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1 Introduction

There is now widespread recognition among policy-making elites that phasing out coal-
fired power is needed as a central plank of climate action to reduce carbon emissions. But
there is also much concern that the pace of change is too slow, most often blamed to a
failure of political will. Moreover, some countries continue to invest in maintaining their
existing coal-fired power plants and building new ones. Coal-fired power is not just bad
for carbon emissions, it is also costly in terms of deterioration of air quality, and therefore,
has large impact on public health (see, for example, Lelieveld et al. (2020)). The problem
gets worse when plants tend to be located close to dense population centers.1 This implies
that some benefits from closing coal-fired power should be both rapid and local. Hence,
we might expect local political processes to be much more active in spearheading climate
action of this kind.

Even though individual citizens may feel these detrimental effects, it is not necessarily
going to lead to more public action unless the issue becomes politically salient. Even in set-
tings with vibrant local political democratic processes, this is a challenge as Crenson (1971)
emphasized long ago in the context of air pollution politics in the United States. Moreover,
the dangers of delay in taking such corrective course of action are colossal in terms of great
climate-induced migration, socio-economic damages due to severe and extended conflicts,
and destruction impact of more frequent and more extreme natural disasters (Stern (2016)).
One way to galvanize public action is to provide evidence of collective net benefits from
closing down coal-fired power plants. This can provide an input into the policy process and
potentially be a catalyst for change.

This paper provides new evidence on the link between air quality perception and coal-
fired power using geocoded data from 51 countries, which are covered in the Gallup World
Poll. The data gives precise locations where interviews were conducted so we can tag sur-
vey locations on their proximity to coal-fired power stations. We find that survey respon-
dents who live within 40 km of an operational coal-fired power plant express greater air
quality dissatisfaction compared to citizens in the same country/region who are not within
40 km of an operational coal-fired power station. The link to coal-fired power cannot be ex-

1. There are at least 10 thermal power plants in Punjab, Haryana, and Uttar Pradesh that are located in
vicinity of Delhi, which is the most densely populated city of India. Source: Economic Times - Energy News,
4 June, 2021.
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plained by a priming effect since respondents were not asked about coal-fired power before
answering the air quality question. The results are robust to a placebo test using already
closed power stations and those that are planned for the future. As a robustness check, we
use access to transport links as instruments to address the possibility that location decisions
are endogenous to tolerance for air pollution.

Having established this link with air quality perception, we construct a willingness-
to-pay (WTP) measure for air quality improvement using responses to a widely-used life
satisfaction question that respondents answer in the survey. Specifically, we can compare
the coefficient on air quality dissatisfaction (which impacts life satisfaction negatively) and
income (which impacts life satisfaction positively). By looking at the size of population liv-
ing within 40 km radius of respective coal-fired power stations, we can construct a measure
of the benefit from moving to an average level of air quality satisfaction for each country.
More interesting still is to compare this benefit to the cost of building additional generation
capacity for replacing coal-fired power with renewable energy. We find that just looking at
air quality benefits yields a strong case for replacing coal-fired power with clean energy.

We conduct a “thought experiment” at the power plant-level to find that there is a case
for closing the largest 25 coal-fired power stations in our sample of countries, even with-
out looking at the carbon reduction benefits. The benefits are large enough to justify those
investments. We also use our estimates “out of sample”, i.e. for countries that are not in
our survey data. We project the valuations of air quality from our sample countries into
these countries and find a similarly strong case for closing coal-fired power stations else-
where based on just the air quality benefits. These findings compliment ongoing work on
estimating public health benefits from reducing reliance on coal-fired power. For exam-
ple, Lelieveld et al. (2019) attributes 65% of excess global mortality to fossil fuel-related
emissions, with significant heterogeneity across regions.

Reducing anthropogenic emissions have both immediate local benefits, such as lower
infant mortality, better test scores, and higher crop productivity, along with meeting long-
term sustainable climate goals (Wen and Burke (2022); Burney et al. (2022)). Air quality
improvement is often talked about as a co-benefit from low-carbon investments (see, for
example, Stern (2016)). However, there are two reasons for moving beyond describing it
this way when it comes to phased elimination of coal-fired power. First, we show that air
quality benefits alone are sufficient to justify phasing out coal-fired power. Second, when
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it comes to politics, due to their local nature, air quality benefits are likely to have a more
direct role to play if they can provide greater impetus to policy action; in that case air quality
improvement could be a primary rather than a secondary benefit. When it comes to this,
providing evidence of aggregate net benefits at the local level can be useful. Individuals
may be aware of poor air quality without being able to attribute it to the proximity to a
coal-fired power station. Moreover, they may be aware of their own perceptions but not the
collective benefits that are obtained by aggregating across individuals.

Ultimately, domestic and international policies to reduce carbon emissions are likely to
be encouraged if citizens, firms, and civil society demand change. As stressed in Besley
and Persson (2023), faciltating a green transition requires citizens as voters and consumers
to embrace green values. Citizens’ perceptions of the need for change are likely to be
possible key drivers in increasing the salience of policy issues in this area where global
debates about abstract notions, like climate change, may not readily cut through.

The remainder of the paper is organized as follows. In the next section, we link the
contribution of the paper to existing work and discuss background issues. In Section 3,
we discuss the data that we use. Section 4 discusses how we establish the link between
proximity to a coal-fired station and perceptions of air quality. In Section 5, we present our
core results. The policy implications of our findings are laid out in Section 6, where we
also discuss adding in carbon benefits and a few caveats to our core thought experiment.
Section 7 has some concluding comments.

2 Background

Economists are increasingly engaging with questions of how best to measure environmen-
tal change damages alongside investigating ways of adapting to and mitigating their con-
sequences (see, for example, Stern (2007) and Aghion et al. (2019)). Research in environ-
mental psychology has picked up pace to uncover relationships between individual char-
acteristics and incentives, location attributes, and perceptions on damages, and how these
interact with governance and politics (Whitmarsh (2008); Capstick et al. (2015); Egan and
Mullin (2017); Poortinga et al. (2019)). Some of these studies have established correlations
using variations in existing datasets at state or city level (Howe et al. (2015); Zaval et al.
(2014); Konisky, Hughes, and Kaylor (2016)) and others leverage a far more granular anal-
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ysis by implementing bespoke local surveys at a small geographic scale (Kaiser (1998);
Bogner and Wiseman (1999); Diekmann and Preisendörfer (2003)).

These studies have exposed the challenges of studying the relationship between individual-
level opinions and location characteristics given the myriad of ways in which locations
differ. Data availability has mainly focused on the developed world, primarily the United
States and Europe. However, the damage due to global warming is are predicted to be
disproportionately higher in the Global South (Cruz and Rossi-Hansberg (2021)). Further-
more, the growth in coal-fired power in recent years has predominantly been in low-and-
middle income countries. The analysis in this paper is representative of parts of the world
that have not previously been studied.

The paper also connects to the strand of literature on life satisfaction and willingness
to pay for “amenities” (for example, Layard, Mayraz, and Nickell (2008); Kahneman and
Deaton (2010)), a sub-strand of which has focused on valuing natural disasters (Luechinger
and Raschky (2009)) and environmental amenities (Frey, Luechinger, and Stutzer (2010);
Frey and Stutzer (2002)). Previous work in this space has estimated WTP for clean air
using objective measures of air pollution such as particulate matter and gaseous content
(Luechinger (2009); Welsch (2006)). However, the correlation between objective and per-
ceived air quality is not always strong (Liu, Cranshaw, and Roseway (2020)), and, ar-
guably, perceived air quality seems to matter more for individuals’ economic decision-
making (Chasco and Gallo (2013)) and possibly for decisions on what climate policy to
vote for.

This paper provides estimates of air quality benefits that can result from closing down
coal-fired power stations across different countries. We use plant-level data on emissions
to estimate plant-by-plant benefits depending on the size of the affected population, along-
side the carbon benefits. There is much debate about the appropriate Social Cost of Carbon
(SCC) estimate to use with different methodological approaches suggesting widely differ-
ent numbers (Tol (2022)).2 We therefore assume lower and the upper bound values of $20
and $100 per ton of CO2 respectively for our estimated benefits. Following Stern (2007),
there is also a debate about the right discount rate to use and we follow existing literature

2. Although there has been more recent work on estimating these costs for specific cases, such as on
human mortality and labor productivity, we do not use them as they are only partial SCC estimates (Carleton
et al. (2022)).
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in applying an annual discount rate of 2% for the future (Hassler, Krusell, and Nycander
(2016); Nordhaus (2014)).

Air quality, unlike carbon emissions, is place specific. We therefore conduct a spatial
cost-benefit analysis based on replacing existing coal-fired power plants with solar or wind
farms of equivalent capacity for different geographies and extend the analysis to the whole
world. This provides a ballpark sense of the value of closing down specific power plants.
The context for such policy change is extremely favourable, since some renewable tech-
nologies are now sufficiently scalable to match mainstream capacity generation that can be
achieved through coal-fired power. Moreover, R&D investments in energy storage tech-
nologies promise finding a way of balancing out supply and demand 3, the transition looks
technologically feasible in near future. Fulfilling highly variable grid demand requires re-
liable sources of energy, such as coal and natural gas, which can supply just enough power
to match both peak and non-peak demand without wasting energy. Whereas renewable
sources suffer from uncertain fluctuations due to weather conditions and are still not reli-
able, advancement in energy storage technology, which is not limited to batteries4, holds
the key to making green transition successful because if the surplus power from windmills
generated during windy periods can be stored efficiently, it can be used to meet demand
during less windy times. In this spirit, high-income countries have already ramped-up in-
vestments in renewables and pushed most of their existing coal-fired power plants either
towards retirement or conversion into natural gas.5

3. In 2019, around 80% of all public energy R&D spending was on low-carbon technologies – energy
efficiency, CCUS, renewables, nuclear, hydrogen, energy storage and cross-cutting issues such as smart grids.
Source: IEA World Energy Investment Report, 2020

4. Apart from advancement in electrochemical storage technology, such as lithium ion, the energy storage
space is witnessing a large investment in research and development as well as investments in non-conventional
ways to store energy, such as mechanical storage using liquid CO2, thermal storage by heating blocks of
carbon or metal and delivering them as heat or other forms of energy, and chemical storage using hydrogen.
Source: The Economist, Technology Quarterly, June 25, 2022

5. Coal will account for 85% of U.S. electricity generating capacity retirements in 2022. Source: US
Energy Information Administration
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3 Data

We use data from a variety of sources, including individual-level primary surveys, satellite
observations, and reanalysis products that are developed and validated through ground-
based observations. Below, we discuss the main datasets, which we have used, in detail.

3.1 Geocoded Gallup World Poll Data

The outcomes data comes from the Gallup World Poll, an annual, nationally-representative
survey of citizens which began data collection in 2006 and covers around 99% of world’s
adult population living in more than 160 countries. We only use the 2019 data where we
are given access to geocoded data for a sample of countries where face-to-face interviews
were undertaken. This excludes the US and majority of Western European countries with
phone surveys as shown in top panel of Figure 1. For the sample countries, we have exact
latitudes and longitudes of the interview clusters and we use them to measure the distance
of survey locations from the nearest coal-fired power plant. This gives a sample of 17,964
surveys from 51 countries listed in Table 1 and mapped in the bottom panel of Figure 1.
The main outcome variable is a binary indicator of the survey respondent’s dissatisfaction
with ambient air quality. The exact question (translated into English) is: “In the city or

area where you live, are you satisfied or dissatisfied with the quality of air?”

We also use survey responses to a question on current life satisfaction as a proxy for
overall wellbeing. It asks respondents to rate their present life on an eleven-point scale from
0 (“the worst possible life”) to 10 (“the best possible life”). This measure of life satisfaction
is popular among researchers and has been used extensively to make cross-country com-
parisons of wellbeing, particularly for less-developed countries (Deaton (2008); Kahneman
and Deaton (2010)). Apart from these two “outcome” variables, we also use controls for
education, age, income, gender, and whether or not they have children under 15 years of
age (also from the Gallup World Poll). We also make use of a different, but related, attitu-
dinal survey based on a subset of countries included in the Gallup World Poll: the Lloyd’s
Register Foundation World Risk Poll.6 Here also, we restrict the sample to 51 countries
from the main analysis.

6. In this survey, 150,000 interviews were done by Gallup in 142 countries in 2019 to measure the risk
perceptions around climate change, pollution, food, women safety, cyber security, etc. (LRF (2020))

7



3.2 Global Energy Monitor Coal Plants Tracker

Data on coal-fired power plants come from the Global Coal Plant Tracker database released
by the Global Energy Monitor.7 This is freely-available data that tracks all coal-fired gener-
ating units, which are 30 MW or larger, in different stages of operation across the world and
provides units’ precise locations in terms of latitudes and longitudes and other characteris-
tics, such as capacity, annual CO2 generation, etc. At present, it has detailed information
on 13,412 coal units located in 108 countries. Of the total reported units, 6,613 units are
operational, and these generate more than 2 million megawatts of power and produce 12
trillion kilograms of CO2 each year. The database makes available rich data on other en-
ergy sources also, such as natural gas, wind, and solar. Figures 6 and 7 in the Appendix
section show the distribution of operational and planned units respectively for coal, solar,
and wind energy generation across 51 countries that constitute the main analysis sample.

3.3 Transport Links and Other Data

We use global georeferenced data on railways and water-bodies locations to create in-
strumental variables for endogenous locations of coal-fired power plants. The source of
railways network shapefile is the World Food Program-Logistics Cluster8, which brings to-
gether various sources such as OpenStreetMap, American Digital Cartography, Global Dis-
covery, etc. To get the location of water-bodies, we combine data from multiple sources9

to create an “amalgam” water-bodies shapefile. We also use remote-sensing data on a veg-
etation index from the NASA Earth Observations project to control for green cover of each
survey location and a 1 km×1 km grid population count from the Grid-level Population of
the World v4 (GPWv4) database for year 2020 to compute population.

7. The Global Coal Plant Tracker (GCPT) provides information on coal-fired power units from around the
world generating 30 megawatts and above. The GCPT catalogues every operating coal-fired generating unit,
every new unit proposed since 2010, and every unit retired since 2000. Source: Global Coal Plant Tracker -
Global Energy Monitor

8. This program works to ensure effective and efficient humanitarian response by optimising logistics
during times of disasters and other emergencies. It also acts as a provider of last resort for shared logistics
services across the world.

