les

of lives for all cohorts born during the a∗ periods in {t − (a∗ − 1), . . . , t},
i.e. St = (Ct−a∗+1, . . . , Ct). In period t, we observe (i) the number Nt of

individuals who are alive in t:

Nt =

a∗−1∑
a=0

nt−a(a),

(ii) the fraction Ht of alive individuals who are poor in t:

Ht =

∑a∗−1
a=0 pt−a(a)∑a∗−1
a=0 nt−a(a)

,

and (iii) the age-speci�c mortality vector µt = (µt
0, . . . , µ

t
a∗−1) in period t

where for each a ∈ {0, . . . , a∗ − 1} we have

µt
a =

nt−a(a)− nt−a(a+ 1)

nt−a(a)
,

with µt
a∗−1 = 1.

We now show that, in stationary societies, the information available in

period t is su�cient to compute the value of the expected lifecycle utility

using Eq. (3). The particularity of stationary societies is to have their natality,

mortality and poverty constant over time, so that all (average) outcomes in

a given period are replicated over the next period. More formally, a society

is stationary if both the distribution of lives and the size of generations are

constant over the last a∗ periods.

De�nition 1 (Stationary Society).

A society St is stationary if, at any period t′ ∈ {t− a∗ + 1, . . . , t}, we have

� Γt′ = Γt (constant distribution of lives),

� nt′ = nt (constant size of cohorts).

It follows from this de�nition that nt(a) = nt−a(a) and pt(a) = pt−a(a)

for all a ∈ {1, . . . , a∗ − 1}.25 These equalities lead to the following Lemma,

which allows us to relate Eq. (3) to the information available in period t.26

25Clearly, a constant distribution of lives is not su�cient for these equalities, one also
needs a constant size of cohorts.

26Lemma 1 also requires that nt(a + 1) = nt−a(a + 1) for all a ∈ {0, . . . , a∗ − 2}, which
follows from the de�nition of a stationary society.
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Lemma 1. If St is stationary,

Vt(a) = Πa−1
k=0(1− µt

k) for all a ∈ {0, . . . , a∗ − 1}, (9)

Nt = nt ∗ LEt, (10)

Nt ∗Ht = nt ∗
a∗−1∑
a=0

V (a)π(a). (11)

Proof. We �rst prove Eq (9). As St is stationary, we have nt(k) = nt−k(k) for

all k ∈ {1, . . . , a∗ − 1} and nt(k+1) = nt−k(k+1) for all k ∈ {0, . . . , a∗ − 2}.
Therefore, we have for all a ∈ {1, . . . , a∗ − 1} that

Vt(a) =
nt(a)

nt
,

= Πa−1
k=0

nt(k + 1)

nt(k)
,

= Πa−1
k=0

nt−k(k + 1)

nt−k(k)
,

= Πa−1
k=0(1− µt

k).

We then prove Eq (10). As St is stationary, we have nt(a) = nt−a(a) for all

a ∈ {1, . . . , a∗ − 1}. Recalling that Vt(a) =
nt(a)
nt

, we can successively write

LEt =

a∗−1∑
a=0

Vt(a),

=

∑a∗−1
a=0 nt(a)

nt
,

=

∑a∗−1
a=0 nt−a(a)

nt
,

= Nt/nt.

Finally, we prove Eq. (11). As St is stationary, we have pt(a) = pt−a(a) for

all a ∈ {1, . . . , a∗ − 1}. Given that πt(a) = pt(a)
nt(a)

and Vt(a) = nt(a)
nt

, we can

successively write

Ht =

∑a∗−1
a=0 pt−a(a)∑a∗−1
a=0 nt−a(a)

,

=

∑a∗−1
a=0 pt(a)

Nt
,

=

∑a∗−1
a=0 πt(a)Vt(a)nt

Nt
.

