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1 Introduction

Earnings announcements constitute perhaps the single most important source of firm-level infor-

mation for stock market investors and play an essential role in the price discovery process. Such

announcements are the key occasions on which firms release audited results and communicate their

views on economic prospects to investors and the public. With several headline numbers being

released simultaneously, earnings announcements can be thought of as points in time where draws

from the news process have a very high variance. Following such news, investors are likely to mate-

rially revise their posterior estimates of firm values which, in turn, increases the likelihood of large

changes in stock prices.

The widespread presence of high-frequency trading for the most liquid stocks means that in an

efficient market where trading frictions are not prohibitively large, earnings announcements will

almost surely trigger jumps in prices because they release so much information and resolve so much

uncertainty that investors typically revise their pre-announcement beliefs by a significant amount.

Effectively, a very high frequency of jumps in stock prices immediately after earnings announcements

is a necessary condition for markets to efficiently incorporate the new information.1

Building on this idea, we propose to use jump tests based on high-frequency tick-by-tick price

data as a new way to examine market efficiency. Our approach is fundamentally different from ap-

proaches used in existing studies of market efficiency. Existing work typically studies predictability

in price movements in one- or five-minute intervals after news announcements, see, e.g., Ederington

and Lee (1993). While relatively short in an absolute sense, these time intervals are excessively long

in a world with high-frequency trading that gets executed in a matter of milliseconds after major

news releases. In the presence of such high-frequency trading, only jump tests conducted at the

tick-by-tick level can reveal whether markets react efficiently to major news events.

Testing for jumps in prices after earnings announcements creates special challenges. In recent

years, the vast majority of publicly traded U.S. firms have made their earnings announcements

in the after-hours market outside the regular trading session from 9:30am–4:00pm.2 After-hours

trading sessions on days with earnings announcements are therefore central to the price discovery

process and it is important to understand price dynamics in after-hours markets in these sessions,

especially around earnings announcements. We do so in this paper by studying transactions, bid-ask

spreads, price discovery, and return predictability at a much higher tick-by-tick frequency than in

previous studies. All told, we examine more than 19.07 billion after-hours quotes and 5.81 billion

after-hours transactions for 25 stocks over a 12-year sample. For these stocks, our analysis provides

1The condition that prices jump after earnings announcements is, however, clearly not sufficient because the
price could systematically over- or undershoot its new equilibrium level, thus introducing predictable dynamics in
the post-announcement returns. We explore this issue in Section 5.

2Jiang, Likitapiwat, and McInish (2012), Lyle, Stephan, and Yohn (2021), and Michaely, Rubin, and Vedrashko
(2013) report that more than 95% of US firms announce earnings outside the regular exchange trading session.
This fraction is as high as 99.1% in the recent analysis by Grégoire and Martineau (2021) which studies companies
belonging to the S&P 1500 stock index between 2011–2015.
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the most complete analysis of trades and price formation in the after-hours market to date.

Unfortunately, after-hours transaction prices are severely affected by market microstructure

noise, which tends to distort standard jump tests. The irregular format of data from the after-hours

trading sessions poses serious challenges to empirical work and has limited jump tests to focus on

data recorded for the regular trading sessions.3 To address these challenges, we develop a new jump

test that is suitable for illiquid markets, by generalizing the classical bipower variation-based jump

test of Barndorff-Nielsen and Shephard (2006). We construct a noise-robust test statistic that relies

on a pre-averaging technique to lessen the detrimental impact of the noise (see, e.g., Aı̈t-Sahalia,

Jacod, and Li, 2012; Jacod, Li, Mykland, Podolskij, and Vetter, 2009; Lee and Mykland, 2012;

Podolskij and Vetter, 2009a,b). We extend the existing theory by generalizing the microstructure

noise to allow for heteroscedasticity and dependence. We also show how to estimate the asymp-

totic variance of the test statistic, which is itself a non-trivial problem.4 Through simulations and

empirical results, we demonstrate that the conventional jump test is severely distorted by the type

of market microstructure noise that is prevalent in after-hours markets, leading both to too many

false positives and false negatives.

Using our new noise-robust test statistic, we find strong empirical evidence in support of our

hypothesis that earnings announcements trigger jumps in prices. Specifically, the probability that

stock prices jump in an after-hours session with an earnings announcement exceeds 95% while the

corresponding jump probabilities for regular and after-hours sessions without earnings announce-

ments are 3.5% and 4.5%, respectively. Oversimplifying our results a bit, we find that prices rarely

jump during regular trading sessions but almost always jump after earnings announcements.

Having examined the necessary link between earnings announcements and the likelihood of

jumps in the after-hours post-announcement stock price, we next study whether prices adjust suf-

ficiently fast and by an appropriate amount to efficiently incorporate the new information. In

doing this, we inspect all trades and quotes, using a more detailed and complete data set than

that examined in previous studies. The fine granularity of our data means that we can pinpoint

exactly how long it takes for new information to get incorporated into prices as well as identify the

factors - including earnings surprises, market liquidity and analyst coverage - that determine price

movements in the immediate aftermath of earnings announcements.

Examining a simple trading rule based on price forecasts computed off the surprise component

in earnings announcements, over the 12-year sample (2008-2020) we find a highly significant mean

return of 1.67% per transaction in a no-friction scenario where investors trade on the first transaction

price after the announcement. Executing trades instead at the mid-point of the bid-ask spread, mean

returns drop to 1.32% per trade which remains highly significant. This finding continues to hold

3See, e.g., Aı̈t-Sahalia and Jacod (2009b); Aı̈t-Sahalia, Jacod, and Li (2012); Andersen, Bollerslev, and Dobrev
(2007); Caporin, Kolokolov, and Renò (2017); Christensen, Oomen, and Podolskij (2014); Corsi, Pirino, and Renò
(2010); Jiang and Oomen (2008).

4We propose an jump- and noise-robust version of the subsampling approach studied in Christensen, Podolskij,
Thamrongrat, and Veliyev (2017), which delivers a consistent estimator with desirable finite sample properties.
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for trades executed at the actual spreads obtained from the bid-ask quotes after the announcement

(mean of 0.81%). Delaying trades by 5 seconds reduces mean excess returns to 0.52% per trade,

which remains significant, whereas further delays beyond 5 seconds lead to mean excess returns

that are no longer statistically significant.

To analyze whether market efficiency has changed over time, we split our data into two sub-

samples. In the early sub-sample (2008-2015), mean excess returns are a highly significant 2.02%

and 1.58% per trade in the frictionless and mid-point trading scenarios, respectively. Even with a

trading delay of 15 seconds, mean excess returns remain significant and economically large (0.64%

per trade). Conversely, in the second sub-sample (2016-2020), the only significant values for mean

excess returns are obtained in the frictionless and midquote scenarios while mean excess returns

become small and insignificant in the presence of bid-ask spreads or timing delays. These findings

suggest that the post-earnings announcement price discovery process in the after-hours market has

become extremely fast and increasingly efficient over time for the most liquid U.S. stocks.

Our analysis is related to a number of previous studies. Like us, Grégoire and Martineau

(2021) examine how earnings announcement news get transmitted to stock prices in the after-hours

market. They study a much wider set of stocks than we do, but examine the dynamics of price

formation for each firm in far less detail, aggregating instead price changes into five-minute intervals.

Interestingly, they conclude that bid-ask spreads are so wide that investors could not have covered

their round-trip trading costs even if they knew the post-announcement closing price.5 We arrive

at an entirely different conclusion for our sample of stocks, finding instead that post-announcement

prices often jump well outside the range covered by the pre-announcement bid-ask spread which

remains relatively narrow.

Our analysis is also related to studies on price formation in the extended-hour trading session.

In a seminal contribution, Barclay and Hendershott (2003) study price discovery and trading in

the after-hours market, finding some evidence of inefficient price formation. Our results show that

trading activity and price discovery in the after-hours market is a tale of two markets. Even for the

most liquid stocks like those examined here, after-hours trading volume is almost entirely dormant

on days without earnings announcements. In contrast, on days with earnings announcements,

after-hours trading activity explodes. Average after-hours trading volume on days with earnings

announcements exceeds its counterpart on days without earnings announcement by almost two full

orders of magnitude.6

Another literature has examined jumps in stock prices and their relation to news and effect on

returns. Jeon, McCurdy, and Zhao (2022) examine the relation between news articles and price

jumps. However, their analysis is based on general news and daily data, whereas we look at earnings

announcements and high-frequency data at a much higher level of granularity. Bollerslev, Li, and

5Specifically, Grégoire and Martineau (2021) write that ”pre-announcement bid-ask spreads are wide enough to
include the post-announcement closing price, eliminating the profits of informed liquidity takers.”

6Averaged over firms and years, this ratio equals 93.57 over our sample.
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Todorov (2016) compute significantly positive risk premia for jump and overnight market betas but

not for continuous market betas. They find that stocks with higher jump and overnight market

betas earn higher returns even when controlling for continuous market betas. This suggests that

investors command a risk premium mainly for exposure to discontinuous variations in the aggregate

market, but not for exposure to continuous variations. Along similar lines Cremers, Halling, and

Weinbaum (2015) find evidence of higher risk premia for exposure to changes in jump risk than for

exposure to changes in volatility risk.

The outline of the paper is as follows. Section 2 establishes the link between price jumps and

market efficiency before introducing our new noise-robust jump test statistic. Section 3 explains our

data sources while Section 4 implements the jump test statistic on a unique set of high-frequency

data that includes information about the transaction record from outside the official opening hours

of the exchange. Section 5 studies price dynamics after earnings announcements and analyzes

returns from a simple trading strategy while Section 6 concludes. Supplemental appendices at the

back of the paper provide additional results and technical analysis.

2 Earnings announcements, market efficiency and price jumps

We begin by motivating why, in efficient markets, we should expect stock prices to jump immediately

after earnings announcements. To test this implication, we next introduce a new jump test that is

robust to the high levels of market microstructure noise that typically affect prices in the after-hours

trading session. We finish the section by reporting results from Monte Carlo simulations comparing

the performance of our new noise-robust test to that of existing jump tests.

2.1 Earnings announcements and market efficiency

Earnings announcements can be thought of as points in time where large bundles of information get

disclosed simultaneously to all investors. Moreover, the timing of such information disclosures is

typically known ahead of time, giving investors ample opportunity to prepare for the announcement

and respond instantaneously.7

The asset pricing setup that most closely resembles earnings announcements is perhaps the

continuous-time model with regime-switching dynamics and jumps developed by David and Veronesi

(2014). In this model, discrete shifts between a set of unobserved regimes determine the drift of

the fundamental variables. The real earnings process contains a Poisson jump component which

feeds into the pricing kernel and so is a source of systematic risk with jumps in the earnings process

translating into jumps in stock prices. This is consistent with earnings announcements, which we

can think of as discrete jumps in the earnings news process, inducing jumps in stock prices.8

7Most large-cap companies inform markets in advance about their intention to release a financial report either
Before Market Open (BMO), during Regular Trading Hours (RTH), or After Market Close (AMC), see, e.g., https:
//www.nasdaq.com/market-activity/earnings.

8David and Veronesi (2014) look at the aggregate (economy-wide) earnings process, whereas we analyze earnings
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Even in the absence of jumps in the earnings process, large revisions to investors’ learning

process about the underlying state can induce large, discrete changes to prices. For example, in

the models developed by Veronesi (1999, 2000), the dividend growth process switches discretely

between high-growth and low-growth states. Investors monitor dividends and infer the underlying

state from news about dividends. A switch in the underlying dividend growth regime will generally

lead to a significant revision in investors’ dividend growth estimates and, in turn, the stock price.

Assuming that the growth processes of dividends and earnings are closely correlated, a similar effect

will emerge in a model in which investors observe earnings. In this setting, earnings announcements

are events with significant releases of news about the earnings process at a single point in time.

With a high likelihood, this triggers significant revisions to investors’ beliefs about future earnings

and, in turn, leads to large price movements at the time of the earnings announcement.

In other continuous-time models such as Kyle (1985), the terminal date can be interpreted as a

public earnings announcement or the release of other ”major” public news such as the outcome of

a merger. In such a setting, the price is driven by order flows (and sometimes an explicit, diffusive

public news process) prior to the terminal date and evolves continuously during that time. Then,

assuming non-trivial information is released, the price typically jumps at the terminal announcement

point.

Investors in the Kyle model are risk-neutral. Accounting for risk aversion, prices could jump

even when the earnings news does not surprise investors due to the uncertainty resolution effect

as earnings announcements remove short-term uncertainty about firm earnings. Hence, the stock

price is more likely to move up (due to the lower risk premium) than down following an earnings

announcement that is close to investors’ expectations.9

In discrete-time models with disagreement among investors (heterogeneous priors) such as Baner-

jee and Kremer (2010), earnings announcements can be thought of as periods in which the variance

of the public information signal is an order of magnitude bigger than normal. In these models,

the revelation of big bundles of information is likely to cause investors to significantly revise their

posteriors. Such revisions in beliefs will, in turn, typically trigger large changes in the underlying

asset price whose variance is proportional to the variance of the public signal.10

Discrete-time asset pricing models tend to have a stylized time dimension and so do not directly

spell out whether movements in asset prices take the form of rapid diffusion or discrete jumps.

However, if markets are efficient, prices should adjust very quickly and are thus more likely to

announcements at the firm level. However, as long as firms’ earnings contain some information about the economy-
wide, systematic earnings process, firm-level prices should jump as well. We show in the data analysis that this
condition holds empirically.

9Preference for uncertainty resolution is not the only way through which news announcements move prices even in
the absence of surprises. Ai and Bansal (2018) argue that macroeconomic news announcements can earn a substantial
risk premium provided that preferences have a property dubbed generalized risk sensitivity. In turn, this requires
that news contain information about future continuation utility which is equivalent to the news carrying information
about the prospect of future economic growth.

10See, e.g., equation (10) in Banerjee and Kremer (2010).
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jump, i.e. move by a large amount more or less instantaneously, in the immediate aftermath of the

release of large amounts of public information.

This discussion suggests the following hypothesis.

Hypothesis 1. Necessary conditions for market efficiency after an earnings announcement include

that:

1. The stock price almost always jumps immediately after the earnings announcement.

2. Due to the presence of a common/systematic news component in earnings announcements,

the price of the market index, as well as the prices of other stocks with related business activ-

ities (e.g., in the same industry), are significantly more likely to also jump immediately after

earnings announcements than at times without such announcements.

3. Due to uncertainty resolution, the stock price is more likely to jump up than down following

an earnings announcement that is in line with analyst expectations.

The higher jump probability in stock prices after an earnings announcement is a weak implication

in the sense that it is a necessary but not sufficient condition for market efficiency. This holds

because stock prices could over- or undershoot. For example, prices could jump too far, giving

rise to a mean-reverting component that drifts towards the pre-announcement price in the period

following the jump. Conversely, if prices do not jump far enough, we should instead expect to see

post-announcement prices drift systematically in the direction of the jump.

These examples suggest that a sufficient condition for market efficiency after earnings announce-

ments is that investors cannot detect any return predictability on the entire post-announcement

price path and exploit such predictability after accounting for trading costs and risk adjustments:11

Hypothesis 2. A sufficient condition for market efficiency after an earnings announcement is that,

at each point in time of the post-announcement price path:

1. post-announcement returns do not display any predictive patterns large enough to allow in-

vestors to earn abnormal returns after accounting for transaction costs and risk premia.

Importantly, Hypothesis 2 does not mean that the price discovery process is settled instanta-

neously. We would expect elevated volatility of the price process lasting several minutes after the

release of the news as information gets processed and trading positions are adjusted. However, this

price discovery process should not leave any (local) biases that allow investors to predict and exploit

future price movements.

The condition that predictability of prices should not be exploitable in an economic sense is

important and goes back to Jensen (1978).12 Trading costs and bid ask spreads may induce negative

11Equilibrium prices are only determined up to the marginal cost of acquiring and processing information and
implementing transactions (Grossman and Stiglitz, 1980; Pedersen, 2015).

12He defines market efficiency in this way: ”A market is efficient with respect to information set θt if it is impossible
to make economic profits by trading on the basis of information set θt.”
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autocorrelation in returns. However, this should not generate abnormal profits after accounting for

round-trip transaction costs. Similarly, time-varying risk premia might induce some predictability

in the price process but are unlikely to matter much at the very high frequency that we analyze here

compared to the longer horizons conventionally studied in the literature on return predictability.

Testing the sufficient conditions in Hypothesis 2 is challenging because it has to hold for all

possible trading rules that condition on the released information. Short of inspecting the profitability

of all possible trading and prediction rules based on this information, it is difficult to conduct an

exhaustive test of this condition. In practice, analysis typically focuses on simple prediction rules

based on news measures such as earnings surprises. Conclusions regarding market efficiency are

therefore limited to the class of prediction and trading rules being examined.

2.2 Existing tests of market efficiency

Our approach to testing market efficiency by examining the presence of jumps immediately after

the disclosure of large information bundles is fundamentally different from common practice in the

finance literature on market efficiency in the aftermath of macroeconomic news announcements (e.g.,

Ederington and Lee, 1993; Andersen, Bollerslev, Diebold, and Vega, 2003) or corporate earnings

announcements (e.g., Beaver, 1968; Chambers and Penman, 1984; Jiang, Likitapiwat, and McInish,

2012; Grégoire and Martineau, 2021; Lyle, Stephan, and Yohn, 2021).

This literature typically studies predictability in post-announcement returns over fixed time

intervals such as one or five minutes. For example, Ederington and Lee (1993) conclude that

”Following an announcement, traders with immediate access to the market apparently form an

estimate of the release’s implication for market prices almost immediately, and the actual price

adjusts to this level within one minute. The price level at the end of one minute of trading is a

relatively unbiased estimate of the final equilibrium price.” Similarly, using data on exchange rates

sampled at 5-minute intervals, Andersen, Bollerslev, Diebold, and Vega (2003) observe that ”The

general pattern is one of very quick exchange-rate conditional mean adjustment, characterized by a

jump immediately following the announcement, and little movement thereafter.” Importantly, the

evidence of jumps presented by Andersen, Bollerslev, Diebold, and Vega (2003) is based on visual

inspection of price movements over five-minute intervals and their sampling scheme does not allow

them to formally test for instantaneous jumps in exchange rates.

In contrast, our definition in Hypothesis 2 does explicitly not reference time intervals such as 30

or 60 seconds. Hence, the conditions have to hold at each point in time, i.e., on the entire price path,

regardless of whether we are studying fixed or varying intervals, calendar or trading time. This is

an important advantage because choosing the length of the time interval used in the conventional

market efficiency tests is a difficult and ultimately arbitrary task.

Even more importantly, profitable transactions can occur at much higher frequencies than the

traditional intervals of 1-5 minutes. In current markets, thousands of trades are executed at intervals

measured in milliseconds. Viewed in this perspective, the absence of serial correlation in, e.g., one-
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minute returns is no guarantee that prices move efficiently. In a world dominated by high-frequency

trading where trade intervals can shrink to an almost arbitrary limit, ultimately only jump tests

can reveal whether markets react efficiently to big news events.

To illustrate the extreme speed with which transactions occur in the immediate aftermath of

an announcement, Panel A of Figure 1 shows tick-by-tick evidence on the price movement and

transaction count from the announcement (time 0) to 60 seconds after Apple released its earnings

report on 07/30/2020; Panel B zooms further in on the first 100 milliseconds. The instantaneous

transaction count exceeds 800 in the first post-announcement second and begins only 15 milliseconds

after the announcement. This can arguably be attributed to algorithmic traders sniping stale quotes

in the limit order book. Trading activity then lies dormant for a few seconds before picking up

significant steam again around the time where slower financial intermediaries are likely to have

entered the market. In the first ten seconds, we register an average of around 300 trades per second

while in the one-minute post-announcement window, more than 165 trades get executed per second,

on average.13

This example highlights the speed with which prices of the most liquid stocks adjust after

earnings announcements. It also motivates the need for market efficiency tests that account for

such extremely fast trading, yet possess robustness to the high levels of noise typically encountered

in after-hours markets. This is the topic we next turn to.

2.3 A noise-robust jump test

The vast majority of corporate earnings announcements occur in the after-hours market where

trading volume is typically far lower and bid-ask spreads much wider compared to the regular trading

session.14 As we demonstrate below, in the presence of such microstructure frictions, conventional

jump tests tend to spuriously identify false jumps, while often failing to detect true jumps. This

shortcoming makes it important to have a testing procedure that is robust to the noised-up features

of high-frequency data from the after-hours market.15

Given the dominance in empirical work of the jump test of Barndorff-Nielsen and Shephard

(2006), we develop a noise-robust generalization which retains the intuitive nature of their test.

13Towards the end of our sample, overall trading activity in the after-hours market is much higher than in the early
years with high-speed electronic trading often exceeding 200 trades per second right after earnings announcements.

14Empirical work based on high-frequency data from the regular trading session is inconclusive about the impor-
tance of jumps relative to the diffusive volatility (as often modeled by the inclusion of a Brownian motion in the price
process), see, e.g., Christensen, Oomen, and Podolskij (2014). This is another reason why we explore high-frequency
data from the extended trading session in search for jumps.

15Aı̈t-Sahalia, Jacod, and Li (2012) construct a noise-robust jump test from power variations sampled at different
frequencies. However, it is not obvious how to implement such sampling in the after-hours market that is typically
quite illiquid with limited trading. Lee and Mykland (2008, 2012) construct a noise-robust point-in-time jump test,
which employs high-frequency returns standardized by a localized bipower variation (see also Lee and Hannig, 2010).
A limitation of the usage of this test in our setting is that the exact timing of earnings announcements is not always
known with certainty.
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2.3.1 The efficient price

We start by introducing a general continuous-time setup for modeling noisy high-frequency data.16

Consider a security price observed on the time interval [0,1] which we interpret as a complete daily

trading session further described in Section 3. The fundamental theorem of asset pricing implies

that in an efficient market without frictions and no arbitrage the price process, P = (Pt)t≥0, must

be a semimartingale (e.g., Delbaen and Schachermayer, 1994). Normalizing the log-price process

p = (pt)t≥0 with pt = log(Pt) to start at zero (p0 = 0), we can decompose the cumulative intraday

log-return at time t (rt) into a continuous part (rct ) and a jump, or discontinuous, part (rdt ):

rt = rct + rdt . (1)

Consistent with no-arbitrage, rc = (rct )t≥0 takes the form of a drift and diffusion part:

rct =

∫ t

0

asds︸ ︷︷ ︸
drift

+

∫ t

0

σsdWs︸ ︷︷ ︸
volatility

, (2)

where the drift a = (at)t≥0 is a predictable and locally bounded process, the volatility σ = (σt)t≥0

is an adapted and càdlàg process, and W = (Wt)t≥0 is a standard Brownian motion.