9. Three data layers: (i) linear water showing lines of rivers, streams, and canals from ESRI, (ii) a shapefile
for major rivers from UNESCO World-wide Hydrogeological Mapping and Assessment Program, and (iii)
an ocean coastline shapefile from the North American Cartographic Information Society are merged using
the spatial join tool in ArcGIS software.
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We extract country-level estimates of coal, solar and onshore wind energy generation
costs from a variety of sources, which include the International Renewable Energy Agency,
International Energy Agency, country reports, etc. All data references are detailed in the
Appendix.

4 Empirical Approach

Our empirical analysis estimates the elasticity of air quality dissatisfaction with respect to
the distance of survey locations from the nearest operating coal-fired power plants.

4.1 OLS

In our core specification, we suppose that air quality dissatisfaction, y, for an individual, i,
surveyed in location, ℓ, can be explained as follows:

yiℓ = αδiℓ+ τi + εiℓ (1)

where, τi represents unobserved idiosyncratic distaste for air pollution.
If coal plants were randomly assigned to different locations, or equivalently, if indi-

viduals are randomly assigned to different locations, then OLS would give us an unbiased
estimate of α , i.e. how on average, distance from the nearest coal-fired power plant is
related to perceived ambient air quality.

There are however two empirical concerns with this approach. First, policy-makers may
choose to locate coal-fired power stations where opposition is lowest, i.e. where people are
less concerned about pollution. Second, people who care strongly about pollution could
move away from locations where there is heavy pollution from coal-fired power while
those with less concern may stay put or even move in to such areas. Both of these concerns
would lead us to believe that OLS could underestimate the negative impact of coal-fired
power compared to the general population.

More formally, note that

α̂OLS =
cov(yiℓ,δiℓ)

var (δiℓ)
=

cov(αδiℓ+ εiℓ+ τi,δiℓ)

var (δiℓ)
= α +

cov(τi,δiℓ)

var (δiℓ)
(2)

9



Assuming that cov(εiℓ,δiℓ) = 0, the bias in OLS comes from the final term represent-
ing the correlation between unobserved tolerance for air pollution and the location of
coal-fired power stations. As we discuss further below, the most plausible case is where
cov(τi,δiℓ)> 0, implying that the estimated value of α is a lower bound estimate of the av-
erage relationship between being located close to a coal-fired power station and air quality
dissatisfaction.

4.2 IV

We now discuss how an IV approach may address the concerns about the selection of
power-plant locations and/or migration patterns of citizens based on air quality preferences.
We propose two instruments for coal-fired power station locations based on the need to
supply such power stations with coal. They are (i) the log distance of survey locations
from the nearest railroad and (ii) the log distance of survey locations from the nearest body
of navigable water, such as a river or the sea. The first instrument picks up an important
transportation linkage since the majority of coal worldwide is transported using railways.
A small but significant fraction of coal transportation uses coal barges and other sea vessels
(National Research Council (2007)). This is picked up in our second instrument. Proximity
to water may also increase the reliability of water supply and eases waste treatment. We
show below that these variables are strongly predictive of coal-fired power station locations.

We also need a plausible exclusion restriction, i.e. that these two instrumental variables
predict perceptions of pollution, conditional on covariates, only have an impact through
the first-stage channel. Given that we have two instruments, we can use a formal test of
over-identification. However, beyond this formal approach, we believe that it is plausible
a priori to think that the exclusion restriction holds as there is no obvious reason to expect
proximity to railroads or water-bodies to affect air quality perceptions. Railways that run on
diesel are much less polluting than coal-fired power, and nearly 30% of the global railways
network has now been electrified. So, it is implausible to think that there is a direct effect
of railway locations on air quality.10

More formally, we write the selection equation for δ as follows:

10. Railways emit less than 1% of all transport NO2 emissions and less than 0.5% of transport PM10 emis-
sions. Source: European Environment Agency
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δiℓ = βτi + γizℓ+ηiℓ (3)

where z are things which affect location other than taste for pollution, i.e. “instruments” for
location. We allow γ , the relationship between zℓ and δiℓ to be heterogeneous, which seems
reasonable. Now consider an IV estimator of α where we put in δ̂iℓ, as in the first-stage
prediction of δ , under the 2SLS routine. Then

α̂IV =
cov(zℓ,yiℓ)

cov(zℓ,δiℓ)
=

cov(zℓ,α [βτi + γizℓ+ηiℓ]+ εiℓ+ τi)

cov(zℓ,βτi + γizℓ+ηiℓ)
= α (4)

as long as cov(τi,zℓ) = 0. Then the difference between OLS and IV is

α̂OLS − α̂IV =
cov(τi,δiℓ)

var (δiℓ)
(5)

Given α < 0, a larger magnitude IV coefficient (relative to OLS) is plausible if cov(τi,δiℓ)>

0, i.e. those with more distaste for air pollution are less likely to locate to areas with high
pollution – the selection issue at hand.

5 Air Quality Dissatisfaction

In this section, we establish the relationship between ambient air quality dissatisfaction at
individual level and their geographical proximity to a coal-fired power plant.

5.1 Main Results

Our core results come from estimating the following regression using OLS:

yiℓ = αOLSδiℓ+βXiℓ+ηℓ+ εiℓ (6)

where X, contains location and individual-level controls and η , captures region fixed ef-
fects, which can either be at the country (admin 0) or state/province (admin 1) level. A
number of case studies in different geographies have tried to define the domain of detrimen-
tal effects of coal-fired power stations on air quality (Iordanidis et al. (2008); Kravchenko
and Lyerly (2018)). These studies suggest that most-affected residences tend to be located
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within 30 km radius of a coal power station. Previous research on perceptions also leads
us to expect a higher impact on households, which are situated closer to coal-fired power
stations (Zhang et al. (2022)). The negative effect of proximity to coal plants on percep-
tions can also be found when using objective air quality such as concentration of pollutants
in areas around coal-burning industrial plants (Ma et al. (2017)) and this poor air quality
translates into health costs such as respiratory ailments (Barrows, Garg, and Jha (2019)).
We therefore present our main findings for three distance bands: 0-40 km, 40-80 km, and
80-120 km, measured as the distance between survey location and nearest coal-fired power
plant.

Table 2 reports the results. In Columns 1, 2 and 3 we use country fixed effects while
those in Columns 4, 5 and 6 use state/province fixed effects. Columns 1 and 4 are for
distance band 0-40 km, 2 and 5 for 40-80 km, and 3 and 6 for 80-120 km. The results
in Columns 1 and 4 confirm our hypothesis that αOLS is negative, i.e., air quality dissat-
isfaction is negatively correlated with distance from the nearest coal plant for respondents
located within 40 km of a coal-fired power plant.11

The core results are robust to changing the range of distance i.e., starting from 0 km
and ending at 60 km as the upper limit of domain. However, there is no effect of distance
on perception when using 40-80 km or 80-120 km distance bins, thereby suggesting that
the ‘immediate’ effect is local (Ha et al. (2015)).

Table 2 also gives suggestive evidence that “elite” opinion is geared towards some form
of climate action as evidenced in the gradient on education level; individuals with higher
education levels tend to be significantly more dissatisfied compared to less educated ones,
ceteris paribus. This significant result, along with mixed patterns on age group and income,
has been documented in other studies that use different global attitudes datasets (Deche-
zleprêtre et al. (2022)).

To see if there is a link between level of emissions and air quality dissatisfaction, we run
the above specifications for distance band 0-40 km and include either discrete (high/low) or
a continuous interaction of the nearest plant-level annual CO2 emissions (in million tonnes)
with the distance regressor. We find that the interaction term is not statistically significant

11. We run a specification using Equation (6) with a general measure of health problems as the dependent
variable. The exact survey question is: Do you have any health problems that prevent you from doing any of
the things that people of your age normally can do? This is a portmanteau health question, and as expected,
we do not detect any significant effect of our main regressor, δ .
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in any of the cases, as reported in Table 3. This highlights that objective measures of air
quality (total annual CO2 emissions in this case) might not be correlated with subjective
measures – something we discussed early on in the paper and has also been documented in
other studies (Crenson (1971)).

Taken together these results suggest that mere existence of coal-fired power stations
nearby do indeed affect perceptions of air quality negatively.

5.2 Additional Findings and Robustness of Results

We first show why geocoded data, which enables a granular analysis, is essential to our
findings. We also consider whether the core results are also reflected in risk assessments. In
addition, we perform a placebo test by testing whether power stations that are non-existent
now have a similar effect to those that are currently operational.

5.2.1 Data Aggregated at Regional Level

A unique feature of the analysis is being able to use spatially granular data. To see how
important this is to the findings, we will now contrast our core findings with results using
data aggregated to the region level. While we have a less clear-cut way of measuring survey
respondents’ proximity to coal-fired power stations, it does permit a longer time period as
we can now use the World Poll for all years rather than just 2019, the year for which we
have geocoded data. However, to maintain comparability, we will use the same 51 countries
as in our main analysis.

How to define exposure to coal-fired power for regionally aggregated data is less clear
given that we do not know precisely where survey respondents live. We therefore exper-
iment with different ways of defining exposure, partly as a point of comparison with the
core results obtained from estimating Equation (6). The first exposure variable that we
construct measures the number of operational coal-fired plants in a region in a given year
divided by the total area of the region. This variable does not require us to know where
survey respondents reside.

The second aggregated variable that we use is most analogous to our main variable of
interest in Equation (6). It is the log of the average distance between all survey geocodes
and nearest operational coal-fired power plant at the region level for survey locations that
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are within 40 km of the plant in 2019.12

Results using aggregated data reported in Table 4 do not show any significant rela-
tionship between any of the two measures of exposure to coal-fired power defined at the
regional level and the average air quality dissatisfaction in a region. Even though the co-
efficients are not statistically significant, it is interesting to note that the coefficient on the
second exposure variable, which is our closest counterpart in the main results reported in
Table 2, is of same order of magnitude.13

This exercise underlines the usefulness of using geocoded data to assess the impact of
coal-fired power on air quality dissatisfaction. Even our best estimate of exposure to coal-
fired power based on aggregation to the region level is much cruder that what we were able
to do by knowing precisely where the surveys are conducted. This lesson on the value of
granular data does therefore give an important pointer for future research in terms of the
need to have geographically granular data.

5.2.2 Risk Assessments

Using the data from the World Risk Poll, we implement a specification similar to Equation
(6) but with the left hand side variable being risk assessments on pollution and climate.
Table 5 reports the results.

For both of the risk assessment variables we find that, as before, a significant negative
relationship exists between individuals’ location relative to the nearest coal power plant
and their pollution risk perception when they are located within the 0-40 km distance band.
Nonetheless, no such relationship exists on perception of risk towards climate change dam-
ages, thereby highlighting that people tend to respond to immediate risks (air pollution
here) rather than perceiving that pollution will eventually lead to climate change.14

These findings reinforce the idea that when looking at global externalities that affect
climate change, it may be important to anchor narratives and policy discussions on local

12. For this to be an accurate exposure measure, the sample collected in 2019 needs to be similar to those
in other years.

13. The results in Table 4 also show that the magnitude of the coefficient on the exposure to coal-fired
power is not sensitive to the inclusion of year fixed effects. This is also shown in Figure 8 in the Appendix.
It suggests stable air quality perceptions over time across sample countries, thereby allaying concerns around
using only a single cross-section for 2019 in our core results.

14. Results for 40-80 km and 80-120 km distance band are reported in Table 12 in the Appendix.
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manifestations of pollution. In such cases, citizens find it easier to perceive the problem
and hence more willing to support policies aimed at reducing air pollution.

5.2.3 Placebo Tests using Planned and Retired Plants and Water Quality Perceptions

If the core results are down to proximity to coal-fired power, then we should not expect a
relationship between perceptions of air quality and future planned coal-fired power plants
in new locations i.e., plants that are not operational now, but are either announced, at a pre-
permit or permit stage of commissioning as opposed to increasing capacity in an already
existing operational plant. We would also not expect to find that coal-fired power plants
would be associated with reduced perceptions of other environmental amenities such as,
water quality when we look for similar effects as found in Table 2 but with water quality
perceptions as the outcome variable.

Formally we expect the αOLS coefficient estimated in a specification like Equation (6)
not to be significantly different from zero when looking at planned but as yet unbuilt power
stations. This is because the respondents near to planned units have not yet experienced the
air pollution externality. We should also not expect to find similar results when we re-run
all the specifications for retired and mothballed15 coal power plants.

Results for both the planned and the retired and mothballed plants are reported in Table
6, showing that the coefficients on distance are not significantly different from zero. More-
over, the effect of distance from nearest operational coal-fired power plant on water quality
dissatisfaction is also insignificant, thereby confirming our placebo hypothesis.16

5.2.4 A Semi-parametric Approach to Distance

Our core measure of distance focused on survey respondents residing in areas, which are
less than 40 km from the nearest coal-fired power plant. And we have showed that those
who live further away do not appear to show higher levels of air quality dissatisfaction.

To explore the robustness of the 40 km distance band, Figure 2 gives the result of
estimating a semi-parametric locally smoothed polynomial to show how air quality dissat-
isfaction varies with distance. It shows that air quality dissatisfaction decays to a level that

15. Units that have been permanently decommissioned or converted to another fuel are classified as retired
while units that have been deactivated or put into an inactive state but are not retired are called mothballed.

16. Results for 40-80 km and 80-120 km distance band are reported in Table 13 in the Appendix.
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is basically zero at around 20 km from power plants. However, if we used this as a our
core distance measure, we would have a much smaller number of survey respondents on
the basis of which to estimate the effect; around 6% of the survey respondents live within
20 km of a coal-fired power plant whereas around 13% live within 40 km. Nonetheless,
as a further robustness check, we run our main as well as the placebo regressions for the
0-20 km bandwidth to see whether our results continue to hold. Table 14 reports the results
and shows that the main and placebo results continue to hold even though we lose some
statistical significance on the main results due to lower statistical power.

5.3 IV Estimates

To assess the robustness of our results, we also do an IV estimation. Here we also expect
find a larger coefficient on proximity to a coal-fired plant compared to the OLS. Specifi-
cally, we estimate the following regression for households located in distance band 0-40
km from an operational coal-fired power plant:

yiℓ = αIV δ̂iℓ+βXiℓ+ηℓ+ εiℓ (7)

where, X contains location and individual-level controls and, δ̂iℓ, is predicted from the
first-stage using the vector of instruments, Λ.

δiℓ = θΛiℓ+ γXiℓ+ζℓ+νiℓ. (8)

In this case, we expect αIV to be negative and larger in magnitude compared to αOLS.
The results are reported in Table 7. Columns 1 and 2 use country fixed effects and

Columns 3 and 4 use state fixed effects. Columns 1 and 3 employ only the survey location’s
log distance from nearest railroad as an instrument, while Columns 2 and 4 use both nearest
railroad and body of water distances as instruments. As hypothesised, αIV is negative in all
four specifications and has a magnitude nearly eight times that of αOLS.