The three equations in Lemma 1 imply that an individual born in a sta-

tionary society can infer her expected life-cycle utility from the information
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available at the year of her birth. (These direct relationships between current

and future outcomes in stationary societies are well-known to demographers

(Preston et al., 2000).) We illustrate this important insight using an exam-

ple. Consider a stationary society for which two individuals are born in each

cohort, one living only for one period in poverty and the other living for two

periods out of poverty, i.e. n = 2, l1 = (P ) and l2 = (NP,NP ). In period

t, three individuals are alive: the poor born in t, the non-poor born in t and

the non-poor born in t − 1. Also, two individuals die at the end of period

t: the poor born in t and the non-poor born in t − 1. Eq. (9) states that

the mortality rates observed in period t (the right hand side of the equation)

can be used to infer the mortality rates that the newborn can expect to face

during her life-cycle (the left hand side). Thus, in our example, a newborn

observes that, at the end of period t, half of the individuals of age 0 die and

all individuals of age 1 die. Eq. (9) implies that he has a 50 percent chance to

survive period t and a zero percent chance to survive period t+1. According

to Eq. (10), the number of individuals who are alive in period t, Nt, is equal

to the number of person-periods in the pro�le of lives of the cohort born in

period t. In our example, there are three individuals alive in period t and

there are three person-periods in Ct = (l1, l2) = (P ;NP,NP ). Finally, Eq.

(11) states that the number of poor observed in period t, Nt ∗Ht, is equal to

the number of person-periods of poverty in the pro�le of lives of the cohort

born in period t. Indeed, there is one poor individual alive in period t and

one person-period P in Ct.

Lemma 1 shows that, in a stationarity society, the poverty and mortal-

ity observed in a given period perfectly de�ne the life pro�le of newborns.

Proposition 6 shows that PALEθ is a normalization of the expected life-cycle

utility of a newborn in a stationary society even when mortality is selective,

i.e. when the conditional probability of being poor depends on age.

Proposition 6 (Equivalence between Harsanyi and PALEθ).

If society St is stationary, then PALEθ =
EUt
uNP

.

Proof. The result follows directly when substituting Eq. (10) and (11) into

Eq. (3).

5.3 Proof of Proposition 3

The proof builds on the complete framework presented in Appendix 5.2.
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We �rst show that LE + LGEâ = â when â ≥ a∗.

LGEâ(Ct) =

â−1∑
a=0

â ∗ nt(a)− nt(a+ 1)

nt
−

â−1∑
a=0

(a+ 1) ∗ nt(a)− nt(a+ 1)

nt
,

=
1

nt

(
â ∗ (nt(0)− nt(â))−

â−1∑
a=0

nt(a) + â ∗ nt(â)

)
,

= â−
â−1∑
a=0

nt(a)

nt
.

By de�nition of a∗, we have nt(a) = 0 for all a ≥ a∗. When â ≥ a∗, this implies

that
∑â−1

a=0
nt(a)
nt

=
∑a∗−1

a=0
nt(a)
nt

, where by de�nition LE =
∑a∗−1

a=0
nt(a)
nt

, the

desired result.

The fact that LE+LGEâ = â implies that PALEθ = â(1−EDθâ) because

â(1− EDθâ) = (LE + LGEâ)(1− EDθâ) = LE(1− θH).

Thus, when â ≥ a∗, PALEθ is a linear function of EDθâ that depends

negatively on EDθâ. Therefore, these two indicators yields opposite ranking

of any two societies A and B, i.e. PALEθ(A) ≥ PALEθ(B) ⇔ EDθâ(A) ≤
EDθâ(B).

5.4 Proof of Proposition 4

We �rst prove the following: for any â ≥ â and any two societies A and B, we

have EDθâ(A) > EDθâ(B) for all θ ∈ [0, 1] if and only if

ED0â(A) > ED0â(B) and ED1â(A) > ED1â(B).

We start with the �only if� part. Assume on the contrary that ED0â(A) <

ED0â(B) or ED1â(A) < ED1â(B). This implies that EDθâ(A) < EDθâ(B)

for some θ ∈ {0, 1} and therefore we cannot have EDθâ(A) > EDθâ(B) for

all θ ∈ [0, 1].

We turn to the �if� part. By de�nition of the EDθâ index, we have to

show that

LGEâ(A)

LE(A) + LGEâ(A)
− LGEâ(B)

LE(B) + LGEâ(B)
>

θ

(
LE(B) ∗H(B)

LE(B) + LGEâ(B)
− LE(A) ∗H(A)

LE(A) + LGEâ(A)

)
for all θ ∈ [0, 1].

