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1 Introduction

The canonical approach to measuring various aspects of systemic risk in the financial
sector relies on equity return correlations to assess interdependencies between banks’
losses above Value at Risk (Adrian and Brunnermeier (2016),Acharya et al. (2017)).
But in many countries, this approach is thwarted by the presence of state-owned and/or
coöperative banks. To circumvent this problem we extend Adrian-Brunnermeier’s CoVaR
and Acharya et al. (2017)’s Marginal Expected Shortfall (MES) approach by relying
on CDS contracts rather than equity returns to extract the required information on
covariance structure.

We use data on 27 European banks, a large subsection of which are not publicly
traded, and develop a valuation-of-loans approach to measure systemic risk and to iden-
tify and rank the systemic players. Our approach is appropriate whenever some of the
potentially systemic institutions are not publicly traded on the equity market. The anal-
ysis confirms that financial institutions need to be monitored in the context of other
financial institutions.

Systemic risk measurement is directly relevant for setting the portion of capital buffers
designed to mitigate the risks that a bank’s distress may pose on the financial system or
the wider economy. In a policy context, the minimum capital requirements are intended
to reflect and manage the risks that a bank’s operations pose on its own distress. The
macroprudential buffers, on the other hand, aim to improve the resilience of the financial
system by internalizing the systemic risks generated by an institution or the financial
sector as a whole.1 In the current paper we build the foundations for measuring and
attributing systemic risk based on co-movements in observed CDS prices. In a companion
paper to this one, Dimitrov and van Wijnbergen (2023) develop the methodology further
and explore its potential to guide the calibration of the macroprudential capital buffers
in the Eurozone.

Systemic linkages arise naturally through various channels. One direct source of sys-
temic fragility stems from the structure of the networks through which banks operate on
the interbank market.2 Systemic dependencies may also arise indirectly, due to common
exposure of the institutions to the same risk sources - either on the liability side, when
funding sources are similar or on the asset side, when the institutions hold similar or
correlated asset portfolios.3 We present a framework that does not require a particular
view of what is causing systemic losses. Instead, we identify the potential for high joint
distress based on observed dependencies between traded credit protection on the market.

First, we show that monitoring the financial risk of an institution in isolation from
the risks of its counterparties, and the system as a whole, may offer a misleading ranking
between systemically important financial institutions (SIFIs). Second, we illustrate that
high-frequency data from the credit default swap (CDS) market can be used to monitor

1Within the European Union, banks which are found to be systemically significant for the national
economies are subject to the Other Systemically Important Institutions (O-SII) regulatory framework.
National authorities, under guidance from the European Banking Authority (EBA), are required to
measure the systemic risk contributions of banks and to determine the size of the macroprudential
surcharges for these institutions. In addition, banks that are found to be Globally Systemically Important
(G-SII) are also required to keep extra macroprudential buffers. If an institution is charged under both
the G-SII and the O-SII frameworks, the higher of the two scores applies. For details, see BCBS (2010);
FSB (2020); EBA (2020).

2Cf. Bräuning and Fecht (2017); Langfield et al. (2014); Van Lelyveld et al. (2014); Georg (2013).
3Cf. Kosenko and Michelson (2022); Siedlarek and Fritsch (2019).
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ex-ante the build-up of systemic risk and systemic dependencies. This is particularly
valuable in the context of the European financial sector, where key institutions are often
privately held, and market data on their equity value is not available. Third, we link
systemic risk to the potential for joint distress between institutions by evaluating the
tail dependencies in their potential losses if a default of one institution were to occur.
Fourth, we illustrate how the potential for extreme losses can be incorporated explicitly
into the framework through the addition of higher-order common factors which capture
tail dependencies in banks’ asset returns.

We define systemic risk both through the prospect that several key institutions be-
come distressed at the same time and through the prospect that the common losses they
generate may have a large social impact. To quantify such risk, our model relies on several
building blocks.

First, we use a contingent claims approach on a bank’s balance sheet (Merton, 1974)
and define distress as the situation in which the market value of a firm’s assets falls below
a default barrier. The observed CDS spreads allow us to estimate the probability of
such distress occurring. Second, a latent factor is assumed to drive common changes in
the asset values of banks. As an improvement over the well-known Vasicek credit model
(Vasicek, 1987) which assumes a single correlation parameter driving the dependencies
in the whole portfolio, we allow for factor exposure heterogeneity across banks fitted
on the CDS sample. We build on the portfolio-of-loans approach suggested by Huang
et al. (2009, 2012) and extend it by explicitly focusing on tail risk and by modeling tail
dependencies in distress.