In turn, we can decompose rd = (rdt )t≥0 into small and big jumps:17

rdt =

∫ t

0

∫
R
δ(s, x)1{|δ(s,x)|≤1}(µ− ν)(ds, dx)︸ ︷︷ ︸

“small” jumps

+

∫ t

0

∫
R
δ(s, x)1{|δ(s,x)|>1}µ(ds, dx)︸ ︷︷ ︸

“big” jumps

, (3)

where µ is a Poisson random measure on R+ × R with compensator ν(ds, dx) = dsF (dx).18

This framework is nonparametric since we do not constrain the dynamics of the efficient price

process. Our approach is therefore compatible with many salient features of high-frequency financial

data such as time-varying expected returns, stochastic volatility, leverage effects, and jumps in

the price and volatility coefficient. Price jumps can be of both infinite activity and have infinite

variation.

The null hypothesis that we wish to test is that P is continuous. This can be formulated as

H0 : ω ∈ Ω0, where Ω0 ⊆ Ω is the subset:

Ω0 = {ω ∈ Ω : t 7−→ Pt(ω) is continuous on [0, 1]}. (4)

We test this null against the alternative Ha : ω ∈ Ω1 with Ω1 = Ω∁
0 which is equivalent to the

16As usual, randomness is described by a filtered probability space (Ω,F , (Ft)t≥0,P). The construction of this
space in a noisy high-frequency setting is outlined in Jacod and Protter (2012).

17The separation into “small” and “large” jumps is not crucial in the analysis.
18Here F is a σ-finite measure, δ is a predictable function, and (τk)k≥1 is a sequence of Ft-stopping times increasing

to ∞ such that |δ(ω, s, x)| ∧ 1 ≤ ψk(x) for all (ω, s, x) with s ≤ τk(ω) and
∫
R ψ

β
k (x)F (dx) < ∞ for all k ≥ 1 and

β ∈ [0, 2]. β relates to the activity of the price jumps and can be interpreted as a generalized version of the Blumenthal
and Getoor (1961) index for a Lévy process, see Aı̈t-Sahalia and Jacod (2009a). A higher value of β increases the
frequency of the small jumps. Figure B.1 in Appendix B provides an illustration of this characteristic.
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restriction rdt = 0 for all t.

To develop a test of H0, we examine the composition of the quadratic return variation:

[r]1 =

∫ 1

0

σ2
sds+

∑
0≤s≤1

(∆rds)
2, (5)

where ∆rds = rds − rds− is the jump size at time s and rds− = limt↑s r
d
t . The first term in (5) is the

quadratic variation of the continuous log-return, also known as the integrated variance. The second

term represents the quadratic variation of the jump process, which is zero under H0.

Quadratic variation can equivalently be defined as follows:

[r]1 = plim
n→∞

n∑
i=1

r2i , (6)

where ri = pti − pti−1
is the log-return over [ti−1, ti] and the convergence in probability holds for

every partition 0 = t0 < t1 < . . . < tn = 1 such that maxi
1≤i≤n

(ti − ti−1) → 0 as n → ∞, motivating

why tick-by-tick high-frequency data is used to estimate quadratic variation.

2.3.2 The observed price

In practice, the efficient market hypothesis is violated because of market frictions—or microstructure

noise—such as price discreteness and bid–ask spreads. In addition, even though the price process

evolves in continuous time, trading is discrete. For simplicity, suppose the observed log-price is

recorded at equidistant time points ti = i∆n, for i = 0, 1, . . . , n, where ∆n = 1/n is the time gap,

which we collect in p∗ = (p∗i∆n
)ni=0. To account for microstructure noise, we follow Hasbrouck (1995)

and model p∗i∆n
as

p∗i∆n
= pi∆n + ϵi∆n , (7)

where ϵi∆n is the microstructure effect which we characterize through the following assumption.

Assumption (N): The microstructure noise is of the form

ϵi∆n = ωi∆nπi, (8)

where

(i) π = (πi)
n
i=0 is a sequence of i.i.d. random variables with mean zero and unit variance. Moreover,

the distribution of π0 is symmetric and has moments of arbitrary order.

(ii) ω = (ωt)t≥0 is of the form:

ωt = ω0 +

∫ t

0

āsds+

∫ t

0

σ̄sdWs +

∫ t

0

v̄sdBs, (9)

where ω0 is an F0-measurable random variable, ā = (āt)t≥0, σ̄ = (σ̄t)t≥0, v̄ = (v̄t)t≥0 are adapted,
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càdlàg processes, while B = (Bt)t≥0 is a standard Brownian motion and B ⊥⊥ W .19

(iii) π ⊥⊥ (p, ω).

(iv) lim sup|t|→∞ |χ(t)| < 1, where χ is the characteristic function of π0.

The conditions we impose on the noise process are weak and allow for complicated dynamics, for

example the noise can be heteroscedastic and nonlinearily dependent.20 Specifically, Assumption

(N) resembles Assumption 4 in Li, Todorov, and Tauchen (2017) and Assumption (N) in Jacod,

Li, and Zheng (2017). It generalizes previous work on pre-averaging based on i.i.d. and exogenous

noise (Christensen, Oomen, and Podolskij, 2014; Jacod, Li, Mykland, Podolskij, and Vetter, 2009;

Podolskij and Vetter, 2009a,b) to more realistic processes.

The key challenge here is to draw inference about the presence of jumps in the efficient price from

a high-frequency record of noisy prices. To see this, note that the observed log-return measures the

efficient log-return with error since it incorporates the increment to the microstructure component

as can be seen from equation (7):

r∗i = p∗i∆n
− p∗(i−1)∆n

= ri + ϵi∆n − ϵ(i−1)∆n . (10)

2.3.3 The pre-averaging approach

To mitigate the effect of microstructure noise, we adopt the pre-averaging procedure of Jacod, Li,

Mykland, Podolskij, and Vetter (2009); Podolskij and Vetter (2009a,b). Specifically, we replace the

observed noisy log-return by a pre-averaged log-return:

r̄∗i =
kn−1∑
j=1

gnj r
∗
i+j, for i = 0, . . . , n− 2kn + 1, (11)

where gnj = g(j/kn) is a weight function, kn = θ
√
n + o

(
n−1/4

)
is the pre-averaging horizon, and

θ > 0 is a tuning parameter.21

The averaging in (11) attenuates the microstructure noise and enhances the efficient log-return.

If kn is even and g(x) = min(x, 1− x), (11) can be rewritten as

r̄∗i =
1

kn

kn∑
j=kn/2+1

p∗i+j
n

− 1

kn

kn/2∑
j=1

p∗i+j
n

. (12)

Thus, (r̄∗i )
n−kn+2
i=1 constitutes a sequence of log-returns constructed by simple averaging of the noisy

log-price. This means that, with minor modifications, standard estimators of quadratic variation

can be tweaked to exploit the pre-averaged log-return series. We therefore define the pre-averaged

19The symbol A ⊥⊥ B means A and B are stochastically independent.
20Meanwhile, the i.i.d assumption on π implies the noise is linearily independent, i.e. uncorrelated. To further

allow for serial correlation, we can follow Jacod, Li, and Zheng (2017) who assume π is a stationary process with
suitable mixing conditions, but the distinction is not important here.

21The theory imposes weak regularity conditions on g, namely g : [0, 1] → R is continuous and piecewise continu-

ously differentiable with piecewise Lipshitz derivative g′, g(0) = g(1) = 0, and
∫ 1

0
g(s)2ds > 0.
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realized variance and pre-averaged bipower variation as follows:

RV ∗
n =

1

knψn
2

n−2kn+1∑
i=0

|r̄∗i |2 −
ψn
1

ψn
2 θ

2
ω̂2
n,

BV ∗
n =

1

knψn
2

π

2

n−2kn+1∑
i=0

|r̄∗i ||r̄∗i+kn| −
ψn
1

ψn
2 θ

2
ω̂2
n,

(13)

where

ω̂2
n = − 1

n− 1

n∑
i=2

r∗i r
∗
i−1, (14)

and

ψn
1 = kn

kn−1∑
j=0

(gnj+1 − gnj )
2 and ψn

2 =
1

kn

kn∑
j=1

(gnj )
2. (15)

The key here is that RV ∗
n is the sum of squared pre-averaged returns, whereas BV ∗

n is based on

cross-products that are kn terms apart. As we prove in Theorem 1, the extra distancing ensures

that BV ∗
n is asymptotically jump-robust, whereas RV ∗

n is not. Both estimators are normalized for

the effect of pre-averaging and bias-corrected for the remaining microstructure noise.22

2.3.4 Asymptotic theory

We next develop the theoretical foundation for the construction of our noise-robust jump test pro-

cedure. To do this, we need a structural condition on the diffusive volatility process:

Assumption (V): σ is of the form:

σt = σ0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

ṽsdBs, (16)

where σ0 is an F0-measurable random variable, while ã = (ãt)t≥0, σ̃ = (σ̃t)t≥0 and ṽ = (ṽt)t≥0 are

adapted, càdlàg processes.

Assumption (V) together with Assumption (N,ii) allow us to establish the order of various

approximating terms appearing in the proofs, once we freeze the volatility and noise processes

locally on small blocks of high-frequency data.23

Theorem 1. Assume that r follows the process in (1) with β = 2 and that Assumptions (V) and

(N) hold. Then, as n→ ∞,

RV ∗
n

p−→ [r]1 and BV ∗
n

p−→
∫ 1

0

σ2
sds. (17)

22The bias-correction employs the jump-robust estimator in (14) proposed by Oomen (2006) and designed to
estimate the variance of the noise in i.i.d. settings. Consistent with Kalnina (2011), we show in Appendix A that in

the general framework of Assumption (N), ω̂2
n

p−→
∫ 1

0
ω2
sds as n→ ∞.

23Assumption (V) can be extended to discontinuous volatility processes following Barndorff-Nielsen, Graversen,
Jacod, Podolskij, and Shephard (2006).
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Moreover, provided that H0 is true, as n→ ∞,

n1/4

(
RV ∗

n −
∫ 1

0
σ2
sds

BV ∗
n −

∫ 1

0
σ2
sds

)
d−→ N(0,Σ), (18)

where Σ is the 2× 2 asymptotic covariance matrix.24

Theorem 1 establishes a weak law of large numbers for the pre-averaged realized variance and

pre-averaged bipower variation in the noisy jump-diffusion model under Ha. It shows that RV ∗
n

is consistent for the quadratic variation, including the jump part, while BV ∗
n converges to the

integrated variance, excluding the jump part. Their difference therefore estimates the quadratic

jump variation, RV ∗
n −BV ∗

n

p−→
∑

0≤s≤t(∆r
d
s)

2 which is zero in the absence of jumps. The last part

of Theorem 1 establishes a bivariate asymptotic normal distribution of RV ∗
n and BV ∗

n as estimators

of integrated variance under H0.

Applying the delta rule to (18), it follows from Theorem 1 that, under H0,:

J inf.
n =

n1/4
(
RV ∗

n −BV ∗
n

)
√
v⊤Σv

d−→ N(0, 1), (19)

where v = [1,−1]⊤. In contrast, J inf.
n

p−→ ∞ under the alternative, Ha.

2.3.5 A noise- and jump-robust covariance estimator

The test statistic J inf.
n is not feasible since it depends on the covariance matrix Σ, which is a function

of the latent volatility and microstructure noise processes. We therefore next develop a noise- and

jump-robust plug-in estimator of Σ.25

We propose to set

Σ∗
n =

1

L

L∑
l=1

(
n1/4

√
L

[
B̌V

∗
l (2, 0)− B̌V

∗
n(2, 0)

B̌V
∗
l (1, 1)− B̌V

∗
n(1, 1)

])(
n1/4

√
L

[
B̌V

∗
l (2, 0)− B̌V

∗
n(2, 0)

B̌V
∗
l (1, 1)− B̌V

∗
n(1, 1)

])⊤

, (20)

where

B̌V
∗
n(q, r) =

1

knψn
2

c(q, r)
n−2kn+1∑

i=0

|ř∗i |q|ř∗i |r −
ψn
1

ψn
2 θ

2
ω̂2,

B̌V
∗
l (q, r) =

Lpkn
n

n/Lpkn∑
i=1

v(i−1)L+l(q, r)
n,

vi(q, r)
n =

n

pkn − 2kn + 2

1

knψn
2

c(q, r)
∑

j,j+2kn−1∈Bi(p)

|ř∗j |q|ř∗j+kn|
r − ψn

1

ψn
2 θ

2
ω̂2,

Bi(p) =
{
j : (i− 1)pkn ≤ j ≤ ipkn

}
,

(21)

24An explicit expression for Σ is presented in (41) in Appendix A.
25In principle, we only need to estimate Σ given that H0 is true. However, by using a jump-robust estimator of

the asymptotic covariance matrix we avoid losing power under Ha.
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and c(q, r) is a constant.

B̌V
∗
n(q, r) is the truncated pre-averaged bipower variation of Christensen, Hounyo, and Podolskij

(2018). It modifies the pre-averaged bipower variation in (13) by raising the pre-averaged log-

returns to the exponents q and r. It also employs jump-truncated pre-averaged returns, ř∗i , which

are defined in (49) in Appendix A. Apart from the truncation, B̌V
∗
n(q, r) nests the pre-averaged

realized variance for (q, r) = (2, 0), where c(2, 0) = 1, and the pre-averaged bipower variation for

(q, r) = (1, 1), where c(1, 1) = π/2.26

Σ∗
n is the sample covariance matrix of subsampled pre-averaged bipower variation estimators

that are calculated on smaller batches of high-frequency data covering blocks of length pkn. These

are centered around the full sample statistic and suitably normalized. L is the number of subsample

estimates, and we assume n is a multiple of Lpkn for notational convenience.

With this in place, we have the following result:

Theorem 2. Assume that r follows the process in (1) with β ≤ 1 and that Assumptions (V) and

(N) hold. Moreover, assume that L ≍ n(1−δ)/2, where δ > 0 is a small number such that

3/2 + δ

8− β
< ω̄ <

1

4
− δ. (22)

Then, as n→ ∞, p→ ∞, L/p→ ∞,
√
n/Lp2 → ∞, and for δ < 1/16,

Σ∗
n

p−→ Σ. (23)

Theorem 2 shows that Σ∗
n is consistent both under the null (diffusion only) and under the

alternative (diffusion and jumps). We confine attention to jump processes of bounded variation,

which is standard when inference is based on the continuous part of the process.

By Slutsky’ theorem, we obtain the following feasible jump test that holds under the null H0:

Jn =
n1/4

(
RV ∗

n −BV ∗
n

)√
v⊤Σ∗

nv

d−→ N(0, 1). (24)

In the presence of jumps, Jn
p−→ ∞. Hence large values of Jn are indicative of price jumps.

The finite sample properties of Jn under the alternative can be further improved if we also

replace BV ∗
n in the numerator of (24) with a truncated version:27

Jn =
n1/4

(
RV ∗

n − B̌V
∗
n

)√
v⊤Σ∗

nv
, (25)

26The latter is therefore also sometimes referred to as (1, 1)-pre-averaged bipower variation
27On the one hand, “big” jumps induce an upward bias in BV ∗

n for realistic sample sizes, causing a downward
bias in the estimated jump variation and reducing the power of the jump test. However, such biases can readily be
handled through truncation. On the other hand, the bipower mechanism—multiplication of adjacent log-returns—is
an effective tool to get rid of “small” jumps that survive any truncation. This approach of cracking down twice on
the jump component was proposed by Corsi, Pirino, and Renò (2010) for bipower variation in the noise-free setting.

In Appendix A, we show that the substitution of BV ∗
n with B̌V

∗
n in the numerator does not alter the asymptotic

theory in Theorem 1.
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where B̌V
∗
n ≡ B̌V

∗
n(1, 1). Exploiting that our test is asymptotically unbiased and consistent, we

can compare the test statistic Jn against critical values from the standard normal distribution to

test for jumps.

The final form of Jn in (25) serves as our noise-robust jump test statistic.28 A one-sided test

procedure is appropriate here so the decision rule is to reject H0 at significance level α if Jn >

Φ−1(1− α), where Φ(x) is the standard normal distribution function:

P
(
Jn > Φ−1(1− α)

)
→

{
α, under H0,

1, under Ha.
(26)

2.4 Monte Carlo Simulations

In Appendix B, we conduct a thorough Monte Carlo study that examines the finite-sample properties

of our noise-robust jump test, which we compare to the noise-free test of Barndorff-Nielsen and

Shephard (2006). We develop a general setting that examines levels of microstructure noise that

match those seen in the after-hours trading sessions in our data.

Our key findings from these simulations can be summarized as follows.

1. Even when the observed price is affected by a very high level of noise, our jump test exhibits

size control and does not systematically over- or under-reject the null hypothesis of no jumps.

2. Our jump test has good power properties and correctly identifies jumps under the alternative

in a variety of scenarios for the microstructure noise, pre-averaging, subsampling, and jump-

truncation.

3. In sharp contrast, the performance of the conventional jump test based on 5-minute realized

variance and bipower variation degrades in the presence of the levels of microstructure noise

typical for after-hours trading. In the presence of such noise, the classical test spuriously

identifies too many jumps, falsely rejecting the null when no jumps are present. Conversely, it

frequently fails to reject the null and thus fails to identify true jumps when these are genuinely

present.

In summary, our simulations demonstrate both the need for and benefits from utilizing our

noise-robust jump test on the high-frequency after-hours transaction price data examined in our

empirical application, which we next proceed to.

3 Data

Earnings announcements should trigger jumps in stock prices if investors efficiently and instan-

taneously process the new earnings information. In this section, we introduce the data sources

28Barndorff-Nielsen and Shephard (2006) advocate a log- and ratio-based transformation of the noise-free version
of (25) via the delta method. We implemented both these alternative versions of the noise-robust jump test statistic,
which does not impact any of our conclusions.
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employed to study if this prediction is supported empirically.

3.1 Transaction and quotation data

Jump tests benefit crucially from having data at the highest possible resolution, so our analysis

employs tick-by-tick transaction and quotation data on individual firms’ stock prices to track their

response to corporate earnings announcements.

U.S. stock exchanges are only open for trading on normal business days from 9:30am–4:00pm

Eastern time.29 However, orders can be submitted and trades executed at any time via private

trading systems such as electronic communication networks (ECNs). On most days, official pre-

market trading is available from 4:00am–9:30am, while the after-hours market runs from 4:00pm–

8:00pm.30 During this time, the Consolidated Tape collates real-time tick-by-tick data that is

available for purchase via private vendors such as the New York Stock Exchange (NYSE) Trade

and Quote (TAQ) database.

Transaction volumes in after-hours markets have grown substantially, more than tripling between

2008 and 2020 for the stocks we analyze in our paper. Over the same period, after-hours trading

quadrupled from less than one-fifth of a percent to nearly one percent of total transaction volume

(including trading from the regular trading session). However, on days with earnings announce-

ments this fraction is substantially higher, frequently exceeding 10%. Appendix C summarizes the

evolution over time in trading volume and spreads in the after-hours market.

As noted earlier, the vast majority of U.S. companies publish their financial results outside

the regular trading session.31 In Appendix D, we examine the trading activity in the pre-market

(6:00am–9:30am) and after-hours market (4:00pm–6:30pm). We find that trading activity levels are

much lower in the pre-market, even on announcement days.32 This impairs the implementation of

our jump test so our analysis focuses on the after-hours market.33 Because individual transaction

counts are prohibitively large in that segment and liquidity evaporates fast as we move to stocks

with lower after-hours market liquidity, we focus our analysis on the 25 firms with the largest after-

hours trading volume on announcement days.34 These stocks account for a disproportionately large

29The major national stock exchanges close at 1:00pm the day before big public holidays, such as July 4th,
Thanksgiving, and Christmas.

30The trading schedule of NASDAQ- and NYSE-listed securities can be gauged at https://www.nasdaq.com/

stock-market-trading-hours-for-nasdaq and https://www.nyse.com/markets/nyse-arca/market-info.
31Companies prefer to announce at these times because the after-hours markets are mostly comprised of profes-

sional investors and informed traders, see Jiang, Likitapiwat, and McInish (2012). This speeds up the price discovery
process and helps convey information to the general public.

32Figure D.1 in Appendix D plots the volume distribution for constituents of the S&P 500 during the pre-market
(6:00am–9:30am, Panel A) and the after-hours market (4:00pm–6:30pm, Panel B).

33In practice, there is usually limited trading activity after 6:30pm, so we do not consider trading after this time.
34To identify these firms, we sort the constituents of the S&P 500 index as of 12/31/2020 by their post-close

(4:00pm–6:30pm) transaction volume on quarterly earnings announcement days, averaged over the five-year period
from 01/01/2015–31/12/2019. We also require that the firms report at least 75% of their earnings announcements
after the close of the regular trading session during our full sample period 06/02/2008–12/31/2020. We exclude
Paypal (PYPL, ranked 19th) from the original list since this firm was only exchange-listed (for the 2nd time) on
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fraction of trading activity, or 41.14% of the total transaction count, in the after-hours market

among all firms in the S&P 500 index during our sample.

We download high-frequency data from the NYSE TAQ database for the selected stocks over

the sample period 06/02/2008 through 12/31/2020, a total of T = 3,169 business days. The data

is cleaned using state-of-the-art procedures (e.g. Barndorff-Nielsen, Hansen, Lunde, and Shephard,

2009; Christensen, Oomen, and Podolskij, 2014). The main distinction here is that we retain ob-

servations with a timestamp outside the official exchange trading hours if they otherwise fulfill the

conditions required to be tagged non-erroneous.35 We use tick-time sampling to remove transactions

that merely repeat the previous price and aggregate remaining observations with identical times-

tamps. The latter are instead replaced with an average price, a procedure that is known to further

alleviate microstructure noise. In total, we preserve over 19 billion (19,074,128,835) quotations and

nearly six billion (5,817,606,415) transactions across stocks.