(12)

As ED1â(A) > ED1â(B), Eq. (12) holds for θ = 1. As ED0â(A) >

ED0â(B), the left hand side of Eq. (12) is strictly positive. As a result, in-

equality (12) holds for all values of θ smaller than 1.
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Proof of (i). This is an immediate implication of the statement proven above.

Proof of (ii). Consider two societies A and B with H(A) < H(B) for which

the generalized condition C1 holds.

Society A is such that H(A) = 0.4 and all its individuals die in their �rst

year of life, which implies that LE(A) = 1 and LGEâ(A) = â− 1. Therefore,

society A is such that ED0â(A) = â−1
â and ED1â(A) = 1− 0.6

â for all â ≥ â.

Society B is such that H(B) = 0.5 and all its individuals die at the maximal

age a∗, which implies that LE(B) = a∗ + 1 and LGEâ(B) = 0. Therefore,

society B is such that ED0â(B) = 0 and ED1â(B) = 0.5 for all â ∈ {2, . . . , a∗}.
By the statement we have proven above, we have EDθâ(A) > EDθâ(B)

for all θ ∈ [0, 1] and all â ∈ {2, . . . , a∗} because

ED0â(A) > ED0â(B) for all â ∈ {2, . . . , a∗}

as â−1
â > 0 for all â ∈ {2, . . . , a∗}, and

ED1â(A) > ED1â(B) for all â ∈ {2, . . . , a∗}

as â > 1 for all â ∈ {2, . . . , a∗}.
By (i), there remains to show that EDθâ(A) > EDθâ(B) for all θ ∈ [0, 1]

and all â > a∗. We have shown that EDθa∗(A) > EDθa∗(B) for all θ ∈ [0, 1],

which implies by Proposition 3 that PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1].

By Proposition 3 again, PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1] implies that

EDθâ(A) > EDθâ(B) for all θ ∈ [0, 1] and all â > a∗, the desired result.

5.5 Proof of Proposition 5

The proof builds on the complete framework presented in Appendix 5.2.

We �rst derive expression (7). As society St is stationary, we have that

nt(a) = nt−a(a) and nt(a + 1) = nt−a(a + 1) for all a ∈ {0, . . . , a∗ − 1}. We

can thus successively write

LGEâ(St) =

â−1∑
a=0

(â− (a+ 1)) ∗ nt(a)− nt(a+ 1)

nt(a)
∗ nt(a)

nt
,

=
â−1∑
a=0

(â− (a+ 1)) ∗ nt−a(a)− nt−a(a+ 1)

nt−a(a)
∗ Vt(a).

As society St is stationary, Lemma 1 applies and we have Vt(a) = Πa−1
k=0(1−µt

k)

(Eq. (9)). This result follows from our de�nition of the age-speci�c mortality

rate, where µt
a = nt−a(a)−nt−a(a+1)

nt−a(a)
.

We now prove that GDθâ(St) = EDθâ(St). As society St is stationary,

Lemma 1 applies and Nt = ntLEt (Eq. (10)). Substituting this expression for

Nt into the de�nition of GDθâ proves our result, provided Y Lt = ntLGEâ,
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which remains to be shown. As society St is stationary, Lemma 1 applies and

we have nt−a(a)
nt

=
∏a−1

k=0(1 − µt
k) (Eq. (9)). Substituting this expression for

nt−a(a) into the de�nition of Y Lt, with Y Lt =
∑â−2

a=0 nt−a(a)∗µt
a∗(â−(a+1)),

gives:

Y Lt = nt

â−2∑
a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏
k=0

(1− µt
k),

which shows that Y Lt = ntLGEâ (see Eq. (7) and recall that â− (a+1) = 0

when a = â− 1), the desired result.