We know through Merton (1974) that the market value of a company’s assets is related
both to the market value of its equity and of its liabilities. The level of the firm’s CDS
spread at any particular instance relates to the chance that the value of its assets may
drop and that it may experience distress in the form of a credit event captured by the CDS
contract4. Importantly, co-movements in default probabilities can provide information on
the tendency of the institutions to become distressed at the same time. Tarashev and
Zhu (2006) also follow this line of reasoning in the context of pricing a basket of CDS
swaps. Rather than estimating the unobservable asset values, as is done for example in
Duan (1994, 2000) and Lehar (2005), we model directly the potential for joint default and
correlated losses. This allows us to quantify the distribution of the potential systemic
losses and the contribution of individual losses to this potential.

To the best of our knowledge, we are the first to model empirically, in a systemic risk
context, dependencies between default occurrences and potential default losses. Such
dependencies are important for a number of reasons. First, there is sound empirical
evidence that realized losses in default tend to rise in periods when risk probabilities also
increase (Altman, 1989; Altman et al., 2004). Second, the potential default of a SIFI
by definition will have a strong impact on other players in the industry, and not only
by increasing their default risk. Since industry-wide distress often triggers fire sales, the
value of the assets backing up banks’ liabilities will then also be negatively affected and
pushed below fair value. We, therefore, argue in this paper that reliable systemic risk
estimation should also take into account the potential for Loss Given Default (LGD)
dependencies.

Eventually, systemic risk will be driven by two related components: first, there is a
possibility that several companies realize a credit event at the same time; and second,

4For a similar line of thinking, see Carr and Wu (2011) who provide a link between the value of a
CDS contract and deep out-of-the-money put options on a company’s stock.
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the magnitude of the losses of SIFIs once defaults occur are likely to be correlated too.
The reasoning is that both are likely to be driven by deterioration in market conditions
causing asset values to decline, and consequently credit conditions to deteriorate.

We aggregate the two components using a credit portfolio approach and estimate the
MES5 for the institutions in the regulatory portfolio. The MES measures the average
potential loss of an institution if the system as a whole realizes a tail event, thus quanti-
fying the sensitivity of an institution to other institutional losses in the system (Acharya
et al., 2017). In addition, we relate the liability-weighted MES to the share of systemic
risk that can be attributed to a single institution.

The current paper continues as follows. In Section 2 we review the relevant literature.
Section 3 describes the structural credit model we use to describe co-dependencies between
institutions in the system. In this section, we also discuss briefly the single-name CDS
contract and its potential for implying risk views on key institutions, and discuss further
the credit approach to quantifying the sensitivity and the contribution of each institution
to systemic risk. Section 4 reviews the empirical data including the structure of the data
and the implications of the model for measuring and attributing systemic risk. In this
section, we also relax the assumption of asset return normality used earlier and discuss
the robustness of the results after implementing alternative specifications. Further, we
discuss the policy relevance of the results in the context of banks’ capital adequacy in
the context of their systemic risk contributions within the Eurozone. Finally, Section 5
concludes.

2 Related Literature

Our paper is part of a wider literature using high-frequency asset prices to inform central
bank policies. Examples are Hattori et al. (2016); Olijslagers et al. (2019) who use
option-implied asset volatility and risk-neutral distributions to evaluate the effectiveness
of central bank stabilization policies.

More specifically, we relate closely to the literature that builds on estimated equity
return correlations between financial institutions to construct measures of their contribu-
tions to systemic risk. However, especially in Europe extracting information from market
data in this way is not possible because some of the key players in the financial sector
are not publicly traded. Approaches that rely on equity price co-movements (like Adrian
and Brunnermeier (2016)) then cannot encompass the full system, cannot be used to
track the systemic impact of those institutions, and may in fact not be usable at all if
too few of the quantitatively important institutions have an equity market listing. For
these reasons, we develop a structural approach that utilizes information from the CDS
market.