Table 1 reports ticker symbols for our list of stocks and summary statistics for their trading

volume in the after-hours session.36 We show the sample average, standard deviation, and the 25th,

50th, 75th and 99th percentiles of the transaction count distribution for days without earnings

announcements (columns 2–8) and days with earnings announcements (columns 9–15). For many

firms, the after-hours transaction count is two orders of magnitude larger on days with earnings

announcements relative to days without announcements. For example, Facebook (FB) averaged

76,129 after-hours transactions on earnings announcement days, compared with only 891 transac-

tions on days with no such announcements. It is clearly uncommon for individual firms to exhibit

high transaction counts in the after-hours trading session on days without earnings announcements.

3.2 Announcement timing

While most companies announce their financial results at a fixed time, for others the timing can

vary quarter-by-quarter. Even slight inaccuracies in the recording of the announcement time can

impede our calculation of the post-announcement price reaction, so accurate timing is imperative

and we spend considerable effort on double checking the time stamps.

We begin by gathering announcement times from a data set provided by Wall Street Horizon

that offers a comprehensive suite of corporate events data, including detailed information on the

timing of earnings announcements.37 Wall Street Horizon stores the timestamp included with the

press release issued by the company when it publicly announces its quarterly results.38

07/20/2015 and therefore has too short a sample. PayPal is replaced by Ulta Beauty (ULTA).
35A complete list of sale conditions that can be associated with a transaction is available in the documentation of

the Daily TAQ Client Specification manual available for download at: http://www.nyxdata.com/Data-Products/
Daily-TAQ. In particular, the label “T” identifies pre-market and after-hours trades. These are virtually always
ignored in the high-frequency volatility literature, since the first rule of the widely used Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2009) filtering algorithm instructs researchers to “P1. Delete entries with a time stamp outside
the 9:30am–4:00pm window when the exchange is open.”

36The corresponding table for the pre-market trading activity can be found in Appendix D.
37See https://www.wallstreethorizon.com/.
38A publicly traded company with classes of securities registered in Section 12 or subject to Section 15(d) of the
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As a double-check, we hand collect a separate set of announcement times from the Factiva news

archive by searching on the announcement day for press releases marked with the company ticker

code and a designated “Earnings” subject.39

Comparing the merged set of announcement times with the audit trail of the complete tick-by-

tick transaction price history suggests that occasionally both Wall Street Horizon and Factiva get

it wrong. To correct seemingly erroneous timestamps, we design a conservative screening algorithm

that infers the announcement time based on the price volatility. In particular, we calculate the

log-return for each minute from 4:00pm–6:30pm. If the largest absolute one-minute log-return

exceeds 2.5% and it precedes the announcement time from both Wall Street Horizon and Factiva,

we assume the earnings were released at the earlier time. The filter affects only a very limited

number of announcements (46 in total, or 3.95%) with a high concentration in Tesla (TSLA), Intel

(INTL), and Micron Technology (MU) which together account for more than half of the updated

announcement times. For other companies, only a minuscule amount of announcement times are

modified (18 in total, or 1.74%), and here the median change is one minute, suggesting that the

algorithm primarily captures small rounding effects for some of the most important earnings reports

that lead to substantial revisions of the security price.40

The third-to-last column in Table 1 shows the modal announcement time for each firm, which

ranges from as early as 4:00pm (reports released immediately after the close of the regular exchange-

trading session) to as late as 4:30pm, with many firms announcing around 4:05pm.

3.3 Earnings surprises

To compute the surprise element in earnings announcements, we employ the Institutional Brokers

Estimate System (I/B/E/S) database available through subscription to Refinitiv (formerly part

of Thomson Reuters).41 I/B/E/S aggregates earnings information for over 22,000 companies. In

addition to the actual reported earnings per share (EPS), adjusted for non-recurring items and stock

option expenses, I/B/E/S surveys earnings forecasts from leading professional analysts covering

individual companies. Prior to each announcement, we compile this information into a consensus

Securities Exchange Act of 1934 is legally required to file regular reports with the SEC, including an annual form
10-K and quarterly form 10-Q’s, in addition to proxy reports and other reporting requirements. Most companies file
form 10-Q either 40 or 45 days after the end of the fiscal quarter, but many large corporations choose to summarize
their financial statements at an earlier date by issuing a press release and filing a form 8-K.

39A limitation of both data sets is that announcement times are rounded to the nearest minute. However, most
of the earnings reports in our sample are released to the public through professional dissemination services, such as
BusinessWire or PR Newswire which are under strict requirements to ensure immediate and equal access to company
information as noted by the SEC’s Regulation Fair Disclosure. Combined with the audit-trail information left from
the high-frequency data after each announcement suggests that the rounding effect is typically negligible.

40Importantly, our noise-robust jump test statistic is unaltered by the screening algorithm since it does not depend
on the announcement time. Moreover, employing Wall Street Horizon and Factive information only does not cause
any discernible change in the post-announcement return regression (Section 5.1). Only the excess returns from our
trading strategy (Section 5.2) deteriorate slightly with the removal of the inferred announcement time but remain
significant in the baseline implementation.

41https://www.refinitiv.com/.
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estimate (µEPS) and a standard deviation of that estimate calculated over the distribution of analyst

expectations (σEPS). Following Berkman and Truong (2009), Michaely, Rubin, and Vedrashko

(2013), among others, our measure of the standardized unexpected earnings is given by42

zEPS =
Actual EPS− µEPS

σEPS
. (27)

We purge announcements with no analyst forecasts and those where σEPS is less than 0.001 (one

tenth of a cent) which result in an unstable zEPS measure. This removes five announcements, all

from Ulta Beauty (ULTA) that was still a relatively overlooked small-cap stock with limited broker

coverage at the beginning of our sample. We also exclude announcements where share trading was

temporarily suspended by the exchange as it leads to a disconnected trade sequence.43 Finally,

following Grégoire and Martineau (2021) we discard announcements where zEPS exceeds ten in

absolute value. Such outliers are often caused by extraordinary items in the profit statement.44

The last step removes 18 observations (about 1.5% of the sample).

The number of quarterly earnings announcements retained for each company is shown in the

fourth-to-last column in Table 1. We report summary statistics of zEPS in the second-to-last column.

Standardized unexpected earnings are substantially higher than zero on average, consistent with

the notion that managers engage in earnings smoothing to avoid negative surprises.

4 Empirical results

We next proceed with our empirical investigation.45 Price dynamics and trading activity in the

after-hours market is not as thoroughly studied and understood as that in the regular trading

session and it has evolved significantly since the seminal analysis of Barclay and Hendershott (2003).

We therefore begin by briefly summarizing some of the key features of the after-hours market,

emphasizing the contrast between days with and without earnings announcements. We start by

42Some studies employ the median analyst estimate instead of the sample average (Dellavigna and Pollet, 2009;
Grégoire and Martineau, 2021; Hartzmark and Shue, 2018). Others replace the standard deviation with the lagged
closing price of the stock, e.g. from a week before the announcement or at the end of the previous quarter (Grégoire
and Martineau, 2021; Lyle, Stephan, and Yohn, 2021). Our main findings are not altered by adopting these alternative
ways of defining the standardized unexpected earnings.

43Trading halts are registered in the daily TAQ master files that contain static information for securities traded
by participants of the Consolidated Tape Association (CTA), mainly stocks with NYSE as primary exchange, and
Unlisted Trading Privileges (UTP), or NASDAQ-listed issues. The file has a letter code in the “Halt Delay Reason” if
trading was paused (blank otherwise). Resumption of trading is flagged in the transaction data with a sale condition
“5” defined as “Market Center Re-Opening Trade” (CTA) or “Re-opening Prints” (UTP).

44For example, on 08/25/2020 Salesforce (CRM) posted a quarterly EPS of $1.44 after adjusting for non-recurrent
items. With a consensus estimate of $0.66 and a standard deviation of about four cents, this yields a twenty-sigma
event. The surprise was motivated by mark-to-market accounting for the company’s investments in nCino, which
saw a $617 million unrealized gain in the quarter.

45We employ the weight function g(x) = min(x, 1− x) and pre-averaging horizon kn = ⌊θ
√
n⌋ with θ = 1/2. We

set L = p = 10 for the subsampler, and c = 5 and ω̄ = 0.24 for the truncation device. In practice, fixing θ means kn
is time-varying since it changes with the actual number of high-frequency data available in each trading session, n.
As a robustness check, we also fixed kn = 25 and kn = 50 without any noticeable change in the results.
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analyzing the pattern in trading volumes and bid-ask spreads in a short interval around earnings

announcements before turning to the evidence on the presence of price jumps.

4.1 Trading volume and bid-ask spread

To get a broad picture of post-announcement trades, for each five-second interval in a one-hour win-

dow centered around the announcement time, we calculate transaction counts and bid-ask spreads

(in basis points) as

Spread = 10000× ask− bid

midquote
, (28)

where midquote = (bid + ask)/2.

As a control sample, for each announcement we select a random no announcement date and

calculate transaction counts and Spread on a corresponding window.

Panel A in Figure 2 reports the transaction count per five-second interval on days with and

without earnings announcements. The modal announcement time across companies is 4:05pm.

Hence, the market typically closes five minutes prior to the announcement (labeled time 0), as

highlighted in the figure. The transaction volume right before the regular market close is notably

higher on days with announcements than on days without announcements, but both drop sharply at

the close. From this point onward, the graphs evolve very differently, however. Whereas the after-

hours transaction count remains close to zero on no-announcement days, it spikes to more than

20 contracts shortly after the announcement time on days with earnings announcements before

gradually tailoring off over the next 30 minutes.

In Panel B of Figure 2, we compare bid-ask spreads in the after-hours market on days with and

without earnings announcements. Again, we see distinct differences. On no announcement days,

the median quoted spread starts at 5 bps at the end of the regular trading session before rising to

25–30 bps within the first five minutes of the post-trading session. It then gradually inclines for the

duration of the after-hours session as we approach the overnight period. On announcement days,

the median quoted spread jumps from 5 bps at close (4:00pm) before quickly rising to 40 bps at

the time of the announcement, then drops to 20 bps within 10–20 minutes of the announcement.

For comparison, the average quoted spread during post-close trading is 36.1 bps, while the

average spread in regular trading equals 6.2 bps, implying that the bid-ask spread on average is six

times greater in the after-hours session compared with the regular trading session.46

4.2 Jump proportion

The theoretical analysis in Section 2 highlights that jumps in prices increase the realized variance

without affecting the bipower variation. This insight suggests an intuitive way to check whether

46This is shown in Figure C.3 in Appendix C, which reports summary statistics on the after-hours trading volume
and bid-ask spreads. Like the trading volume, after-hours bid-ask spreads follow a distinct intraday pattern and are
generally lower on announcement days, except during the first 10–15 minutes after an announcement. After-hours
spreads remain lower the following day compared to next-day spreads on no announcement days.
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earnings announcements cause jumps.

First, since earnings announcements almost exclusively fall outside the hours of the exchange-

traded session, in Panel A of Figure 3 we plot the pre-averaged realized variance computed for the

regular trading session from 9:30am–4:00pm against its corresponding value computed for extended

trading session from 9:30am–6:30pm, both converted to annualized standard deviations. Their

difference measures the incremental volatility observed in the after-hours market from 4:00pm–

6:30pm. On no announcement days (indicated by a red dot) the extra volatility during after-hours

trading is typically minuscule and has a negligible impact on the cumulative pre-averaged realized

variance measure. Except for a few outliers, the vast majority of these observations form a cloud

close to the 45-degree line. Conversely, on days with a quarterly earnings announcement (indicated

by a blue cross), the discrepancies are much more pronounced with the pre-averaged realized variance

substantially exceeding its corresponding regular trading session value. Earnings releases clearly

trigger substantial price volatility in the after-hours market, which is otherwise dormant.

Second, and more directly related to our jump test, in Panel B of Figure 3 we plot the pre-

averaged bipower variation against the pre-averaged realized variance, both based on high-frequency

data from the extended trading session (9:30am-6:30pm). Realized variance less bipower variation

isolates the contribution of jumps to return variation, which is zero (up to sampling error) if the

price path is continuous but is strictly positive if there are price jumps. Hence, the farther to the

right of the 45-degree line a data point is, the more it indicates the presence of jumps. Consistent

with this interpretation, the pre-averaged realized variance and bipower variation are more or less

perfectly aligned on no announcement days. Conversely, on days with earnings announcements we

observe large differences indicating jumps in price movements at these times. Table 2 provides

further stock-level details on realized variance and bipower variation for the regular and extended

trading session broken into days with and without earnings announcements. Appendix E provides

an even more detailed analysis for Apple which is perhaps the most prominent stock in our sample.

An alternative approach to gauge the relative importance of jumps is to examine the jump pro-

portion which estimates the fraction of the return variation originating from the jump component.

Following Christensen, Oomen, and Podolskij (2014), this is defined as47

Jump proportion = 1− Bipower variation

Realized variance
. (29)

Figure 4 plots kernel density estimates of the distribution of the jump proportion. As indicated by

the peak near zero for the graphs based on our noise-robust pre-averaging estimators, on most days

without announcements (Panel A) the jump component accounts for none of the variation in the

stock price.48 Conversely, on days with earnings announcements (Panel B) more than fifty percent

47The jump proportion is computed without pre-averaging if sampling at a 5-minute frequency or with pre-
averaging if sampling at the tick-by-tick frequency.

48Note that small negative numbers can be observed due to estimation error.
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of the total variation in price movements stems from the jump component.49

In contrast, the jump proportion extracted with five-minute sampling peaks near 10%, regardless

of whether there is an announcement or not.50 Although the jump proportion for the five-minute

measure is slightly more right-skewed on days with announcements, in general it overestimates

the importance of jumps on days with no announcements and underestimates it on days with

announcements. These findings are consistent with the biases in the conventional jump measure

documented in our Monte Carlo simulation results.

4.3 Jump frequency

Figure 4 shows that the jump component is important in after-hours trading sessions on days with

earnings announcements but largely absent on days without announcements. To examine this point

more closely, we compute the jump indicator:

Jit =

{
1, Jn,it > q,

0, otherwise.
(30)

where Jn,it is the noise-robust jump test statistic in (25) for company i on day t. We set the critical

value q in a way that reduces the likelihood of identifying false jumps by applying a Bonferroni

correction to account for multiple testing and keep the family-wise error rate at 1%.51

Table 2 reports the jump frequency across firms in our sample during the regular trading session

in Panel A versus the extended trading session in Panel B. The sample is further split into days

with and without an earnings announcement. Applying the pre-averaged jump test statistic to the

regular trading session, we identify 2,739 firm-days with a significant jump, corresponding to 3.46%

of all stock-trading days. While jumps do occur at a higher frequency than expected by random

chance (the size of the test is 1%), the difference is not very large and so it is relatively rare for

jumps to occur during the regular trading session.52 Among after-hours trading sessions without

earnings announcements, we find 3,474 firm-days with jumps, corresponding to a jump frequency

of 4.45% which is only slightly higher than the previous estimate. Finally, for after-hours trading

sessions with earnings announcements, we identify 1,109 days with jumps, corresponding to a jump

frequency of 95.27% which is far higher than the previous values.

In essence, while it is rare to identify a jump during regular trading sessions or in extended

trading sessions without announcements, it is rare not to find a jump in extended sessions with

earnings announcements. This finding provides strong empirical support for Hypothesis 1, part 1.

49The slight attenuation observed with θ = 1 is consistent with our Monte Carlo evidence in Appendix B, where
we note that excessive pre-averaging tends to deflate the power of our microstructure noise-robust jump test.

50The cross-sectional average jump proportion for the five-minute realized variance and bipower variation calcu-
lated on the regular trading session 9:30am–4:00pm is 7.3%. This number is consistent with Table 1 in Christensen,
Oomen, and Podolskij (2014).

51Bajgrowicz, Scaillet, and Treccani (2016) report that up to 90% of jumps identified with the five-minute jump
test are spurious due to multiple hypothesis testing.

52This result is consistent with Christensen, Oomen, and Podolskij (2014).
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The corresponding numbers for the five-minute jump test statistic of Barndorff-Nielsen and

Shephard (2006) are 4,385 (a 5.54% jump frequency) in regular trading sessions, 9,193 (11.79%) in

extended trading sessions without earnings announcements, and 482 (41.41%) in extended trading

sessions with earnings announcements. This again illustrates that the conventional jump test iden-

tifies too many jumps (false positives) during regular trading sessions and extended trading sessions

without earnings announcements but too few jumps (false negatives) during extended trading with

earnings announcements. This finding is backed up by our simulations in Appendix B, which show

that the five-minute jump test overrejects in the presence of little or no microstructure noise (as in

the regular trading sessions) but lacks power (underrejects) in the presence of high levels of noise

contamination (as in the after-hours market).

It is often easy to explain the rare occasions where prices do not appear to jump after an

earnings announcement (less than 5% of cases). Table 2 shows that failure to find jumps after

earnings announcements occurs predominantly for the three least liquid companies, namely Gilead

(GILD), Applied Materials (AMAT), and Ulta Beauty (ULTA). Together, these three firms account

for about half of the announcements with no jumps, with a high concentration of these cases located

in the early part of our sample. In these instances, there are often relatively few post-announcement

observations to base the analysis on, rendering it practically impossible for our noise-robust test

statistic to work as intended.

The other main reason why we sometimes fail to detect a post-announcement price jump is that

although our jump test has excellent power, it is not bullet proof. This is particularly relevant for

announcements that are succeeded by whipsawing in the price. Intuitively, a jump is less likely to

be detected when it is surrounded by extremely high diffusive volatility which reduces the relative

contribution of the jump to return variation. We elaborate further on this connection in the context

of our binary choice model below.

4.4 Determinants of the jump frequency

To more formally test Hypothesis 1, we next develop a regression framework to examine the de-

terminants of price jumps. We begin by inspecting the role of earnings surprises since this is the

measure most directly related to earnings announcements.

To capture the relation between the jump probability versus the sign and magnitude of earnings

surprises, we first sort earnings announcements by the value of zEPS, form decile portfolios from

lowest to highest values of the earnings surprise, and plot the corresponding average jump frequencies

implied by our noise-robust jump test in Panel A of Figure 5. The jump probability exceeds 90%

across deciles. Moreover, it does not depend systematically on the size of the earnings surprise. In

fact, prices are as likely to jump on days with the most negative earnings surprises (decile 1) as

they are on days with the most positive surprises (decile 10).

Our finding that prices jump even when investors are not surprised by the reported earnings

per share is consistent with Hypothesis 1 and can be explained as follows. First, it is possible
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that information other than the headline earnings figure gets released (e.g., forward guidance on

future earnings) and that this triggers a jump.53 While this helps explain why prices can jump even

on days where markets do not get surprised by the earnings figure, we would still expect a lower

average jump probability on such days. This points to the second explanation, namely that prices

jump because of the resolution of uncertainty associated with the earnings announcement (Banerjee

and Kremer, 2010). An implication of this story is that prices are more likely to move up (due to

the lower post-announcement risk premium) than down following an earnings announcement that

is close to investor expectations. We further explore this prediction in Section 5.1.

To establish a more formal connection between price jumps and earnings announcements and

examine whether other factors affect jump probabilities, we next estimate logit regressions. Our

analysis includes up to five regressors. To estimate the effect of an earnings announcement on the

jump probability and test Hypothesis 1, we consider an announcement dummy variable:

EAit =

{
1, on announcement days,

0, otherwise.
(31)

Since zEPS proxies for the magnitude of the news component in the announcement, we expect these

to matter for the jump probability as well. As our second and third covariates, we therefore include

the absolute value of the earnings surprise, measured separately for positive and negative surprises,

i.e., we define z+EPS,it = zEPS,itEA
+
it and z−EPS,it = zEPS,itEA

−
it , where EA

+
it = 1(zEPS,it > 0) and

EA−
it = 1(zEPS,it < 0) are indicator variables that capture the direction of the earnings surprise.

Fourth, to see whether high volatility in prices prior to the announcement makes it more or

less likely to find jumps, we include the pre-averaged realized volatility,
√
RV ∗

n , computed over the

regular trading session from 9:30am–4:00pm on the day of the announcement. We expect to find a

negative effect since high volatility makes it harder for our noise-robust jump test to detect jumps.

Fifth, as a measure of the resources available to facilitate the price discovery process, we include

the number of analysts covering the stock, NA.
54 We would expect to find a positive coefficient

since the price discovery process, and thus the speed of price adjustments, should be more efficient

for stocks with the greatest analyst coverage.

Next, we estimate the logit model using observations for stock i on day t:

P (Jit = 1) = F (a+ b1EAit + b2|z+EPS,it|+ b3|z−EPS,it|+ b4

√
RV ∗

n,it + b5NA,it), (32)

where F is the logistic distribution function.55

53For example, on 10/24/2011 Netflix (NFLX) reported third-quarter EPS of $1.16 which beat the consensus
expectation of $0.94, corresponding to a modest 1.6 standard deviation surprise. However, the company also signifi-
cantly lowered its forward guidance, and the stock crashed more than 20% in after-hours trading.

54We also considered the dispersion in EPS forecasts across analysts, σEPS, to get a measure of subjective un-
certainty surrounding a particular earnings announcement. However, this measure fails to be significant in our logit
regression.

55The coefficients in the logit model are estimated based on the entire sample of days with and without earnings
announcements. Hence, the extra explanatory variables in (32) should be understood as being interacted with the
EA variable and assume a value of zero on no-announcement days. With this design, all covariates measure the
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Table 3 reports estimation results for the logit regression applied to the extended trading ses-

sion.56 The estimated intercept in column (2) with only the announcement dummy yields a jump

probability on days without announcements (EA = 0) of 4.45% compared to 95.27% for announce-

ment days (EA = 1), which agrees with the results in Section 4.3. Further, and consistent with

Hypothesis 1 and Figure 5, the earnings announcement dummy is highly statistically significant

and positive, showing that the likelihood of a jump increases by a huge amount and is near unity

in the wake of an earnings announcement.