Large values of first-stage Kleibergen-Paap F-statistics and Kleibergen-Paap LM statis-
tics suggest that these are strong instruments. Moreover, for over-identified cases with
two instruments, the over-identifying restrictions are valid as evidenced from low Hansen
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J-test statistics.17 As a robustness test on the railroad instrument, we also check whether
it predicts pre-determined variables such as, gender and age, thereby violating exclusion
restriction.18 We do not find any evidence of correlations that might lead us to question the
IV strategy. As another robustness test, we do the same IV estimation for retired plants.
First-stage and reduced-form results are reported in Table 17 in Appendix. As expected,
the first-stage results are significant i.e., railroads and water-bodies predict retired coal
plants locations, but reduced-form is insignificant, meaning that distance from railroads
and water-bodies do not impact air quality perceptions.

These findings give credence to a causal interpretation of a link between air quality
perception and proximity to coal-fired power plants. The difference in magnitude also
highlights the importance of selection-bias introduced due to citizens, who value air quality,
choosing to locate further away from coal plants, even though these areas are likely to be
richer neighbourhoods with higher overall life satisfaction.19 This is plausible since, once
a government sets up a coal plant in an area, this may bring other economic and cultural
activities into the area.

6 Policy Implications

The results so far have established that perceptions of air quality are indeed related to
proximity to coal-fired power plants. Moreover, there are approximately 1.12 billion people
living within 40 km of an operational coal-fired power plant in our sample of countries.
And this number increases to 2.18 billion i.e. about one-third of the global population if
we consider the whole world.

But how our findings affect the case for closing down coal-fired power plants is not
so clear. To explore this, three steps are needed. First, we need a way of constructing a
hypothetical WTP measure from the survey data. Second, we need to aggregate this across
the affected population. Third, we need to get a ballpark cost of replacing coal-fired power
generation with a non-polluting source such as, solar or wind energy. This section explores
these issues to produce a quantitative measure of the benefits of closing down coal-fired

17. The first-stage and reduced-form results are presented in Table 15 in the Appendix.
18. Table 16 in the Appendix reports the results
19. See Figures 9 and 10 in the Appendix.
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power plants.
Using WTP as a way of valuing public goods has been popular in the public finance

literature (Layard, Mayraz, and Nickell (2008); Kahneman and Deaton (2010)). And it has
been used by environmental economists to estimate the value of eliminating air pollutants,
such as Nitrogen Oxides (NOx) and Sulphur Oxides (SOx) (Frey and Stutzer (2002); Frey,
Luechinger, and Stutzer (2010); Luechinger (2009)). Data limitations mean that the scope
of these studies has generally been limited to the US and parts of Europe.20

To construct a WTP measure, we first show that there is a negative correlation between
a standard subjective wellbeing measure from the Gallup survey data and air quality dis-
satisfaction. We then use the standard finding that subjective wellbeing and income are
also correlated to generate a WTP measure for air quality improvements. We then use
the measure to examine the aggregate air quality benefits from switching away from coal-
fired power and compare this with an estimate of the cost of making the transition to clean
energy.

As well as looking at this in aggregate terms, we also show more granular results at
the plant level to look at the impact of different ways of scheduling the closure of coal-
fired power around the world. Then, we explore the politics of air pollution by looking at
country-level heterogeneity and discuss the political economy and policy priorities of air
pollution. Finally, we compare the immediate air quality benefits using our measure with
more long-term benefits that come from carbon reduction due to the shut down of coal-
fired power plants. Unlike the air quality benefits which are local, the overall benefits are
global. We end the section with some caveats around balancing energy systems through
renewables and the role of technology in relaxing some of those constraints.

6.1 Approach

We start by estimating a standard equation relating life satisfaction scores in the survey
data to a range of variables that are generally included in the extensive empirical literature

20. Even though remote-sensing data on some pollutants are now available worldwide at a fine spatial
scale, they are not suitable for a granular analysis, such as ours. There has been some recent advancements in
getting accurate measurements on local air pollution through remote-sensing methods, but the estimates are
not widely available for the whole world, and some of them are not validated against ground-based reference
data (Nassar et al. (2022)).
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on wellbeing. We also include the perception of air quality as a regressor. Specifically, we
use OLS to estimate the following specification:21

uiℓ = γ log(aiℓ)+β log(yiℓ)+αℓ+δXiℓ+ εiℓ (9)

where the dependent variable, uiℓ, is the life satisfaction score on a 0-10 Cantril ladder
for individual i in location ℓ, αℓ controls for region fixed effects, y stands for household
income in 1000 USD, a is air quality dissatisfaction that takes value 2 (1) if individual is
dissatisfied (satisfied) with ambient air quality, and X is a vector of controls, which are as
in our previous specifications.

We are interested in estimates of β and γ , which quantify the relationship between
income and air quality dissatisfaction with life satisfaction. We estimate Equation (9) for
all 51 countries in our sample. The results are reported in Table 8.22 In order to be cautious,
we consider upper and lower bound estimates, from a 95% confidence interval, rather than
just point estimates.23

To gauge the willingness to pay, we use a standard equivalent variation measure for
a reference level of air quality based on a Cobb-Douglas utility function. The equivalent
variation, e, i.e. the amount needed to get to the reference air quality satisfaction level,
ar < a, in this case is given by

γ log(ar)+β log(y− e) = γ log(a)+β log(y)

which implies

e = y

[
1− exp

{
γ

β
log

(
a
ar

)}]
(10)

21. There is no consensus in the literature on the exact econometric equation that should be used here, but
the majority of previous work in this vein has used a specification similar to ours. The coefficient on log
income is precisely estimated and is around 0.5, which lies well-within the bounds estimated in the existing
literature (Layard, Mayraz, and Nickell (2008)).

22. As with the OLS estimation results in Section 5, there is a potential concern about selection issues
as we argued there, this is likely to lead to a downward bias in the OLS estimates. Some studies using a
life satisfaction approach for air pollution have used IV approaches and tend to find IV estimates that are
significantly larger than those found using OLS (Luechinger (2010)).

23. Figure 11 in Appendix shows 95% confidence interval bounds on β and γ estimates for each of the 51
countries in our main sample. There is a fair amount of heterogeneity in preferences across countries (Falk
et al. (2018)). However, this is less true for air quality preferences than income preferences.
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To estimate e in Equation (10), we use the parameter estimates for γ

β
and a reference level of

air quality dissatisfaction, ar. For the former, we use the estimates that control for admin-1
fixed effects as reported in Column 2 of Table 8.24 And for the reference air quality level,
we use the average level of dissatisfaction outside the 0-40 km distance band for the 51
countries in the core sample. The results are in Column 6 of Table 9 where we report
results for both point estimates and at the upper and lower bounds of the 95% confidence
interval from Column 2 of Table 8.

To obtain the Aggregate WTP (AWTP) measure, we multiply e by the number of af-
fected households, based on the number of residences located within 40 km of an opera-
tional coal plant. The population figure reported in Column 7 of Table 9 is the total number
of people living within 40 km of coal plants in our sample. We adjust this downwards
by household size in order to get to the total residences within 40 km of coal-fired plants.
Finally, we multiply total residences by per capita WTP in order to get AWTP, which we
report in Column 9 of Table 9.

To represent a green transition, we consider replacing coal-fired power plants with ei-
ther solar or wind farms of equivalent generation capacity over a period of time. To give
a ballpark estimate of the cost of this, we use the total power generation capacity of coal
plants and the source-specific average global Levelized Cost of Energy (LCOE)25 to com-
pute the cost of supplying an equivalent amount of energy through solar and onshore wind
energy generation. We assume a gradual “linear” transition process over twenty-five years
where 4% of coal-fired power production is converted to solar or wind each year.

24. Since life satisfaction has no obvious cardinality, we follow (Ferreri-Carbonell and Frijters (2004)) and
test the robustness of our results by estimating ordered logit models with region fixed effects alongside the
same controls as in the OLS specification. The results from this exercise are in Table 18. Our estimate of γ

β

in this case is -1.047 which is close to the value of -0.989 that we get from the OLS estimation. Hence, we
use the OLS results in the analysis that follows.

25. LCOE is a popular measure to estimate the costs associated with renewables technology projects. It
measures lifetime costs divided by energy production and accounts for present value of the total cost of
building and operating a power plant over an assumed lifetime. This measure allows a comparison of different
technologies of unequal life spans, project size, different capital cost, risk, return, capacity factor, and capacity
for each of the respective sources. Figure 12 in the Appendix shows the LCOE for all 51 countries in our
sample; the per unit cost of energy generation is highest in the coal sector for most of the countries.
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6.2 Findings

Using the above methodology, we compute aggregate and plant-level estimates of net air
quality benefits that come from clean energy transition based on our thought experiment.

6.2.1 Aggregate Estimates

In Figure 3, we present the present-discounted benefits over time for the twenty-five year
time horizon, where all the values are discounted at a constant rate of 2% per annum. We
report point estimates along with a shaded area for lower and upper bound of AWTP. It
is striking that even at the lower bound, and only considering air quality benefits, a green
energy transition at the global scale looks worthwhile. Moreover, these results are not
particularly sensitive to the exact choice of discount factor.26

An additional concern is that the green energy transition might create an undue fiscal
burden if it is financed publicly. However, when viewed in terms costs relative to GDP,
this is probably not the case since, when we express the amounts involved as a fraction of
annual household income, they are of the order of only 1% of annual household income.27

Hence, even as tax-financed proposition, our proposed green transition looks feasible.

6.2.2 Plant-level Estimates

In practice, the decisions that policy-makers will have to make to bring about a green
transition will involve deciding whether to decommission specific coal-fired power plants.
Our analysis allows us to look at a policy strategy of that kind by looking at the benefits of
closing specific coal-fired power stations.

A useful starting point is to construct a “league table” of the most polluting power sta-
tions according to our AWTP estimates. Specifically, we rank all power stations according
to the total population that is affected by poor air quality. Table 10 presents a list of the
“top” 25 coal-fired power plants based on the affected population for our sample of 51
countries. It is notable that most of the plants on this list are in India and China, the two

26. We have tested the robustness of the results to using alternative values of discount rates; see Figure 13
in the Appendix.

27. See Figure 14 in the Appendix.

21



most populous countries in the world.28

Table 10 gives the benefits and cost of closing each power station while replacing it with
either wind or solar farms of equivalent generation capacities. In line with the country-level
results, we find that for these highly polluting power stations, air quality benefits alone are
in excess of the costs even at the lower bound estimates for gross benefits of closing them.

We can also look at the benefits from closing coal-fired power stations in countries
that are not in our sample of 51 countries by using our estimates of γ

β
to estimate benefits

for these countries. Specifically, we take operational coal power plants across the globe
in 2019 outside the 51 countries in our survey sample with Table 11 giving a list of the
top 25 most polluting coal plants for this sample. It is notable that most of the plants in
this sample are located in Germany and Japan. Although the plant-level gross benefits are
somewhat smaller for these plants compared to those in Table 10, the air quality benefits at
the lower bound estimates are still able to generate positive net benefits for all plants. Thus,
our finding about ambient air quality provides a potentially compelling case to close these
power stations.

As a final step, Figure 4 gives the plant-level net benefits for all operational coal-fired
power plants across the world in 2019. It gives a good sense of the distribution of benefits
and makes it clear that replacing coal plants with solar and wind generation units would be
beneficial in almost all cases, even if we use the lower bound estimates of net benefits for
air quality improvement.

6.3 Political Economy Implications

It is interesting to speculate on the implications of our findings for the political economy
of climate action. In principle, we might expect that having a high AWTP for air quality
improvement coupled with a high net benefit when factoring in the cost of replacing the
system with renewables would create a compelling case for action to reduce coal-fired
power production. Indeed, such a policy conclusion would follow from the findings above.
But whether it would lead to such action depends upon the politics of the decision-making

28. Table 19 in the Appendix looks at the plants by affected population for the world as a whole and most
of the plants are also located in China and India and 16 out of 25 plants repeat from previous list. Moreover,
all the new plants that are now on the list are located in China.
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processes, which depends, in part whether citizens have the voice needed to channel their
discontent and a willingness to use it in the case of coal-fired power.

Given the results that we have found, it not clear whether citizens will actually perceive
the scale of aggregate benefits even if they are personally unhappy about air quality. First,
they may not be able to attribute low air quality to coal-fired power. And, at best, they
would know their own level of dissatisfaction rather than the aggregate costs and benefits.
One way to think of our findings is as an input to a policy process that has the potential to
galvanize policy action. And, as we have seen, the benefits vary not only across countries
but from one power plant to another.

For political economy purposes, therefore, it is interesting to focus on two countries:
China and India. As we saw above, they are home to most of the plants with large affected
populations, perhaps not surprising given their population sizes. But, of course, when it
comes to thinking about climate action, they have very different political institutions. We
explore this by studying results where we allow the parameters relating life satisfaction to
income and air quality dissatisfaction to be country-specific.29 We then consider what this
says about the prospects for policy action on coal-fired power in both countries.

In the Appendix, we calculate the aggregate benefits for each country using the same
method as for our sample of 51 countries.30 These reveal that WTP for better air quality
is quite a bit lower in India compared to China, i.e. the parameters that go into the AWTP
calculation are different.

Taken at face value, this would say that Indians appear less concerned, on average, about
air quality than the Chinese (and the average person in our wider sample). Thus, based on
this crude money metric, this would imply lower welfare gains from decommissioning
coal-fired power plants in India.31 This could explain why even if they have political voice,
Indian citizens may be less inclined to put pressure on their government to do this even
though, as in most democracies, Indians can organise and participate in public protests and
demonstrations to shut-down coal plants and regulate associated industries, and potentially

29. See Table 20 in the Appendix.
30. See Table 21 in the Appendix.
31. Figure 15 in the Appendix gives the benefits and costs over time for each country. The air quality

benefits tend to go up substantially in India when we re-compute benefits with global preference parameters
as reported in Panel 2 of Table 22 in the Appendix.
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inform debates and discussions related to policy-making. 32 That said, whether air quality
is likely to be salient relative to other issues is far from clear. The classic work in political
science by Crenson (1971) highlights how air quality has frequently been a non-political
issue in the U.S. which at best is explained by the lack of salience among most citizens.

