
 

DISCUSSION PAPER SERIES

 

DP18009 

ARTIFICIAL INTELLIGENCE & DATA
OBFUSCATION: ALGORITHMIC
COMPETITION IN DIGITAL AD

AUCTIONS

Francesco Decarolis, Gabriele Rovigatti, Michele
Rovigatti and Ksenia Shakhgildyan

INDUSTRIAL ORGANIZATION



ISSN 0265-8003

ARTIFICIAL INTELLIGENCE & DATA
OBFUSCATION: ALGORITHMIC COMPETITION IN

DIGITAL AD AUCTIONS
Francesco Decarolis, Gabriele Rovigatti, Michele Rovigatti and Ksenia Shakhgildyan

Discussion Paper DP18009
  Published 20 March 2023
  Submitted 20 March 2023

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

  

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Industrial Organization

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

  

Copyright: Francesco Decarolis, Gabriele Rovigatti, Michele Rovigatti and Ksenia Shakhgildyan



ARTIFICIAL INTELLIGENCE & DATA OBFUSCATION:
ALGORITHMIC COMPETITION IN DIGITAL AD

AUCTIONS
 

Abstract

Data are the key fuel of artificial intelligence and any change to the type and quality of available
data has an impact on the type and performance of the feasible algorithms. We analyze the
incentives that large digital platforms have to alter data flows to their advantage by strategically
obfuscating data. We quantify this phenomenon in the context of digital advertising auctions
through a series of simulated experiments where asymmetric bidders employ artificial intelligence
algorithms to compete in Generalized second-price auctions. We find that when less detailed
information is available to train algorithms, auctioneer revenues are substantially and persistently
higher.

JEL Classification: C73, D82, D83, D18

Keywords: Auctions, Procurement, Collusion, Data, Privacy

Francesco Decarolis - francesco.decarolis@unibocconi.it
Bocconi University and CEPR

Gabriele Rovigatti - gabriele.rovigatti@gmail.com
Bank of Itaky

Michele Rovigatti - mic.rovigatti@gmail.com
Bocconi University

Ksenia Shakhgildyan - ksenia.shakhgildyan@unibocconi.it
Bocconi University

Acknowledgements
We gratefully acknowledge financial support from the ERC Consolidator Grant - CoDiM-#101002867

Powered by TCPDF (www.tcpdf.org)



Artificial Intelligence & Data Obfuscation:
Algorithmic Competition in Digital Ad Auctions

By Francesco Decarolis, Gabriele Rovigatti, Michele Rovigatti,
Ksenia Shakhgildyan∗

Data are the key fuel of artificial intelligence and any change to the
type and quality of available data has an impact on the type and per-
formance of the feasible algorithms. We analyze the incentives that
large digital platforms have to alter data flows to their advantage
by strategically obfuscating data. We quantify this phenomenon in
the context of digital advertising auctions through a series of simu-
lated experiments where asymmetric bidders employ artificial intel-
ligence algorithms to compete in Generalized second-price auctions.
We find that when less detailed information is available to train
algorithms, auctioneer revenues are substantially and persistently
higher.

Keywords: Asymmetric Information, Auctions, Procurement, Ar-
tificial Intelligence, Collusion, Data, Privacy, Data Governance,
Digital Advertising, Competition, Digital Platforms.

JEL Codes: C73, D82, D83, D18, D44.

∗ Francesco Decarolis, Bocconi University, francesco.decarolis@unibocconi.it, Gabriele Rovi-
gatti, Bank of Italy, gabriele.rovigatti@bancaditalia.it, Michele Rovigatti, Bocconi University,
mic.rovigatti@gmail.com, Ksenia Shakhgildyan, Bocconi University, ksenia.shakhgildyan@unibocconi.it.
The views expressed in the article are those of the authors and do not involve the responsibility of the
Bank of Italy. We gratefully acknowledge financial support from the ERC Consolidator Grant - CoDiM
-#101002867.



AI & DATA OBFUSCATION 1

I. Introduction

Two interrelated trends characterizing today’s digital economy are the growing

use of Artificial Intelligence Algorithms (AIAs) for pricing, bidding, and other eco-

nomic decisions, and the restrictions in data flows motivated by various initiatives

for privacy protection enacted by both governments and large digital platforms.

For instance, through regulations like the General Data Protection Regulation

(GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the US,

governments are intervening in digital markets to establish and protect a right to

privacy in the digital realm. The large digital platforms have similarly embraced

privacy-motivated initiatives, like the tracking restrictions that Apple introduced

with the launch of IOS14 in April 2021 or the Google announcement in March

2021 that it is going to eliminate third-party cookies. This type of actions, while

motivated by consumers’ privacy concerns, crucially impact platform-to-business

interactions. Although the ongoing debate about regulating digital platforms is

looking at both these privacy initiatives and the growing use of AIAs, it is doing so

as if they were separate phenomena. But data are the key fuel of AIAs. Thus, any

change to the type and quality of available data has an impact on the type and

performance of the AIAs. This, in turn, implies that the large digital platforms

might have incentives to strategically alter data flows to their advantage.

A growing literature in economics focuses on data, data markets, and data

governance (see the reviews in (Bergemann and Morris 2019, Bergemann and

Bonatti 2019)). However, the link between platform data strategies and the AIAs

used by the business operating through these platforms is still unexplored. This

study contributes to filling this gap by analyzing the effects of different data poli-

cies on AIAs in the context of a market, digital advertising, that has all the main

ingredients required. First, a few large digital platforms decide on the data that are

fed to the advertisers (and their intermediaries) bidding in the online ad auctions

where ad space is sold. Second, these data have recently become more coarse: as

discussed extensively in the next section, over the last few years, the main platform
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of this sector (Google) has implemented multiple revisions to its data policy that

resulted in less and less information being provided to the bidders. Third, most of

the bidding happens via algorithms, oftentimes powered by artificial intelligence.1

Specifically, we focus on sponsored search which is the most lucrative portion of

digital advertising (worth more than 40 percent of all digital ad revenues).2 We

want to understand whether a platform that sells ad slots on its search engine

via Generalized second-price (GSP) auctions (as Google, Bing, or Yandex do) can

benefit from obfuscating the data available to the AIAs bidding in its auctions.

These algorithms require data to optimize bids, budgets, and keyword selection,

but, to a large extent, it is the selling platform that determines the type, amount,

frequency, and coarseness of the data released. As a result, platforms can poten-

tially control the effectiveness of AIAs. Regulations like the forthcoming Digital

Markets Act (DMA) in Europe mandate that ad platforms disclose data to adver-

tisers, but it is far from easy to inform regulators on which type of data to focus

on, especially given the conflicting role played by the privacy initiatives.3

In terms of the methodology, our approach follows (Calvano et al. 2020) by

setting up a series of computational experiments where AI algorithms interact in a

repeated game.4 In our simulated experiments, asymmetric bidders employ AIAs

to compete in repeated a GSP auction for a particular keyword ad. Different

classes of AIAs are feasible, depending on the amount of available information:

indeed, the available data determines the possible states of the world on which the

players condition future bids as well as the possibility to evaluate the counterfactual

scenarios. Hence, effectively, data policies determine to a significant extent the

types of AIAs can be used.