Regarding the use of CDS prices, a large part of the literature relies on reduced-form
statistical modeling to link spread changes to bank fragility. Avino et al. (2019), for
example, look at the spreads of single-name CDS contracts for European and US banks
and evaluate the propensity of spread changes to predict bank distress in the form of
recapitalization or nationalization. One standard deviation increase in the CDS spread
change of a bank is estimated to correspond to a 7% to 14% increase in the (physical)
probability of bank distress. Annaert et al. (2013) look at the determinants of CDS
spread changes for a universe of European banks and separate them into a firm-specific

5MES: Marginal Expected Shortfall, cf. Acharya et al. (2017).
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credit risk component, a trading liquidity component, and a business cycle components
capturing common variation linked to the business environment. These studies provide
an initial perspective into the usefulness of CDS rates for predicting bank failure. We
take the approach further by developing a framework that extracts the probabilities of
failure and the failure correlations from observed CDS spreads and feeds them into a
credit portfolio model. This allows us to examine the contribution that individual banks
make to total systemic risk, rather than on the isolated risk of single bank failure.

On the methodological front, Oh and Patton (2018) link bank distress to large upticks
in the CDS prices of the reference banks, and measure the probability of joint distress
through a dynamic factor copula dependency model. Billio et al. (2012) offer an early
econometric model which quantifies interconnectedness through principal components
and implied networks based on Granger-causality tests. Bräuning and Koopman (2016)
extend the idea with time-varying heterogeneity in the link formation between banks
using CDS spreads of US and European institutions, thus aiming to capture the dynamic
formation of potential core-periphery clusters, which are natural for the financial sector.
Moratis and Sakellaris (2021) on the other hand use a panel VAR model to decompose
the transmission of systemic shocks across a universe of global banks. These studies offer
preliminary evidence that CDS fluctuations can serve as an early warning signal of bank
risk, supplementing data from the stock market, credit rating agencies, and accounting
data. Our contribution to this literature is to embed CDS spreads into a structured credit
portfolio model, which naturally blends the key aspects of systemic importance as size,
risk, and distress dependency.

Acharya et al. (2014) use co-movements in CDS rates of sovereigns and local banks
during the Euro sovereign debt crisis to show how a doom-loop channel evolves, in which a
bail-out of a local systemic bank in trouble leads to a deterioration in the creditworthiness
of the government, which in turn further depresses the credit-worthiness of the bailed-out
bank due to its large exposure to local sovereign bonds.

An earlier branch of the empirical literature also uses structural firm models to imply
bank fragility (Gropp et al., 2006; Chan-Lau and Gravelle, 2005; Bharath and Shumway,
2008), in particular, the distance-to-default (DD) measure introduced in (Merton, 1974;
Crosbie and Bohn, 2002)), which compares the current market value of assets to the
default barrier of the firm.6 While the foundation in our study is similar, we aim to
evaluate cross-linkages and the impact each bank has on the system as a whole. We thus
go a step beyond the approaches that are interested in evaluating the individual default
risk of a bank in isolation.

Most of all, we relate to the broader literature on measuring systemic risk through as-
set price co-movements (Lehar, 2005; Segoviano and Goodhart, 2009; Zhou, 2010; Huang
et al., 2012; Adrian and Brunnermeier, 2016; Brownlees and Engle, 2017; Acharya et al.,
2017; Engle, 2018).

An earlier strand of the systemic literature, most notably Lehar (2005), relies on
Merton’s theory stating that firm equity can be viewed as a contingent claim on its assets.
Merton’s model is used to imply the market value of bank assets and the correlations
between institutions as a measure of systemic risk. In contrast, our approach does not
focus on extracting the value of assets themselves. Instead, we directly focus on extracting
and modeling default correlations through common variations in the CDS prices.

The more recent approaches developed in that area can be seen as largely model-free
6Various extensions of the DD measure exist, capturing, for example, volatility clustering (Nagel and

Purnanandam, 2019), and asymmetric volatility shocks (Kenc et al., 2021).
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since they do not rely on particular capital structure assumptions of the individual banks.
The CoVaR approach of Adrian and Brunnermeier (2016) for example, along with an
earlier study by Baur and Schulze (2009), relies on a quantile regression on equity prices
to determine tail co-dependencies and risk contributions. Numerous further modifications
have been provided to improve the estimation of CoVaR and to make the model more
flexible towards nonlinearities in the tail dependency structure of asset returns: Girardi
and Ergün (2013) suggest a multivariate GARCH approach; Reboredo and Ugolini (2015)
use Copula dependency; Wang (2021) embed a neural network approach.