6 Appendix: EDθâ and GDθâ under a transitory shock:

An illustration

We illustrate this di�erence between EDθâ and GDθâ in their reaction to

a transitory mortality shock with the help of a simple example. Consider a

population with a �xed natality nt(0) = 2 for all periods t. At each period, all

alive individuals are non-poor, implying that Ht = 0. For all t < 0, we assume

a constant mortality vector µt = µ∗ = (0, 1, 1, 1), so that each individual

lives exactly two periods. Let us assume â = 4, so that an individual dies

prematurely if she dies before her fourth period of life. Before period t = 0,

the population pyramid is stationary, and the two indices are equal to 1/2

because there is no poor and individuals live for two periods instead of four.

Consider now a permanent shock starting from period 0 onwards, such that

half of the newborns die after their �rst period of life: µ0 = (1/2, 1, 1, 1).

The population pyramid returns to its stationary state in period 1, after a

(mechanical) transition in period 0. This example is illustrated in Figure 11.

Consider �rst GDθâ. In period 0, the actual population pyramid is not

stationary because of the mortality shock. The premature death of one new-

born leads to the loss of three years of life. Also, two one-year old individuals

die in period 0, each losing two years of life. There are thus 7 years of life

prematurely lost in period 0, and GDθâ takes value 7/11. In period 1, the

population pyramid is stationary, and GDθâ is equal to 5/8 from then on.

We now turn to EDθâ. Even if the actual population pyramid is not

stationary in period 0, EDθâ is immediately equal to 5/8 since it records

premature mortality as if the population pyramid had already reached its

new stationary level. EDθâ focuses on the newborn and the one-year old who

die prematurely, ignoring that there are two one-year old dying in the actual

population pyramid in period 0 (which is a legacy of the past).
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â

3

indiv.

1

GD = 7
11

GD

ED

2

∗ ∗

Age

Number

â
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Figure 11: Response of GDθâ and EDθâ to a permanent mortality shock in
t = 0. The years prematurely lost are shaded.

7 Appendix: Characterization of the EDθâ index

We �rst introduce the set-up provided by Baland et al. (2021), which we will

use to charcterize EDθâ.

Each individual i is associated to a birth year bi ∈ Z. In period t, each

individual i with bi ≤ t is characterized by a bundle xi = (ai, si), where

ai = t − bi is the age that individual i would have in period t given her

birth year bi, and si is a categorical variable capturing individual status in

period t, which can be either alive and non-poor (NP ), alive and poor (AP )

or dead (D), i.e. si ∈ S = {NP,AP,D}. In the following, we often refer to

individuals whose status is AP as �poor�. We consider here that births occur

at the beginning while deaths occur at the end of a period. As a result, an

individual whose status in period t is D died before period t.27

An individual �dies prematurely� if she dies before reaching the minimal

lifespan â ∈ N. Formally, period t is �prematurely lost� by any individual

i with si = D and ai < â. A distribution x = (x1, . . . , xn(x)) speci�es

the age and the status in period t of all n(x) individuals. Excluding trivial

distributions for which no individual is alive or prematurely dead, the set of

distributions in period t is given by:

X = {x ∈ ∪n∈N(Z × S)n | there is i for whom either si ̸= D or si = D and â > t− bi}.

Baland et al. (2021) show that the most natural consistent index to rank

distributions in X is the inherited deprivation index (IDθâ). Let d(x) denote

the number of prematurely dead individuals in distribution x, which is the

27All newborns have age 0 during period t and some among these newborns may die at
the end of period t. This implies that bi = t ⇒ si ̸= D.
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number of individuals i for whom si = D and â > t − bi, p(x) the num-

ber of individuals who are poor and f(x) the number of alive and non-poor

individuals. The IDθâ index is de�ned as:

IDθâ(x) =
d(x)

f(x) + p(x) + d(x)︸ ︷︷ ︸
quantity deprivation

+θ
p(x)

f(x) + p(x) + d(x)︸ ︷︷ ︸
quality deprivation

, (13)

where θ ∈ [0, 1] is a parameter weighing the relative importance of alive de-

privation and lifespan deprivation. An individual losing prematurely period t

matters 1/θ times as much as an individual spending period t in alive depri-

vation.