We focus on the case of Q-learning algorithms to take advantage of the trans-

1For an early industry survey, see (IAB 2018).
2See IAB, Internet Advertising Report, April 2021. According to Statista, ad spending in the US in

the Search Advertising segment is projected to reach $133.50bn in 2023, well above the projected spend-
ing in the Banner Advertising segment ($66.81bn) or the Social Media Advertising segment ($94.42bn).
Importantly, the Google’s top revenue source is search ads: according to Statista, of the $279.81bn in
revenue in 2022, $162.45bn (58%) came from search ads.

3The DMA contains provisions that on the one hand enhance transparency toward advertisers (Art.
6g), while on the other hand place restrictions on targeted and micro-targeted ads (Art. 6aa).

4In (Calvano et al. 2020) AIAs set prices in a Bertrand oligopoly, while we focus on auctions.
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parency of the learning process entailed by these algorithms.5 We illustrate that,

when less detailed information is available to train the algorithms, this restricts

two key design features of the algorithm: the learning rule and the memory. We

show that when we move between a scenario of full information where the plat-

form releases data on all the bids submitted in the past period to one where no

data is released, the advertisers’ rewards decline and conversely, the auctioneer

revenues increase. In particular, in our baseline setting, the decision not to reveal

competitor bids increases the platform revenues by 22%. We also show that an

intermediate case where some, partial information about rival bids is disclosed,

leads to a more moderate decline in advertiser revenues.6

We then explore the mechanisms behind our findings. Although it is notoriously

difficult to fully open up the black box of how AIAs work, in our case a key

driver of the behavior of the AIAs can be traced back to dynamic strategies.7

Through a series of controlled alterations of the baseline algorithms, we detect that

it is the feasibility of dynamic strategies entailing the possibility of punishment-

reward schemes that drive the tendency of the most data-intensive algorithms to

coordinate on lower bids. Indeed, our second main finding is that algorithmic

bidding has a tendency to sustain low bids relative to the competitive benchmark

case and that this tendency is stronger the more data are available.

Finally, we also explore the generalizability of our experimental results. We

consider three dimensions along which to extend our results. First, given the wide

margins by which the design of AIAs can vary, we consider a series of alternative

settings of Q-learning AIAs; second, we look at variations in the GSP auction game

by analyzing alternative examples in the literature; lastly, we consider alternative

5Q-learning is the basis of all reinforcement learning algorithms, and the problem of bidding in the ad
auctions is a reinforcement learning problem by nature. See, for example, “AI in Advertising: Real-Time
Bidding & Reinforcement Learning.”Moreover, Q-learning algorithms are often analyzed in the literature
since they are characterized by a few parameters, each having a straightforward economic interpretation.

6Note that we focus on the one keyword ad auction to show that already in this setting the effect of
information obfuscation on auctioneer revenues is strong. In this setting, the crucial information regards
the competitors’ bids. In reality, since advertisers bid on many keywords, and there could exist additional
uncertainty regarding the profitability of bidding on a given keyword, the overall effect would be stronger.

7For the practical relevance and fundamental role of dynamic strategies in repeated auctions see
(Chassang and Ortner 2018).
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auction designs, notably the Vickrey-Clarke-Groves (VCG) mechanism. In general,

we find that all of the extensions lead to the same qualitative outcome of the

baseline findings, with differences only in the magnitude of the revenue changes

across different data obfuscation scenarios.

Literature Our study contributes to three main branches of the literature. We

briefly list these literatures here, while leaving to later sections the discussion of

how our results more directly relate to other studies. The first branch regards data

markets and the design of information. While the relevance of information is an old

idea, its modern incarnation in the form of studies on privacy, information design,

and information markets reflects the key role that data has come to play in today’s

digital economies. Three comprehensive overviews of these areas are (Acquisti,

Taylor and Wagman 2016) about privacy, (Bergemann and Morris 2019) about

information design and (Bergemann and Bonatti 2019) about information mar-

kets. Online advertising, due to both its economic relevance and its fundamental

connection to data markets, has been one the main areas where this literature has

looked for applications, see (Bergemann et al. 2022b) and (Bergemann et al. 2022a).

Our study contributes to this literature by proposing a new viewpoint to interpret

platform data strategies: that of influencing the outcomes of the AIAs operating

through platform-provided data. Although not focused on AI, the closest paper

to ours is (Alcobendas, Kobayashi and Shum 2021) on how the elimination of

third-party cookies (as announced by Google and already implemented by other

browsers), by depriving advertisers of this information, affects their bidding and

revenues in the display ad auctions. Similarly to us, they find marked losses for

advertisers and benefits for the platform.

The second branch is that on the effects of artificial intelligence and, more specif-

ically, its impacts on pricing. (Agrawal, Gans and Goldfarb 2022) offers a general

overview of the economic impacts of AI, while (Calvano et al. 2020) is the first

study to explore how and why prices set by AIAs might differ from static equi-

librium predictions. How AIAs design features drive pricing has been stressed by

(Asker, Fershtman and Pakes 2022). Most of the studies in this area adopt the
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method of simulated experiments that we also follow, but an important exception

is (Assad et al. 2020) who use data on gas pricing in Germany to show how the de-

ployment of AIAs in this market lead to substantial price increases. This literature

is rapidly growing in many directions,8 including one that specifically focuses on

AI bidding auctions, see (Dütting et al. 2017), (Heidekrüger et al. 2021), (Bichler,

Fichtl and Heidekrüger 2021) and (Banchio and Skrzypacz 2022). Compared to

these studies, our contribution differs both because we analyze AIAs bidding in

GSP and VCG auctions (i.e., solving the problem of simultaneously allocating

multiple, heterogeneous objects) and because we emphasize how the designs of the

AIAs is reflective of the type of data available for their training.

The third branch is that on online advertising and, more specifically, on spon-

sored search. This key area of digital advertising has been the focus of intensive

research and we are particularly close to those studies centered on the function-

ing of search auctions. Starting with the seminal works of (Edelman, Ostro-

vsky and Schwarz 2007) and (Varian 2007), this literature has been extended

along many directions by (Borgers et al. 2013), (Athey and Nekipelov 2014),

(Gomes and Sweeney 2014), (Blake, Nosko and Tadelis 2015), (Che, Choi and Kim

2017), (Simonov, Nosko and Rao 2018), (Decarolis, Goldmanis and Penta 2020),

(Simonov and Hill 2021), (Decarolis and Rovigatti 2021), (Deng et al. 2023). We

contribute to this literature by introducing the analysis of AIAs. Search advertis-

ing also sits at the core of the antitrust concerns about digital platforms and the

forthcoming regulation of this sector, (Morton and Dinielli 2020). In this respect,

our results drive attention to a series of changes in the data flows characterizing

this sector and offer a rationale for why they might concern regulators.