In contrast, the results for China suggest a compelling case based on air quality net
benefits, more similar to what we found for the world as a whole. The positive net benefits
result for China is reassuring from an economic feasibility point of view, but how it could
translate into policy action given the nature of the political system is less clear. It is more
likely to come from the Chinese government finding the case, implicit in our findings,
compelling rather than via bottom-up pressure from citizen voice.

Heterogeneity by education level is also interesting; we assume that a
ar

is common
across all education categories and set it to the global level. The differences in WTP are
mostly guided by differences in income level across education categories, with only small
proportions of these differences explained by variation in preferences, i.e. γ

β
ratio across

the categories as reported in Table 23 in Appendix. Again, using Equation (10), we find
that the WTP for better air quality among highly educated individuals is more than double
that of those with only primary or intermediate-level education as reported in Table 24 in
the Appendix. Overall, it suggests that educational elites have much higher willingness to
get rid of coal-fired power. This is an important finding as people who are more educated
are also more likely to vote and engage in other political activities.

6.4 Alternative Approaches to Assessing the Value of Clean Air

The implied valuations based on our approach are citizen-centric and exploit the fact that
citizens’ perceptions are likely to be important in their roles as voters or activists. This
is complementary to approaches that look at the value of clean air through the lens of
public health benefits such as reduced disease burden, higher excess mortality, or reduced
life expectancy. How far they are perceived directly by citizens is unclear. Public health-
based approaches are often based on sophisticated models, such as Global Atmospheric
Chemistry and Global Exposure Mortality models (Lelieveld et al. (2015); Lelieveld et al.

32. For example, Srivastav and Singh (2022) argue for constitutional amendments on land acquisition laws
for businesses and firms in India.

24



(2020)). The resulting benefit estimates suggest that ambient air pollution-related death
numbers are as high as 10 million per year. We are not aware of studies that have tried to
link these estimates to citizens’ perceptions of air quality and detrimental impacts. It would
be interesting to know how far priming citizens with information about public health costs
of air pollution changes their perceptions of air quality and/or encourages greater citizen
engagement in the political process.

Priming is, of course, a key feature of Contingent Valuation Methods (CVM), which
are also widely used in cost-benefit analysis and environmental impact assessment (Ciriacy-
Wantrup (1947); Arrow et al. (1993); Hanemann (1994)). In particular, the case for shutting
down coal-based power generation has been strengthened by a number of CVM studies for
both developed and developing countries (Chikkatur, Chaudhary, and Sagar (2011); Wang
and Mullahy (2006)). Nonetheless, research using CVM are often criticized precisely be-
cause they prompt citizens to think about issues differently than they might in their every-
day lives. So, it is important to be aware of concerns around interview-bias along with
other sources of biases due to non-response and other factors (Kahneman and Knetsch
(1992)). Although, our approach makes use of survey responses, there is no priming to-
wards thinking about proximity to coal-fired power plants, so the link that we have found
between perceptions of air quality are not due to having subjects worry directly about coal-
fired power. Therefore, we are uncovering a “latent” valuation for closing down coal-fired
power stations that citizens themselves may not be aware of.

To check how our estimate of aggregate benefits derived from shutting down coal-fired
power plants compare to those in the CVM literature, we make use of WTP value of $0.025
per kWh of electricity used from Kim, Lee, and Yoo (2018) and recalculate AWTP using
aggregate installed capacity of coal plants across 51 countries in our sample. We find that
the new value of AWTP obtained using alternative WTP estimates comes out to be 0.358
trillion USD,33 which is smaller but reassuringly of the same order of magnitude as AWTP
reported in Table 9. Also, the difference in magnitude is expected because what we are
recovering in this paper is just the WTP to shut down coal plants, while Kim, Lee, and
Yoo (2018) estimate the WTP of transition from coal to natural gas, which, though far less

33. The total operational capacity of coal-fired power plants in the 51 countries in 2019 was 1633.9 GW.
We first take the product of total capacity and 103 ×24×365 to get to the energy equivalent in kWh and then
rescale it by 0.025 to get to the monetary equivalent.
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polluting, do contribute towards air pollution.
There is also a strand of literature that estimates the value of clean air using hedonic

analysis on house prices (Chay and Greenstone (2003); Chay and Greenstone (2005)).
We view our work as complementary with such approaches. It would be interesting, in
future, to find contexts where the findings from this approach and ones based on subjective
wellbeing data could also be compared. For example, to use WTP estimates from Ito and
Zhang (2020), we would need reliable granular data on PM10 emissions for all the 51
countries in our sample.

6.5 Further Issues

Our results suggest positive net benefits of a switch towards green energy. Nevertheless,
there are a few issues at hand that warrant some discussion to render more credibility to the
conclusions reached in this section.

6.5.1 Benefits from Carbon Reduction

So far, we have not allowed carbon benefits from decommissioning coal-fired power to be
considered as part of the benefits. And yet, coal-fired power generation is one of the biggest
sources of CO2 emissions across the world, accounting for nearly 30% of total annual
global emissions with the lion’s share coming from Asia.34 Therefore, shutting down coal-
fired power plants has an additional dividend in terms of carbon reduction benefits, which
can help mitigate the growing climate change problem.

Recent work on estimating the carbon benefits of emission reduction due to the closure
of coal plants across the world finds it to be in the order of 80 trillion USD (Adrian, Bolton,
and Kleinnijenhuis (2022)) using a SCC value of $75 per ton of CO2 (Parry, Black, and
Vernon (2021)). There are well-known controversies around the right magnitude of SCC.
In the spirit of how we approached air quality benefits, we take upper and lower bound
estimates on SCC, with $20 at the lower bound and $100 at the upper bound (Hassler,

34. Global energy-related emissions was around 33.1 Gt CO2 in 2018; the power sector accounted for
nearly two-thirds of emissions growth. Coal use in power alone surpassed 10 Gt CO2. China, India, and
the US accounted for 85% of the net increase in emissions, while emissions declined for Germany, Japan,
Mexico, France and the UK. Source: Global Energy & CO2 Status Report 2019
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Krusell, and Nycander (2016); Nordhaus (2014)).35

Figure 5 reports the results from adding in carbon reduction benefits from closing down
coal-fired power stations over a twenty-five year period with a 2% annual discount rate.
The area covered by the upper and lower bounds on the air quality benefits are shaded but
we have not shown the upper bound of carbon reduction benefits since this, combined with
air quality benefits, dwarfs other estimates. It is not surprising that these benefits strengthen
the case for making a green energy transition globally. We can also look at plant-level net
benefits after adding the carbon reduction benefits.36 The net benefits from closing almost
every coal-fired power plant on earth are positive.

Although we have taken an unweighted sum of air quality and carbon reduction benefits
to get to the overall figure, one key difference between the two is worth highlighting. Air
quality benefits are likely to appear more immediately whereas carbon reduction benefits
could take much longer to be realised, with benefits mainly accruing globally and to future
generations. This difference is important in political economy terms. Indeed, as we saw
above, living within 40 km of a coal-fired power station did not appear to be accompanied
by a greater concern about the risks from climate change. Economists typically simply add
up air pollution and carbon emissions in conventional cost-benefit calculations, but political
weights could be rather different.

6.5.2 The Need for Generation Balance

While the push towards renewable energy sources is an important element of a green tran-
sition, our focus on replacing coal with wind and solar does come with an important caveat.
A key challenge for energy systems is to manage imbalances that can arise with stochastic
supply and demand. Until viable storage technologies exist, there is a need for insurance
against days when the sun does not shine or there is insufficient wind.

A complete treatment of the issues that our analysis raises would have to embrace such
concerns. Gas-fired power is one alternative that is widely used and is flexible when bal-
ancing a system. Moreover, it comes without negative air quality externalities even if it still
produces carbon emissions. But that means our analysis is particularly relevant to gas as

35. Although there is recent work on estimating these costs for specific cases, such as on human mortality
and labor productivity, but we do not use them as they are only partial estimates (Carleton et al. (2022)).

36. See Figure 16 in the Appendix.
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the air quality benefits would be paramount. That said, the invasion of Ukraine by Russia
and the ensuing sanctions have highlighted the uncertainties in the supply of gas across
some geographies. In future, using hydrogen as an alternative to natural gas may be a use-
ful way of storing excess energy from renewables. Thus, power generated via hydrogen
can be attractive in achieving system balance without either producing carbon emissions or
having major detrimental effects on air quality.

As highlighted above, we need to ensure that any excess demand is fulfilled both during
and after the transition process. However, in light of “excess” coal power capacity in many
countries, including China (Lin, Kahrl, and Liu (2018)), this transition could pay dividends
in other forms also i.e., by overcoming the sunk cost fallacy around investments in coal-
fired power.37 In addition, idle capacity of existing coal plants, reflected in low utilization
rate, which is around 50% for the whole world (54% for China and 58% for India),38 also
points towards “unwanted” capacity that one can get rid of without derailing the energy
generation system.

6.5.3 Effects on Employment

There has been some evidence suggesting that people who benefit from the coal economy
through the local job base in coal mining, thermal power plants, and associated activities,
tend to express lower dissatisfaction with its existence (Eyer and Kahn (2020)). Employ-
ment margins could be important for shaping citizens’ debates and policy design around
a green energy transition. However, as reported in Table 25, it is not clear that clean en-
ergy would lead to job losses. Job creation would depend on whether the cost of energy
is higher or lower in an age of renewables as new firms tend to locate in areas with lower
energy prices and where labor is available (Kahn and Mansur (2013)). Nevertheless, if
we believe that people have specific human capital and they cannot be retrained, then there
would be losses, which should be considered in the bigger picture around the issues studied
here.

There is also a potential threat from intensive mining of elements such as aluminium,

37. Indonesia’s path to green transition is getting blocked due to large sunk investments from Japan and
China on coal-fired power plants in the country. Source: IEEFA.org

38. The global average utilisation of coal-fired power plants is on track to hit an all-time low, affecting the
profitability of both existing and planned capacity. Source: CarbonBrief.org
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silicon, lithium, and cobalt, which are used in many forms of renewable energy genera-
tion. This, along with many other factors, are areas of radical uncertainty à la Kay and
King (2020) around the consequences of making a green energy transition which may have
consequences that are impossible foresee, let alone quantify.

7 Conclusion

Many countries and international organizations have put phasing out of coal-fired electric-
ity generation at the centre of their environmental strategies. But, although the climate
narrative is front and centre to this, it is important not to lose sight of the other detrimen-
tal effects of coal-fired power which are sometimes downgraded to “secondary” benefits.
Chief among these is its impact on air quality. There is now a fairly advanced debate about
the social cost of carbon and its measurement. But there is a challenge also to value benefits
of air quality improvement and to factor them into policy discussions.

This paper uses a unique source of geocoded perceptions data which we match to the
location of coal-fired power stations, including for a number of countries in the Global
South. We have used these subjective perceptions of reduced air quality to create an em-
pirical measure of the benefits of phasing out coal-fired power and we show a statistically
significant difference between the air quality dissatisfaction of those who live close to and
further away from coal-fired power stations. By using data on life satisfaction, we can
create a money metric or “willingness-to-pay” measure for improvements in air quality. A
key finding is that these benefits alone (without factoring-in carbon benefits) can make a
credible case for phasing out coal-fired power. This is important for environmental policy
discourse since this brings the debate about the urgency in closing down coal-fired power
more squarely into the domain of local politics. Moreover, it comes from the perceptions
of the citizens themselves rather than “expert” opinion.

On top of this, the survey data show a difference between how citizens pay attention to
air quality and how they perceive climate risks. In particular, citizens do not show more
concern about climate risk compared to pollution risk, thereby suggesting that it is reduced
air quality rather than the consequences of carbon emissions that are likely to be more
salient to the extent that they can be linked to coal-fired power. In systems where politics is
responsive to what citizens want, harnessing citizen discontent can be an important driver
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of change. But whether policy action will take place is moot; citizens may know how
dissatisfied they are but be unaware of the source of their problem. By laying bare this
connection, our results have the potential to contribute to arguments for policy action in
situations where citizens are empowered to demand change.
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Tables and Figures

Figure 1: Geocoded Gallup World Poll 2019

Notes: Top map shows all the surveys (in orange dots) where precise GPS coordinates were recorded in the
2019 round of the Gallup World Poll – a total of 138,242 surveys spread across 140+ countries worldwide.
Bottom map shows the subset of surveys (in green dots) that are located in the 0-40 km distance band from
an operational coal-fired power plant and this subset has been used in the main analysis – a total of 17,964
surveys, covering 51 countries listed in Table 1.
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Table 1: List of Countries in the Analysis

No. ISO Country
1 ARG Argentina
2 BGD Bangladesh
3 BIH Bosnia and Herzegovina
4 BWA Botswana
5 BRA Brazil
6 BGR Bulgaria
7 KHM Cambodia
8 CHL Chile
9 CHN China

10 COL Colombia
11 HRV Croatia
12 DOM Dominican Republic
13 GRC Greece
14 GTM Guatemala
15 HND Honduras
16 HUN Hungary
17 IND India
18 IDN Indonesia
19 ISR Israel
20 KAZ Kazakhstan
21 KOS Kosovo
22 KGZ Kyrgyzstan
23 MYS Malaysia
24 MDA Moldova
25 MNG Mongolia
26 MNE Montenegro

No. ISO Country
27 MAR Morocco
28 MMR Myanmar
29 NAM Namibia
30 NPL Nepal
31 MKD North Macedonia
32 PAK Pakistan
33 PSE Palestine
34 PAN Panama
35 PER Peru
36 PHL Philippines
37 POL Poland
38 ROU Romania
39 RUS Russia
40 SEN Senegal
41 SRB Serbia
42 SVK Slovakia
43 ZAF South Africa
44 LKA Sri Lanka
45 TJK Tajikistan
46 THA Thailand
47 TUR Turkey
48 UKR Ukraine
49 UZB Uzbekistan
50 VNM Vietnam
51 ZMB Zambia

Notes: These countries contain the sample of surveys that are used in the main analysis. Some of the survey
locations within these countries qualify under the distance band 0-40 km i.e., survey locations that are
located within 40 km of the nearest operational coal-fired power plants. Figure 1 maps the geocodes of
survey locations.
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Table 2: OLS Estimation Results for Operational Plants

(1) (2) (3) (4) (5) (6)
Air Diss Air Diss Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.044∗∗∗ -0.056 -0.094 -0.039∗∗∗ -0.020 -0.111
(0.0106) (0.0407) (0.0617) (0.0106) (0.0372) (0.0837)

Geocode’s vegetation index -0.097∗∗ -0.097∗ -0.084 -0.063∗ -0.104∗∗ -0.139∗

(0.0327) (0.0455) (0.0473) (0.0297) (0.0395) (0.0580)