We introduce additional notation for the mortality taking place in period

t. Consider the population pyramid in period t, and let na(x) be the number

of alive individuals of age a in distribution x, i.e. the number of individuals

i for whom ai = a and si ̸= D. (The de�nition of na(x) corresponds to

nt−a(a) in the notation used in the main text of the paper. In this section, we

adopt the notation of Baland et al. (2021), which does not require to mention

period t.) The age-speci�c mortality rate µa ∈ [0, 1] denotes the fraction of

alive individuals of age a dying at the end of period t: the number of a-year-

old individuals dying at the end of period t is na(x) ∗ µa. Letting a∗ ∈ N

stand for the maximal lifespan (which implies µa∗−1 = 1), the vector of

age-speci�c mortality rates in period t is given by µ = (µ0, . . . , µa∗−1).

Vector µ summarizes mortality in period t, while distribution x summarizes

alive deprivation in period t as well as mortality before period t. The set of

mortality vectors is de�ned as:

M =
{
µ ∈ [0, 1]a

∗
∣∣∣µa∗−1 = 1

}
.

We consider pairs (x, µ) for which the distribution x is a priori unrelated to

vector µ. We assume that the age-speci�c mortality rates µa must be feasible

given the number of alive individuals na(x). Given that distributions have

�nite numbers of individuals, mortality rates cannot take irrational values,

i.e. µa ∈ [0, 1] ∩ Q, where Q is the set of rational numbers. The set of pairs

considered is given by:

O =

{
(x, µ) ∈ X ×M

∣∣∣for all a ∈ {0, . . . , a∗} we have µa =
ca

na(x)
for some ca ∈ N

}
.

Letting da(x) be the number of dead individuals born a years before t in

distribution x, the total number of individuals born a years before t is then

equal to na(x) + da(x). Formally, the pair (x, µ) is stationary if, for some

n∗ ∈ N and all a ∈ {0, . . . , a∗}, we have:

� na(x) + da(x) = n∗ ∈ N (constant natality),
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� na+1(x) = na(x) ∗ (1− µa) (identical population pyramid in t+ 1).

In a stationary pair, the population pyramid is such that the size of each cohort

can be obtained by applying to the preceding cohort the current mortality rate.

The pair associated to a stationary society (as de�ned in the main text) is

stationary. An index is a function P : O×N → R+. We simplify the notation

P (x, µ, â) to P (x, µ) as a �xed value for â is assumed.

We now introduce the properties characterizing EDθâ. IDθâ Equivalence

requires that, as the current mortality (in period t) is the same as the mortality

prevailing in the previous periods in stationary societies, any index de�ned on

current mortality rates is equivalent to IDθâ in the case of a stationary pair:
28

Deprivation axiom 1 (IDθâ Equivalence). There exists some θ ∈ (0, 1]

and â ≥ â such that for all (x, µ) ∈ O that are stationary we have P (x, µ) =

IDθâ(x).

Independence of Dead requires that past mortality does not a�ect the

index. More precisely, the presence of an additional dead individual in distri-

bution x does not a�ect the index:

Deprivation axiom 2 (Independence of Dead). For all (x, µ) ∈ O and

i ≤ n(x), if si = D, then P ((xi, x−i), µ) = P (x−i, µ).

Independence of Birth Year requires that the index does not depend on

the birth year of individuals, i.e. only their status matters. As Independence

of Dead requires to disregard dead individuals, the only relevant information

in x is whether an alive individual is poor or not.

Deprivation axiom 3 (Independence of Birth Year). For all (x, µ) ∈ O

and i ≤ n(x), if si = s′i, then P ((xi, x−i), µ) = P ((x′i, x−i), µ).

Replication Invariance requires that, if a distribution is obtained by repli-

cating another distribution several times, they both have the same deprivation

when associated to the same mortality vector. By de�nition, a k-replication

of distribution x is a distribution xk = (x, . . . , x) for which x is repeated k

times.

Deprivation axiom 4 (Replication Invariance). For all (x, µ) ∈ O and

k ∈ N,

P (xk, µ) = P (x, µ).

Proposition 7 shows that these properties jointly characterize the EDθâ

index.

28Recall that past mortality is recorded in distribution x while current mortality is
recorded in vector µ. As vector µ is redundant in stationary pairs, in the sense that µ
can be inferred from the population pyramid, the index can be computed on distribution x
only. See Baland et al. (2021) for a complete motivation for this axiom.
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Proposition 7 (Characterization of EDθâ).