As reported in column 3, the estimated coefficients on both positive (|z+EPS|) and negative (|z−EPS|)
earnings surprises are positive but insignificant, despite the much larger coefficient estimate for

negative surprises. Because earnings surprises are predominantly positive, the insignificant slope

estimate on |z−EPS| may merely be an artefact of the much smaller sample available to estimate this

coefficient.

The effect of
√
RV ∗

n is significantly negative so higher pre-announcement return volatility reduces

the jump probability. For example, setting the realized volatility at its 10th and 90th percentile

our coefficient estimates imply a conditional jump probability of 98.42% and 96.93% (97.16% and

92.73%) for an average negative (positive) announcement. A plausible explanation is that it is

harder to detect a post-announcement price jump amid high levels of volatility which weakens the

testing power. Moreover, a high level of volatility can act as a substitute for price jumps, since

it widens the disperson of the return distribution and enables the price to move rapidly, albeit

continuously, in response to earnings announcements.

The effect of the number of analysts covering a stock, NA,it, is significantly positive, so jumps

are more likely on earnings announcement days for those stocks covered by the largest number of

analysts. For example, the coefficient estimate implies a conditional jump probability of 94.75% and

99.13% (90.00% and 98.55%) for an average negative (positive) announcement when the number

of analysts is at its 10th and 90th percentile, respectively (keeping pre-averaged realized volatility

fixed at its average value). Broader analyst coverage is likely to speed up the price discovery process

and increases the discreteness in price movements and the chance of observing jumps.

4.5 Jump Spillovers

Earnings announcements may reveal information about the state of the economy and are likely

to be particularly informative about the earnings prospects of closely related firms within the

same industry. In Savor and Wilson (2016), investors use earnings of announcing firms (AFs) to

revise their expectations of future dividends for non-announcing firms (NAFs), which increases

the covariance between firm-specific and market-wide cash-flow news. It is therefore likely that an

marginal effect (or the logarithm of the odds ratio) on the jump probability conditional on an announcement.
56The results of our logistic jump probability regression and the linear return regression in the next subsection

are robust to the inclusion of stock fixed effects.
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earnings announcement from the AF can trigger co-jumps in the prices of NAFs.57 To examine this,

and test Hypothesis 1 part 3, we intersect announcement days in the AF with no-announcement

days in NAFs. Evidence of spillover effects should show up as a higher conditional jump probability

in the NAFs, given an earnings release from the AF, relative to the conditional jump probability

when no firms are announcing.

Table 4 reports the proportion of extended trading sessions with a jump in the NAF (listed in

columns) when the AF (in rows) reports financial results. For example, conditional on a Facebook

(FB) announcement, the price of Apple (AAPL), Amazon (AMZN), and Google (GOOG) jump

on 13.3%, 25.8%, and 28.1% of their no announcement days. The conditional jump probability

generally rises for companies within the tech sector and is much lower for companies from other

sectors. This is consistent with the presence of a common jump factor for the tech industry.

Moreover, on days where Intel (INTC) is the AF, we record a conditional jump probability of

20.0%, 44.0%, and 30.0% in the price of Nvidia (NVDA), Advanced Micro Devices (AMD), and

Micron Technology (MU), pointing to a common jump component tracking the microconductor

industry. These numbers are much higher than the no announcement jump probability of 4.18%,

which we calculate as the cross-sectional average jump frequency across common no announcement

days of our firms.58 Our analysis therefore provides strong support Hypothesis 1.2.

Conversely, there is little evidence of spillover effects from some of the other companies in our

sample without obvious industry peers. For example, conditional on an announcement from Walt

Disney (DIS), the probability of a jump in the other stocks is always less than 10% and often close

to zero, which suggests that the jump component is tracking idiosyncratic news.59

As a more formal test of whether individual firms’ earnings announcements contain a systematic

component, we also compute the probability of a jump in the S&P 500 index (proxied by SPY) in

the extended trading session in which the firm announces its earnings. This can be viewed as the

conditional probability of a jump in the market portfolio given that a particular firm has announced

its earnings. If firms’ earnings announcements contain a systematic component, we would expect

this jump frequency to be significantly higher than the jump frequency in the market index in the

absence of an earnings announcement. Moreover, we expect the effect to be strongest among firms

operating in industries more central to the economy.

The right-most column in Table 4 offers strong support for the presence of a systematic, or

”market”, component in individual stocks’ price jumps. Specifically, the frequency of jumps in the

S&P 500 index is very high conditional on a jump in the price of important stocks such as Apple,

Facebook, Amazon, Microsoft, Oracle, and Starbucks. For example the market index jumps 30% of

57Theory and empirical results on tests for co-jumps is provided in Jacod and Todorov (2009); Caporin, Kolokolov,
and Renò (2017).

58The conditional jump probability on common no announcement days is slightly lower than the conditional no
announcement day jump probability reported in Table 2 since the latter does not discriminate between days where
other firms are or are not announcing.

59It may of course exert influence on the conditional jump probability of related companies not included in our
sample such as Hasbro (HAS).
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the time after earnings announcements by Apple. This is much higher than the jump probability

in the market index on common no-announcement days (3.98%).

Conversely, the market jump probability is much lower when firms such as Tesla and Salesforce

announce earnings, suggesting that price movements in both of these stocks were largely driven by

idiosyncratic news unrelated to the broader economy.

We would also expect to find a higher jump probability for the market index, the more firms

announce earnings on a given day. In our sample there are between zero and five earnings an-

nouncements per day (with only a handful of the latter). The conditional jump probability in the

market index is strictly increasing in the number of announcements, rising from 3.98% on common

no-announcement days to 4.77%, 5.06%, 12.96%, 15.00%, and 37.50% as the number of announce-

ments rises from one to five. These observations are consistent with Hypothesis 1. part 2.

These results are particularly strong because it is often found that it is very difficult to detect

jumps in the market index even when the price of the underlying stocks jump because the individual

stocks typically take only a small weight in the index basket.60 Our results point towards an

important information effect that makes jumps in many individual stocks’ prices caused by earnings

announcements relevant for the broader market.

5 Price dynamics after earnings announcements

Our results so far provide insights into price dynamics (jumps) in the immediate aftermath of

earnings announcements. However, they do not show by how much prices typically move or if

prices over- or undershoot. In this section, we explore whether post-announcement returns are

predictable and whether this can be exploited in simple trading strategies to generate abnormal

returns. Both points help us better understand the efficiency of the post-announcement price

formation, specifically the ”sufficiency” part of conditions for market efficiency.

5.1 Determinants of the jump size

While our noise-robust test statistic speaks to the presence (or absence) of a jump, it does not reveal

by how much the price jumps. We therefore next construct a proxy for the jump size based on a

return measured over a small time interval following the earnings announcement. In particular,

we compute the one-minute post-announcement return (rEA1m) as the log-price a minute after the

earnings release less the latest log-price prior to the announcement.

The last column of Table 1 reports summary statistics for the one-minute post-announcement

returns for each company. While the cross-sectional sample average of 0.11% is rather large, the

standard deviation of 3.52% is even bigger, indicating that one-minute post-announcement returns,

60Note that we also do not adjust for the sequencing of the earnings announcements. As shown by Savor and
Wilson (2016), firms that announce their fiscal results later in the earnings cycle tend to carry less new information
about the economy and so are less likely to trigger a jump in the market.
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while positive on average, are highly dispersed. One-minute returns are slightly negatively skewed

(-0.29), although this is mainly driven by a few extremely negative return observations in our sample

as evidenced by a large coefficient of kurtosis (5.09).

In Panel B of Figure 5, we plot the average one-minute post-announcement return against

the standardized earnings surprise. We observe a near-monotonic relationship between the sign

and magnitude of earnings surprises and subsequent returns. Specifically, large negative (positive)

earnings surprises are associated with large negative (positive) post-announcement returns.

More than 80% of earnings announcements surprise positively in our sample, so firms are ex-

pected to beat consensus estimates. The average value of the standardized unexpected earnings is

z̄EPS = 1.49 (median value of 1.12), which is located in the sixth decile in Figure 5. The average

one-minute post-announcement return in that decile is 0.34% (median value of 0.07%), which is

consistent with Hypothesis 1 part 3, that earnings announcements in line with expectations incur

positive returns due to uncertainty resolution.

We next examine the determinants of the change in stock prices in the aftermath of earnings

announcements. To understand which factors drive post-announcement returns, we estimate a

regression model that includes the predictor variables from the logit model in 32 except the EA

dummy variable. In addition, we add the cumulative net order imbalance, which we construct

following Grégoire and Martineau (2021):

OIit =
Bit − Sit

Bit + Sit

, (33)

where Bit and Sit correspond to the buyer- and seller-initiated trading volume over the one-minute

post-announcement window. To get signed trade volume, we assign an aggressiveness indicator to

each transaction based on whether it was buyer- or seller-initiated. We employ a “level-1 algorithm”

known as the tick rule (e.g. Chakrabarty, Pascual, and Shkilko, 2015).61 Note that in contrast to

the other variables, the net order imbalance is not known ahead of the announcement.

We then estimate a pooled panel regression for the one-minute post-announcement return for

stock i on day t:

rEA1m,it = a+ b1z
+
EPS,it + b2z

−
EPS,it + b3

√
RV ∗

n,itDit + b4NA,itDit + b5OIit + ϵit, (34)

where Dit = sign(zEPS,it) is the sign function. The idea behind interacting the sign of zEPS with

pre-averaged realized volatility and the number of analysts is that the latter are strictly positive

and merely capture the speed with which information gets impounded into stock prices whereas

earnings surprises are directional. The bigger the return volatility and number of analysts, the more

we expect positive news (a positive sign indicator) to move returns upwards and negative news (a

61Quoting from their paper: ”The tick rule classifies a trade as buyer-initiated if the trade price is above the
preceding trade price (an uptick trade) and as seller-initiated if the trade price is below the preceding trade price (a
downtick trade). If the trade price is identical to the previous trade price (a zero-tick trade), the rule looks for the
closest prior price that differs from the current trade price. Zero-uptick trades are classified as buys, and zero-downtick
trades are classified as sells.”
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negative sign indicator) to move returns downwards. A priori, we therefore expect all coefficients

to be positive in this regression.

Table 5 reports our estimation results. In column (2), we look at the restricted model with

only z+EPS and z−EPS,it but no additional controls. Both estimates of b1 and b2 are positive, implying

that larger earnings surprises translate into larger announcement returns. The marginal effect of

negative earnings surprises is almost three times greater than that of positive earnings surprises,

showing that negative earnings surprises trigger a much larger drop in the stock price relative to the

rise in price for a positive surprise of corresponding magnitude. In this regression, the coefficients

are also significantly different from each other (P -value of 0.0024). However, adding controls in

column (2) and (3), the estimates of b1 and b2 remain positive and b2 > b1, but the hypothesis

H0 : b1 = b2 is no longer rejected.

The slope estimate on the pre-averaged realized volatility,
√
RV ∗

n , is positive, though statistically

insignificant. Higher volatility is therefore (weakly) associated with wider dispersion in returns

as post-announcement prices move further away from their initial value during periods of higher

volatility.

The coefficient estimate on the number of analysts, NA, is positive and significant. Hence, a

larger number of analysts monitoring a company leads to larger one-minute post-announcement

returns following positive surprises and smaller (more negative) returns for negative surprises.

Finally, we consider the order imbalance variable, OI. While the other variables in the regression

are known ex-ante (at or before the earnings announcement), order imbalance is only known ex-post.

Bearing this in mind, our estimates on OI are positive and highly significant for both positive and

negative earnings surprises, implying that larger net order imbalances are associated with bigger

movements in returns. Intuitively, buying pressure (positive OI) pushes prices up, while selling

pressure (negative OI) reduces prices.62

We conclude from this evidence that both small and large earnings surprises almost always

trigger a jump in the stock price. However, while small earnings surprises are associated with

small returns, large earnings surprises tend to move prices by a bigger amount in a direction that

is consistent with the sign of the earnings surprise. This effect is stronger for negative earnings

surprises. Moreover, prices move by more, the more analysts cover a given stock and the magnitude

of price movements is also affected by the pre-announcement price volatility.63

62As a robustness check, we reestimated the return regression in (34) based on 5-, 10-, 30-, and 60-minute
post-announcement returns. Although some of the marginal effects were found to be larger simply because the
longer-horizon returns tend to be larger than one-minute returns, none of the conclusions regarding the sign and
significance of the coefficient estimates changed.

63Ai, Bansal, Im, and Ying (2021) examine empirically the effect of macroeconomic announcements on asset
prices. They find that more than two-thirds of the equity risk premium accrues on the 30 days per year with
pre-scheduled macroeconomic announcements. Consistent with Savor and Wilson (2016), they find a positive and
significant expected return-β relation on days with announcements and a zero relation on no announcement days.
Lucca and Moench (2015) document large positive average excess returns on U.S. equities in the 24-hour window
leading up to pre-scheduled Federal Open Market Committee meetings, but not in other major U.S. macroeconomic
announcements. Ai and Bansal (2018) develop a theoretical model to explain how asset prices can rise in anticipation
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5.2 Trading strategy

We next examine if the one-minute post-announcement return can be predicted and, if so, whether

the resulting forecasts can be exploited in a simple trading strategy. To maintain a parsimonious

design, we employ the pooled panel regression in (34) based on the standardized earnings surprise

as the only conditioning information:

rEA1m,it = a+ b1z
+
EPS,it + b2z

−
EPS,it + ϵit. (35)

In Figure 6, we plot the one-minute post-announcement return against the earnings surprise measure

across firms and earnings announcements in our sample. We superimpose the fitted piecewise linear

model from (35). Although a positive relationship is evident from the figure, it is surrounded by a

substantial amount of noise.

We next recursively estimate the parameters in (35) using an initial warm-up sample of one

month of announcement days, adding new data as it becomes available. This ensures our forecasts

are available in real time and do not suffer from look-ahead bias.

Our trading strategy then opens a long (short) position if the predicted return in (35) is positive

(negative). Our baseline scenario assumes the position is held until the end of the trading day

(6:30pm, or EOD) and closed at the last available observation. However, the reported results are

robust to leaving the position on the book until the exchange opens the next morning or closes

the following afternoon. To avoid chasing too small expected profits, we set an entrance barrier

of 0.5% in absolute value for the predicted return, but our results are robust to using a range of

other threshold values. With a 0.5% required return, the strategy generates 581 trading signals

from 1,164 earnings announcements, of which 447 are long and 134 are short.

To gauge the importance of transaction costs, we consider four different implementations of

our trading strategy. Our first approach sets the entry level of the trade equal to the first post-

announcement transaction price (Trade) and so ignores any trading frictions. Our second approach

employs the midquote (Midquote). Whereas the Trade strategy can snipe stale quotes that were

resting in the limit order book prior to the announcement, the Midquote strategy employs an up-

dated quote, which incorporates the information from the announcement. Trading at the midquote

is often possible for large institutional traders, but it may not be feasible for other entities. There-

fore, the third strategy incorporates the quoted bid-ask spread (Best Bid and Offer, or BBO). It

initiates a buy order at the prevailing best ask, whereas a sell order is initiated at the prevailing

best bid. The latter therefore incorporates a full spread into the returns generated from the trading

strategy.64 Finally, our fourth approach makes the odds even more unfavorable by introducing a

latency delay, which is the minimum number of seconds an investor must wait before entering a

position (BBO+Xs). Such trading delays cause investors to miss out on the initial reaction in the

of macroeconomic news, generating a pre-announcement drift. We also examined our data set but failed to identify
any significant pre-corporate earnings announcement drift.

64We do not control for market impact since our data is not rich enough to include such information. Hence, our
results are mostly relevant for small trading sizes.
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stock price but it could be beneficial to wait a few seconds before starting a trade because spreads

narrow following an announcement.

Figure 7 shows the evolution over time in the cumulative return based on payoffs from individual

trades. The slope of the graph reflects the rate at which returns accrue. Hence, the steeper the

curve, the larger the returns. Conversely, flat spots or a declining curve indicate that the trading

strategy fails to earn, or even outright loses, money.

The figure highlights that the transaction price and midquote approaches yield positive returns

throughout our sample with no notable periods of inferior performance (full blue and dashed red

lines). As expected, introducing execution costs or latency delays reduces the rate of accumulation.

In particular, from 2016 onward we start to see flat spots (no returns, on average) in the strategy

that pays the bid-ask spread (dashed-dotted line). Adding a further 5- or 10-second latency delay

(dashed lines) reduces returns even more and the strategy loses money after 2016. This indicates

that the speed with which earnings announcement information gets incorporated into prices has

increased in the second part of our sample.

To inspect the profitability of our trading strategy, Figure 7 also reports (in parenthesis) the

sample average return and the test statistic for examining if the mean return is different from

zero. In a frictionless market where investors can enter the position at the first post-announcement

transaction price, a highly significant return of 1.54% per trade (t-statistic of 6.69) is earned over the

full sample. Trading at the midquote, the average return drops to 1.18% per trade which remains

highly significant (t-statistic of 5.31). Even if trading is executed at the bid-ask spreads, the average

return of 0.66% continues to be significant (t-statistic of 2.91). A 5-second latency delay reduces

the return to 0.41% per trade, which is now only borderline significant (t-statistic of 1.89). Forcing

a 10-second delay on trade entrance, the average return is still positive at 0.29% per trade, which

is insignificant (t-statistic of 1.36).

Panel A of Table 6 reports a more comprehensive set of summary statistics. On top of the sample

average returns and test statistics computed over the full sample (2008–2020), we also show results

separately for the two subsamples 2008–2015 and 2016–2020. In this way, we can examine if the

price discovery process has changed over time as indicated by the change in profitability observed

in Figure 7.

Across the board, average returns are both larger and more significant in the first subsample

(2008–2015) compared to the full sample. For example, the average return per trade in the trans-

action price setting is 2.07% (t-statistic of 6.73) over 2008-2015 but only 0.88% (t-statistic of 2.56)

over 2016-2020. Moreover, the average return inferred from the midquote strategy drops to 0.62%

(t-statistic of 1.84) in the second subsample – more than a full percentage point lower than its early

subsample counterpart (1.64%). Trading at the bid-ask spread further reduces the average return

and adding a latency delay even renders them slightly negative, although not significant, in the

second subsample. These findings are consistent with a more efficient price discovery process in

the most recent subsample, with average returns declining notably to the point where they are not
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significantly different from zero after accounting for bid-ask spreads or latency delay.

Panel B of Table 6 shows the effect of changing the investment horizon. Instead of closing

positions at 6:30pm, the duration of the position is now measured either in minutes (physical time)

or by the number of tick updates (tick time) after the announcement.65

In Panels B.1–B.5, we extend the duration of the position from 30 seconds to 5 minutes. In

the full sample, average returns from the no-friction strategy based on transaction prices increase

monotonically from 0.73% (t-statistic of 7.55) for positions closed after 30 seconds to 1.30% (t-

statistic of 7.43) per trade for positions closed after five minutes. In the midquote strategy, the

average return is slightly compressed but continues to be positive and statistically significant. Trades

executed at the BBO reduces the average return which becomes slightly negative at -0.16% for the

30 seconds termination rule and borderline significant (t-statistic of -1.67) but rises to 0.42% at the

5-minute mark (t-statistic of 2.46). Latency delays lead to further reductions in trading performance

as none of the approaches generate positive and significant average returns. Once again the results

change meaningfully between the first and second subsamples. As the price discovery process

improves, average returns become lower and less significant in the second subsample compared to

the earlier subsample. Interestingly, the average return over the 2016–2020 sample for the baseline

scenario in Panel A is close to the corresponding value for the 3-minute stopping rule in Panel B.4.

This suggests that, in the most recent subsample, the price discovery process has more or less been

completed at that time.

Next, we consider what happens to trading performance in transaction time if we close the

position after between 50 and 1,000 tick updates. As shown in Panels B.6–B.10, we continue to

generate positive and significant average returns for trades executed at the transaction price or

midquote. However, executing at the BBO again produces insignificant mean returns in the latest

subsample. Interestingly, trades stopped after 1,000 tick updates in Panel B.10 yield mean returns

nearly identical to those from the positions held until 6:30pm (Panel A) in the first subsample, but

not in the second. This reflects the lower trading activity in the early parts of our sample, which

means that 1,000 tick updates cover a much longer time interval in the early subsample.

Figure 8 offers a visual summary of these results by plotting the cumulative return from trading

strategies that close out the position after a fixed number of tick updates (Panels A–C) or after a

fixed number of seconds (Panels D–F), employing either the transaction price, midquote or BBO.

The figure illustrates both how fast the price adjusts in the very short period after an earnings

announcement (both in trade time and in physical time) and also that the price settles at its new

level even faster in the second subsample.

65We also estimated the predictive return regression with the post-announcement return (dependent variable)
measured over a 5-, 10-, 30-, and 60-minute horizon. Average trading returns decline monotonically as the length of
the measurement window is extended, suggesting that the price response to earnings surprises is very rapid and that
the “signal” is strongest for the one-minute post-announcement return. However, the decline is relatively slow. For
example, compared to the number in Table 6, moving from a one-minute to a 60-minute horizon causes a decline of
only 13 basis points in average return for the transaction price approach.
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Overall, our results demonstrate that price discovery in the post-announcement window has

gotten far speedier during our twelve-year sample. Prior to 2016, investors were able to capture

significant profits from post-earnings announcement trades executed at the BBO even with a latency

delay of 10 seconds. In contrast, during the last subsample, after-hours prices move so fast after

earnings announcements that it is no longer possible to generate significant outperformance after

accounting for bid-ask spreads.

While proving that the sufficiency condition for market efficiency holds would ultimately require

us to inspect a much broader class of trading strategies, the evidence presented here for the most

recent subsample is not contradictory of condition 1 in Hypothesis 2 and is certainly consistent with

trading in the after-hours market becoming notably more efficient over time.

5.3 Risk-adjusted return performance

The large average returns of some of the trading strategies described above may reflect a risk pre-

mium, i.e. exposure to the market portfolio or other priced risk factors. To examine the importance

of this, we create a monthly return series by summing trading strategy log-returns within a given

month. On days without active trading signals, we assume the risk-free rate is earned which yields

the monthly log-return:66

rm =

#EAm∑
t=1

rEAt + (Nm −#EAm)rf,d, for m = 1, . . . ,M, (36)

where #EAm is the number of announcement days with trading signals in month m, rEAt is the

return generated from each trade, rf,d is the daily risk-free rate, Nm is the number of days in month

m, and M is the number of months.