Geocode area is urban 0.106∗∗∗ 0.144∗∗∗ 0.142∗∗∗ 0.089∗∗∗ 0.120∗∗∗ 0.125∗∗∗

(0.0215) (0.0248) (0.0359) (0.0203) (0.0172) (0.0261)

Respondent’s age is 26-60 years 0.020 0.016 0.027∗∗ 0.015 0.022∗ 0.030∗∗

(0.0104) (0.0101) (0.0082) (0.0099) (0.0090) (0.0099)

Respondent’s age is more than 60 years -0.022 0.011 0.018 -0.020 0.017 0.027∗

(0.0150) (0.0123) (0.0125) (0.0128) (0.0119) (0.0132)

Respondent’s gender is male -0.018∗ -0.020∗ -0.016∗ -0.015∗ -0.015∗ -0.012
(0.0089) (0.0081) (0.0064) (0.0072) (0.0068) (0.0071)

Respondent’s education is intermediate 0.057∗∗∗ 0.039∗ 0.037∗∗ 0.059∗∗∗ 0.036∗∗∗ 0.035∗∗∗

(0.0102) (0.0150) (0.0131) (0.0100) (0.0103) (0.0100)

Respondent’s education is high 0.089∗∗∗ 0.066∗∗∗ 0.059∗∗ 0.089∗∗∗ 0.059∗∗∗ 0.062∗∗∗

(0.0151) (0.0173) (0.0217) (0.0142) (0.0169) (0.0159)

Log annual hh income in ’000 USD -0.006 -0.003 -0.009 -0.004 -0.006 -0.010∗

(0.0054) (0.0052) (0.0049) (0.0050) (0.0042) (0.0047)

Respondent has children under 15 yrs 0.004 0.000 0.010 0.001 0.001 0.008
(0.0077) (0.0093) (0.0111) (0.0077) (0.0078) (0.0091)

Number of observations 17,964 16,461 13,137 17,964 16,461 13,137
Adj R-squared 0.128 0.092 0.110 0.179 0.167 0.162
Mean of dependent variable 0.327 0.249 0.240 0.327 0.249 0.240
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Distance band 0-40 km 40-80 km 80-120 km 0-40 km 40-80 km 80-120 km
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (6) for operational coal-fired
power plants. The sample used in each column is defined by the distance band i.e., how far the survey
location is relative to the nearest coal power plant. Table 1 provides the list of countries that are used in the
main specification i.e., 0-40 km distance band and results are reported in Columns 1 and 4. Standard errors,
which are reported in parentheses, are clustered at country/admin-0 level for first three columns and
state/province/admin-1 level for last three columns. Columns 1-3 and Columns 4-6 control for admin-0 and
admin-1 fixed effects respectively. The dependent variable, Air Diss, is a shorthand for Air Quality
Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied (satisfied) with the ambient
air quality. The main variable of interest is geocode’s log distance from nearest plant, which is the
straight-line distance between survey and nearest coal plant location. Vegetation index measures green cover
for survey location and urban is a dummy variable for urban area classification. The regression also controls
for the respondent’s age group (young/middle-aged/old), gender (male/female), education level
(primary/intermediate/high), log household income in 1000 USD, and whether the respondent has children
under 15 years of age.
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Table 3: OLS Estimation Results with CO2 Level Interaction for Operational Plants

(1) (2) (3) (4)
Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.042∗∗ -0.046∗∗∗ -0.036∗ -0.039∗∗

(0.0128) (0.0136) (0.0143) (0.0148)

Annual CO2 emission 0.005 -0.008
(0.0102) (0.0087)

Geocode’s log dist from nearest plant × Annual CO2 emission -0.001 0.003
(0.0030) (0.0027)

High CO2 emission 0.070 0.021
(0.0745) (0.0676)

High CO2 emission × Geocode’s log dist from nearest plant -0.017 0.001
(0.0234) (0.0221)

Geocode’s vegetation index -0.097∗∗ -0.064∗ -0.097∗∗ -0.063∗

(0.0330) (0.0300) (0.0324) (0.0299)

Geocode area is urban 0.107∗∗∗ 0.088∗∗∗ 0.107∗∗∗ 0.089∗∗∗

(0.0219) (0.0205) (0.0216) (0.0204)

Respondent’s age is 26-60 years 0.020 0.015 0.019 0.015
(0.0103) (0.0099) (0.0103) (0.0098)

Respondent’s age is more than 60 years -0.021 -0.021 -0.021 -0.020
(0.0149) (0.0128) (0.0149) (0.0127)

Respondent’s gender is male -0.018 -0.015∗ -0.018∗ -0.016∗

(0.0090) (0.0073) (0.0091) (0.0073)

Respondent’s education is intermediate 0.057∗∗∗ 0.058∗∗∗ 0.057∗∗∗ 0.058∗∗∗

(0.0102) (0.0100) (0.0102) (0.0100)

Respondent’s education is high 0.089∗∗∗ 0.089∗∗∗ 0.090∗∗∗ 0.089∗∗∗

(0.0152) (0.0142) (0.0149) (0.0142)

Log annual hh income in ’000 USD -0.006 -0.004 -0.006 -0.004
(0.0054) (0.0050) (0.0054) (0.0050)

Respondent has children under 15 yrs 0.004 0.001 0.004 0.001
(0.0076) (0.0077) (0.0077) (0.0077)

Number of observations 17,964 17,964 17,964 17,964
Adj R-squared 0.128 0.179 0.128 0.179
Mean of dependent variable 0.327 0.327 0.327 0.327
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (6) for operational coal-fired
power plants but interacting δ with either a discrete or continuous measure of annual CO2 emission from all
the units of the nearest coal power plant. The sample used in each column is defined by the distance band
0-40 km i.e., all survey locations that are located within 40 km of an operational coal power plant. Standard
errors, which are reported in parentheses, are clustered at country/admin-0 level for Columns 1 and 3 and
state/province/admin-1 level for remaining columns. Columns 1 and 3 control for admin-0 fixed effects and
remaining columns control for admin-1 fixed effects. The dependent variable, Air Diss, is a shorthand for
Air Quality Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied (satisfied) with
the ambient air quality. Geocode’s log distance from nearest plant is a measure of straight-line distance
between survey location and nearest coal plant location. Annual CO2 emission is measured in million tonnes
per annum and high (low) CO2 emission correspond to above (below) median plant-level emissions. Please
refer to Table 2 notes for details on other variables.
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Table 4: Panel Data Results for Regional Exposure to Operational Coal Plants

(1) (2) (3) (4)
Air Diss Air Diss Air Diss Air Diss

#Coal plants over total area of region -2.337 -1.870
(1.7254) (1.4962)

Log avg. region-level distance from coal plant -0.015 -0.015
(0.0112) (0.0111)

Regional vegetation index -0.299∗ -0.046 -0.124 -0.101
(0.1247) (0.1219) (0.0752) (0.0770)

Area is urban 0.150∗∗∗ 0.149∗∗∗ 0.180∗∗∗ 0.180∗∗∗

(0.0103) (0.0103) (0.0206) (0.0204)

Respondent’s age is 26-60 years 0.003 0.003 0.003 0.003
(0.0025) (0.0025) (0.0033) (0.0034)

Respondent’s age is more than 60 years -0.033∗∗∗ -0.032∗∗∗ -0.032∗∗∗ -0.031∗∗∗

(0.0041) (0.0040) (0.0059) (0.0057)

Respondent’s gender is male -0.016∗∗∗ -0.016∗∗∗ -0.018∗∗∗ -0.018∗∗∗

(0.0027) (0.0027) (0.0047) (0.0046)

Respondent’s education is intermediate 0.032∗∗∗ 0.033∗∗∗ 0.034∗∗ 0.036∗∗

(0.0040) (0.0041) (0.0101) (0.0105)

Respondent’s education is high 0.072∗∗∗ 0.074∗∗∗ 0.076∗∗∗ 0.079∗∗∗

(0.0055) (0.0055) (0.0123) (0.0129)

Log annual hh income in ’000 USD -0.001 -0.000 0.002 0.003
(0.0018) (0.0018) (0.0043) (0.0047)

Respondent has children under 15 yrs -0.001 -0.001 -0.001 -0.002
(0.0024) (0.0024) (0.0028) (0.0027)

Number of observations 340,657 340,657 340,657 340,657
Adj R-squared 0.141 0.142 0.118 0.119
Mean of dependent variable 0.288 0.288 0.288 0.288
Region fixed effects Admin-1 Admin-1 Admin-0 Admin-0
Time fixed effects - Year - Year
Years included 2009-20 2009-20 2009-20 2009-20
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (6) for operational coal-fired
power plants where δ is replaced by an “exposure” variable, which is either (i) the number of coal plants per
square kilometers of area of region or (ii) log of average distance of survey geocodes from the nearest
operational coal-fired power plant at the region level in 2019. Columns 1-2 and 3-4, use exposure variable
(i) and (ii) respectively. All the regressions use the sample of 51 countries in the main analysis, as given in
Table 1. Standard errors, which are reported in parentheses, are clustered at admin-1 level for Columns 1-2
and at admin-0 level for the remaining ones. Columns 2 and 4 control for year fixed effects. The dependent
variable, Air Diss, is a shorthand for Air Quality Dissatisfaction, which takes value 1 (0) if the surveyed
individual is dissatisfied (satisfied) with the ambient air quality. Please refer to Table 2 notes for details on
other variables.
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Table 5: Risk Assessment Results for Operational Plants

(1) (2) (3) (4)
Poll Risk Poll Risk Clim Risk Clim Risk

Geocode’s log dist from nearest plant -0.005∗∗ -0.006∗ 0.005 0.006
(0.0018) (0.0027) (0.0044) (0.0054)

Geocode’s vegetation index 0.004 0.010∗ 0.023 0.021
(0.0036) (0.0050) (0.0183) (0.0181)

Geocode area is urban -0.002 -0.004 -0.021∗ -0.016∗

(0.0032) (0.0043) (0.0098) (0.0080)

Respondent’s age is 26-60 years 0.000 -0.001 0.008 0.006
(0.0029) (0.0029) (0.0068) (0.0049)

Respondent’s age is more than 60 years -0.004 -0.004 0.012 0.014∗

(0.0044) (0.0037) (0.0083) (0.0067)

Respondent’s gender is male -0.003 -0.003 -0.003 -0.004
(0.0020) (0.0022) (0.0057) (0.0046)

Respondent’s education is intermediate 0.003 0.003 -0.003 -0.004
(0.0023) (0.0025) (0.0082) (0.0062)

Respondent’s education is high 0.008∗ 0.008∗ 0.009 0.006
(0.0042) (0.0040) (0.0070) (0.0081)

Log annual hh income in ’000 USD -0.000 -0.000 0.002 0.004
(0.0016) (0.0016) (0.0031) (0.0023)

Respondent has children under 15 yrs 0.001 0.002 -0.001 -0.001
(0.0022) (0.0025) (0.0043) (0.0047)

Number of observations 15,117 15,117 15,117 15,117
Adj R-squared 0.031 0.030 0.036 0.061
Mean of dependent variable 0.016 0.016 0.062 0.062
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1
Distance band 0-40 km 0-40 km 0-40 km 0-40 km
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (6). The sample used in each
column is defined by the distance band i.e., how far the survey location is relative to the nearest coal power
plant. Table 1 in Appendix provides the list of countries that are used in the main specification i.e., 0-40 km
distance band. Standard errors, which are reported in parentheses, are clustered at country/admin-0 level for
Columns 1 and 3 and state/province/admin-1 level for remaining columns. Columns 1 and 3 and Columns 2
and 4 control for admin-0 and admin-1 fixed effects respectively. The dependent variables, Poll Risk and
Clim Risk, are shorthands for Pollution Risk and Climate Risk respectively. Poll Risk/Clim Risk take value 1
(0) if the surveyed individual do (do not) considers pollution/climate as one of the two major sources of risks
to their safety in daily life. The main variable of interest is geocode’s log distance from nearest plant, which
is the straight-line distance between survey and nearest coal plant location. Please refer to Table 2 notes for
details on other variables.
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Table 6: Placebo Results for Non-operational Plants and Water Quality Perception

(1) (2) (3) (4) (5)
Air Diss Air Diss Air Diss Air Diss Water Diss

Geocode’s log dist from nearest plant 0.004 -0.001 -0.045 -0.015 -0.012
(0.0162) (0.0199) (0.0344) (0.0290) (0.0099)

Geocode’s vegetation index -0.141∗ -0.039 -0.479∗∗ -0.420 -0.023
(0.0612) (0.0774) (0.1178) (0.2328) (0.0450)

Geocode area is urban 0.108∗ 0.117∗∗ 0.046 0.070 0.011
(0.0401) (0.0390) (0.0320) (0.0645) (0.0160)

Respondent’s age is 26-60 years 0.026 0.011 -0.006 0.009 0.036∗∗∗

(0.0244) (0.0261) (0.0194) (0.0324) (0.0094)

Respondent’s age is more than 60 years 0.021 0.010 -0.047 -0.026 0.001
(0.0240) (0.0347) (0.0275) (0.0322) (0.0117)

Respondent’s gender is male -0.022 -0.019 -0.027∗ -0.029 -0.019∗∗

(0.0183) (0.0241) (0.0090) (0.0200) (0.0071)

Respondent’s education is intermediate 0.023 0.015 0.068∗ 0.073∗∗ 0.036∗∗∗

(0.0274) (0.0231) (0.0295) (0.0224) (0.0100)

Respondent’s education is high -0.002 -0.015 0.077∗ 0.066 0.057∗∗∗

(0.0378) (0.0323) (0.0253) (0.0351) (0.0134)

Log annual hh income in ’000 USD -0.022 -0.015 -0.015 -0.015 -0.006
(0.0132) (0.0124) (0.0081) (0.0097) (0.0050)

Respondent has children under 15 yrs -0.000 0.009 -0.016 -0.041 -0.005
(0.0236) (0.0190) (0.0231) (0.0303) (0.0079)