P = EDθâ if and only if P satis�es Independence of Dead, IDθâ Equivalence,

Replication Invariance and Independence of Birth Year.

Proof. We �rst prove su�ciency. Proving that the EDθâ index satis�es In-

dependence of Dead, Replication Invariance and Independence of Birth Year

is straightforward and left to the reader. Finally, EDθâ index satis�es IDθâ

Equivalence because EDθâ is equal to GDθâ in stationary populations (Propo-

sition 5) and GDθâ satis�es IDθâ Equivalence (Proposition 2 in Baland et al.

(2021)). (The pairs associated to stationary societies are stationary).

We now prove necessity. Take any pair (x, µ) ∈ O. We construct an-

other pair (x′′′, µ) that is stationary and such that P (x′′′, µ) = P (x, µ) and

EDθâ(x
′′′, µ) = EDθâ(x, µ). Given that (x′′′, µ) is stationary, we have by

IDθâ Equivalence that P (x′′′, µ) = IDθâ(x
′′′, µ) for some θ ∈ (0, 1]. As IDθâ =

GDθâ = EDθâ for stationary pairs, we have P (x′′′, µ) = EDθâ(x
′′′, µ) for some

θ ∈ (0, 1]. If we can construct such pair (x′′′, µ), then P (x, µ) = EDθâ(x, µ)

for some θ ∈ (0, 1], the desired result.

We turn to the construction of the stationary pair (x′′′, µ), using two inter-

mediary pairs (x′, µ) and (x′′, µ). One di�culty is to ensure that the mortality

rates µa can be achieved in the stationary population given the number of alive

individuals na(x
′′′), that is µa = c

na(x′′′) for some c ∈ N.

We �rst construct a n′−replication of x that has su�ciently many alive

individuals to meet this constraint. For any a ∈ {0, . . . , a∗ − 1}, take any

naturals ca and ea such that µa = ca
ea
. Let e =

∏a∗−1
j=0 ej , n

′
a = e

∏a−1
j=0(1 −

cj
ej
) and n′ =

∑a∗−1
j=0 n′

j .
29 Let x′ be a n′−replication of x. Letting nx =∑a∗−1

j=0 nj(x) be the number of alive individuals in distribution x, we have that

x′ has n′ ∗ nx alive individuals. We have P (x′, µ) = P (x, µ) by Replication

Invariance.

We de�ne x′′ from x′ by changing the birth years of alive individuals in

such a way that (x′′, µ) has a population pyramid that is stationary. Formally,

we construct x′′ with n(x′′) = n(x′) such that

� dead individuals in x′ are also dead in x′′,

� alive individuals in x′ are also alive in x′′ and have the same status,

� the birth year of alive individuals are changed such that, for each a ∈
{0, . . . , a∗−1}, the number of a-years old individuals is n′∗nx∗

∏a−1
j=0 (1−

cj
ej

)∑a∗−1
k=0

∏k−1
j=0 (1−

cj
ej

)
.30

One can check that (x′′, µ) has a population pyramid corresponding to a

stationary population and that each age group has a number of alive individ-

uals in N. We have P (x′′, µ) = P (x′, µ) by Independence of Birth Year.

29These numbers imply that a constant natality of e newborns leads to a stationary
population of n′ alive individuals.

30Observe that
∑a∗−1

k=0

∏k−1
j=0 (1−

cj
ej
) = LE, implying that e = n′∗nx∑a∗−1

k=0

∏k−1
j=0 (1−

cj
ej

)
.
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De�ne x′′′ from x′′ by changing the number and birth years of dead in-

dividuals in such a way that (x′′′, µ) is stationary. To do so, place exactly

n0(x
′′) − na(x

′′) dead individuals in each age group a. We have P (x′′′, µ) =

P (x′′, µ) by Independence of Dead.

Together, we have that P (x′′′, µ) = P (x, µ). Finally, by construction we

have H(x′′′) = H(x), which implies that EDθâ(x
′′′, µ) = EDθâ(x, µ).

45