The paper proceeds as follows: Section 2 presents data policies and obfuscation

strategies by the platform; Section 3 presents the GSP auction model; Section

4 describes the design features of the AIAs experiments; Section 5 describes the

simulation results; Section 6 presents the generalizations; Section 7 concludes.

8See, among others, (Chen, Mislove and Wilson 2016), (Competition and Authority 2018), (Klein
2021), (Brown and MacKay 2021), (Banchio and Mantegazza 2022) and (Mehta and Perlroth 2023).
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II. Data Policy: Obfuscation Strategies by the Platform

We start by describing the data policies considered in this paper and by providing

some evidence on the obfuscation strategies of the platforms running online ad

auctions. By data obfuscation, we refer to the tendency of search engines to

disclose increasingly coarser data to advertisers.

A search engine hosting GSP auctions has ample latitude about the data that it

releases to bidders. Different considerations, from the technological feasibility to

economic features like the reputation that the platform has (or seeks to establish)

will inform its data policy. For the sake of clarity, in this paper, we will focus

on two extreme scenarios (Full Information vs No Information), but also, among

the infinitely many cases in between, present an intermediate case of Partial In-

formation. These three cases differ in terms of what the platform reveals about

bids:

I. Full Information: In every period, the bidder observes not only the current

reward but also the bids of the other players submitted in the past period.

II. Partial Information: In every period, the bidder observes not only the current

reward but also her bid submitted in the past period and the price paid.

III. No Information: The only information that the bidder observes is the reward

she received after submitting a particular bid.

We now turn to a few examples of data policies and their evolution. We focus

on the case of Google. (Varian 2007) and (Edelman, Ostrovsky and Schwarz 2007)

pioneered the equilibrium analysis of the search auctions and argued that a com-

plete information game was an adequate approximation of the environment faced

by the bidder. This choice was in sharp contrast with the canonical auction lit-

erature but was motivated by the specificities of the environment. As stated in

(Varian 2007): “(...)one might ask how likely it is that advertisers know what they

need to know to implement a full information equilibrium. (...) Google reports
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click and impression data on an hour-by-hour basis and a few days of experimen-

tation can yield pretty good estimates of the number of clicks received for different

bids. Furthermore, Google itself offers a “Traffic Estimator” that provides an es-

timate of the number of clicks per day and the cost per day associated with the

advertiser’s choice of keywords. Finally, third-party companies known as “Search

Engine Managers (SEMs)” offer a variety of services related to managing bids.

The availability of such tools and services, along with the ease of experimentation,

suggest that the full-information assumption is a reasonable first approximation.

As we will see below, the Nash equilibrium model seems to fit the observed choices

well.”

Fast forward to today, the situation is radically changed. Many SEMs have been

thrown out of business by how Google has limited their access to the data and,

among those still in business, several have abandoned those activities that involved

bidding on clients’ behalf. In particular, among the changes to the data policy

of Google, one that has received substantial attention from the industry is that

involving the “search terms report”. This report used to be a crucial tool to assess

how each keyword ad was performing. But starting in September 2020, Google

modified it to contain exclusively “terms that a significant number of users searched

for, even if a term received a click.” Industry specialists have argued that this led

to at least 20 percent of search terms becoming invisible to advertisers.9 Another

related instance occurred in July 2021 when Google announced “changes to phrase

match and broad match modifiers”: following changes that had begun in February

2021, the new system in place meant that keyword matches became broader, thus

making it harder for advertisers to relate the keyword (for which they bid) to the

user queries (which, if generating clicks, trigger the advertiser payments).10 Several

other examples exist and all describe the same pattern toward data obfuscation.11

9See panel (A1a) and (A1b) in Figure A1 in the Online Appendix reporting screenshots of the Google
announcement and of a news article on its effects.

10See panel (A1c) in Figure A1 in the Online Appendix reporting a screenshot of the Google announce-
ment.

11For instance, this is the case of the elimination of the average position. To know in which slot an ad
was shown, the average position used to be a highly informative metric. However, a data policy change
in February 2019 replaced it with coarser information describing what percent of ads appear at the top
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Therefore, despite the richness of the potentially available information, spon-

sored search auctions now release so little information to advertisers that even the

most extreme scenario that we consider (No Information) is likely a reasonable

approximation of how this market currently works. Indeed, as much as it appears

ludicrous that an advertiser does not even observe the price she paid for bidding on

a keyword, this is what the combination of a second price system (that decouples

bids from prices) and the revised data policies described above produce: a keyword

bid is assigned through broad matches to multiple queries in ways that advertisers

cannot control anymore neither ex ante (due to the broad match modifiers) nor

ex-post (due to the revised search terms report). This might also explain why

Google is moving toward a system of data-driven attribution.12

Different forces might be behind the revised data policies described above. For

instance, regarding the changes to the search terms report, Google motivated it

with the aim “to maintain our standards of privacy and strengthen our protections

around user data.” The same privacy narrative is behind all of the recent revisions

to data policies adopted by the large digital platforms.13

Without questioning the underlying motivations, it is important to assess what

the consequences, intended or not, are. This is what we do in the next sections by

evaluating which AIAs are feasible and how they perform under different informa-

tion regimes. But we first introduce our baseline setting of the GSP auction.

III. Generalized Second-Price Auction

Consider three advertisers i ∈ {1, 2, 3} bidding in an online advertising auction

with two slots. Advertisers value a click on their ad differently: v1 = 3, v2 = 2,

v3 = 1. If an ad is placed on the first slot, it gets five clicks, whereas the second

of the page (and at the very top of the page). See panel (A1d) in Figure A1 in the Online Appendix
reporting a screenshot of the Google announcement.

12Attribution is a fundamental element in digital advertising, as it relates a conversion to an action (in
our case, a bid on a keyword). In September 2021, Google announced changes to the default attribution
of clicks to bids offering a cryptic description: “data-driven attribution uses the Shapley value solution
concept from cooperative game theory”. See details in Figure A2 in the Online Appendix.

13Apple, for instance, described privacy protection as the reason for its IOS14 “do not track” feature.
But, privacy implications aside, this revision turned out to greatly benefit the Apple ad network at the ex-
pense of the Facebook one, see https://www.ft.com/content/074b881f-a931-4986-888e-2ac53e286b9d.
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slot leads to two clicks. Denote these click-through-rates (CTRs): x1 = 5, x2 = 2.

We discretize the set of feasible bids B on the interval [Bmin,Bmax] = [0.2, 3], with

k = 15 possible bids so that the step between the bids is 0.2. The bid of advertiser

i is denoted bi. The first slot is assigned to the highest bidder and the second to

the second highest. When several bids are equal, the slots are allocated randomly.