Number of observations 2,948 2,948 2,317 2,317 18,027
Adj R-squared 0.059 0.114 0.125 0.192 0.106
Mean of dependent variable 0.284 0.284 0.291 0.291 0.280
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1 Admin-1
Distance band 0-40 km 0-40 km 0-40 km 0-40 km 0-40 km
Status of plant operation Planned Planned Retired Retired Operational
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (6) separately for planned and
retired and mothballed coal-fired power plants and for water quality dissatisfaction. The sample used in each
column is defined by the distance band i.e., how far the survey location is relative to the nearest coal power
plant. Table 1 provides the list of countries that are used in the main specification i.e., 0-40 km distance
band. Columns 1-2 and Columns 3-4 report results for planned and retired plants respectively and Column 5
reports result for water quality instead of air quality dissatisfaction. Standard errors, which are reported in
parentheses, are clustered at country/admin-0 level for Columns 1 and 3 and at state/province/admin-1 level
for remaining columns. Columns 1 and 3 control for admin-0 fixed effects and remaining control for
admin-1 fixed effects. The dependent variable, Air(Water) Diss, is a shorthand for Air(Water) Quality
Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied (satisfied) with the ambient
air(water) quality. The main variable of interest is geocode’s log distance from nearest plant, which is the
straight-line distance between survey and nearest coal plant location. Please refer to Table 2 notes for details
on other variables.
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Figure 2: Effect of Distance from Coal Plants on Air Quality Dissatisfaction
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Notes: The graph above shows local polynomial regression results with 90% confidence intervals spikes for
the effect of log distance of geocode from an operational coal plant on the residualized value of air quality
dissatisfaction that is obtained after running an OLS similar to Equation (6) but without the distance
regressor. The red line shows our chosen distance threshold of 40 km. We censor the distance values, which
are less than “e” i.e., 2.718 km to be equal to 2.718 km to avoid issues due to small sample in the left tail of
distance distribution. The dependent variable, Air Diss, is a shorthand for Air Quality Dissatisfaction, which
takes value 1 (0) if the surveyed individual is dissatisfied (satisfied) with the ambient air quality. The main
regressor, geocode’s log distance from nearest plant, is the straight-line distance between survey and nearest
coal plant location.
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Table 7: IV Results for Operational Plants

(1) (2) (3) (4)
Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.441∗∗ -0.324∗∗∗ -0.305∗∗ -0.301∗∗

(0.1413) (0.0889) (0.1057) (0.0978)

Geocode’s vegetation index 0.078 0.026 0.053 0.051
(0.0714) (0.0531) (0.0547) (0.0520)

Geocode area is urban 0.013 0.040 0.023 0.024
(0.0456) (0.0357) (0.0347) (0.0325)

Respondent’s age is 26-60 years 0.023 0.022∗ 0.019 0.019
(0.0116) (0.0109) (0.0107) (0.0108)

Respondent’s age is more than 60 years -0.021 -0.021 -0.018 -0.018
(0.0193) (0.0176) (0.0135) (0.0135)

Respondent’s gender is male -0.010 -0.013 -0.014 -0.014
(0.0123) (0.0110) (0.0077) (0.0077)

Respondent’s education is intermediate 0.054∗∗∗ 0.055∗∗∗ 0.054∗∗∗ 0.055∗∗∗

(0.0123) (0.0111) (0.0106) (0.0106)

Respondent’s education is high 0.064∗∗ 0.071∗∗∗ 0.075∗∗∗ 0.075∗∗∗

(0.0213) (0.0190) (0.0155) (0.0154)

Log annual hh income in ’000 USD -0.009 -0.008 -0.009 -0.009
(0.0087) (0.0074) (0.0058) (0.0057)

Respondent has children under 15 yrs 0.010 0.008 0.007 0.007
(0.0104) (0.0093) (0.0083) (0.0082)

Number of observations 17,964 17,964 17,964 17,964
Under-id LM test statistic 8.743 8.787 13.172 15.084
Under-id LM test p-value 0.003 0.012 0.000 0.001
Weak-id F statistic (first stage) 16.302 11.888 15.872 9.404
Hansen J test statistic 1.553 0.006
Hansen J test p-value 0.213 0.939
Mean of dependent variable 0.327 0.327 0.327 0.327
Number of instruments 1 2 1 2
Region fixed effects Admin-0 Admin-0 Admin-1 Admin-1
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents IV estimates using the specification in Equation (7) for operational coal-fired
power plants. The two instruments used are: (i) log distance of survey locations from nearest railroad and
(ii) log distance of survey locations from nearest water-body. Columns 1 and 3 use instrument (i) only, while
Columns 2 and 4 use both instruments. The sample used in each column is defined by distance band 0-40
km i.e., survey locations that are located within 40 km distance from the nearest coal power plant. Table 1
provides the list of countries for which sample surveys are used in this specification. Standard errors, which
are reported in parentheses, are clustered at country/admin-0 level for the first two columns and
state/province/admin-1 level for the last two columns. Columns 1-2 and Columns 3-4 control for admin-0
and admin-1 fixed effects respectively. The dependent variable, Air Diss, is a shorthand for Air Quality
Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied (satisfied) with the ambient
air quality. The main variable of interest is geocode’s log distance from nearest plant, which is the
straight-line distance between survey and nearest coal plant location. Please refer to Table 2 notes for details
on other variables. First-stage and reduced-form results are reported in Table 15 in the Appendix.
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Table 8: Life Satisfaction Regression Results for Operational Plants

(1) (2)
Life Sat Life Sat

Log air quality dissatisfaction -0.482∗∗∗ -0.469∗∗∗

[-0.643,-0.321] [-0.611,-0.326]

Geocode’s vegetation index -0.041 0.010
[-0.310,0.227] [-0.226,0.247]

Geocode area is urban 0.097 0.107
[-0.037,0.232] [-0.041,0.255]

Respondent’s age is 26-60 years -0.331∗∗∗ -0.377∗∗∗

[-0.454,-0.209] [-0.481,-0.272]

Respondent’s age is more than 60 years -0.431∗∗ -0.467∗∗∗

[-0.746,-0.115] [-0.623,-0.311]

Respondent’s gender is male -0.166∗ -0.159∗∗∗

[-0.317,-0.016] [-0.252,-0.067]

Respondent’s education is intermediate 0.313∗∗∗ 0.328∗∗∗

[0.158,0.468] [0.203,0.452]

Respondent’s education is high 0.669∗∗∗ 0.703∗∗∗

[0.523,0.815] [0.543,0.863]

Log annual hh income in ’000 USD 0.489∗∗∗ 0.474∗∗∗

[0.357,0.620] [0.404,0.543]

Respondent has children under 15 yrs -0.023 0.031
[-0.161,0.115] [-0.062,0.124]

Number of observations 17,701 17,701
Adj R-squared 0.203 0.238
Mean of dependent variable 5.411 5.411
Mean household income in USD 14855 14855
Region fixed effects Admin-0 Admin-1
Countries included Global Global
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents estimates using the specification in Equation (9) for operational coal-fired power
plants. The sample used in each column is defined by distance band 0-40 km i.e., survey locations that are
located within 40 km distance from the nearest coal power plant. Table 1 provide the list of countries from
which sample surveys are used in this specification. 95% confidence interval bounds are reported in square
brackets. Column 1 controls for admin-0 fixed effects while Column 2 controls for admin-1 fixed effects.
The dependent variable, Life Sat, is a shorthand for life satisfaction, which takes values between 0 (“the
worst possible life”) and 10 (“the best possible life”) based on what surveyed individuals report as their
current life satisfaction. The main variables of interest are log of air quality dissatisfaction and log of annual
household income. The first variable takes value 2(1) if an individual is dissatisfied(satisfied) with ambient
air quality and the second variable is log of household reported total annual income in 1000 USD. Please
refer to Table 2 notes for details on other variables.
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Table 9: Aggregate Willingness to Pay Results

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Estimate γ β y a/ar e Affected HH Size AWTP

Type (in $) (in $) Population (# persons) (in tril. $)
Point estimate -0.469 0.474 14855 1.37 3948 1,120,626,356 4.9 0.903
Lower bound -0.326 0.543 14855 1.37 2539 1,120,626,356 4.9 0.581
Upper bound -0.611 0.404 14855 1.37 5591 1,120,626,356 4.9 1.279

Notes: The three rows correspond to point estimates and lower and upper bounds of 95% confidence
intervals of γ and β parameters respectively. Estimates on log annual household income, β , log air quality
dissatisfaction, γ , and average income, y, are taken from Table 8. a

ar
is the ratio of air quality dissatisfaction

level in the 0-40 km distance band and that outside of the band. e is the equivalent variation computed using
Equation (10). The population is computed by adding the number of individuals living in a circle of radius
40 km around each coal plant. The population data comes from the Gridded Population of the World, v4
(GPWv4) database for year 2020. AWTP is generated by multiplying, e, with the population estimate
downscaled by the number of persons living in a typical household, which is taken from the Area Database
v4.1 of the Global Data Lab.
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Figure 3: Cost-Benefit Analysis Results
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Notes: Chart shows the cost-benefit results for all 51 countries combined as listed in Table 1. The policy
experiment entails phasing out coal-fired power at a constant rate of 4% per year and replacing that freed
capacity with solar or wind generation over a period of 25 years. The blue line represents point estimates of
air quality benefits with the shaded area showing upper and lower bounds on the estimates. Air quality
benefits include the immediate benefits that the exposed population i.e. households located within a 40 km
distance from an operational coal plant, derive from an improvement in their ambient air quality due to
lower pollution. The costs of solar and wind energy generation are calculated by multiplying their respective
source-specific average global LCOE values in USD/kWh with the total excess energy demand because of
closing of coal plants. All the costs and benefits are expressed in present-discounted value terms with the
annual discount rate set at 2% per year.
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Figure 4: Plant-level Net Benefits from Closing Coal Power Plants
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Notes: Chart shows the net benefits from closing all the operational coal-fired power in 2019 located across
the whole world . The parameter values for γ , β , a

ar
, and y are taken from the global estimates using all 51

countries combined. The policy experiment entails phasing out coal-fired power and replacing that freed
capacity with 50% solar and 50% wind generation. The two shaded regions in both plots represent upper
and lower bounds of the benefits estimates. Air quality benefits include the immediate benefits that the
exposed population, i.e. households located within a 40 km distance from an operational coal plant, derive
from an improvement in their ambient air quality due to lower pollution. The costs of solar and wind energy
generation are calculated by multiplying respective source-specific global average LCOE values in
USD/kWh with the total excess energy demand because of shutting down respective coal plants.
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Figure 5: Carbon Reduction Benefits from Closing Coal Plants
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Notes: Chart shows the cost-benefit results accounting for carbon reduction benefits for all 51 countries
combined as listed in Table 1. The policy experiment entails phasing out coal-fired power at a constant rate
of 4% per year and replacing that freed capacity with solar or wind generation over a period of 25 years. The
blue line represents point estimates of air quality benefits with the shaded area showing upper and lower
bounds on the estimates. Air quality benefits include the immediate benefits that the exposed population, i.e.
households located within a 40 km distance from an operational coal plant, derive from improvement in
their ambient air quality due to lower pollution. The green line shows the estimates resulting from adding
the lower bound of carbon reduction benefits to the air quality benefits. Carbon reduction benefits are more
long-term benefits that realise after some period due to lower concentration of carbon in the atmosphere.
The costs of solar and wind energy generation are calculated by multiplying their respective source-specific
global average LCOE values in USD/kWh with the total excess energy demand because of shutting down
respective coal plants. All the costs and benefits are expressed in present-discounted value terms with the
annual discount rate set at 2% per year.
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Appendix

Tables and Figures

Figure 6: Distribution of Operational Energy Sources
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Notes: The graph shows the count of operational coal plants (top), solar farms (middle), and wind farms
(bottom) for 51 countries in the main sample as listed in Table 1. The number of units have been capped at
900 for display purpose, thereby censoring all units counts for China (CHN). The actual count of operational
coal, solar, and wind units for CHN are 2990, 3782, and 2663 respectively.
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Figure 7: Distribution of Planned Energy Sources
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Figure 8: Air Quality Dissatisfaction Across Countries
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generated by taking average of all individuals in a country-year. The black line represents average across all
the 51 countries for each year.
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Table 14: OLS Estimates for 0-20 km Distance Band

(1) (2) (3) (4) (5) (6)
Air Diss Air Diss Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.037∗ -0.038∗ -0.001 -0.035 -0.066 -0.034
(0.0147) (0.0150) (0.0233) (0.0283) (0.0534) (0.0401)

Geocode’s vegetation index -0.019 -0.009 -0.115 0.081 -0.492∗∗ -0.503
(0.0289) (0.0376) (0.0833) (0.0807) (0.1190) (0.2773)

Geocode area is urban 0.092∗∗ 0.074∗ 0.071 0.035 0.077 0.115
(0.0318) (0.0322) (0.0402) (0.0599) (0.0459) (0.1048)

Respondent’s age is 26-60 years 0.031∗ 0.023 0.032 0.030 -0.015 0.023
(0.0122) (0.0153) (0.0326) (0.0377) (0.0237) (0.0382)

Respondent’s age is more than 60 years -0.003 -0.003 0.082 0.084 -0.053 0.006
(0.0147) (0.0188) (0.0474) (0.0517) (0.0289) (0.0400)

Respondent’s gender is male -0.025 -0.021∗ -0.028 -0.024 -0.015 -0.019
(0.0128) (0.0099) (0.0297) (0.0314) (0.0206) (0.0308)

Respondent’s education is intermediate 0.064∗∗∗ 0.069∗∗∗ 0.052 0.045 0.068 0.081∗

(0.0131) (0.0144) (0.0447) (0.0367) (0.0459) (0.0322)

Respondent’s education is high 0.090∗∗∗ 0.094∗∗∗ 0.037 0.032 0.079 0.075
(0.0166) (0.0155) (0.0736) (0.0563) (0.0452) (0.0417)

Log annual hh income in ’000 USD -0.012 -0.011 -0.020 -0.011 -0.001 0.003
(0.0062) (0.0070) (0.0245) (0.0255) (0.0027) (0.0126)

Respondent has children under 15 yrs 0.008 0.008 -0.001 0.011 -0.019 -0.061
(0.0094) (0.0110) (0.0220) (0.0345) (0.0348) (0.0420)

Number of observations 8,356 8,356 1,032 1,032 1,352 1,352
Adj R-squared 0.169 0.230 0.066 0.115 0.172 0.253
Mean of dependent variable 0.383 0.383 0.249 0.249 0.352 0.352
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1 Admin-0 Admin-1
Distance band 0-20 km 0-20 km 0-20 km 0-20 km 0-20 km 0-20 km
Status of plant operation Operational Operational Planned Planned Retired Retired
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (6) for operational, planned
and retired and mothballed coal-fired power plants. The sample used in each column is defined by the
distance band 0-20 km. Columns 1-2, Columns 3-4, and Columns 5-6 report the results for operational,
planned, and retired plants respectively. Standard errors, which are reported in parentheses, are clustered at
country/admin-0 level for Columns 1, 3 and 5 and at state/province/admin-1 level for remaining columns.
Columns 1, 3 and 5 control for admin-0 fixed effects and remaining control for admin-1 fixed effects. Refer
to Table 6 notes for more details.
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Table 15: First-stage and Reduced-form Results on IV Estimation