The first row in Panel A of Table 7 reports the sample mean of the (raw) monthly excess returns

computed under our different trading scenarios. For trades executed at the transaction price (column

1 labeled ”Trade”), the mean return is 6.14% per month. This figure is both economically large and

highly statistically significant. Trades executed at the midquote earn a mean return of 4.71% per

month, which is again economically large and significant. Trading at the best bid or offer reduces the

mean return to 2.61% per month, which remains highly significant, however. Introducing latency

of five or ten seconds brings it further down to 1.62% and 1.16% per month with only the former

being significant at the 5% level. These results are in close alignment with our earlier trading

strategy results from Table 6, so aggregation to the monthly horizon does not materially affect our

conclusions.

We also compute the Sharpe ratio as the average monthly excess returns divided by the sample

standard deviation of the monthly return series, both converted to annualized figures. The Sharpe

ratio (shown in the third row) follows a pattern similar to that of mean excess returns, starting out

66We proxy the daily interest rate through the yield-to-maturity of a one-month T-bill converted into a continu-
ously compounded daily interest rate.

33



at 1.85 for the transaction price setting and 1.51 for trades executed at the midquote. It then drops

to 0.85, 0.57 and 0.41 for the BBO scenarios with a zero, five and ten second latency delay.

Panels B and C in Table 7 show sub-sample results with the top row reporting mean (raw)

returns and the third row showing Sharpe ratios. The results are distinctly different across the

two subsamples. The mean return in the scenario with no trading frictions (7.786% per month) is

more than twice as high in the 2008-2015 period as compared to the 2016-2020 subsample (3.778%).

Moreover, the mean return in the first subsample is statistically significant across all trading sce-

narios even after accounting for bid and ask prices and a 10 second latency delay. In contrast, in

the second subsample the mean return is only 0.759% per month in the BBO scenario which is sta-

tistically insignificant. Our estimated Sharpe ratios are also much smaller, in some cases negative,

in the second subsample as compared to the first period. These results are again consistent with

our daily returns analysis.

To adjust for risk exposure, we next subtract the monthly risk-free rate, rf,m, from rm and

regress the resulting excess return on an intercept, the five factors from the extended Fama and

French (2015) model, and the momentum factor of Carhart (1997):

rm − rf,m = α+ βMKTr
MKT
m + βHMLr

HML
m + βSMBr

SMB
m + βRMWr

RMW
m + βCMAr

CMA
m + βMOMr

MOM
m + ϵm,

(37)

where rMKT
m is the monthly excess return on the market portfolio (MKT), and the remaining covari-

ates are excess returns on the factor-mimicking portfolios, where rHML
m is High Minus Low (HML),

rSMB
m is Small Minus Big (SML), rRMW

m is Robust Minus Weak (RMW), rCMA
m is Conservative Minus

Aggressive (CMA), and rMOM
m is Momentum (MOM).67

The monthly alpha estimates from the risk-adjustment regression in (37) are bigger than the

corresponding mean raw returns, with differences ranging from 0.6% to nearly 1% per month. This

means that the alpha estimate is positive (at 1.77% per month) and statistically significant even

for the BBO strategy with a 10-second latency delay.

All our trading strategies generate slightly negative market betas with values ranging from -

0.28 to -0.04, though none of these estimates are statistically significant. The only risk factor

that our trading strategy returns load significantly on is the profitability factor, RMW, which

generates significantly negative estimates around -1.8 to -1.9. Since earnings announcements contain

information that is relevant to profitability, it is perhaps not too unexpected that the RMW factor

stands out in terms of significance and magnitude of the betas. Our trading rule goes long in stocks

whose actual earnings numbers surprise analysts the most while it shorts stocks whose earnings

disappoint. The negative loadings on the RMW factor is therefore consistent with firms with

relatively weak profitability outperforming analyst expectations the most, whereas companies with

relatively robust earnings disappoint the most.

Turning to the subsample analysis, Panels B and C show that alpha estimates are far bigger,

67The data are downloaded from Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/. The one-month T-bill rate is from Ibbotson Associates.
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and always statistically significant in the early period (2008-2015) as compared to the later sample

(2016-2020). In fact, in the second subsample alpha estimates are only statistically significant under

the no-friction and midquote scenarios.

We conclude from these findings that while risk-adjusting the returns from our trading strategy

slightly strengthens our performance results, the basic conclusions from the earlier analysis remain

the same. In the early subsample (2008-2015), there is strong evidence that information on earnings

surprises could have been exploited to generate significantly positive mean returns both on a raw

and risk-adjusted basis. Conversely, market efficiency seems to have improved after 2016 to the

point where our trading strategy is no longer generating significantly positive raw or risk-adjusted

returns after accounting for transaction costs.

6 Conclusion

High-frequency trading has become ever more widespread in financial markets, suggesting that new

public information should be incorporated in prices almost instantaneously after the news release.

In an efficient market without large trading frictions, stock prices should therefore jump, almost

surely, in the immediate aftermath of releases of large bundles of information such as firms’ earnings

announcements. This suggests using jump tests on highly granular ”tick-by-tick” data as a new

way to test a necessary (but not sufficient) condition for market efficiency. This testing strategy

is very different from the conventional practice of considering post-announcement returns defined

over a fixed time interval such as one or five minutes.

Because the vast majority of earnings announcements almost exclusively occur after market

close, an analysis of the post-announcement price discovery process requires that we examine a

relatively unexplored set of high-frequency data that includes quotations and transactions from the

after-hours trading sessions. Irregular trading patterns and high levels of market micro structure

noise in the after-hours trading session pose severe challenges to conventional jump tests which we

show tend to distort inference about jumps.

To address these critical shortcomings of conventional jump tests, we develop a new jump test

that is robust to the unusually noisy price data observed in after-hours markets. Our noise-robust

generalization extends the classical bipower variation-based jump test of Barndorff-Nielsen and

Shephard (2006) to a pre-averaged version that can be implemented on noisy high-frequency data.

Moreover, we develop a subsample estimator of the asymptotic variance-covariance matrix that is

jump-robust under the alternative, extending earlier work of Christensen, Podolskij, Thamrongrat,

and Veliyev (2017).

Using this new jump test, we show that prices of the stocks with the highest after-hours trading

volume almost always jump after earnings announcements. Conversely, jumps in stock prices are

rare both during the regular trading session and during after-hours trading sessions without earnings

announcements. We also find strong evidence of a jump spillover effect: conditional on an important
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company’s stock price jumping after its earnings announcement, there tends to be a significantly

higher chance that prices of non-announcing firms in the same industry, as well as the market index,

will jump in the same after-hours trading session.

That stock prices in the after-hours market nearly always jump after the release of earnings

announcements is indicative of a very rapid price discovery process and, thus, consistent with

efficient markets. However, the price jump in the immediate aftermath of an earnings release may

be too big or too small, potentially introducing profitable trading opportunities. We examine if in

fact prices are unbiased predictors of their future steady-state values by studying the performance

of a trading rule subject to different degrees of trading frictions.

In the absence of any transaction costs, we find that investors could have earned highly signifi-

cant, positive risk-adjusted mean returns in the early years of our sample (2008-2015). Conversely,

in the second part of our sample (2016-2020), we find that even minor trading frictions such as bid-

ask spreads reduce average risk-adjusted returns to the point where they are no longer statistically

significant. We conclude from this analysis that the after-hours market incorporates information on

the earnings announcements of the largest US firms extremely fast, very rapidly, particularly after

2016.
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Figure 1: Apple’s third-quarter 2020 earnings announcement on 07/30/2020.

Panel A: 60-second horizon. Panel B: 100-millisecond horizon.
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Note. The figure shows the post-announcement price (left y-axis) and cumulative transaction count in 1000s (right y-axis) for Apple’s
third-quarter 2020 earnings announcement, which was released at 4:30pm on 07/30/2020. In Panel A, we plot the data from the first 60
seconds since the announcement, whereas Panel B zooms further in on the first 100 milliseconds since the announcement.
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Figure 2: Trading volume and bid-ask spread in the after-hours market.

Panel A: Transaction count. Panel B: Bid-ask spread (in bps).
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Note. In Panel A, we show the cross-sectional sample average trading volume (measured by transaction counts) for each five-second
interval in a one-hour window centered around the earnings announcement, which occurs at time 0. In Panel B, we report the associated
median bid-ask spread (in basis points), which is computed as Spreadbps = 10000×(ask−bid)/midquote, where midquote = (bid+ask)/2.
As a control sample, for each announcement we select a random no announcement date without replacement and calculate trading volume
and Spreadbps on the corresponding time interval. The modal announcement time across companies is 4:05pm. Hence, the exchange
typically closes five minutes prior to an announcement (highlighted by an orange circle).
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Figure 3: Pre-averaged realized variance and bipower variation.

Panel A: Incremental return variation. Panel B: Incremental jump variation.
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Note. We show point estimates of the pre-averaged realized variance and pre-averaged bipower variation, converted to an annualized
standard deviation. The axis label shows which estimator is plotted. In parenthesis, we further indicate for which part of the day
high-frequency data are employed to calculate the estimate.
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Figure 4: Distribution of the estimated jump proportion.

Panel A: No announcement. Panel B: Announcement.
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Note. This figure shows kernel smoothed densities of the proportion of quadratic return variation from the jump component, which is
estimated by: Jump proportion = 1 - Bipower variation / Realized variance. The latter are computed without pre-averaging if sampling
at a 5-minute frequency (5m) or with pre-averaging if sampling at the tick-by-tick frequency (rest). θ controls the size of the pre-averaging
horizon kn = ⌊θ

√
n⌋ for calculating pre-averaged returns. n is the number of tick-by-tick data. The sample is split into days without (in

Panel A) and with earnings announcements (in Panel B).
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Figure 5: Jump frequency and post-announcement return against standardized earnings surprise.

Panel A: Jump frequency. Panel B: Post-announcement return.

1 2 3 4 5 6 7 8 9 10

Decile of standardized unexpected earnings

0.90

0.92

0.94

0.96

0.98

1.00

J
u
m

p
 f
re

q
u
e
n
c
y

-2

-1

0

1

2

3

4

5

6

M
e
d
ia

n
 z

E
P

S

Jump frequency

Median z
EPS

1 2 3 4 5 6 7 8 9 10

Decile of standardized unexpected earnings

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

O
n
e
-m

in
u
te

 p
o
s
t-

a
n
n
o
u
n
c
e
m

e
n
t 
re

tu
rn

-2

-1

0

1

2

3

4

5

6

M
e
d
ia

n
 z

E
P

S

One-minute post-announcement return

Median z
EPS

Note. We sort our earnings announcements by the value of the standardized unexpected earnings, zEPS, and form decile portfolios from
lowest to highest values of the earnings surprise. In Panel A, we then plot the corresponding announcement jump frequency implied by
our noise-robust jump test (averaged within decile). In Panel B, we report the one-minute post-announcement return (averaged within
decile). The median value of zEPS within each decile is plotted against the right-hand y-axis.
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Figure 6: Post-announcement return against standardized earnings surprise.

-6 -4 -2 0 2 4 6 8 10

Standardized unexpected earnings

-15

-10

-5

0

5

10

15

O
n
e
-m

in
u
te

 p
o
s
t-

a
n
n
o
u
n
c
e
m

e
n
t 
lo

g
-r

e
tu

rn

b
2
 = 0.966

b
1
 = 0.351Fitted regression

Note. We show the one-minute post-announcement return, rEA
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Figure 7: Cumulative return from trading strategy.
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Note. The figure shows the cumulative return from a trading strategy that employs the standardized earnings surprise to predict the
one-minute post-announcement return: rEA

1m,it = a + b1z
+
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−
EPS,it + ϵit. A long (short) position in the stock is entered if the

predicted return is greater (smaller) than 0.5% (-0.5%) and held until 6:30pm. The sample average return and test statistic for testing that
the mean return is zero, based on robust standard errors, is reported in parenthesis. “Trade” employs the transaction price, “Midquote”
the midquote, and “BBO” the best bid and offer. “+Xs” enforces a latency delay of X seconds before entrance.
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Figure 8: Cumulative returns from trading strategy.

Panel A: Trade. Panel D: Trade.
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Note. The figure shows the cumulative return in percent from a trading strategy that employs the standardized earnings surprise to
predict the one-minute post-announcement return: rEA

1m,it = a + b1z
+
EPS,it + b2z

−
EPS,it + ϵit. A long (short) position in the stock is

entered if the predicted excess return is greater (smaller) than 0.5% (-0.5%). Panel A–C shows the cumulative return when closing out
the position after a fixed number of tick updates, whereas Panel D–F shows the associated results when closing out the position after a
fixed number of seconds. “Trade” employs the transaction price, “Midquote” the midquote, and “BBO” the best bid and offer.
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Table 3: Logit estimates for the stock price jump probability.

Variable (1) (2) (3)
Intercept −2.789

(0.015)
−3.066
(0.017)

−3.066
(0.017)

EA 6.070
(0.139)

4.286
(0.577)

|z+EPS| 0.121
(0.092)

|z−EPS| 0.353
(0.303)√

RV ∗
n −0.334

(0.095)

NA 0.088
(0.018)

Pseudo R2 0.1759 0.1772

Note. We estimate the logit regression: P (Jit = 1) = F (a+ b1EAit + b2|z+EPS,it|+ b3|z−EPS,it|+ b4
√

RV ∗
n,it + b5NA,it), where F is the

logistic distribution function. Jit is equal to one if there is a jump in the price of company i’s stock on day t, zero otherwise. EAit is equal
to one if there is an earnings announcement for company i on day t, zero otherwise. z+EPS,it (z−EPS,it) is the standardized unexpected

earnings for positive (negative) announcements,
√

RV ∗
n,it is the pre-averaged realized volatility calculated over the regular trading session

on the announcement day, and NA,it is the number of analyst earnings forecasts for the announcement. The other covariates are interacted
with EA and take a value of zero on no announcement days. The table reports parameter estimates of the full model in column (3)
and of restricted versions in column (1)–(2). Standard errors are shown in parenthesis below the parameter estimate. The number of
observations is 79,160 of which 77,996 are no announcement days and 1,164 are announcements days. Pseudo R2 is the likelihood ratio
index, R2 = 1− L1/L0, where L0 is the log-likelihood of the constant model in (1) and L1 is the log-likelihood of the models in (2)–(3).
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Table 5: Post-announcement return regression.

Variable (1) (2) (3) (4)
Intercept 0.112

(0.103)
−0.297
(0.148)

−0.704
(0.182)

−0.729
(0.182)

z+EPS 0.351
(0.055)

0.278
(0.057)

0.269
(0.055)

z−EPS 0.966
(0.188)

0.432
(0.225)

0.424
(0.224)√

RV ∗
n 0.050

(0.095)
0.058
(0.093)

NA 0.020
(0.008)

0.020
(0.008)

OI 1.869
(0.329)

R̄2 0.0735 0.0855 0.1044

P -value 0.0023 0.5021 0.4934

Note. We estimate the linear regression: rEA
1m,it = a+ b1z

+
EPS,it + b2z

−
EPS,it + b3

√
RV ∗

n,itDit + b4NA,itDit + b5OIit + ϵit. rEA
1m,it is the

one-minute post-announcement return, z+EPS,it (z−EPS,it) is the standardized unexpected earnings for positive (negative) announcements,√
RV ∗

n,it is the pre-averaged realized volatility calculated over the regular trading session on the announcement day, NA,it is the number

of analyst earnings forecasts for the announcement, OIit is the one-minute post-announcement cumulative net order imbalance, and
Dit = sign(zEPS,it) is the sign function. The table reports parameter estimates of the full model in column (4) and of restricted versions
in column (1)–(3). Standard errors are shown in parenthesis below the parameter estimate. The number of observations is 1,164. R̄2 is
the adjusted coefficient of multiple determination. The P -value is for testing the hypothesis H0 : b1 = b2 against H1 : b1 ̸= b2.
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Table 6: Average return from trading strategy.

Panel A: Baseline termination rule
Terminate at 6:30pm (EOD).

Full sample 2008–2015 2016–2020
Trade 1.54 (6.69) 2.07 (6.73) 0.88 (2.56)
Midquote 1.18 (5.31) 1.64 (5.52) 0.62 (1.84)
BBO 0.66 (2.91) 1.04 (3.47) 0.18 (0.52)
BBO+5s 0.41 (1.89) 0.75 (2.59) -0.02 (-0.07)
BBO+10s 0.29 (1.36) 0.64 (2.23) -0.15 (-0.47)

Panel B: Alternative termination rules
Terminate after fixed number of minutes. Terminate after fixed number of ticks.
Full sample 2008–2015 2016–2020 Full sample 2008–2015 2016–2020

Panel B.1: Stop after 30 seconds Panel B.6: Stop after 50 ticks
Trade 0.73 (7.55) 0.83 (6.41) 0.62 (4.19) 0.77 (8.88) 0.98 (7.99) 0.51 (4.29)
Midquote 0.51 (5.47) 0.57 (4.60) 0.44 (3.08) 0.63 (5.92) 0.74 (5.21) 0.50 (3.08)
BBO -0.16 (-1.67) -0.21 (-1.60) -0.11 (-0.72) 0.02 (0.21) 0.04 (0.26) 0.00 (0.02)
BBO+5s -0.41 (-4.96) -0.49 (-4.22) -0.31 (-2.66) -0.22 (-2.27) -0.25 (-1.79) -0.20 (-1.40)
BBO+10s -0.53 (-7.12) -0.60 (-5.57) -0.43 (-4.46) -0.34 (-3.68) -0.36 (-2.73) -0.32 (-2.49)

Panel B.2: Stop after 1 minute Panel B.7: Stop after 100 ticks
Trade 1.03 (7.91) 1.33 (7.86) 0.66 (3.28) 0.95 (9.20) 1.19 (8.04) 0.64 (4.70)
Midquote 0.76 (6.23) 0.99 (6.17) 0.47 (2.54) 0.60 (4.87) 0.75 (4.44) 0.42 (2.31)
BBO 0.13 (1.01) 0.27 (1.62) -0.05 (-0.27) 0.01 (0.08) 0.07 (0.41) -0.06 (-0.35)
BBO+5s -0.12 (-1.05) -0.01 (-0.09) -0.25 (-1.52) -0.24 (-2.07) -0.21 (-1.31) -0.26 (-1.68)
BBO+10s -0.24 (-2.19) -0.12 (-0.82) -0.38 (-2.47) -0.35 (-3.25) -0.32 (-2.07) -0.39 (-2.66)

Panel B.3: Stop after 2 minutes Panel B.8: Stop after 250 ticks
Trade 1.12 (7.57) 1.42 (7.48) 0.75 (3.22) 1.03 (8.02) 1.28 (6.92) 0.71 (4.18)
Midquote 0.80 (5.71) 1.03 (5.73) 0.51 (2.32) 0.75 (5.28) 0.96 (5.12) 0.47 (2.22)
BBO 0.19 (1.33) 0.34 (1.81) 0.01 (0.03) 0.16 (1.11) 0.29 (1.54) -0.01 (-0.03)
BBO+5s -0.05 (-0.41) 0.06 (0.32) -0.19 (-0.96) -0.09 (-0.66) 0.01 (0.04) -0.21 (-1.06)
BBO+10s -0.17 (-1.33) -0.05 (-0.31) -0.32 (-1.67) -0.20 (-1.60) -0.10 (-0.58) -0.33 (-1.78)

Panel B.4: Stop after 3 minutes Panel B.9: Stop after 500 ticks
Trade 1.20 (7.21) 1.45 (6.86) 0.88 (3.35) 1.12 (7.81) 1.45 (7.04) 0.71 (3.71)
Midquote 0.87 (5.52) 1.06 (5.27) 0.64 (2.55) 0.86 (5.52) 1.07 (5.31) 0.60 (2.46)
BBO 0.29 (1.81) 0.39 (1.90) 0.17 (0.66) 0.31 (1.96) 0.43 (2.11) 0.16 (0.64)
BBO+5s 0.05 (0.31) 0.11 (0.56) -0.03 (-0.13) 0.06 (0.43) 0.15 (0.75) -0.04 (-0.17)
BBO+10s -0.07 (-0.47) 0.00 (0.00) -0.16 (-0.68) -0.05 (-0.37) 0.04 (0.19) -0.17 (-0.75)

Panel B.5: Stop after 5 minutes Panel B.10: Stop after 1,000 ticks
Trade 1.30 (7.43) 1.63 (7.25) 0.89 (3.25) 1.10 (6.91) 1.54 (7.03) 0.54 (2.41)
Midquote 0.97 (5.70) 1.23 (5.69) 0.63 (2.36) 0.94 (5.40) 1.19 (5.25) 0.62 (2.32)
BBO 0.42 (2.46) 0.62 (2.79) 0.18 (0.66) 0.41 (2.32) 0.57 (2.48) 0.20 (0.75)
BBO+5s 0.18 (1.10) 0.34 (1.59) -0.02 (-0.09) 0.16 (0.98) 0.29 (1.31) 0.00 (0.02)
BBO+10s 0.06 (0.38) 0.23 (1.08) -0.15 (-0.61) 0.05 (0.28) 0.18 (0.82) -0.12 (-0.49)

Note. The table shows the average return in percent from a trading strategy that employs the standardized earnings surprise to predict
the one-minute post-announcement return: rEA

1m,it = a + b1z
+
EPS,it + b2z

−
EPS,it + ϵit. A long (short) position in the stock is opened if

the predicted excess return is greater (smaller) than 0.5% (-0.5%). In the baseline termination rule in Panel A, the position is held until
6:30pm (EOD). In Panel B, alternative termination rules are inspected. In Panels B.1–B.5, the position is closed after a fixed number of
minutes, whereas in Panels B.6–B.10 the position is closed after a fixed number of tick updates. “Trade” employs the transaction price,
“Midquote” the midquote, and “BBO” the best bid and offer. “+Xs” enforces a latency delay of X seconds before entrance. The test
statistic for testing that the average return is zero, based on robust standard errors, is reported in parenthesis.
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Table 7: Properties of monthly trading returns.