Denote the rank of advertiser i’s bid ρ (i), then, the resulting payoff is vix
ρ(i). In

the GSP mechanism, each bidder pays the price-per-click equal to the bid of the

advertiser placed below him. As a result, bidder i’s reward in the GSP auction

can be written as ri =
(
vi − bρ(i)+1

)
xρ(i).

The static GSP auction has many Nash equilibria. For this reason, (Varian 2007)

and (Edelman, Ostrovsky and Schwarz 2007) introduced a refinement of the set

of equilibria of this full information game, the lowest-revenue locally envy-free

equilibrium (EOS), which is predominantly used in the literature on the GSP as a

competitive benchmark.14 The EOS equilibrium of the three-player game is given

by b1 > b2, b2 = 1.6, b3 = 1, and leads to auctioneer revenue R = 10.

IV. Design Features of the AIAs Experiments

In this section, we describe the design features of the AIAs and relate them to

different information regimes chosen by an online advertising platform.

The auction game described above is repeated many times. This repetition is

what allows the AIAs to learn, through a process of trial and error, how to optimize

bids in order to maximize the expected present value of the reward stream.15 In

particular, the AIAs that we consider are Q-learning algorithms bidding against

each other and learning simultaneously.16 Their training entails striking a bal-

14A Nash equilibrium is locally envy-free if xρ(i)(vi − bρ(i)+1) ≥ xρ(i)−1(vi − bρ(i)) for every i. EOS
refinement is the lowest-revenue Nash equilibrium which satisfies this condition. This refinement is espe-
cially important because it conforms with the search engines’ tutorials on how to bid in these auctions.
See, for instance, the Google AdWord tutorial in which Hal Varian teaches how to maximize profits by
following this bidding strategy: https://www.youtube.com/watch?v=tW3BRMld1c8. As EOS showed, such
equilibria induce the same allocations and payments as truthful bidding in the Vickrey-Clarke-Groves
(VCG) auction, and they are fully characterized by the following conditions: denote by S the number of

available slots, then b1 > b2, bi = vi for all i > S, and for all i = 2, . . . , S, bi = vi − xi

xi−1 (vi − bi+1) .
15Which equals for player i, E[

∑t=∞
t=0 δtrit], where δ is the discount factor.

16For an overview of this type of AIAs see (Sutton and Andrew 2018).
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ance between exploration (trying out new strategies) and exploitation (using the

obtained knowledge).

The knowledge

The knowledge of each algorithm is represented by the Q-matrix, which is the

matrix of expected rewards from each possible bid in each possible state of the

game. For each bidder i, in each period t, it is Qi
t(s, b), where b ∈ B, and s ∈ S.

Here, the states of the game can contain different amounts of information about the

past auction outcomes. For example, in the Full Information experiment setting,

each state is defined by the previous bids of all players. In the first period, each

cell of the Q-matrix is initialized randomly.

The experimentation

To fully explore the Q-matrix, the algorithm should visit different actions in

different states, even the ones that it finds not optimal, given prior knowledge. We

use an ϵ-greedy exploration strategy. At each iteration, the algorithm chooses the

bid that currently leads to the highest value of Q-matrix in a given state with a

probability 1− ϵ, and with probability ϵ chooses a random bid among all possible

ones.17 We use a declining with time exploration rate ϵt = e−β∗t, where β > 0 is

the annihilation coefficient.18

Among the many features that characterize how an AIA is designed, two play a

particularly key role in our analysis: the updating rule and the data usage.

IV.A. The Updating Rule

The information obtained in period t is used for updating the Q-matrix. The

algorithm starts from an initial Q-matrix. After choosing bid bit in state st, the

17In what follows we assume that if several bids lead to the same value of Q-matrix in a given state,
one of them is chosen randomly. Results hold also when the algorithms are conservative and choose the
lowest bid, or greedy and choose the highest. See Appendix B.

18We use β = 8.137e − 07, for the simulations with 15,000,000 iterations, and β = 1.22e − 05 for the
simulations with 1,000,000 iterations, so that at the last iteration, the probability of exploration is only
5e-06.
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algorithm observes the reward rit as well as st+1, and updates Qi
t(s, b). The up-

dating can happen in a number of ways. We consider two main approaches that

the literature describes as synchronous and asynchronous updating rules:

I. Asynchronous Updating : For each i, Qi(st, b
i
t) is updated using the following

“temporal difference” update rule:

Qi
t+1(st, b

i
t) = (1− α)Qi

t(st, b
i
t) + α ∗ (rit(st, bit, b−i

t ) + δ ∗max
b′∈B

Qi
t(st+1, b

′)).

Here α is the learning rate.19 The learning rate determines to what extent

the new information substitutes the old (“how much” the algorithm learns

from new bids and received rewards). At the same time, Qi
t+1(s, b) = Qi

t(s, b)

for all s ̸= st, b ̸= bit. Asynchronous updating only requires knowledge of the

reward received from the submitted bid.

II. Synchronous Updating : Qi(st, b) is updated for all bids b ∈ B with a reward

rit(st, b, b
−i
t ) that the bidder would have received had it submitted a bid b,

given the bids of other players b−i:

Qi
t+1(st, b) = (1− α)Qi

t(st, b) + α ∗ (rit(st, b, b−i
t ) + δ ∗max

b′∈B
Qi

t(st+1, b
′)),

and Qi
t+1(s, b) = Qi

t(s, b) for all s ̸= st. Thus, synchronous updating requires

calculating the rewards for all the bids of i, rit(st, b, b
−i
t ), hence also for those

bids that were not submitted b ̸= bit.

From the description above it is clear that the feasibility of the two approaches

above crucially hinges on the available data and on how such data can be used to

calculate the counterfactual reward associated with actions that are not taken. In

our setting, the GSP auction has very clear rules to determine the allocation of slots

and payments depending on the bids received.20 Hence, if bidder i observes the

19In what follows, α = 0.1 which is a standard in computer science literature. We have also explored
other learning rates, in particular, α = 0.05, 0.2, 0.3, and our results are qualitatively similar. Moreover,
δ = 0.95 unless stated otherwise.

20A synchronous algorithm thus operates in a way similar to how economists approach equilibrium
analysis. See (Asker, Fershtman and Pakes 2022) for a discussion.
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bids of competitors b−i, the calculation of his reward under any possible bi holding

fixed b−i is trivial and, therefore, using a synchronous updating rule is feasible. But

absent data on b−i, this counterfactual calculation is unfeasible. In this case, an

asynchronous updating rule is instead possible because its implementation requires

observing only the reward associated with the bid effectively submitted by i.

IV.B. The Data Usage

The data is used not only to calculate the rewards associated with the different

actions but also to keep track of the state. In this regard, there are two polar cases

that we can consider in terms of how the data is used:

I. Stateful algorithms: Stateful algorithms maintain a record of previous bids

and use this information to inform their decisions. In particular, in case of

Full Information, we define for each of the players st = (bit−1, b
−i
t−1), whereas

for the case of Partial Information, st = (bit−1, b
ρ(i)+1
t−1 ).