(1) (2) (3) (4)

Air Diss
Geocode’s log dist from nearest railroad -0.020∗∗∗ -0.020∗∗∗ -0.017∗∗∗ -0.017∗∗∗

(0.0038) (0.0037) (0.0045) (0.0045)

Geocode’s vegetation index -0.118∗∗∗ -0.115∗∗∗ -0.079∗∗ -0.068∗

(0.0313) (0.0325) (0.0283) (0.0282)

Geocode area is urban 0.102∗∗∗ 0.101∗∗∗ 0.086∗∗∗ 0.084∗∗∗

(0.0225) (0.0234) (0.0219) (0.0220)

Respondent’s age is 26-60 years 0.018 0.018 0.015 0.015
(0.0108) (0.0108) (0.0099) (0.0099)

Respondent’s age is more than 60 years -0.023 -0.023 -0.020 -0.020
(0.0154) (0.0154) (0.0128) (0.0128)

Respondent’s gender is male -0.018∗ -0.018∗ -0.016∗ -0.016∗

(0.0090) (0.0091) (0.0072) (0.0072)

Respondent’s education is intermediate 0.055∗∗∗ 0.055∗∗∗ 0.058∗∗∗ 0.058∗∗∗

(0.0103) (0.0103) (0.0100) (0.0100)

Respondent’s education is high 0.090∗∗∗ 0.090∗∗∗ 0.091∗∗∗ 0.091∗∗∗

(0.0157) (0.0158) (0.0145) (0.0145)

Log annual hh income in ’000 USD -0.007 -0.007 -0.003 -0.003
(0.0053) (0.0053) (0.0050) (0.0050)

Respondent has children under 15 yrs 0.004 0.004 0.001 0.001
(0.0075) (0.0075) (0.0078) (0.0078)

Geocode’s log dist from nearest waterbody -0.002 -0.010
(0.0071) (0.0062)

Geocode’s log dist from nearest plant
Geocode’s log dist from nearest railroad 0.045∗∗∗ 0.046∗∗∗ 0.056∗∗∗ 0.055∗∗∗

(0.0112) (0.0110) (0.0142) (0.0141)

Geocode’s vegetation index 0.443∗∗ 0.394∗ 0.432∗∗∗ 0.394∗∗∗

(0.1655) (0.1591) (0.0921) (0.0908)

Geocode area is urban -0.202∗∗ -0.189∗∗ -0.208∗∗∗ -0.201∗∗∗

(0.0680) (0.0694) (0.0561) (0.0569)

Respondent’s age is 26-60 years 0.010 0.009 0.015 0.015
(0.0175) (0.0177) (0.0134) (0.0135)

Respondent’s age is more than 60 years 0.004 0.000 0.007 0.006
(0.0255) (0.0260) (0.0190) (0.0191)

Respondent’s gender is male 0.017 0.018 0.005 0.007
(0.0132) (0.0129) (0.0084) (0.0083)

Respondent’s education is intermediate -0.002 -0.001 -0.012 -0.013
(0.0213) (0.0202) (0.0164) (0.0163)

Respondent’s education is high -0.059∗∗ -0.057∗ -0.051∗ -0.051∗

(0.0225) (0.0225) (0.0227) (0.0228)

Log annual hh income in ’000 USD -0.003 -0.004 -0.018∗ -0.018∗

(0.0148) (0.0141) (0.0087) (0.0087)

Respondent has children under 15 yrs 0.013 0.013 0.019 0.018
(0.0146) (0.0141) (0.0118) (0.0117)

Geocode’s log dist from nearest waterbody 0.040∗∗ 0.036
(0.0157) (0.0223)

Observations 17964 17964 17964 17964
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Top table reports reduced-form results and bottom reports first-stage results of IV regression using
Equation (7). The columns correspond to Table 7, which reports IV results.
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Table 16: Robustness Check on IV

(1) (2) (3) (4) (5) (6)
Gender Agegroup Religion Gender Agegroup Religion

Geocode’s log dist from nearest railroad 0.003 -0.000 -0.008 0.000 0.005 -0.008
(0.0031) (0.0062) (0.0065) (0.0036) (0.0049) (0.0074)

Number of observations 18,902 18,888 16,310 18,902 18,888 16,310
Adj R-squared 0.014 0.078 0.606 0.027 0.104 0.664
Mean of dependent variable 0.441 1.987 2.196 0.441 1.987 2.196
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The table above reports robustness checks on the railroad instrument using three pre-determinded
variables: gender (male/female), age group (young/middle-aged/old), and religion. Standard errors, which
are reported in parentheses, are clustered at country/admin-0 level for Columns 1-3 and at
state/province/admin-1 level for remaining columns. Columns 1-3 control for admin-0 fixed effects and
remaining control for admin-1 fixed effects.
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Table 17: First-stage and Reduced-form Results for Retired Plants

(1) (2) (3) (4)

Air Diss
Geocode’s log dist from nearest railroad -0.009 -0.009 -0.005 -0.005

(0.0057) (0.0055) (0.0087) (0.0088)

Geocode’s vegetation index -0.551∗∗∗ -0.551∗∗∗ -0.444 -0.450
(0.1248) (0.1403) (0.2403) (0.2449)

Geocode area is urban 0.064 0.064 0.074 0.074
(0.0344) (0.0344) (0.0568) (0.0564)

Respondent’s age is 26-60 years -0.005 -0.005 0.010 0.010
(0.0192) (0.0193) (0.0325) (0.0324)

Respondent’s age is more than 60 years -0.046 -0.046 -0.024 -0.025
(0.0268) (0.0265) (0.0327) (0.0328)

Respondent’s gender is male -0.028∗∗ -0.028∗∗ -0.030 -0.030
(0.0105) (0.0106) (0.0205) (0.0205)

Respondent’s education is intermediate 0.070∗∗ 0.070∗∗ 0.074∗∗∗ 0.074∗∗∗

(0.0269) (0.0265) (0.0219) (0.0217)

Respondent’s education is high 0.078∗∗ 0.078∗∗ 0.067 0.067
(0.0270) (0.0266) (0.0356) (0.0349)

Log annual hh income in ’000 USD -0.016∗ -0.016∗ -0.015 -0.015
(0.0071) (0.0074) (0.0095) (0.0095)

Respondent has children under 15 yrs -0.016 -0.016 -0.042 -0.042
(0.0253) (0.0253) (0.0301) (0.0300)

Geocode’s log dist from nearest waterbody 0.000 0.003
(0.0183) (0.0158)

Geocode’s log dist from nearest plant
Geocode’s log dist from nearest railroad 0.153∗∗∗ 0.153∗∗∗ 0.152∗∗ 0.149∗∗

(0.0440) (0.0438) (0.0471) (0.0464)

Geocode’s vegetation index 1.623 1.654 2.150∗∗ 2.264∗∗

(0.9679) (1.0040) (0.7958) (0.8063)

Geocode area is urban -0.432∗∗ -0.432∗∗ -0.365∗∗ -0.370∗∗

(0.1430) (0.1422) (0.1111) (0.1126)

Respondent’s age is 26-60 years -0.027 -0.025 -0.048 -0.048
(0.0488) (0.0505) (0.0430) (0.0433)

Respondent’s age is more than 60 years -0.018 -0.014 -0.088 -0.080
(0.0794) (0.0853) (0.0578) (0.0599)

Respondent’s gender is male 0.031 0.032 0.045 0.048
(0.0470) (0.0462) (0.0297) (0.0296)

Respondent’s education is intermediate -0.044 -0.045 -0.068 -0.071
(0.0359) (0.0352) (0.0517) (0.0501)

Respondent’s education is high -0.033 -0.035 -0.044 -0.054
(0.0570) (0.0545) (0.0517) (0.0486)

Log annual hh income in ’000 USD -0.000 -0.001 0.001 0.001
(0.0313) (0.0294) (0.0248) (0.0246)

Respondent has children under 15 yrs 0.019 0.018 0.055 0.056
(0.0427) (0.0437) (0.0348) (0.0337)

Geocode’s log dist from nearest waterbody -0.015 -0.061
(0.0391) (0.0709)

Observations 2317 2317 2317 2317
Clustered standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Top table reports reduced-form results and bottom reports first-stage results of IV regression using
Equation (7) for retired plants. The columns correspond to Table 7.
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Figure 9: Descriptive Plots - I
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Notes: All the variables are taken from the 2019 Gallup World Poll. The label on x-axis should be
multiplied by 20 to get the distance bin of the survey location from the nearest coal plant.
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Figure 10: Descriptive Plots - II
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Notes: All the variables are taken from the 2019 Gallup World Poll. The label on x-axis should be
multiplied by 20 to get the distance bin of the survey location from the nearest coal plant. The estimates on
y-axis have been demeaned of country fixed effects.
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Figure 11: Beta and Gamma Estimates for Sample Countries
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Notes: The chart shows 95% confidence interval for β and γ estimates for each of the 51 countries in the
main sample by running a pooled regression with country interactions corresponding to Equation (9).
Equality of slopes across countries for both β and γ is rejected at 1% significance level, thereby highlighting
the heterogeneous effect of both air quality satisfaction and income on overall life satisfaction across
countries.
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Table 18: Robustness Test Results for Life Satisfaction Regression

(1)
Life Sat

Log air quality dissatisfaction -0.395∗∗∗

[-0.511,-0.279]

Geocode’s vegetation index 0.020
[-0.155,0.195]

Geocode area is urban 0.093
[-0.029,0.215]

Respondent’s age is 26-60 years -0.301∗∗∗

[-0.384,-0.219]

Respondent’s age is more than 60 years -0.397∗∗∗

[-0.529,-0.264]

Respondent’s gender is male -0.133∗∗∗

[-0.210,-0.057]

Respondent’s education is intermediate 0.247∗∗∗

[0.146,0.348]

Respondent’s education is high 0.608∗∗∗

[0.472,0.744]

Log annual hh income in ’000 USD 0.377∗∗∗

[0.318,0.436]

Respondent has children under 15 yrs 0.031
[-0.047,0.108]

Number of observations 163,029
Pseudo R-squared 0.034
Log likelihood -61,047
Mean of dependent variable 5.411
Mean household income in USD 14855
Region fixed effects Admin-1
Countries included Global
Estimator Ordered Logit
FE Correction Robust
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The table above reports results for ordered logit estimation with fixed effects corresponding to OLS
estimation results reported in Table 8. We implement a robust estimation for fixed effects ordered logit
models using the estimator proposed by Baetschmann et al. (2020).
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Figure 12: Cost of Energy for Different Sources
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Notes: The graph shows LCOE values for all 51 countries in the main sample as listed in Table 1. LCOE
measures lifetime costs divided by energy production. It accounts for present value of the total cost of
building and operating a power plant over an assumed lifetime. This measure allows comparison of different
technologies (e.g., wind, solar, coal) of unequal life spans, project size, different capital cost, risk, return,
and capacities for each of the respective sources. LCOE also accounts for different capacity factors across
energy sources and plants.
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Figure 13: Cost-Benefit Analysis for Alternative Discount Rates
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Notes: Top/mid/bottom row show results for 1.5/3/5% discount rate. Refer to Figure 3 for more details.
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Figure 14: EV and EV/Income During Project Life Cycle
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Notes: The chart shows the present-discounted value of estimated EV and EV to annual household income
ratio in left and right plots respectively assuming an annual discount rate of 2% for energy transition project
life cycle of 25 years.
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Table 20: Life Satisfaction Regression Results for Plants in India and China

(1) (2) (3) (4)
Life Sat Life Sat Life Sat Life Sat

Log air quality dissatisfaction -0.080 -0.803∗∗∗ -0.124 -0.646∗∗

[-0.553,0.393] [-1.137,-0.469] [-0.709,0.461] [-1.051,-0.241]

Geocode’s vegetation index -0.363 -0.973∗∗ -0.038 -0.331
[-1.224,0.497] [-1.635,-0.311] [-1.142,1.066] [-1.430,0.768]

Geocode area is urban 0.352∗ 0.018 0.118 0.130
[0.066,0.637] [-0.219,0.254] [-0.413,0.650] [-0.447,0.708]

Respondent’s age is 26-60 years -0.181 -0.017 -0.414∗∗ -0.121
[-0.475,0.113] [-0.279,0.246] [-0.679,-0.150] [-0.392,0.149]

Respondent’s age is more than 60 years -0.474∗ 0.550∗∗ -0.730∗∗ 0.409∗

[-0.902,-0.047] [0.200,0.899] [-1.174,-0.285] [0.017,0.800]

Respondent’s gender is male -0.345∗∗ 0.142 -0.183 0.187
[-0.604,-0.086] [-0.054,0.337] [-0.484,0.118] [-0.065,0.438]

Respondent’s education is intermediate 0.586∗∗∗ 0.253∗ 0.332∗ 0.267∗

[0.291,0.880] [0.029,0.477] [0.008,0.655] [0.041,0.492]

Respondent’s education is high 0.708∗∗ 0.424∗ 0.545 0.544∗∗∗

[0.200,1.216] [0.075,0.774] [-0.065,1.155] [0.266,0.822]

Log annual hh income in ’000 USD 0.797∗∗∗ 0.427∗∗∗ 0.681∗∗∗ 0.454∗∗∗

[0.649,0.944] [0.317,0.536] [0.512,0.850] [0.309,0.599]

Respondent has children under 15 yrs -0.297∗ -0.122 -0.025 -0.068
[-0.549,-0.045] [-0.324,0.079] [-0.202,0.152] [-0.285,0.149]

Number of observations 2,131 2,099 2,131 2,099
Adj R-squared 0.093 0.072 0.171 0.127
Mean of dependent variable 3.262 5.213 3.262 5.213
Mean household income in USD 4626 19365 4626 19365
Region fixed effects - - Admin-1 Admin-1
Countries included India China India China
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents estimates using the specification in Equation (9) for operational coal-fired power
plants in India and China. The sample used in each column is defined by distance band 0-40 km i.e., survey
locations that are located within a 40 km distance from the nearest coal power plant. 95% confidence
interval bounds are reported in square brackets. Columns 3 and 4 control for admin-1 fixed effects. The
dependent variable, Life Sat, is a shorthand for life satisfaction, which takes values between 0 (“the worst
possible life”) and 10 (“the best possible life”) based on what surveyed individuals reports as their current
life satisfaction. The main variables of interest are log of air quality dissatisfaction and log of annual
household income. The first variable takes value 2(1) if an individual is dissatisfied(satisfied) with ambient
air quality and the second variable is log of household reported total annual income in 1000 USD. Please
refer to Table 2 notes for details on other variables.
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Table 21: AWTP Results for India and China