Trade Midquote BBO BBO+5s BBO+10s

Sample average return, Jensen’s alpha, and Sharpe ratio
Panel A: Full sample

r̄m 6.139∗∗∗
(0.951)

4.705∗∗∗
(0.891)

2.606∗∗∗
(0.873)

1.625∗∗
(0.820)

1.161
(0.815)

α 7.101∗∗∗
(0.965)

5.398∗∗∗
(0.912)

3.270∗∗∗
(0.890)

2.263∗∗∗
(0.832)

1.769∗∗
(0.830)

Sharpe ratio 1.845 1.509 0.853 0.566 0.407

Panel B: 2008 – 2015

r̄m 7.786∗∗∗
(1.099)

6.143∗∗∗
(1.010)

3.895∗∗∗
(0.987)

2.829∗∗∗
(0.927)

2.418∗∗∗
(0.920)

α 8.244∗∗∗
(1.160)

6.329∗∗∗
(1.084)

4.085∗∗∗
(1.054)

3.102∗∗∗
(0.979)

2.706∗∗∗
(0.975)

Sharpe ratio 2.631 2.259 1.466 1.134 0.976

Panel C: 2016 – 2020

r̄m 3.778∗∗
(1.647)

2.644∗
(1.576)

0.759
(1.555)

−0.100
(1.460)

−0.641
(1.450)

α 5.429∗∗∗
(1.594)

3.985∗∗
(1.602)

2.011
(1.580)

0.999
(1.493)

0.374
(1.461)

Sharpe ratio 1.017 0.744 0.217 -0.030 -0.196

Full sample Fama-French regression

βMKT −0.279
(0.227)

−0.136
(0.205)

−0.105
(0.200)

−0.048
(0.179)

−0.037
(0.181)

βHML 0.757∗
(0.426)

0.535
(0.398)

0.551
(0.422)

0.569
(0.398)

0.525
(0.405)

βSMB −0.511
(0.390)

−0.470
(0.373)

−0.408
(0.370)

−0.590∗
(0.355)

−0.543
(0.351)

βRMW −1.886∗∗∗
(0.579)

−1.704∗∗∗
(0.575)

−1.680∗∗∗
(0.595)

−1.628∗∗∗
(0.543)

−1.638∗∗∗
(0.535)

βCMA −0.569
(0.630)

−0.219
(0.613)

−0.243
(0.644)

−0.141
(0.634)

0.029
(0.641)

βMOM 0.070
(0.178)

0.122
(0.173)

0.190
(0.176)

0.271
(0.182)

0.279
(0.182)

R2 0.090 0.073 0.076 0.091 0.092

P -value 0.040 0.096 0.084 0.037 0.035

Note. We construct a monthly return series (in percent), rm =
∑#EAm

t=1 rEA
t +(Nm−#EAm)rf,d, for m = 1, . . . ,M , where #EAm is the

number of announcement days with trading signals in month m, rEA
t is the return generated from each trade, rf,d is the daily risk-free

rate, Nm is the number of days in month m, and M is the number of months. In Panel A, r̄m is the sample average monthly return.
We subtract the monthly risk-free rate, rf,m, from rm to create an excess return. The Sharpe ratio is the average excess return divided

by the sample standard deviation of the return series, which we convert to an annualized figure by multiplying with
√
12. We regress

the excess return on an intercept, the five factors from the extended Fama and French (2015) asset pricing model, and the momentum
factor of Carhart (1997): rm − rf,m = α+ βMKTr

MKT
m + βHMLr

HML
m + βSMBr

SMB
m + βRMWrRMW

m + βCMArCMA
m + βMOMrMOM

m + ϵm,

where rMKT
m is the monthly excess return on the market (MKT), rHML

m is High Minus Low (HML), rSMB
m is Small Minus Big (SML),

rRMW
m is Robust Minus Weak (RMW), rCMA

m is Conservative Minus Aggressive (CMA), and rMOM
m is Momentum (MOM). The table

reports parameter estimates from the regression in Panel B. Standard errors are shown in parenthesis below the parameter estimate. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level. The number of observations is 146. R2 is the coefficient of
determination. The P -value is for testing the hypothesis H0 : βMKT = · · · = βMOM = 0.

57



A Proof of theoretical results

In this appendix, we prove our mathematical results. We assume that a, σ, ã, σ̃, ṽ, ω, ā, σ̄, v̄

and the jump components of pt are bounded. This follows from a localization procedure (Jacod

and Protter, 2012, Section 4.4.1) and is without loss of generality. Moreover, we employ a generic

constant C whose value may change from line to line.

A.1 An extended central limit theorem

We start by presenting an extended version of Theorem 1 for a generalized pre-averaged bipower

variation estimator. We abuse the notation from the main text slightly and here define the estimator

with an alternative normalization. We further omit the bias-correction part. This delivers an

estimator that is much more convenient to work with in the derivations:

BVn(q, r) =
1

n

n−2kn+1∑
i=0

|n1/4r̄∗i |q|n1/4r̄∗i+kn|
r, (38)

where q, r ∈ S ≡ {0} ∪ [1,∞).

Following Podolskij and Vetter (2009a), we expect that under H0

BVn(q, r)
p−→ V (q, r) = µqµr

∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2
s

) q+r
2
ds,

where µs = E
[
|N(0, 1)|s

]
and

ψ1 =

∫ 1

0

[g′(s)]2ds and ψ2 =

∫ 1

0

g(s)2ds.

Theorem 3. Assume that r follows the process in (1) with rdt ≡ 0 (for all t), and that Assumptions

(V) and (N) hold. As n→ 0, for q1, q2, r1, r2 ∈ S,

n1/4

(
BVn(q1, r1)− V (q1, r1)

BVn(q2, r2)− V (q2, r2)

)
Ds−→ N(0, Σ̃),

where Σ̃ is defined in (40) and
Ds−→ denotes stable convergence in law.

To present an expression for the asymptotic covariance matrix in the above central limit theorem,

we need to introduce some additional notation. In particular, for i, j ∈ {1, 2}, we set

hij(x, y, z) = cov(|H1|qi |H2|ri , |H3|qj |H4|rj), (39)

where x, y are two-dimensional vectors, whereas z is a four-dimensional vector, and (H1, H2, H3, H4)

are centered multivariate normal distributed random variables with covariance structure:

(i) E
[
|Hi|2] = y1x

2
1 + y2x

2
2, i ∈ {1, 2, 3, 4},

(ii) H1 ⊥ H2, H1 ⊥ H4, H3 ⊥ H4,
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(iii) cov(H1, H3) = cov(H2, H4) = z1x
2
1 + z2x

2
2,

(iv) cov(H2, H3) = z3x
2
1 + z4x

2
2.

We also introduce the following functions:

f1(s) =
1

θ
ϕ1(s), f2(s) = θϕ2(s), f3(s) =

1

θ
ϕ3(s), f4(s) = θϕ4(s),

for s ∈ [0, 2], where

ϕ1(s) =

∫ 1−s

0

g′(u)g′(u+ s)ds, ϕ2(s) =

∫ 1−s

0

g(u)g(u+ s)ds,

ϕ3(2− s) =

∫ 1−s

0

g′(u)g′(u+ s− 1)ds, ϕ4(s) =

∫ 2−s

0

g(u)g(u+ s− 1)ds.

We compactly write these in vectorized form as f(s) = (f1(s), . . . , f4(s)). The (i, j)-th component

of Σ̃ is then given by

Σ̃ij = 2θ

∫ 1

0

∫ 2

0

hij
(
(ωu, σu), (ψ1/θ, θψ2), f(s)

)
dsdu. (40)

Compared to the estimators introduced in this appendix, the pre-averaged realized variance and

bipower variation in (13) are merely rescaled and bias-corrected versions of (38) with (q, r) = (2, 0)

and (q, r) = (1, 1), since (see also Lemma 11)

RV ∗
n = c1BVn(2, 0) + op

(
n−1/4

)
and BV ∗

n = c2BVn(1, 1) + op
(
n−1/4

)
,

where

c1 =
1

θψ2

and c2 =
π

2θψ2

.

Hence, the relation between Σ̃ and Σ is as follows:

Σij = cicjΣ̃ij. (41)

Proof of Theorem 3

For any m ≤ i, we define

r̄∗i,m =
kn∑
j=1

g(j/kn)
(
σm∆n(W(i+j)∆n −W(i+j−1)∆n) + ωm∆n(πi+j − πi+j−1)

)
. (42)

We note that r̄∗i,m serves to approximate r̄∗i by freezing the processes σ and ω locally at the time

point m∆n.

We also denote

η(q, r)ni = |n1/4r̄∗i |q|n1/4r̄∗i+kn|
r,

η(q, r)ni,m = |n1/4r̄∗i,m|q|n1/4r̄∗i+kn,m|
r.
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Lemma 4. Under the maintained assumptions of Theorem 3, for any q, r ∈ S, and real number

v ≥ 1, it holds that

max
(
E
[
|n1/4r̄∗i |v | Fi∆n

]
,E
[
|n1/4r̄∗i,m|v | Fm∆n

])
≤ C,

and

max
(
E
[
|η(q, r)ni |v | Fi∆n

]
,E
[
|η(q, r)ni,m|v | Fm∆n

])
≤ C,

uniformly in i and m.

Proof. The first bound is a standard result for the pre-averaged returns, which follows from the

boundedness of g, σ and ω. Then, the second bound is due to the Cauchy-Schwarz inequality. ■

Lemma 5. Under the maintained assumptions of Theorem 3, for any q, r ∈ S, it holds that

E
[
η(q, r)ni,m | Fm∆n

]
= µqµr

(
θψ2σ

2
m∆n

+
1

θ
ψ1ω

2
m∆n

) q+r
2

+ op(n
−1/4),

uniformly in i and m.

Proof. This follows from the proof of Lemma 4 in Podolskij and Vetter (2009a). ■

The next preliminary result concerns the error of αn
i,m ≡ n1/4(r̄∗i − r̄∗i,m).

Lemma 6. Under the maintained assumptions of Theorem 3, for any real number v ≥ 2, it holds

that

E
[
|αn

i,m|v | Fm∆n

]
≤ C

(
n−v/4 +

(
E
[
Γ(σ,m, i)n + Γ(ω,m, i)n | Fm∆n

])v)
,

E[|η(q, r)ni − η(q, r)ni,m|v|Fm∆n ] ≤ C
(
n−v/4 +

(
E
[
Γ(σ,m, i)n + Γ(ω,m, i)n | Fm∆n

])v)
,

where for any process γ we set

Γ(γ,m, i)n = sup
m∆n≤s≤(i+2kn)∆n

|γs − γm∆n|.

Proof. By construction

αn
i,m = n1/4

∫ (i+kn)∆n

i∆n

gn(s− i∆n)
[
asds+ (σs − σm∆n)dWs

]
+ n1/4

kn−1∑
j=0

[
g(j/kn)− g(j + 1/kn)

]
(ω(i+j)∆n − ωm∆n)πi+j,

where gn(s) =
∑kn

j=1 g(j/kn)1{(j−1)∆n,j∆n}(s). Note that g, a and σ are bounded and |g(j/kn) −
g(j + 1/kn)| ≤ C/kn. Furthermore, ω is bounded and independent of π.

The first result then follows from the Burkholder-Davis-Gundy inequality and Γ being bounded.

The second applies Hölder’s inequality and the inequalities ||y|q−|x|q| ≤ C|x−y|max(|x|q−1, |y|q−1)

and |y1y2 − x1x2| ≤ |y1 − x1||y2|+ |x1||y2 − x2|. ■
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We proceed by applying the “big blocks–small blocks” technique of Jacod, Li, Mykland, Podolskij,

and Vetter (2009). To this end, we fix an integer p ≥ 2, which in the later stages of the proof tends

to infinity, and introduce the notation

aj(p) = 2j(p+ 1)kn, bj(p) = 2j(p+ 1)kn + 2pkn,

Aj(p) = Z ∩ [aj(p), bj(p)), Bj(p) = Z ∩ [bj(p), aj+1(p)).

Aj(p) is the big block, which has size 2pkn, while the small block Bj(p) only has a size of 2kn.

The small blocks are going to separate the big blocks. This means that some important terms

(defined later) are conditionally independent, since the summands in the pre-averaged bipower

estimator employ 2kn underlying high-frequency returns. We let jn(p) ≡ ⌊n/2(p + 1)kn⌋ be the

number of such big block–small block pairs. We utilize these pairwise blocks until observation

in(p) ≡ jn(p)2(p+ 1)kn, while leaving some residual unused data at the end.

Now, we define

ζ(p, q, r, 1)nj =

bj(p)−1∑
u=aj(p)

Ỹ n
u (q, r) and ζ(p, q, r, 2)nj =

aj+1(p)−1∑
u=bj(p)

Ỹ n
u (q, r).

with

Ỹ n
u (q, r) =


n−1/2

(
η(q, r)nu,aj(p) − E

[
η(q, r)nu,aj(p) | Faj(p)∆n

])
, u ∈ Aj(p),

n−1/2
(
η(q, r)nu,bj(p) − E

[
η(q, r)nu,bj(p) | Fbj(p)∆n

])
, u ∈ Bj(p),

n−1/2
(
η(q, r)nu,in(p) − E

[
η(q, r)nu,in(p) | Fin(p)∆n

])
, u ∈ in(p),

and denote

M(p, q, r)n = n−1/2

jn(p)−1∑
j=0

ζ(p, q, r, 1)nj ,

N(p, q, r)n = n−1/2

jn(p)−1∑
j=0

ζ(p, q, r, 2)nj ,

C(p, q, r)n = n−1/2

n∑
u=in(p)

Ỹ n
u (q, r).

Next, we introduce the decomposition

n1/4(BVn(q, r)− V (q, r)) = n1/4 [M(p, q, r)n +N(p, q, r)n + C(p, q, r)n] + F (p, q, r)n, (43)

which implicitly defines F (p, q, r)n as a remainder term. In a series of lemmas, we will show that

M(p, q, r)n is the leading term, while the remaining parts are asymptotically negligible.

Lemma 7. Let p ≥ 2 be fixed. Under the maintained assumptions of Theorem 3, it holds that

E
[(
n1/4N(p, q, r)n

)2] ≤ C/p.
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Proof. Write

Ln
k = n−1/2

k∑
j=0

ζ(p, q, r, 2)nj .

We observe that the process (Ln
k)

jn(p)−1
k=0 is a discrete-time martingale under the filtration (Fbj(p)∆n)

jn(p)−1
j=0 .

Then, Doob’s inequality yields that

E
[(
n1/4N(p, q, r)n

)2] ≤ Cn−1/2

jn(p)−1∑
j=0

E
[(
ζ(p, q, r, 2)nj

)2]
. (44)

Lemma 4 implies that E
[(
Ỹ n
u (q, r)

)2] ≤ C/n uniformly in j, p, q, and r. Consequently, we deduce

that E
[(
ζ(p, q, r, 2)nj

)2] ≤ C, and then using jn(p) ≤ Cn1/2/p ends the proof. ■

Lemma 8. Let p ≥ 2 be fixed. Under the maintained assumptions of Theorem 3, it holds that

E
[∣∣n1/4C(p, q, r)n

∣∣] ≤ Cpn−1/4.

Proof. Note that n− in(p) ≤ Cpn1/2 and E
[∣∣Ỹ n

u (q, r)
∣∣] ≤ Cn−1/2. This immediately leads to the

conclusion that E
[∣∣n1/4C(p, q, r)n

∣∣] ≤ Cpn−1/4. ■

Lemma 9. Under the maintained assumptions of Theorem 3, for any δ > 0, it holds that

lim
p→∞

lim sup
n→∞

P [|F (p, q, r)n| > δ] = 0.

Proof. Recalling the decomposition in (43), we write that

F (p, q, r)n = A(p, q, r)n +B(p, q, r)n +D(p, q, r)n − n1/4C(p, q, r)n, (45)

where

A(p, q, r)n = n1/4BVn(q, r)− n1/4 1

n

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

η(q, r)naj(p)+u,aj(p)
,

B(p, q, r)n = n1/4 1

n

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

E
[
η(q, r)naj(p)+u,aj(p)

| Faj(p)∆n

]
− n1/4V (q, r),

D(p, q, r)n = n−3/4

jn(p)−1∑
j=0

2kn−1∑
u=0

η(q, r)nbj(p)+u,aj(p)
− E

[
η(q, r)nbj(p)+u,aj(p)

| Faj(p)∆n

]

− n−3/4

jn(p)−1∑
j=0

2kn−1∑
u=0

η(q, r)nbj(p)+u,bj(p)
− E

[
η(q, r)nbj(p)+u,bj(p)

| Fbjp)∆n

]
The C(p, q, r)n term was covered in Lemma 8, while the D(p, q, r)n term is dealt with following

Lemma 7. So we proceed to A(p, q, r)n. Ignoring asymptotically negligible remainder terms, and
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employing the shorthand notation η̃(q, r)ni,m ≡ η(q, r)ni − η(q, r)ni,m, it is enough to study

An
1 = n−3/4

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

E
[
η̃(q, r)naj(p)+u,aj(p)

| Faj(p)∆n

]
,

An
2 = n−3/4

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

η̃(q, r)naj(p)+u,aj(p)
− E

[
η̃(q, r)naj(p)+u,aj(p)

| Faj(p)∆n

]
.

Proceeding as in the proof of Lemma 7, applying Doob’s inequality and Lemma 6 yields

E
[(
An

2

)2] ≤ Cn−3/2pkn

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

E
[(
η̃(q, r)naj(p)+u,aj(p)

)2]

≤ Cn−3/2pkn

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

(
n−1/2 + E

[(
Γ(σ, aj(p), aj(p) + u)n + Γ(ω, aj(p), aj(p) + u)n

)2])

≤ Cpn−1/2 + Cn−1/2p2
jn(p)−1∑
j=0

E
[(
Γ(σ, aj(p), aj+1(p))

n + Γ(ω, aj(p), aj+1(p))
n
)2]

,

which is negligible by Lemma 5.4 in Jacod, Li, Mykland, Podolskij, and Vetter (2009).

Moving to the An
1 term, we observe that from the inequality |y1y2 − x1x2| ≤ |y1 − x1||y2| +

|x1||y2 − x2|, and Lemmas 4 and 6, it suffices to set r = 0 and look at the term

n−3/4

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

E
[
η(q)naj(p)+u − η(q)naj(p)+u,aj(p)

| Faj(p)∆n

]
.

Now, take f(x) = |x|q and recall that αn
i,m = n1/4

(
r̄∗i − r̄∗i,m

)
. By Taylor’s theorem and Lemmas 4

and 6, we can reduce the problem to studying the term

n−3/4

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

E
[
f ′(η(q)aj(p)+u,aj(p))α

n
aj(p)+u,aj(p)

| Faj(p)∆n

]
. (46)

At this stage, we need an extra decomposition:

αn
i,m = αn

i,m(1) + αn
i,m(2),

where

αn
i,m(1) = n1/4

kn−1∑
j=1

g(j/kn)

[
∆nam∆n +

∫ (i+j)∆n

(i+j−1)∆n

[
σ̃m∆n(Ws −Wm∆n) + ṽm∆n(Bs −Bm∆n)

]
dWs

]

+ n1/4

kn−1∑
j=0

[
g(j/kn)− g(j + 1/kn)

] [
σ̄m∆n(W(i+j)∆n −Wm∆n) + v̄m∆n(B(i+j)∆n −Bm∆n)

]
πi+j,

αn
i,m(2) = n1/4

kn−1∑
j=1

g(j/kn)

[∫ (i+j)∆n

(i+j−1)∆n

(as − am∆n)ds+

∫ (i+j)∆n

(i+j−1)∆n

∫ s

m∆n

ãududWs

]
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+ n1/4

kn−1∑
j=1

g(j/kn)

[∫ (i+j)∆n

(i+j−1)∆n

[∫ s

m∆n

(σ̃u − σ̃m∆n)dWu +

∫ s

m∆n

(ṽu − ṽm∆n)dBu

]
dWs

]

+ n1/4

kn−1∑
j=0

[
g(j/kn)− g(j + 1/kn)

] [∫ (i+j)∆n

m∆n

āsds+ (σ̄s − σ̄m∆n)dWs + (v̄s − v̄m∆n)dBs

]
πi+j.

Returning to (46), we first note that

E
[
f ′(η(q)aj(p)+u,aj(p))α

n
aj(p)+u,aj(p)

(1) | Faj(p)∆n

]
= 0,

because (W,B, π)
d
= −(W,B, π), and since f ′(η(q)aj(p)+u,aj(p)) is odd and αn

aj(p)+u,aj(p)
(1) is even in

(W,B, π). Furthermore,

E
[(
αn
aj(p)+u,aj(p)

(2)
)2] ≤ C(pkn∆n)

2 + Cpn−1/2E
[
(γnj (p))

2
]
,

where

γnj (p) = sup
aj(p)∆n≤s≤aj+1(p)∆n

[
|as − aaj(p) |+ |σ̃s − σ̃aj(p) |+ |ṽs − ṽaj(p)|+ |σ̄s − σ̄aj(p)|+ |v̄s − v̄aj(p) |

]
.

Then, for any fixed p ≥ 2, it follows from the Cauchy-Schwarz inequality that

E
[
|An

1 |
]
≤ Cn−3/4

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

E
[(
αn
aj(p)+u,aj(p)

(2)
)2]1/2

≤ Cn−3/4n(pkn∆n) + Cpn−1/2

jn(p)−1∑
j=0

E
[
(γnj (p))

2
]1/2 → 0,

as n→ ∞, which follows from Lemma 5.4 in Jacod, Li, Mykland, Podolskij, and Vetter (2009).

Now, we proceed to the last term, B(p, q, r)n. This can be further divided into

B(p, q, r)n = B(p, q, r)n1 +B(p, q, r)n2 ,

with

B(p, q, r)n1 = n1/4 1

n

jn(p)−1∑
j=0

2(p+1)kn−1∑
u=0

E
[
η(q, r)aj(p)+u,aj(p) | Faj(p)∆n

]
− n1/4µqµr

jn(p)−1∑
j=0

∫ aj+1(p)∆n

aj(p)∆n

υaj(p)dt,

B(p, q, r)n2 = n1/4µqµr

jn(p)−1∑
j=0

∫ aj+1(p)∆n

aj(p)∆n

(
υaj(p) − υt

)
dt− n1/4µqµr

∫ 1

in(p)∆n

υtdt,

and where υt = θψ2σ
2
t +

1
θ
ψ1ω

2
t .