II. Stateless algorithms: Stateless algorithms, on the other hand, do not retain

information from previous steps. They make decisions based solely on the

current reward. In particular, in that case, st = ∅.

A key difference between stateful and stateless algorithms is that the former, since

it has memory, can respond differently to the same received rewards, based on the

previous state. This, in turn, allows for dynamic strategies that are not possible

with stateless algorithms. But data requirements are greater for stateful algorithms

as they need to keep track of past bids, relative to the case of stateless algorithms

which do not require such information.

Link between Data Policies and AIAs

Finally, let us connect different data policies to the feasibility of different AIA

designs. It is only under Full Information that Stateful Synchronous algorithms

(Stateful algorithms with Synchronous updating rule) are feasible. Instead, un-

der No Information, the Stateless Asynchronous (Stateless algorithms with Asyn-
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chronous updating rule) is the only possible form of AIA. Partial Information

allows asynchronous AIAs to retain some, limited form of memory containing

one’s own bids and prices paid (we will refer to this type of AIAs as Partial Asyn-

chronous algorithms). Hence, the platform data policy determines to a significant

extent the type of AIAs that advertisers can use and a movement away from full

information is what we consider a data obfuscation strategy.

V. Results

We begin by contrasting the outcomes under the two most extreme scenarios:

Full Information vs No Information. In terms of the AIAs, this means contrasting

the algorithm that exploits the most data, the Stateful Synchronous algorithm

which requires Full Information to the algorithm that requires the least data,

the Stateless Asynchronous algorithm, the only type of algorithm implementable

under No Information.

Table 1 presents these baseline results. The first row summarizes the outcomes

when the bidders have access to the information on the competitors’ bids and

use Stateful Synchronous algorithms, whereas the second row shows the outcomes

when the platform restricts access to the information on the competitors’ bids, and

as a result, the advertisers use Stateless Asynchronous algorithms. For each of the

settings, we ran the experiment 50 times. Column 1 reports the average bids at

convergence for each of the players in the decreasing order of valuations.21 Each

run differs only in terms of the randomly initialized Q-matrix, as well as random

exploration. Column 2 presents the average rewards at convergence, while column

3 reports the average auctioneer revenue across runs as well as its 95% confidence

interval for the revenue (in squared brackets).

The decision not to reveal competitor bids increases the platform’s average rev-

enues by 22%, from 7.2 to 8.76. That is driven by the reduction in the reward

of the highest-value player from 9 to 7.46 due to the increase in the bid of the

21The advertiser with value-per-click v1 = 3 on average at convergence bids 2.03, the advertiser with
value-per-click v2 = 2 bids 1.2, whereas the advertiser with v3 = 1 bids 0.6 when Stateful Synchronous
algorithms are played.



AI & DATA OBFUSCATION 14

second-highest-value player, from 1.2 to 1.51.

To expand our analysis, we consider a series of other experimental designs, start-

ing from the one that applies to the scenario of Partial Information. Table 2 il-

lustrates the results for this case in its first row where we consider an AIA that is

asynchronous but has a memory of the past price paid by the agent. Consistent

with the intuition, this Partial Asynchronous algorithm produces average auction-

eer revenue lower than in the case of No Information (when Stateless Asynchronous

algorithms are used), but still significantly higher than the average auctioneer rev-

enues under the Full Information (when Stateful Synchronous algorithms are used

instead). In particular, average auctioneer revenue increases by 8%, from 7.2 to

7.79, when the auctioneer instead of revealing all the bids, only reveals the prices

paid.

Two other cases are considered and reported in the last two rows of Table 2.

These look at how the performance of the Stateful Synchronous algorithm changes

if we either shut down the forward-looking element of the payoff (i.e., we set δ=0

in the updating rule) or if we eliminate its memory of past bids (i.e., adopt a

stateless algorithm). These two cases are of limited practical relevance within

our setting because, if the platform discloses the full information needed by the

synchronous algorithm, there would be no reason to ignore past states or future

rewards. But they do serve an important illustrative role to explain our findings.

Indeed, in both of these alternative versions of the synchronous algorithm, the

bids at convergence are very close to those of the baseline Stateless Asynchronous

and so are the revenues. These latter results are suggestive that the behavior

observed for the baseline Stateful Synchronous algorithm crucially depends on the

possibility of adopting dynamic strategies, which indeed require both memory of

the past and attention to the future.

Before exploring why dynamic strategies are important, let us complete the

description of the baseline findings. So far we have focused on the bids and revenues

at convergence; that is, on what the algorithms do once they have attained stable
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behavior.22 But convergence requires a large number of periods.23 Figure 1 shows

the evolution of the auctioneer’s revenues, individual bids, and rewards (vertical

axis) by the percent of the total number of iterations (horizontal axis). The black

line represents the mean of the distribution of revenues across simulation runs, the

dark grey zone is the area between the 25th and 75th percentiles, while the light

grey is the zone between the 10th and 90th percentiles. The algorithms start to

coordinate long before convergence is achieved. The auctioneer revenues start from

a fairly large value, but this is simply because the algorithms initially randomize

uniformly across bids that, on average, lead to a revenue similar to the EOS

level. This effect disappears as experimentation starts to be less prominent, and

eventually, auctioneer revenues converge to the lower level. As can be seen from

Panels (d)-(i), most of the difference in revenues between Stateful Synchronous and

Stateless Asynchronous experiments is driven by the reduction in the reward of

the highest-value player due to the increase in the bid of the second-highest-value

player.

V.A. Drivers of the Baseline Findings

Although it is notoriously difficult to fully open up the black box of how AIAs

work, in our case a key driver of the behavior of the Stateful Synchronous algorithm

relative to the Stateless Asynchronous algorithm can be traced back to dynamic

strategies. Building upon our earlier discussion of the experiments in Table 2,

here we compare the bid evolution when the synchronous algorithm learns to bid

with different discounting of the future payoffs. In particular, Figure 2 shows the

evolution of the bids by the percent of the total number of iterations in the baseline

Stateful Synchronous experiment with δ = 0.95 as well as in the one with δ = 0.

The difference is striking. We can observe that, while with δ = 0.95 when one

of the players increases the bid the other right away follows, no such behavior

is observed in the case when δ = 0. Moreover, as discussed earlier, the average

22See Appendix A for the definition and discussion of convergence.
23Much less for the Stateless algorithms, but in the order of millions of iterations for the Stateful.
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auctioneer revenues in the case of Stateful Synchronous experiments with δ = 0

are 8.57 and not statistically different from the ones in Stateless Asynchronous

experiments.