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Geographical γ β y a/ar e Affected HH Size AWTP

Category (in $) (in $) Population (# persons) (in tril. $)
Panel 1: Point Estimates
India -0.124 0.681 4626 1.38 264 375,939,467 5.8 0.017
China -0.646 0.454 19365 1.62 9617 374,225,419 4.4 0.818
Panel 2: γ and β

India -0.709 0.512 4626 1.38 1665 375,939,467 5.8 0.108
China -1.051 0.309 19365 1.62 15612 374,225,419 4.4 1.328
Panel 3: γ and β

India 0.461 0.850 4626 1.38 -883 375,939,467 5.8 -0.057
China -0.241 0.599 19365 1.62 3416 374,225,419 4.4 0.291

Notes: The three rows correspond to point estimates and lower and upper bounds of 95% confidence
intervals of γ and β parameters respectively. Estimates on log annual household income, β , log air quality
dissatisfaction, γ , and average income, y, are taken from Columns 3 and 4 of Table 20 for respective
countries. a

ar
is the ratio of air quality dissatisfaction level in the 0-40 km distance band and that outside of

the band for each country. e is the equivalent variation computed using Equation (10). The population is
computed by adding the number of individuals living in a circle of radius 40 km around each coal plant. The
population data comes from the Gridded Population of the World, v4 (GPWv4) database for year 2020.
AWTP is generated by multiplying e with population estimates downscaled by the number of persons living
in a typical household taken from the Area Database v4.1 of the Global Data Lab.
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Figure 15: Cost-Benefit Analysis Results for India and China
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Notes: Charts show the cost-benefit results for India (top) and China (bottom). The blue line represents
point estimates of air quality benefits with the shaded area showing upper and lower bounds on the estimates
calculated using country-specific parameter values. The costs of solar and wind energy generation are
calculated by multiplying their respective source-geography-specific LCOE values in USD/kWh with the
total excess energy demand because of closing of coal plants. Please refer to Figure 3 for more details.
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Table 22: Total Benefits of Energy Transition for Different Geographies

(1) (2) (3) (4) (5)
Geographical Gross Benefits Net Benefits Gross Benefits LB Net Benefits LB

Category (in tril. $) (in tril. $) (in tril. $) (in tril. $)
Panel 1: Actual Parameters

Global .903 .605 .581 .283
India .017 -.02 -.057 -.094
China .821 .743 .292 .214

Panel 2: Global Preference Parameters
Global .903 .605 .581 .283
India .081 .044 .053 .016
China .628 .555 .416 .338

Notes: The table reports gross and net benefits of closing coal plants in different geographical categories
using point estimates for the respective categories in Columns 2 and 3 respectively. Columns 4 and 5 report
the lower bound on the benefits. The policy experiment entails phasing out coal-fired power at a constant
rate of 4% per year and replacing that freed capacity with 50% solar and 50% wind generation over a period
of 25 years. The benefits shown here are for the last year i.e. 25th year of plant operation. The costs of solar
and wind energy generation are calculated by multiplying their respective source-geography-specific LCOE
values in USD/kWh with the total excess energy demand because of closing of coal plants. Panel 1 reports
results when respective parameter values for each category is used to calculate benefits, while in Panel 2, we
use Global category parameter values of γ and β for all categories.
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Table 23: Life Satisfaction Regression Results for Different Education Categories

(1) (2) (3) (4) (5) (6)
Life Sat Life Sat Life Sat Life Sat Life Sat Life Sat

Log air quality dissatisfaction -0.621∗∗∗ -0.447∗∗∗ -0.468∗∗∗ -0.650∗∗∗ -0.407∗∗∗ -0.511∗∗∗

[-0.922,-0.320] [-0.647,-0.247] [-0.734,-0.202] [-0.914,-0.386] [-0.586,-0.229] [-0.771,-0.251]

Geocode’s vegetation index -0.413 0.106 0.006 -0.184 0.036 0.236
[-1.090,0.263] [-0.090,0.303] [-0.440,0.452] [-0.800,0.431] [-0.208,0.280] [-0.206,0.678]

Geocode area is urban -0.043 0.134 0.178 -0.084 0.170∗ 0.233
[-0.244,0.157] [-0.012,0.280] [-0.070,0.426] [-0.340,0.173] [0.014,0.327] [-0.038,0.504]

Respondent’s age is 26-60 years -0.561∗∗∗ -0.305∗∗∗ -0.087 -0.608∗∗∗ -0.335∗∗∗ -0.204∗

[-0.844,-0.277] [-0.426,-0.185] [-0.312,0.138] [-0.816,-0.400] [-0.452,-0.219] [-0.395,-0.013]

Respondent’s age is more than 60 years -0.315 -0.575∗∗∗ -0.426∗∗ -0.353∗∗ -0.615∗∗∗ -0.494∗∗

[-0.669,0.039] [-0.894,-0.255] [-0.732,-0.121] [-0.611,-0.095] [-0.812,-0.418] [-0.809,-0.178]

Respondent’s gender is male -0.227 -0.153 -0.145 -0.219∗ -0.148∗ -0.131
[-0.482,0.027] [-0.317,0.012] [-0.298,0.008] [-0.394,-0.044] [-0.269,-0.028] [-0.275,0.012]

Log annual hh income in ’000 USD 0.565∗∗∗ 0.481∗∗∗ 0.393∗∗∗ 0.549∗∗∗ 0.456∗∗∗ 0.391∗∗∗

[0.418,0.711] [0.344,0.619] [0.204,0.582] [0.452,0.645] [0.361,0.550] [0.248,0.534]

Respondent has children under 15 yrs -0.176∗ 0.043 -0.011 -0.065 0.058 0.022
[-0.312,-0.040] [-0.104,0.190] [-0.204,0.181] [-0.221,0.090] [-0.075,0.192] [-0.133,0.177]

Number of observations 5,572 9,166 2,957 5,547 9,161 2,911
Adj R-squared 0.190 0.155 0.166 0.229 0.182 0.213
Mean of dependent variable 4.665 5.611 6.196 4.666 5.610 6.190
Mean household income in USD 8872 15291 24735 8865 15289 24810
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Countries included Global Global Global Global Global Global
Education level Primary Intermediate High Primary Intermediate High
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents estimates using the specification in Equation (9) for operational coal-fired power
plants for each education group separately. The sample used in each column is defined by distance band
0-40 km i.e., survey locations that are located within a 40 km distance from the nearest coal power plant.
Table 1 provides the list of countries from which sample surveys are used in this specification. 95%
confidence interval bounds are reported in square brackets. Columns 1-3 control for admin-0 fixed effects
while Columns 4-6 control for admin-1 fixed effects. The dependent variable, Life Sat, is a shorthand for life
satisfaction, which takes values between 0 (“the worst possible life”) and 10 (“the best possible life”) based
on what surveyed individuals report as their current life satisfaction. The main variables of interest are log of
air quality dissatisfaction and log of annual household income. The first variable takes value 2(1) if an
individual is dissatisfied(satisfied) with ambient air quality and the second variable is log of household
reported total annual income in 1000 USD. Please refer to Table 2 notes for details on other variables.
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Table 24: WTP Results for Education Groups

(1) (2) (3) (4) (5) (6)
Education γ β y a/ar e
Category (in $) (in $)

Panel 1: Point Estimates
Primary -0.650 0.549 8865 1.37 2758
Intermediate -0.407 0.456 15289 1.37 3745
High -0.511 0.391 24810 1.37 8368
Panel 2: γ and β

Primary -0.914 0.452 8865 1.37 4175
Intermediate -0.586 0.361 15289 1.37 6117
High -0.771 0.248 24810 1.37 15487
Panel 3: γ and β

Primary -0.386 0.645 8865 1.37 1522
Intermediate -0.229 0.550 15289 1.37 1878
High -0.251 0.534 24810 1.37 3413

Notes: The three panels correspond to point estimates and lower and upper bounds of 95% confidence
intervals of γ and β parameters respectively. Estimates on log annual household income, β , log air quality
dissatisfaction, γ , and average income, y, are taken from Columns 4, 5, and 6 of Table 23 for respective
education categories. a

ar
is the ratio of air quality dissatisfaction level in the 0-40 km distance band and that

outside of the band for global. e is the equivalent variation computed using Equation (10).
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Figure 16: Plant-level Overall Net Benefits from Closing Coal Power Plants
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Notes: Chart shows the sum of net air quality and carbon benefits from closing all the operational coal-fired
power in 2019 across the whole world. The parameter values for γ , β , a

ar
, and y are taken from the global

estimates using all 51 countries combined. The policy experiment entails phasing out coal-fired power and
replacing that freed capacity with 50% solar and 50% wind generation. The two shaded regions in both plots
represent upper and lower bounds of the benefits estimates. Air quality benefits include the immediate
benefits that the exposed population, i.e. households located within a 40 km distance from an operational
coal plant, derive from improvement in their ambient air quality due to lower pollution. Carbon reduction
benefits are more long-term benefits that realise after some period due to lower concentration of carbon in
the atmosphere. The costs of solar and wind energy generation are calculated by multiplying respective
source-specific average global LCOE values in USD/kWh with the total excess energy demand because of
shutting down respective coal plants.
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Table 25: Country-level Employment Statistics for Different Sources of Energy

ISO Country Solar Wind Coal
Jobs (000) Capacity (MW) Jobs/MW Jobs (000) Capacity (MW) Jobs/MW Jobs (000) Capacity (MW) Jobs/MW

ARG Argentina 2.2 764.1 2.9 1.7 2623.9 0.6
BGD Bangladesh 110 284 387.3 0.1 2.9 34.5
BIH Bosnia and Herzegovina 0.1 34.9 1.7 0.2 135.0 1.5 2.8
BWA Botswana 0.04 5.9 6.5 0.04 170.2 0.3
BRA Brazil 68 7879.2 8.6 40.2 17198.3 2.3
BGR Bulgaria 1 1097.4 0.9 0.5 702.8 0.8 55.3 3733 14.8
KHM Cambodia 7.1 315.0 22.4 0.005 0.3 20.6
CHL Chile 7.1 3205.4 2.2 7.5 2149 3.5
CHN China 2300 253417.8 9.1 550 282112.7 2 3209 1064400 3
COL Colombia 0.4 85.5 4.2 2.1 18.4 114 44.3 1633.5 27.1
HRV Croatia 0.1 108.5 0.5 2.3 801.3 2.9 2.8
DOM Dominican Republic 0.3 385.6 0.8 0.3 370.3 0.8
GRC Greece 6.1 3287.7 1.9 6.8 4119.3 1.7 6.1 4337 1.4
GTM Guatemala 0.1 100.8 0.8 0.1 107.4 0.8
HND Honduras 0.4 514 0.8 0.2 241.3 0.8
HUN Hungary 8.9 2131 4.2 0.8 321 2.5 2.2 783 2.8
IND India 163.5 39042.7 4.2 44 38558.6 1.1 416.2 231900 1.8
IDN Indonesia 4.2 185.3 22.4 3.2 154.3 20.6 240 40200 6
ISR Israel 2.3 2230 1 0.1 27.3 3.7
KAZ Kazakhstan 5 1718.6 2.9 2.6 486.3 5.3 29.7 12986 2.3
KOS Kosovo 0.1 10 6.3 0.02 32 0.5 2.8
KGZ Kyrgyzstan 0.03 584.3 0.1 0.9 162.5 5.3
MYS Malaysia 54.9 1482.6 37 7.7 374.6 20.6
MDA Moldova 0.01 4.3 2.4 0.1 37 1.6 2.8
MNG Mongolia 0.04 89.6 0.4 0.1 156 0.6
MNE Montenegro 0.01 6 1.7 0.9 118 7.6 2.8
MAR Morocco 1 194 5.2 3.5 1405 2.5
MMR Myanmar 1.9 84.5 22.4 0.0001 0.006 20.6
NAM Namibia 0.5 145 3.2 0.001 5.2 0.3
NPL Nepal 0.1 66.9 2.2 0.0002 0.2 1.0
MKD North Macedonia 0.9 94.2 9.6 0.03 37.0 0.8 2.8
PAK Pakistan 1.9 860.3 2.2 1 1235.9 0.8
PSE Palestine 0.1 116.8 1 0.1 27.3 3.7
PAN Panama 0.2 242.1 0.8 0.2 270 0.7
PER Peru 0.4 334.8 1.1 0.3 409 0.7
PHL Philippines 41 1057.9 38.8 23.8 442.9 53.7
POL Poland 29.4 3955 7.4 9.7 6298.3 1.5 91.4 27244 3.4
ROU Romania 1 1382.5 0.7 2.3 3012.5 0.8 16 4465 3.6
RUS Russia 3.5 1427.8 2.5 12 945.3 12.7 150.1 41800 3.6
SEN Senegal 1.1 171 6.5 0.04 158.7 0.3
SRB Serbia 0.1 30.5 3 0.1 398 0.2 18.4 5314 3.5
SVK Slovakia 0.2 535 0.4 0.007 3 2.2 2.4 926 2.6
ZAF South Africa 21.5 5489.6 3.9 18.8 2516 7.5 74.8 43400 1.7
LKA Sri Lanka 0.8 370.9 2.2 2.7 179 15.1
TJK Tajikistan 0.9 584.3 1.5 0.9 162.5 5.3
THA Thailand 18.7 2982.6 6.3 2 1506.8 1.3 0.9 5933 0.1
TUR Turkey 7.7 6667.4 1.2 23 8832.4 2.6 51.8 19700 2.6
UKR Ukraine 29.8 7331 4.1 3.8 1402 2.7 44.3 21842 2
UZB Uzbekistan 0.005 3.5 1.5 0.004 0.8 5.3
VNM Vietnam 126.3 16660.5 7.6 3.5 518 6.8 86.4 20917 4.1
ZMB Zambia 1.2 96.4 12.4 0.043 170.2 0.3

Notes: The table reports country-level estimates of jobs present in different energy generation sectors. We
could not come up with estimates for coal sector for all the countries and that is why there are blanks in the
table. Also, estimates for some of the countries are imputed from nearby countries. For example, for
Jobs/MW of wind for Kyrgyzstan, Tajikistan, and Uzbekistan, we use the estimates for Kazakhstan as it is a
neighbouring country to all three of them. References used for deriving the numbers, which are reported in
the table above, are in the Appendix section.
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