In view of Lemma 5,

lim
p→∞

lim sup
n→∞

P
[
|B(p, q, r)n1 | > δ|

]
= 0.

Concerning the term B(p, q, r)n2 , we remark that υt is a continuous Itô process due to Assumptions

(V) and (N). Hence, a known result on the error of Riemann integration (see, e.g., the proof of
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Lemma A.1 (iv) in Christensen, Podolskij, Thamrongrat, and Veliyev (2017)) states that

E [|B(p, q, r)n2 |] ≤ Cn1/4(pkn∆n + pn−1/2) ≤ Cpn−1/4,

which completes the proof. ■

Lemma 10. Let p ≥ 2 be fixed. Under the maintained assumptions of Theorem 3, it holds that

n1/4(M(p, q1, r1)
n,M(p, q2, r2)

n)
Ds−→MN(0,Σ(p)),

where the (i, j)-th component of the 2x2 covariance matrix Σ(p) is defined as

Σ(p)ij = θ
p

p+ 1

∫ 1

0

∫ 2

0

(
2− s

p

)
hij
(
(ωu, σu), (ψ1/θ, θψ2), f(s)

)
dsdu.

Proof. We set ζ(p)nj =
(
ζ(p, q1, r1, 1)

n
j , ζ(p, q2, r2, 1)

n
j

)⊤
for notational convenience. In view of

Theorem IX.7.28 in Jacod and Shiryaev (2003), it suffices to verify the following four conditions:

n−1/2

jn(p)−1∑
j=0

E
[
ζ(p)nj (ζ(p)

n
j )

⊤ | Faj(p)

] p−→ Σ(p),

n−1/2

jn(p)−1∑
j=0

E
[
∥ζ(p)nj ∥4 | Faj(p)

] p−→ 0,

n−1/2

jn(p)−1∑
j=0

E
[
ζ(p)nj (Wbj(p)∆n −Waj(p)∆n) | Faj(p)

] p−→ 0,

n−1/2

jn(p)−1∑
j=0

E
[
ζ(p)nj (Nbj(p)∆n −Naj(p)∆n) | Faj(p)

] p−→ 0,

for any bounded martingale N that is orthogonal to W .

The last three convergences are omitted, since they can be proved exactly as in Podolskij and

Vetter (2009a) and Jacod, Li, Mykland, Podolskij, and Vetter (2009). So we only prove the conver-

gence in the first condition, which is done separately for each component of Σ̃. We only spell out

the details for the first term.

To this end, for any u, v ∈ Aj(p) and u ≤ v, we note that

E
[
Ỹ n
u Ỹ

n
v | Faj(p)∆n

]
=

1

n

(
E
[
ηnu,aj(p)η

n
v,aj(p)

| Faj(p)∆n

]
− E

[
ηnu,aj(p) | Faj(p)∆n

]
E
[
ηnv,aj(p) | Faj(p)∆n

])
.

We suppress the dependence on q and r for brevity. Let η̃ni,m be a version of the variable ηni,m, where

the noise variable π is replaced by a Gaussian distributed one. In view of Lemma 5,

E
[
ηnu,aj(p) | Faj(p)∆n

]
= E

[
η̃nu,aj(p) | Faj(p)∆n

]
+ op(n

−1/4).

This, together with Lemma 4 and the Cauchy-Schwarz inequality, implies that∣∣∣E [ηnu,aj(p)ηnv,aj(p) | Faj(p)∆n

]
− E

[
η̃nu,aj(p)η̃

n
v,aj(p)

| Faj(p)∆n

]∣∣∣ ≤ ∣∣∣E [(ηnu,aj(p) − η̃nu,aj(p))η
n
v,aj(p)

| Faj(p)∆n

]∣∣∣
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+
∣∣∣E [(ηnv,aj(p) − η̃nv,aj(p))η̃

n
u,aj(p)

| Faj(p)∆n

]∣∣∣
= op(n

−1/8).

Further, recalling the notation in (39), we have that

E
[
η̃nu,aj(p)η̃

n
v,aj(p)

| Faj(p)∆n

]
− E

[
η̃nu,aj(p) | Faj(p)∆n

]
E
[
η̃nv,aj(p) | Faj(p)∆n

]
= h11

(
(ωaj(p)∆n , σaj(p)∆n), ψ

n, fn((v − u)/kn)
)
,

where ψn = (n1/2ψn
1 /kn, knψ

n
2 /n

1/2) and fn(s) =
(
fn
1 (s), . . . , f

n
4 (s)

)
with

fn
1 (s) = n1/2

kn(1−s)∑
j=0

(
g

(
j

kn

)
− g

(
j + 1

kn

))(
g

(
j + skn
kn

)
− g

(
j + 1 + skn

kn

))
,

fn
2 (s) = n−1/2

kn(1−s)∑
j=0

g

(
j

kn

)
g

(
j + skn
kn

)
,

fn
3 (s) = n1/2

kn(2−s)∑
j=0

(
g

(
j

kn

)
− g

(
j + 1

kn

))(
g

(
j + skn − kn

kn

)
− g

(
j + 1 + skn − kn

kn

))
,

fn
4 (s) = n−1/2

kn(2−s)∑
j=0

g

(
j

kn

)
g

(
j + skn − kn

kn

)
.

As a consequence, for u, v ∈ Aj(p) and 0 ≤ v − u < 2kn, we obtain

E
[
Ỹ n
u Ỹ

n
v | Faj(p)∆n

]
=

1

n
h11
(
(ωaj(p)∆n , σaj(p)∆n), ψ

n, fn((v − u)/kn)
)
+ op(n

−1),

while this term vanishes for v − u ≥ 2kn. In turn, this implies that

E
[
(ζ(p, 1)nj )

2 | Faj(p)∆n

]
= Rn

1 +Rn
2 ,

where

Rn
1 = 2

bj(p)−2kn−1∑
u=aj(p)

u+2kn−1∑
v=u

E
[
Ỹ n
u Ỹ

n
v | Faj(p)∆n

]
−

bj(p)−2kn−1∑
u=aj(p)

E
[
(Ỹ n

u )
2 | Faj(p)∆n

]
,

Rn
2 = 2

bj(p)−1∑
u=bj(p)−2kn

bj(p)−1∑
v=u

E
[
Ỹ n
u Ỹ

n
v | Faj(p)∆n

]
−

bj(p)−1∑
u=bj(p)−2kn

E
[
(Ỹ n

u )
2 | Faj(p)∆n

]
.

Concerning the first term,

n−1/2

jn(p)−1∑
j=0

Rn
1 = n−3/22(2pkn − 2kn)

jn(p)−1∑
j=0

2kn−1∑
v=0

h11
(
(ωaj(p)∆n , σaj(p)∆n), ψ

n, fn(v/kn)
)
+ op(1)

p−→ 2θ
p− 1

p+ 1

∫ 1

0

∫ 2

0

hij
(
(ωu, σu), (ψ1/θ, θψ2), f(s)

)
dsdu,

where the argument is as in Podolskij and Vetter (2009a) via continuity of the function h11 and
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Lebesgue’s theorem.

Furthermore, we deduce that

n−1/2

jn(p)−1∑
j=0

n−1/2Rn
2 = n−3/22

jn(p)−1∑
j=0

2kn−1∑
v=0

(2kn − v)h11
(
(ωaj(p)∆n , σaj(p)∆n), ψ

n, fn(v/kn)
)
+ op(1)

p−→ θ

p+ 1

∫ 1

0

∫ 2

0

(2− s)hij
(
(ωu, σu), (ψ1/θ, θψ2), f(s)

)
dsdu.

The statement then follows by summing these two terms. ■

The proof of Theorem 3 now follows directly from (43) and Lemmas 7 – 10.

Proof of Theorem 1

The proof is mostly based on Theorem 3 above, after we take into account that the error in the

noise variance estimator introduced in (14).

Lemma 11. Assume that r follows the process in (1) and that Assumptions (V) and (N) hold.

Then, as n→ ∞,

√
n

(
ω̂2
n −

∫ 1

0

ω2
sds

)
= Op(1). (47)

Proof. We can write

ω̂2
n −

∫ 1

0

ω2
sds = Nn

1 +Nn
2 +Nn

3 , (48)

where

Nn
1 = −

∫ 1

0

ω2
sds−

1

n− 1

n∑
i=2

(ϵi∆n − ϵ(i−1)∆n)(ϵ(i−1)∆n − ϵ(i−2)∆n),

Nn
2 = − 1

n− 1

n∑
i=2

[
(pi∆n − p(i−1)∆n)(ϵ(i−1)∆n − ϵ(i−2)∆n) + (ϵi∆n − ϵ(i−1)∆n)(p(i−1)∆n − p(i−2)∆n)

]
,

Nn
3 = − 1

n− 1

n∑
i=2

(pi∆n − p(i−1)∆n)(p(i−1)∆n − p(i−2)∆n).

In view of (2.1.44) in Jacod and Protter (2012), we find that sup1≤i≤n E
[
(pi∆n − p(i−1)∆n)

2
]
≤ C/n.

Combining this with the identity sup1≤i≤n E
[
(ϵi∆n − ϵ(i−1)∆n)

2
]
≤ C leads to

E
[
|N2

n|+ |N3
n|
]
≤ Cn−1/2.

Concerning the main term, we apply a further decomposition Nn
1 = Nn

11 +Nn
12 +Nn

13, where

Nn
11 = −

∫ 1

0

ω2
sds+

1

n− 1

n∑
i=2

ω2
(i−1)∆n

π2
i−1, Nn

12 =
1

n− 1

n∑
i=2

ω2
(i−1)∆n

(π2
i−1 − 1),

Nn
13 = − 1

n− 1

n∑
i=2

[
ωi∆nπiω(i−1)∆nπi−1 − ωi∆nπiω(i−2)∆nπi−2 + ω(i−1)∆nπi−1ω(i−2)∆nπi−2

]
.
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Alluding to Assumption (N)(iii), a standard Riemann integration error argument yields Nn
11 =

Op(n
−1/2). In the second term above, we note that

E
[
ω2
(i−1)∆n

(π2
i−1 − 1)ω2

(j−1)∆n
(π2

j−1 − 1)
]
= 0,

for i ̸= j by Assumption (N)(i) and (iv). It follows that E [(Nn
12)

2] ≤ C/n. In the third term, the

summands are again uncorrelated, which leads to E [(Nn
13)

2] ≤ C/n. ■

We now turn to the proof of Theorem 1. In relation to the convergence in probability part, it follows

from the above preliminary results that

BVn(2, 0)
p−→
∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2
s

)
ds+ θψ2

∑
0≤s≤1

(∆rs)
2,

BVn(1, 1)
p−→
∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2
s

)
ds.

This can be shown by proceeding as in the proof of Theorem 2 in Podolskij and Vetter (2009a).

Now, the consistency in Theorem 1 follows from Lemma 11. The central limit theorem is derived

under the further assumption that p is continuous. Hence, it follows from Theorem 3 [choosing the

exponents (q1, r1) = (2, 0) and (q2, r2) = (1, 1)] and Lemma 11. ■

A.2 A jump- and noise-robust estimator of Σ̃

Here, we present an estimator of Σ̃, which appears in the extended central limit theorem in Theorem

3. Its connection with Σ is explained in (41).

We build on previous work of Christensen, Podolskij, Thamrongrat, and Veliyev (2017), who

propose a subsampling estimator of Σ̃ (see also Politis, Romano, andWolf, 1999; Kalnina and Linton,

2007; Kalnina, 2011; Mykland and Zhang, 2017). An appealing feature of their estimator is that

it is positive semi-definite and has good small sample properties.68 In that paper, the subsampling

estimator is shown to be consistent if there is either price jumps or microstructure noise, but not

in the presence of both. Microstructure noise is further restricted to be either heteroscedastic or

dependent, but not both. Here, we extend their framework to account for all of these features at

once.

We propose the following jump- and noise-robust covariance matrix estimator:

Σ̃n =
1

L

L∑
l=1

(
n1/4

√
L

[
B̌V l(q1, r1)− B̌V n(q1, r1)

B̌V l(q2, r2)− B̌V n(q2, r2)

])(
n1/4

√
L

[
B̌V l(q1, r1)− B̌V n(q1, r1)

B̌V l(q2, r2)− B̌V n(q2, r2)

])⊤

,

68Podolskij and Vetter (2009a) develop an element-by-element estimator of Σ̃ in the i.i.d noise setting. However,
this estimator is not positive semi-definite and is often ill-conditioned in practice. Moreover, it is not consistent for
Σ̃ under the jump alternative.
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with

B̌V n(q, r) =
1

n

n−2kn+1∑
i=0

|n1/4ř∗i |q|n1/4ř∗i+kn|
r, B̌V l(q, r) =

Lpkn
n

n/Lpkn∑
i=1

v(i−1)L+l(q, r)
n,

vi(q, r)
n =

1

pkn − 2kn + 2

∑
j,j+2kn−1∈Bi(p)

|n1/4ř∗j |q|n1/4ř∗j+kn|
r − ψn

1

ψn
2 θ

2
ω̂2,

and

ř∗i = r̄∗i 1(|r̄∗i | ≤ un), (49)

where 1(A) is an indicator function that equals one if A is true, zero otherwise, and un = αn−ω̄

with α > 0 and ω̄ ∈ (0, 1/4).

To deal with microstructure noise, Σ̃n is based on the pre-averaged bipower variation. To

further robustify it to jumps, we exploit the truncation device of Mancini (2009) in (49). It sets

large negative or positive pre-averaged log-returns to zero, since they are most likely dominated by

the jump component. The threshold, un, is adapted to an estimate of the square-root integrated

variance by setting α = c
√
BVn(1, 1). With this configuration, we can interpret c as the number of

local diffusive standard deviations a pre-averaged log-return must exceed to be labelled a jump. The

rate parameter, ω̄, ensures that, asymptotically, continuous pre-averaged log-returns are unaffected

by the truncation. In this way, Σ̃n is also made jump-robust.

Theorem 12. Assume that r follows (1) with β ≤ 1 and that Assumptions (V) and (N) hold.

Moreover, for each s ∈ {q1, q2, r1, r2} ∩ [1,∞), we require that

q + δ − 1/2

4q − β
< ω̄ <

1

4
− δ

where L ≍ n(1−δ)/2. Then, as n→ ∞, → ∞, L/p→ ∞,
√
n/Lp2 → ∞ and δ < 1/16, it holds that

Σ̃n
p−→ Σ̃.

Proof of Theorem 12

By the polarization identity, it suffices to show the result Σ̃n − Σ̃
p−→ 0 in the univariate setting.

To this end, we denote by r̄′i the pre-averaged return based on the continuous part of pt and ϵt. The

corresponding subsampling estimator is denoted as

Σ′
n =

1

L

L∑
l=1

(
n1/4

√
L

(
BV ′

l (q, r)−BV ′
n(q, r)

))2

,

where

BV ′
n(q, r) =

1

n

n−2kn+1∑
i=0

|n1/4r̄′i|q|n1/4r̄′i+kn|
r, BV ′

l (q, r) =
Lpkn
n

n/Lpkn∑
i=1

v′(i−1)L+l(q, r)
n,
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v′i(q, r)
n =

1

pkn − 2kn + 2

∑
j,j+2kn−1∈Bi(p)

|n1/4r̄′j|q|n1/4r̄′j+kn|
r.

Proceeding exactly as in the proof of Theorem 3.8 in Christensen, Podolskij, Thamrongrat, and

Veliyev (2017), it immediately follows that Σ′
n − Σ̃

p−→ 0. Hence, it suffices to show that

Σ̃n − Σ′
n

p−→ 0.

To do this, we note that:

Σ̃n − Σ′
n =

1

L

L∑
l=1

(
n1/4

√
L

(
BVl(q, r)−BV ′

l (q, r) +BV ′
n(q, r)−BVn(q, r)

))

×

(
n1/4

√
L

(
BVl(q, r)−BVn(q, r) +BV ′

l (q, r)−BV ′
n(q, r)

))
,

which is an average of L terms. The main idea is to deduce that each of these L terms converges

in probability to zero. In particular, we show uniform convergence in mean square:

sup
1≤l≤L

E
[∣∣∣n1/4

√
L

(
BVl(q, r)−BV ′

l (q, r)
)∣∣∣2]→ 0 and sup

1≤l≤L
E
[∣∣∣n1/4

√
L

(
BVn(q, r)−BV ′

n(q, r)
)∣∣∣2]→ 0.

(50)

Following the arguments in the proof of Lemma A.6 in Christensen, Podolskij, Thamrongrat, and

Veliyev (2017) implies that

sup
1≤l≤L

E
[∣∣∣n1/4

√
L

(
BV ′

l (q, r)−BV ′
n(q, r)

)∣∣∣2] ≤ C. (51)

Then, equation (50) – (51) lead to:

sup
1≤l≤L

E
[∣∣∣n1/4

√
L

(
BVl(q, r)−BVn(q, r)

)∣∣∣2] ≤ C.

The combination of the last three results and the Cauchy-Schwarz inequality implies:

E
[
|Σ̃n − Σ′

n|
]
→ 0,

so that Σ̃n − Σ′
n

p−→ 0. Thus, it is enough to show (50).

For each j, we define

λnj (q, r) = |n1/4r̄∗j |q|n1/4r̄∗j+kn|
r
1{|r̄∗j |≤un∩|r̄∗j+kn

|≤un} − |n1/4r̄′j|q|n1/4r̄′j+kn|
r.

Note that

BVn(q, r)−BV ′
n(q, r) =

1

n

n−2kn+1∑
i=0

λni (q, r),

and

BVl(q, r)−BV ′
l (q, r) =

Lpkn
n

1

pkn − 2kn + 2

n/Lpkn∑
i=1

∑
j,j+kn−1∈B(i−1)L+l(p)

λnj (q, r).
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As a result of Cauchy-Schwarz, showing (50) is reduced to proving:

sup
1≤j≤n−2kn+2

E
[∣∣∣n1/4

√
L
λnj (q, r)

∣∣∣2]→ 0.

Furthermore, the identity

λnj (q, r) = λnj (q, 0)|n1/4r̄′j+kn|
r + λnj (0, r)|n1/4r̄′j|q + λnj (q, 0)λ

n
j (0, r),

and Lemma 4 combined with Cauchy-Schwarz inequality yields:

E
[
|λnj (q, r)|2

]
≤ C

(
E
[
|λnj (q, 0)|4

]1/2
+ E

[
|λnj (0, r)|4

]1/2
+ E

[
|λnj (q, 0)|4

]1/2E[|λnj (0, r)|4]1/2).
Then, in view of the rate condition n1/4/

√
L→ ∞, it is enough that

sup
1≤j≤n−2kn+2

E
[∣∣∣n1/4

√
L
λnj (q, 0)

∣∣∣4]→ 0 and sup
1≤j≤n−2kn+2

E
[∣∣∣n1/4

√
L
λnj (0, r)

∣∣∣4]→ 0.

We only look at the term λnj (q, 0) with q > 0, for which

λnj (q, 0) = nq/4|r̄′j + r̄dj |q1{|r̄∗j |≤un} − nq/4|r̄′j|q.

Now, for any u > 0, a ≥ 0 and b ≥ 0, it holds that∣∣|x+ y|q1{|x+y|≤u} − |x|q
∣∣ ≤ C

(
|x|q+a

ua
+ |x|q |y|

b

ub
+ (|y| ∧ u)q + 1{q>1}|x|q−1(|y| ∧ u)

)
,

which can be verified by looking at the cases:

(1) |x| ≥ u/2, (2) |x| < u/2 and |x+ y| > u, (3) |x| < u/2 and |x+ y| ≤ u.

If we exploit this result with x = r̄′j, y = r̄dj and u = un (a and b are selected below) in combination

with a second inequality |c− d|4 ≤ |c4 − d4|, we find that:

|λnj (q, 0)|4 ≤ Cnq

(
|r̄′j|4q+a

uan
+ |r̄′j|4q

|r̄dj |b

ubn
+
(
|r̄dj | ∧ un

)4q
+ |r̄′j|4q−1

(
|r̄dj | ∧ un

))
.

Note that we discard the indicator function, because it holds for any q > 1/4. Now, arguing as in

Jacod and Protter (2012, p. 529), we deduce that

E
[
(|r̄dj | ∧ un)2

]
≤ C

ρn
n1/2+(2−β)ω̄

.

In view of the fact that (|x| ∧ u)q ≤ uq−2(|x| ∧ u)2 for q ≥ 2 and recalling that un = αn−ω̄:

E
[
(|r̄dj | ∧ un)q

]
≤ C ×


ρ
q/2
n

nq/4+(2−β)ω̄q/2
if q ≤ 2,

uq−2
n ρn

n1/2+(2−β)ω̄
≤ ρn
n1/2+(q−β)ω̄

if q > 2.

Moreover, for any q > 0:

E
[
|r̄′j|q

]
≤ C

1

nq/4
and E

[
|r̄dj |2

]
≤ C

1

n1/2
.
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Combining these inequalities with a = 4, b = 1 and and recalling L ≍ n(1−δ)/2 leads to

E
[∣∣∣n1/4

√
L
λnj (q, 0)

∣∣∣4] ≤ C

(
1

n1−δ−4ω̄
+

1

n1/4−δ−ω̄
+

ρn
n1/2−δ−q+(4q−β)ω̄

+
ρ
1/2
n

n−δ+(1−β/2)ω̄

)
The first and second error terms converge to 0 due to the condition ω̄ < 1/4 − δ. The third error

term converges to 0 due to the assumption ω̄ > (q + δ − 1/2)/(4q − β). This also implies ω̄ > 1/8,

which combined with β ≤ 1 and δ < 1/16 deals with the fourth term. ■

Proof of Theorem 2

The result follows directly from the proof of Theorem 12 by taking (q1, r1) = (2, 0), (q2, r2) = (1, 1)

and adjusting by the constants c1 and c2. It is worth highlighting that the constraint ω̄ > (q + δ −
1/2)/(4q − β) is more binding for q = 2 compared to q = 1. ■

A.3 Irrelevance of truncation

To show that the truncation does not influence the limiting distribution in Theorem 3 and, hence,

therefore also does not affect Theorem 1, we note that

n1/4

(
BVn(q1, r1)− V (q1, r1)

BVn(q2, r2)− V (q2, r2)

)
= n1/4

(
BVn(q1, r1)− V (q1, r1)

B̌V n(q2, r2)− V (q2, r2)

)
+n1/4

(
0

BVn(q2, r2)− B̌V n(q2, r2)

)
.