That logic can be seen clearly in Figure 3. Here, we have focused on the Stateful

Synchronous algorithm’s bids at convergence. We start with the final Q-matrix,

but then introduce an exogenous shock to the bid of Player v2 = 2. Instead of

bidding 1.2, she deviates to bidding 1.6 in the period that we call 0. What follows

is that when Player v2 = 2 deviates, Player v3 = 1 increases her bid (punishes

with a higher price).24 Importantly, just after a few periods, all players return to

equilibrium bidding.25

VI. Generalizations

In this section, we extend our results along three dimensions. First, we consider

alternative settings of Q-learning AIAs; second, we look at variations in the GSP

auction game; lastly, we consider alternative auction designs. In general, all of the

extensions below lead to the same qualitative outcome of the baseline findings,

with differences only in the magnitude of the revenue increase via obfuscation.

Starting from the case of alternative AIAs, we consider different designs of the

Q-learners. These results are presented in Appendix B. In particular, we first

consider two alternative bid selection methods for the cases in which different

actions are associated with identical Q-values. We show that the main results also

hold both when the algorithms are conservative and choose the lowest bid, as well

as when the algorithms are greedy and choose the highest bid. See Table A1.26

In another extension, we consider asymmetric grids, spanning the same bid space,

but featuring a different number of actions for each player. In particular, in Table

A2 we show that results are almost identical for a variation of the baseline setting

24That is the result of a long history of learning, not a random action chosen by Player v3 = 1 on a
wider interval of actions since Q-value of the bid 1.2 could have been updated just by an insignificant
amount.

25The exact number of periods depends on a particular simulation run, and varies from 2 to 5.
26As a reminder, in the baseline model, we employ a random method - i.e., the AIA chooses the action

randomly among all that lead to the highest possible Q-value in a given state.
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such that Player v1 = 3 and v3 = 1 have k = 15 possible bids, whereas Player

v2 = 2 instead has a finer grid with k = 20 bids.27

The second generalization regards variations to the GSP stage game. In Ap-

pendix C, we show that the increase in auctioneer revenues due to the information

restriction can be much higher than in our baseline experiment. To do that, we run

an experiment with three asymmetric advertisers bidding in an online advertising

auction with three slots, taken from (Milgrom and Mollner 2014). Advertisers

value a click on their ad differently: v1 = 15, v2 = 10, v3 = 5, so the ratio of

the values is the same as in our baseline setting. What is different is the relative

click-through rates. If an ad is placed on the first slot, it gets 100 clicks, whereas

the second slot leads to three clicks, and the third to one click. In this case, we

find that the increase in auctioneer revenues due to the data obfuscation is 82%.

The third and last variation involves alternative auction designs. In Appendix D,

we consider another mechanism, namely the Vickrey-Clarke-Groves (VCG) which

is also used in online advertising.28 We find that for the VCG, the decision not to

reveal competitor bids increases the platform’s average revenues by 38%. More-

over, the auctioneer revenues under the VCG setting tend to be lower than those

under the GSP. The results are presented in Table A5. This latter finding is com-

plementary to the results of a growing number of studies on the performance of

AIAs across auction formats.29

VII. Conclusions

In this study, we analyzed the role of AI in digital ad auctions. Through compu-

tational experiments, we evaluated the performance of bidding algorithms powered

27In that setting, the ties with Player v2 are no longer possible for all the bids excluding the mix = 0.2
and max = 3.

28VCG is allegedly used by Facebook.
29For instance, a thorough analysis of first price vs second price auctions is conducted in (Banchio and

Skrzypacz 2022). This study considers exclusively stateless algorithms and focuses on a setting with two
symmetric players, asking whether bids converge to the Nash equilibrium. It finds that this is the case
for the second-price auction, but bids are below the competitive level for the first-price auction. However,
even in the first price auction bids converge to Nash equilibrium if information about lowest bid to win
is available. This indicates that stateless synchronous algorithms converge to Nash equilibria. A result
which is also coherent with (Asker, Fershtman and Pakes 2021) who find the same in the context of a
Bertrand oligopoly pricing game.
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by AI across several stylized auction games characterized by different information

levels. We find that when less detailed information is available to the algorithms,

the advertisers’ rewards tend to be lower, and conversely, the auctioneer revenues

tend to increase. In particular, the decision not to reveal competitor bids increases

the platform revenues by 22%. This increase is driven by the fact that with No In-

formation (the bidder observes only her own reward) only Stateless Asynchronous

algorithms can be used, while in case of Full Information (the bidder observes not

only the current reward but also the bids of the other players submitted in the past

period), bidders could instead exploit Stateful Synchronous algorithms. Moreover,

algorithmic bidding sustains low bids under the GSP relative to the competitive

benchmark. The results are robust to a number of extensions, notably the change

of the auction format from GSP to VCG.

These results might help to understand the implications of recent decisions by

digitals platforms. In the context of search advertising, advertisers on Google

have experienced a reduction in the amount and type of data available to optimize

their bidding strategies. This deliberate increase in the extent of data fogginess,

while responding to the growing privacy concerns among search users, creates

a trade-off with market competition. This result extends to the case of search

advertising a series of other studies that have emphasized side effects of the public

and private initiatives motivated by privacy protection concerns, see (Aridor, Che

and Salz 2022) and (Lefrere et al. 2022).

Our result also highlight several important features regarding how AI shapes the

functioning of ad auctions. In our setting, the AIAs produce three outcomes that

differ relative to what might be expected under an equilibrium analysis. First,

bids converge to values that are lower than those of the EOS equilibrium generally

adopted in the literature. Second, the auctioneer revenues differ between GSP

and VCG auctions, with the latter being lower. Third, contrary to the common

wisdom in the auction literature (i.e., the linkage principle), for the auctioneer

it is preferable to provide bidders with less information. The spirit of this third

result is thus analogous to that of (Alcobendas, Kobayashi and Shum 2021) who
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identify an incentive for a platform to obfuscate data in the form of elimination

of third-party cookies in display ad auctions. In their case, the incentive for the

platform derives from its maintained access to the cookie data that can be used

to advantage selected bidders. In our case, what solves the puzzling contradiction

with the linkage principle is that, when AIAs bid, their tendency toward lower bids

is enhanced by access to more information, thus outweighing the benefits that an

auctioneer would derive from competition among better informed bidders.

Overall, the results in this study open the door to numerous extensions. For in-

stance, in a follow-up study, we also analyze the tension created by the deployment

of AI bidding tools by the platform. These tools might be trained by the platform

on data that is superior to that available to advertisers or their intermediaries,

thus leading such platform-sponsored tools to outperform the competition. But

once all the bidding activity is directly delegated to the platform itself, the risks for

competition or, at the very least, the lock-in effect for advertisers are significant.
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Table 1—: Simulation Results of Baseline Experimental Designs

Bids Individual Rewards Revenue
Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2

[7.03, 7.37]
Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76

[8.39, 9.13]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order
of valuations; column 2 - the average across runs limit individual reward for each of the players in the
decreasing order of valuations; while column 3 - the average auctioneer revenue across runs as well as
the 95% confidence interval for the revenue in squared brackets. The Stateful Synchronous experiments
were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07, δ = 0.95. The Stateless Asynchronous
experiments were run with 1,000,000 iterations and β = 1.22e− 05.