It is thus enough to show that n1/4
(
BVn(q2, r2) − B̌V n(q2, r2)

)
= op(1). An application of Boole’s

and Markov’s inequalities and Lemma 4 in the proof of Theorem 3 yields that

P
[
BVn(q2, r2) ̸= B̌V n(q2, r2)

]
≤

n−kn+2∑
i=1

P
[
|r̄∗i | > un

]
≤ C

nM(1/4−ω̄)−1
,

where M > 0. As M can be chosen arbitrarily large, the result follows. ■
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B Monte Carlo Simulations

The jump-testing theory in Section 2 is derived using an infill asymptotic setup, which assumes

that ∆n → 0. This is unattainable in practice. In this appendix, we therefore conduct a series of

Monte Carlo simulations to elaborate on the finite sample properties of the test statistic in a more

realistic setting.

We simulate from the following model:

r∗t = rt + ϵt, (52)

where rt = rct + rdt , and

drct = σtdWt, (53)

with r0 ≡ 0.

The drift term is omitted (i.e., at ≡ 0) so the continuous part of rt evolves as a local martingale.

The contribution of the drift is small over short horizons and the terms involving it—including cross

products—are asymptotically negligible. It therefore tends to play a minor role in the high-frequency

setting.69 Similarly, adding a realistic expected rate of return does not affect the conclusions in any

material way.

The instantaneous variance is assumed to be driven by a square-root process (e.g., Cox, Ingersoll,

and Ross, 1985; Heston, 1993):

dσ2
t = κ(σ2 − σ2

t )dt+ ξσtdBt, (54)

with σ2
0 ∼ Gamma(2κσ2ξ−2, 2κξ−2). Our choice of parameters is based on previous work such as

Aı̈t-Sahalia and Kimmel (2007). Specifically, we set κ = 5, σ = 0.4, ξ = 0.5, and ρ = −
√
0.5, where

ρ is the leverage correlation between the standard Brownian motions E[dWtdBt] = ρdt. This yields

a stationary and strictly positive variance in continuous-time (i.e., the Feller condition ξ2 < 2κσ2

holds) with an annualized mean volatility of 40%.

rdt is an infinite-activity tempered stable process with Lévy measure

ν(dx) = τ
e−λx

x1+β
dx, (55)

where τ > 0 and λ > 0.

The activity of the jump process is controlled by β. As β increases, the density of the small

jumps is enlarged, and the realizations of rdt become more vibrant and start to resemble those of a

Brownian motion (see Figure B.1 for an illustration). As noted by Bollerslev and Todorov (2011),

this renders the decomposition of diffusive and jump risk meaningless in practice and also makes

it harder to separate the null from the jump alternative (Aı̈t-Sahalia, Jacod, and Li (2012)). A

priori, we therefore expect larger values of β to be detrimental to the rejection rate of the jump test

statistic under the alternative. To gauge the impact of changing β, we follow Aı̈t-Sahalia, Jacod,

69A notable exception is Christensen, Oomen, and Renò (2022).
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and Li (2012) and examine β = 0.50, 1.00, 1.50 and 1.75. Moreover, we set λ = 3 and calibrate τ

so that rdt induces 20% of the quadratic return variation, on average.

We simulate for t ∈ [0, 1] with a time step of ∆n = 1/23,400. This can be interpreted as adding

a new observation every second during a 6.5 hour trading session. A standard Euler discretization

is employed for the continuous part.70 As described in Todorov, Tauchen, and Grynkiv (2014),

the jump component is computed as the difference between two spectrally positive tempered stable

processes that are generated using the acceptance-rejection algorithm of Baeumer and Meerschaert

(2010). The total number of Monte Carlo replications is T = 10,000. Figure B.1 illustrates a single

sample path of rct and r
d
t .

Figure B.1: A single simulation of the efficient log-return.

Panel A: Sample path of rct . Panel B: Sample path of rdt .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

L
o
g
-r

e
tu

rn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

L
o
g
-r

e
tu

rn

No jump

 = 1.75

 = 1.50

 = 1.00

 = 0.50

Note. We show a realization of the components of the efficient log-return rt, which is a superposition of a continuous sample path Heston
(1993)-type stochastic volatility model (rct in Panel A) and a pure jump process of tempered stable-type (rdt in Panel B). The latter is
plotted as a function of the activity index β using a common random seed.

We next explain how pt is disrupted with microstructure noise, ϵt. In particular, we study four

types of additive measurement error:

ϵt =



γ
√
IV∆nϵ

N
t , “Gaussian”,

γ
√
IV∆nϵ

T
t

√
η − 2

η
, “T-distributed”,

γ
√

IV∆n

ϵNt + ϕϵNt−1

1 + ϕ2
, “Autocorrelated”,

γσt
√

∆nϵ
N
t , “Heteroscedastic”.

(56)

70There is a small probability that the variance in (54) goes negative in finite samples. We therefore enforce a full
truncation floor at zero to avoid this (e.g., Andersen, 2008).
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where ϵNt and ϵTt are i.i.d. sequences of Gaussian and t-distributed (with η degrees of freedom)

random variables.

While the Gaussian i.i.d. draws are standard, t-distributed noise is less common. The lat-

ter, however, can generate notable outliers if η is small. This leads to infrequent—but large—

bouncebacks in the noisy log-price series which is a common trait of raw high-frequency data. We

set η = 2.5 to be consistent with this observation.

We also examine cases with autocorrelated and heteroscedastic noise. The former scenario

assumes ϵt is MA(1) with degree of memory determined by the parameter ϕ which is fixed at

ϕ = −0.77. Throughout, the variance of the noise (on a per increment basis) changes with the level

of volatility, which is a well-documented feature in practice (e.g., Bandi and Russell, 2008; Kalnina

and Linton, 2008). In scenario 1 – 3, the noise scales with the square root of the integrated variance

IV =
∫ 1

0
σ2
sds, while in the last scenario it is a function of σt and thus time-varying within each

simulation.

The γ parameter is the noise-to-volatility ratio of Oomen (2006) which determines the relative

strength of the microstructure component. We assume γ = 5, which corresponds to heavy noise

pertubation (e.g., Aı̈t-Sahalia, Jacod, and Li, 2012; Christensen, Oomen, and Podolskij, 2014).

We follow the standard in the pre-averaging literature by setting g(x) = min(x, 1 − x) and

kn = [θ
√
n]. We fix the tuning parameter at θ = [1, 2, 3]/3, which is in line with prior work

(e.g., Aı̈t-Sahalia, Jacod, and Li, 2012; Christensen, Kinnebrock, and Podolskij, 2010; Christensen,

Oomen, and Podolskij, 2014). The threshold for jump-truncation is implemented with ω̄ = 0.24

and c = 3, 4, 5 as a robustness check.

We compute Σ∗
n with L = 10, 15, 20 and p = 10, 15, 20 following the guidelines laid out in

Christensen, Podolskij, Thamrongrat, and Veliyev (2017). However, the rejection rates of the jump

test statistic are not sensitive to the concrete choice of tuning parameters. We therefore restrict

attention to L = 10 and p = 10. The corresponding tables for other combinations of tuning

parameters are available on request.

In Table B.1, we report the properties of the jump test statistic at the 5% significance level.

We start by commenting on the results simulated under the null H0 of no jumps. For this case,

the rejection rates are conservative relative to the nominal level of significance, except if c is small.

In the latter situation, the threshold is rather narrow and the truncation device starts to eliminate

continuous log-returns (drawn from states of high stochastic volatility). This instills a downward

bias in the pre-averaged bipower variation, as opposed to the non-truncated pre-averaged realized

variance, and leads to a widening of their difference, which measures the quadratic variation of

the jump component. As expected, this also has a minuscule impact on the rejection rates with

heteroscedastic noise but does not otherwise affect our results.

Next, consider the results conducted under the alternative, Ha. A near-perfect power close to

100% is recorded for the lowest jump activity indexes. As β increases, however, the rejection rate

goes down. This reduction is consistent with Aı̈t-Sahalia, Jacod, and Li (2012) and happens because
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the larger is β, the more the sample path of rdt resembles a Brownian motion (with smaller and

more erratic increments, cf. Figure B.1). This makes it tough for the test to discriminate between

H0 and Ha at least over discrete intervals of fixed length ∆n. Moreover, we see that power is a

decreasing function of c. The intuition is that as c increases, B̌V
∗
n and Σ∗

n are less jump resistant.

This lack of robustness tends to reduce power, as also emphasized in the no-noise version of the test

from Barndorff-Nielsen and Shephard (2006). To stay conservative, we set c = 5 in the empirical

analysis.

Finally, we observe that the rejection rates are negatively related to θ. The latter controls the

pre-averaging horizon and too much smoothing reduces our ability to detect jumps on the trajectory

of p. On the other hand, a larger pre-averaging window makes the estimator robust against more

complicated noise structures than what we assume here. In the empirical application, we settle on

θ = 1/2 as a compromise.

The right columns of Table B.1 contrast our jump test to the noise-free version from Barndorff-

Nielsen and Shephard (2006) implemented with a 5-minute realized variance and bipower variation.

The latter are not robust to noise. As a consequence of this, the size and power of the standard

jump test are distorted. In particular, the test is oversized under the null (rejects too often), while it

lacks power under the alternative (rejects too little). This is true regardless of whether we allow the

test statistic access to the latent efficient (no noise) log-price, p, or is computed from the observable

noisy log-price, p∗. This finding is consistent with the empirical results in Table 2.
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C Evolution of the after-hours market

In this appendix, we highlight key features of how the after-hours market has evolved over time.

Our main finding is that trading volumes have increased significantly over our sample from 2008 to

2020.

C.1 Trading Volume

The left panel in Figure C.1 shows how the daily transaction counts evolved during the regu-

lar trading session and the after-hours market over our sample which runs from 06/02/2008 to

12/31/2020, using a log-scale to improve readability. The right panel shows the median number of

shares traded. In both cases, we report a single daily value computed as a cross-sectional average

over the 25 companies included in our empirical analysis.

While after-hours transaction volume remains smaller than the regular trading session counter-

part, it increases notably over time, particularly after 2016. The opposite shift is evident in the

number of shares traded, which has trended down systematically from 2016 onward.

Figure C.1: Transaction count and number of shares traded.

Panel A: Transaction count. Panel B: Number of shares traded.
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Note. The figure plots transaction counts in Panel A and the number of shares traded in Panel B during the regular trading session and
after-hours session. The statistics are computed daily for each firm in our sample and then averaged over the cross-section.

The left panel in Figure C.2 shows the daily cross-sectional average transaction count in the after-

hours market relative to the regular trading session. The relative trading volume increases from

0.2% in 2008Q3–2009Q2 to 0.8% in 2020. There are notable spikes in the series, which frequently

exceeds 4% and goes as high as 11%. These surges occur mostly on days where large corporations

publish their financial results. To corroborate this statement, the right panel in Figure C.2 plots a
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kernel density estimate of the relative trading volume at the firm level on announcement days. To

highlight the pronounced differences in trading activity, the figure includes the 99th percentile of

the relative trading volume on no-announcement days (q0.99), which falls far in the left tail of the

distribution of relative trading volume on announcement days.

Figure C.2: Cross-sectional and firm level relative transaction count.
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Note. In Panel A, we plot the daily transaction count in the after-hours session relative to the transaction count in the regular trading
session, both aggregated over the cross-section of firms in our sample. In Panel B, we show the relative transaction count distribution at
the firm level on announcement days. The dashed line marks the 99th percentile relative transaction count on no announcement days.

C.2 Bid-Ask Spread

In Panel A of Figure C.3, we plot the daily cross-sectional average median quoted spread in basis

points for the regular trading session and after-hours session, whereas Panel B reports the relative

spread. The absolute spread (in basis points) is defined as

Spread = 10000× ask− bid

midquote
,

where midquote = (bid+ask)/2. The relative spread is Spreadafter-hours session/Spreadregular trading session.

The behavior of the quoted spread is consistent with a positive correlation between price volatil-

ity and trading costs. Spreads peak during the financial crisis in 2008–09 before starting a secular

downward trend lasting until the outbreak of the Covid-19 pandemic in 2020 which saw spreads

increase significantly. Relative to the spreads in the regular trading session, median spreads in

after-hours markets evolve stably, mostly falling in a range of four to eight times the regular session

spreads.
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Figure C.3: Bid-ask spread.

Panel A: Absolute spread. Panel B: Relative spread.
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Note. The figure plots the daily cross-sectional average median quoted bid-ask spread (in basis points) in the regular trading session and
after-hours session in Panel A, while the relative spread is shown in Panel B.

C.3 Price Discovery

To show how lengthy the price adjustment process is after an earnings announcement, we employ

a standard measure of price discovery, namely the weighted price contribution (WPC) of Barclay

and Warner (1993). For company i this is defined over small intraday intervals t:

WPCit =

#EAi∑
a=1

wa ×
ra,t
ra
, for t = 1, . . . , TA, (57)

where ra,t is the log-return for announcement a over time interval t, TA is the number of time

intervals, ra =
∑TA

t=1 ra,t is the total announcement log-return, wa = |ra| ×
(∑#EAi

a=1 |ra|
)−1

is

announcement a’s weight, and #EAi is the number of earnings announcements for company i, as

reported in Table 1. The WPC measure starts at zero and ends at one, so the price discovery

process is assumed to be completed at TA.
71

In Figure C.4, we plot the cumulative WPC measure for each of the 25 stocks in our analysis

along with their cross-sectional average. The return covers a period from 15 minutes before to

145 minutes after each announcement with the event window broken into 5-second subintervals.72

71We also calculated Hasbrouck (1995)’s information share (IS). Consistent with our results based on the WPC,
the IS measure suggests that anywhere between 60%–80% of the price discovery is accounted for in the first five
minutes after the announcement.

72We also constructed the WPC measure over a longer window that begins 15 minutes prior to each announcement
and extends through the overnight period and into next day’s pre-market trading up to the opening of the stock
exchange at 9:30am. The extended WPC curve is essentially flat after the end of the announcement day, suggesting
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Figure C.4: Weighted price contribution.
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Note. We plot the weighted price contribution (WPC) of Barclay and Warner (1993), which for company i is defined over small intraday

intervals t: WPCit =
∑#EAi

a=1 wa× ra,t

ra
, for t = 1, . . . , TA, where ra,t is the log-return for announcement a over time interval t, TA is the

total number of time intervals, ra =
∑TA

t=1 ra,t is the cumulative announcement log-return, wa = |ra| ×
(∑#EAi

a=1 |ra|
)−1

is the weight
for announcement a, and #EAi is the number of earnings announcements for company i, as reported in Table 1. The returns cover a
time interval from 15 minutes before to 145 minutes after each announcement with the event window broken into 5-second subintervals.
The WPC is shown for each company as a blue dotted line, while the full black line is the cross-sectional average.

Implicitly, the price at t = −15 is viewed as a proxy for the pre-announcement fundamental value,

while the price at t = 145 is representative of the post-announcement fundamental value. Since

the typical company announces earnings at 4:05pm, the pre-announcement fundamental value is

typically determined at 3:50pm during the very active regular trading session, while the post-

announcement fundamental value is measured around 6:30pm. The WPC curves in Figure C.4

suggest that price discovery is very fast with close to 70% of the post-announcement equilibrium

price being discovered within five minutes of an announcement.

Next, to examine how the price discovery process has shifted over time, Table C.1 reports the

daily weighted price contribution (WPC) divided into four time intervals that are motivated by our

empirical application and closely follow those used in Barclay and Hendershott (2003) and Jiang,

Likitapiwat, and McInish (2012), namely pre-market (6:00am–9:30am), regular trading (9:30am–

4:00pm), after-hours (4:00pm–6:30pm), and the overnight period (6:30pm–6:00am). In Panel A,

the WPC measure calculated over the full sample and across all days indicates that 7.51% of the

price discovery process occurs in the pre-market, 72.33% in regular trading, 5.42% in the after-

hours market, and 14.74% overnight. On earnings announcement days, however, these fractions

shift markedly as the 4:00pm–6:30pm segment accounts for 83.09% of the WPC, with only 9.14%,

5.27%, and 2.51% stemming from the remaining segments.

that very little additional price discovery takes place here.
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In Panels B and C of Table C.1, we split these results into subsamples, covering 2008–2015 and

2016–2020. Over time, the after-hours segment has gained in importance. On earnings announce-

ment days, it accounts for 88.94% of the WPC in the 2016–2020 sample. This increase has come at

the expense of the price discovery during the regular trading session which on days with an earnings

announcement has declined from 7.08% in the first sub-sample to 2.38% in the second sub-sample.

Table C.1: Weighted price contribution.

Pre-market Regular trading After-hours Overnight
9:30am–4:00pm 4:00pm–6:30pm 6:30pm–6:00am 6:00am–9:30am

Panel A: Full sample
All 0.7233 0.0542 0.1474 0.0751
No announcement 0.7579 0.0141 0.1537 0.0742
Announcement 0.0527*** 0.8309*** 0.0251*** 0.0914

Panel B: 2008 – 2015
All 0.7504 0.0451 0.1304 0.0741
No announcement 0.7854 0.0065 0.1354 0.0727
Announcement 0.0708*** 0.7942*** 0.0332*** 0.1018*

Panel C: 2016 – 2020
All 0.6804 0.0691 0.1738 0.0767
No announcement 0.7146 0.0264 0.1822 0.0768
Announcement 0.0238*** 0.8894*** 0.0120*** 0.0748

Note. We calculate the weighted price contribution (WPC) of of Barclay and Warner (1993) over the four time intervals pre-market
(9:30am–4:00pm), regular trading (4:00pm–6:30pm), after-hours (6:30pm–6:00am), and overnight (6:00am–9:30am). The WPC mea-
sure is described in Section C.3. The table shows the unconditional WPC (All), and the conditional WPC for no announcement and
announcement days. Panel A reports the full sample estimates, whereas Panels B–C report estimates separately for the subsamples
2008–2015 and 2016–2020. *, **, and *** denote that the no announcement WPC is statistically different from the announcement
WPC at the 10%, 5%, and 1% level of significance, as inferred from a nonparametric permutation test with 10,000 shuffles.

82



D Trading activity in the pre- and after-hours market.

Figure D.1: S&P 500 extended trading session transaction count.

Panel A: Pre-market trading (6:00am–9:30am). Panel B: After-hours market (4:00pm–6:30pm).
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Note. We download NYSE Trade and Quote (TAQ) high-frequency data for the constituent members of the S&P 500 index as of
12/31/2020. We sort the companies by their average transaction counts for the sample period 06/02/2008–12/31/2020. Panel A shows
the associated distribution for the pre-market session (6:00am–9:30am), whereas Panel B is for the after-hours session (4:00pm–6:30pm).
Both are reported on a log-scale. We further split the unconditional transaction count distribution into days with and without earnings
announcements. The vertical red dashed line indicates the transaction count for the twenty-fifth most liquid stock.
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E Case study of Apple

This appendix illustrates our broader results using Apple as a case study. Apple is among the most

important stocks throughout our entire sample and is followed by numerous analysts.

In Panel A of Figure E.1, we plot the proportion of the total volume (measured in transaction

counts) traded during the after-hours session (4:00pm–6:30pm) relative to the extended trading

session (9:30am–6:30pm). Liquidity in the after-hours market is typically small with an uncondi-

tional sample average value of 1.1% of the total volume. However, there are clear spikes on earnings

announcements days where the after-hours market is highly active and the relative trading volume

exceeds 18% on average on such days.

In Panel B of Figure E.1, we show the pre-averaged realized variance. The time series of the

daily volatility estimates is in agreement with Panel A. It displays regularly occurring spikes that,

consistent with the peaky trading volume, almost always occur on days with earnings announce-

ments.

Figure E.1: Relative trading volume and pre-averaged realized variance of Apple.

Panel A: Relative trading volume. Panel B: Pre-averaged realized variance.
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Note. In Panel A, we show the daily after-hours market (4:00pm–6:30pm) transaction count scaled by the total transaction count in
the extended trading session (9:30am–6:30pm). In Panel B, we plot the daily pre-averaged realized variance, converted to an annualized
standard deviation. In both panels, a red circle indicates a day on which Apple made an earnings announcement.

The left panel in Figure E.2 plots the pre-averaged realized variance computed over the regu-

lar trading session (9:30am–4:00pm) against its corresponding value computed over the extended

trading session (9:30am–6:30pm). The figure also marks days on which Apple announced earnings.

On days with no announcement, the estimates fall close to the 45-degree line. In contrast, on days

with an announcement, the estimates differ by a lot. The only notable exception in our sample

is 01/17/2009, where Apple sent out an e-mail informing about Steve Jobs’ medical leave, and
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01/02/2019, where the company issued a profit warning. Both these messages were released during

the after-hours session.

To examine whether the incremental variance in after-hours markets took the form of jumps,

Panel B in Figure E.2 plots the pre-averaged bipower variation against the pre-averaged realized

variance, both computed over the extended trading session. Because bipower variation does not

increase in the presence of jumps whereas the realized variance does, points on the 45-degree line

are indicative of days without jumps, whereas days with such jumps should appear to the right of

the line. Almost all days with price jumps in the extended trading session coincide with earnings

announcement days. The primary exceptions are the day of the Steve Jobs medical leave e-mail,

the profit warning, and the S&P 500 Flash Crash on 05/06/2010.

Figure E.2: Pre-averaged realized variance and bipower variation of Apple.

Panel A: Incremental return variation. Panel B: Incremental jump variation.
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Note. We show point estimates of the pre-averaged realized variance and pre-averaged bipower variation of Apple, converted to an
annualized standard deviation. The axis label shows which estimator is plotted. In parenthesis, we further indicate for which part of the
day high-frequency data are employed to calculate the estimate.
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