Table 2—: Simulation Results of Alternative Experimental Designs

Bids Individual Rewards Revenue
Partial Asynchronous (2.2, 1.36, 0.59) (7.74, 2.62, 0.13) 7.87

[7.35, 8.39]
Stateful Synchronous (δ = 0) (2.46, 1.47, 0.61) (7.64, 2.79, 0.0) 8.57

[8.24, 8.9]
Stateless Synchronous (2.49, 1.49, 0.6) (7.55, 2.8, 0.0) 8.65

[8.31, 8.99]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order
of valuations; column 2 - the average across runs limit individual reward for each of the players in the
decreasing order of valuations; while column 3 - the average auctioneer revenue across runs as well as
the 95% confidence interval for the revenue in squared brackets. The Stateful Synchronous experiments
were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07, δ = 0.95. The Stateless Asynchronous
experiments were run with 1,000,000 iterations and β = 1.22e− 05.
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(a) Stateful Sync Revenues (b) Stateless Async Revenues (c) Revenues Evolutions

(d) Bids of Player v1 = 3 (e) Bids of Player v2 = 2 (f) Bids of Player v3 = 1

(g) Rewards of Player v1 = 3 (h) Rewards of Player v2 = 2 (i) Rewards of Player v3 = 1

Figure 1. : Evolution of Auctioneer’s Revenues, Bids, and Rewards

Note: Panels (a)-(c) show the evolution of the auctioneer’s revenues (vertical axis) by the percent of the
total number of iterations (horizontal axis). The black line represents the mean of the distribution of
revenues, the dark grey zone is the area between the 25th and 75th percentiles, while the light grey is the
zone between the 10th and 90th percentiles. Panels (d)-(i) show the evolution of the individual bids and
rewards (vertical axis) by the percent of the total number of iterations (horizontal axis). The Stateful
Synchronous experiments were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07, δ = 0.95. The
Stateless Asynchronous experiments, were run with 1,000,000 iterations and β = 1.22e− 05.



AI & DATA OBFUSCATION 26

(a) Bids when δ = 0.95 (b) Bids when δ = 0

Figure 2. : Evolution of Bids in a Single Run of Stateful Synchronous Experiment

Note: Panel (a) shows the evolution of the smoothed bids (moving average was applied) by the percent
of the total number of iterations in just one run of the baseline Stateful Synchronous experiment. Panel
(b), instead shows the evolution of the smoothed bids (moving average was applied) by the percent of
the total number of iterations in just one run of Stateful Synchronous experiment with δ = 0. Stateful
Synchronous experiment was run with 15,000,000 iterations, α = 0.1, β = 8.137e− 07, and both δ = 0.95,
and δ = 0.

Figure 3. : Evolution of Bids in a Single Run of the Stateful Synchronous Algorithm
when Player v2 = 2 Deviates

Note: The figure shows the evolution of the bids by the iteration from the moment of the forced deviation
of Player v2 = 2 to raise his bid to 1.6 instead of his bid 1.2 at convergence of the Stateful Synchronous
algorithm.
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Appendix

A. Convergence

Since the rewards, as well as the update rule in multi-agent reinforcement learn-

ing generally depend on the actions of other players, each player’s optimization

problem is inherently non-stationary. For example, the same chosen action can

lead to different rewards based on the bids of other players. When the bidder’s

competitors change actions over time, because of experimentation and learning,

the optimization problem of each bidder becomes nonstationary. Such nonstation-

arity is at the root of the lack of general convergence results for Q-learning in

games. Moreover, even if the algorithms converge, the basic question is whether

the bids converge toward the Nash Equilibrium (NE) predictions. Importantly,

convergence can be verified ex-post.

Following (Calvano et al. 2020), we use the following definition: convergence

is deemed to be achieved if for each player the optimal strategy does not change

for 100,000 consecutive periods for the case of Stateful Synchronous experiments.

That is, if for each player i and each state s the action bi,t(s) = argmax[Qi,t(b, s)]

stays constant for 100,000 repetitions, we assume that the algorithms have com-

pleted the learning process and attained stable behavior. We stop the session

when this occurs, and in any case after 15 million iterations. In the Stateless

Asynchronous experiment, 1,000,000 iterations and β = 1.22e − 05, were enough

for the convergence to be reached with enough exploration. That is because the Q-

matrix in this case takes the form of a Q-vector since the state is a singleton. The

convergence check covered the last 1,000 iterations. Only a very few runs didn’t

converge, and thus for all the charts and tables, we considered only converged runs

as in (Calvano et al. 2020) and (Banchio and Skrzypacz 2022).

For the Stateful Synchronous, 15 million iterations are required for the prob-

ability of exploration to decrease to 5e-06, so that convergence can be reached:

exp(−15, 000, 000 ∗ 8.137e − 07) = 5e − 06. If the rival is experimenting at even

a 1% rate, the environment is still too non-stationary for the algorithm to con-
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verge. As a result, convergence is achieved only when experimentation is nearly

terminated. In turn, such a small β leads to Q-matrix exploration that is sufficient

for the experiments with 3 players (each cell is visited more than 100 times). As

can be seen in Table A3, each cell of the Q-matrix is visited at least 117 times.

In some simulations, the algorithms experience cyclical behavior and do not bid a

constant amount.

B. Alternative Q-learning AIAs Settings

In this appendix, we explore alternative settings of Q-learning AIAs. We first

consider two alternative bid selection methods for the cases in which different

actions are associated with identical Q-values. That is especially often the case

under the Sychronous Updating since in the GSP auction several bids lead to the

same reward given the bids of other players if the bidder’s position stays the same.

As a reminder, in the baseline model, we employ a random method - i.e., the AIA

chooses the action randomly among all that lead to the highest possible Q-value in

a given state. We show that the main results also hold both when the algorithms

are conservative and choose the lowest bid, as well as when the algorithms are

greedy and choose the highest bid. In Table A1, we present results similar to the

ones in Table 1 under different bid selection methods.

In the case of conservative algorithms, the decision not to reveal competitor

bids increases the platform’s average revenues by 23% from 6.4 to 7.86. That

is driven by the reduction in the reward of the highest-value player from 9 to

7.49 due to the increase in the bid of the second-highest-value player, from 1.2 to

1.49. In the case of greedy algorithms, the decision not to reveal competitor bids

increases the platform’s average revenues by 25% from 8 to 10. That is driven

by the reduction in the reward of the highest-value player from 9 to 7 due to the

increase in the bid of the second-highest-value player, from 1.2 to 1.6. In sum, the

only difference with the baseline setting is the bidding behavior of Player v3 = 1.

If in the baseline setting, we observe the lowest bidder to submit at convergence

different bids between 0.2 and 1, in the case of conservative setting, she converges
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to bidding 0.2, whereas in case of greedy algorithms, to 1.

In another extension, we consider asymmetric grids, spanning the same bid

space, but featuring a different number of actions for each player. In particular, in

Table A2 we show that results are almost identical for a variation of the baseline

setting such that Player v1 = 3 and v3 = 1 have k = 15 possible bids, whereas

Player v2 = 2 instead has a finer grid with k = 20 bids. In that setting, the ties

with Player v2 are no longer possible for all the bids excluding the mix = 0.2 and

max = 3. Thus, we have shown that for our results it is not crucial to have the

same grids of actions for each of the players.

C. Milgrom and Mollner (2014) example

Consider the case of three asymmetric advertisers i ∈ {1, 2, 3} bidding in an

online advertising auction with three slots taken from (Milgrom and Mollner 2014).

Their valuations are v1 = 15, v2 = 10, v3 = 5, respectively, while the click-through

rates amount to x1 = 100, x2 = 3 and x3 = 1. We discretize the set of feasible

bids B on the interval [Bmin,Bmax] = [1, 15], with k = 15 possible bids so that the

step between the bids is 1. The EOS equilibrium in this case is given by b1 > b2,

b2 = 9.8, b3 = 3.3, and leads to auctioneer revenue R = 990.

The results of the experiment, reported in Table A4, show that the magnitude

of the increase in auctioneer revenues due to the information obfuscation strictly

depends on the structure of the auction prizes. In this case, it amounts to a

82% increase. Thus, the increase in auctioneer revenues due to the information

restriction can be much higher than in our baseline experiment.

D. Comparison with the VCG

In table A5, we compare the GSP (columns 1 to 3) and the VCG (columns 4 to

6) mechanisms. We find that for both auction designs the decision not to reveal the

competitor bids increases the platform’s average revenues. Compared to the 22%

increase for GSP, for the VCG, the decision not to reveal competitor bids increases

the platform’s average revenues by 38%. Moreover, the auctioneer revenues under
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the VCG setting tend to be lower than those under the GSP setting.
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Table A1—: Simulation Results in Case of Conservative and Greedy AIAs

Bids Individual Rewards Revenue
Stateful Synchronous (Conservative) (2.05, 1.2, 0.2) (9.0, 3.6, 0.0) 6.4

[6.4, 6.4]
Stateless Asynchronous (Conservative) (2.14, 1.49, 0.2) (7.49, 3.59, 0.0) 7.86

[7.56, 8.16]
Stateful Synchronous (Greedy) (2.0, 1.2, 1) (9.0, 2.0, 0.0) 8.0

[8.0, 8.0]
Stateless Asynchronous (Greedy) (2.21, 1.6, 1.0) (7.0, 2.0, 0.0) 10.0

[9.67, 10.33]

Note: This table presents the same results as in Table 1 with the only difference that in the exploration
process, the algorithms are conservative and choose the smallest bid among the ones that lead to the
highest value of the Q-matrix in a given state, or greedy and choose the biggest bid among the ones that
lead to the highest value of the Q-matrix in a given state. Column 1 reports the average across runs limit
bids for each of the players in the decreasing order of valuations; column 2 - the average across runs limit
individual reward for each of the players in the decreasing order of valuations; while column 3 - the average
auctioneer revenue across runs as well as the 95% confidence interval for the revenue in squared brackets.
The Stateful Synchronous experiments were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07,
δ = 0.95. The Stateless Asynchronous experiments, were run with 1,000,000 iterations and β = 1.22e−05.

Table A2—: Simulation Results in Case when Player v2 = 2 has a Grid of 20 Bids

Bids Individual Rewards Revenue
Stateful Synchronous (2.03, 1.23, 0.66) (8.84, 2.67, 0.0) 7.49

[7.2, 7.78]
Stateless Asynchronous (2.17, 1.45, 0.61) (7.73, 2.78, 0.0) 8.49

[8.06, 8.91]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order
of valuations; column 2 - the average across runs limit individual reward for each of the players in the
decreasing order of valuations; while column 3 - the average auctioneer revenue across runs as well as
the 95% confidence interval for the revenue in squared brackets. The Stateful Synchronous experiments
were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07, δ = 0.95. The Stateless Asynchronous
experiments were run with 1,000,000 iterations and β = 1.22e− 05.
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Table A3—: Summary Statistics on Count Matrices

count mean std min 25% 50% 75% max
State Updates 3375.0 64369.79 515598.71 1769.1 2316.3 4715.7 11493.3 14320122.6
Cell Updates 50625.0 4291.32 34368.49 117.94 154.4 314.38 766.48 954674.84

Note: The table reports summary statistics on the average number of visits counted in each Q-matrix
state and in each Q-matrix cell for the Stateful Synchronous experiments. Specifically, count matrices are
averaged across runs for every player. Then, they are reshaped as a vector of dimension [1× k], where k
is the size of the q-matrix. For the analysis of states, average count matrices are first summed row-wise
so as to get a vector of dimension [S × 1], where S is the number of states of the q-matrix, which is then
used to compute summary statistics on states.

Table A4—: Simulation Results in Alternative Example fromMilgrom and Mollner
(2014)

Bids Individual Rewards Revenue
Stateful Synchronous (11.45, 4.22, 2.12) (1078.0, 23.63, 5.0) 428.36

[416.68, 440.05]
Stateless Asynchronous (13.36, 7.72, 2.01) (728.0, 23.96, 5.0) 778.04

[711.29, 844.8]

Note: In this example, v1 = 15, v2 = 10, v3 = 5,while the click-through rates are x1 = 100, x2 = 3 and
x3 = 1. Column 1 reports the average across runs limit bids for each of the players in the decreasing
order of valuations; column 2 - the average across runs limit individual reward for each of the players in
the decreasing order of valuations; while column 3 - the average auctioneer revenue across runs as well as
the 95% confidence interval for the revenue in squared brackets. The Stateful Synchronous experiments
were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07, δ = 0.95. The Stateless Asynchronous
experiments, were run with 1,000,000 iterations and β = 1.22e− 05.

Table A5—: Comparison of the GSP and VCG

GSP VCG
Bids Individual Rewards Revenue Bids Individual Rewards Revenue

Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2 (2.53, 1.21, 0.6) (10.18, 2.8, 0.0) 6.02
[7.03, 7.37] [5.66, 6.37]

Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76 (2.79, 1.94, 0.62) (7.94, 2.76, 0.0) 8.3
[8.39, 9.13] [7.81, 8.79]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order
of valuations; column 2 - the average across runs limit individual reward for each of the players in the
decreasing order of valuations; while column 3 - the average auctioneer revenue across runs as well as
the 95% confidence interval for the revenue in squared brackets. The Stateful Synchronous experiments
were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07, δ = 0.95. The Stateless Asynchronous
experiments, were run with 1,000,000 iterations and β = 1.22e− 05.
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(a) Search Term Report

(b) Impacts of the Search Term Report Change

(c) Broad Match Modifiers

(d) Position Information

Figure A1. : Examples of Data Policy Changes
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(a) Attribution

(b) Details on the Attribution Model

Figure A2. : Changes in Default Attribution