The CoVaR intoduced by Adrian and Brunnermeier (2016) and the MES introduced
by Acharya et al. (2017) are conceptually similar in that both draw on measures used
in risk management to quantify the tail dependencies between the losses of an asset and
the portfolio of which it is a part. CoVaR quantifies the tail boundary for a portfolio,
given that one asset is also at the boundary of its loss distribution, where the boundary
is defined by a tail quantile. The quantile is known as the Value at Risk (VaR) in risk
management. The MES on the other hand looks at the average loss of the asset, given
that the portfolio is in its tail with potential losses above its VaR.

Two properties of the MES make it a more appealing choice for the attribution of risk
across assets in a portfolio compared to CoVaR. The MES is in essence an expectation
operator. Also, in evaluating MES for different assets in a portfolio, all are conditioned
on the same event - the portfolio being in its tail. This allows us to show that the MESs
of all assets in the portfolio, once they are weighted, add up to the portfolio’s tail risk.
In our interpretation, the portfolio will stand for the financial system, and each asset will
represent a banking institution that is part of it.

We also relate to the literature that applies concepts from extreme value theory. An
example is Zhou (2010) who computes the expected proportion of institutions in distress
given a failure and uses multi-variate extreme value theory to evaluate a systemic risk
ranking between banks. Using copula default dependencies, Segoviano and Goodhart
(2009) define the probability of at least one more bank defaulting given a default in
a particular bank (PAO). In a similar approach Bochmann et al. (2022) use the joint
probability of default (JPD) between banks allowing it to vary with the financial cycle,
as a measure of systemic contagion.

We view the regulatory space as a portfolio of risky loans, similar to Chan-Lau and
Gravelle (2005); Huang et al. (2009, 2012); Puzanova and Düllmann (2013); Kaserer and
Klein (2019). In that approach, systemic losses arise when an institution defaults and
cannot cover the value of its liabilities. The tendency of particular institutions to drive
systemic losses will result in a higher contribution to systemic risk.

From this perspective, the modeling tools developed by the securitization literature,
typically used to value n-th to default derivatives on loan portfolios, can be applied (Hull
and White, 2004; Tarashev and Zhu, 2006).7In particular, Tarashev and Zhu (2006) link
the correlation structure embedded in CDS prices to the correlation between asset values
in the Merton capital structure framework. A latent factor model driving the asset
return variations can then be used to connect the default probabilities of the different
institutions.

Our innovation is to also embed a model of correlated losses between the institu-
tions. Earlier studies typically assume a fixed LGD (Puzanova and Düllmann, 2013)
or assume that Recovery Rates (RR) are random but sampled independently from each

7For an earlier model of this kind, relying on equity co-movements as an approximation to asset
correlations, see also Pascual et al. (2006).
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other (Huang et al., 2012; Kaserer and Klein, 2019). In a tail scenario, a SIFI’s default
can be expected not only to raise the default risk of other participants in the sector, but
also to simultaneously decrease the value of the assets backing up their liabilities. From
that point of view, our approach of endogenizing the LGDs relates to the literature on
fire sales. For example, Shleifer and Vishny (1992) argues that in times of industry-wide
distress and increased default rates, assets tend to go to industry outsiders who may
lack the necessary skills to manage them and will thus be willing to buy them only at a
discount to fair value. As a result, LGDs will tend to rise with the drop in liquidation
prices. This has been empirically observed among others by Acharya et al. (2007).8

We also relate to studies that compare the policy and the academic approaches for
measuring systemic risk. For example, Brogi et al. (2021) compare the G-SII buffer
rankings to systemic risk rankings based on Huang et al. (2012) and find significant dif-
ferences in the two approaches and argue that the regulatory framework would benefit by
incorporating also a risk contribution metric into generating systemic rankings. Bianchi
and Sorrentino (2021), on the other hand, explore a small sample consisting of the four
Italian banks designated as systemically important and largely find consistency in the
ranking based on the CoVaR measure and based on the O-SII buffer rates set by the
Italian central bank. Yet, having higher frequency data allows them to link systemic risk
estimates to the evolution of bank characteristics and conditions.

It needs to be acknowledged that there is currently little theoretical examination on
determining the size of the macroprudential capital buffers that institutions need once
they are designated as systemic. The policy approach has been to recommend a two-step
heuristic, where in the first step institutions are evaluated on a set of criteria associated
with systemic importance, and in the second surcharges are set to equalize the impact
between a systemic and a non-systemic bank. This holds both for O-SIIs and for G-SIIs.
Previous studies have found that the approach is very sensitive both to the ranking and
bucketing methodologies used (Brogi et al., 2021). In the methodology that we propose,
it is natural to link the size of the capital surcharges directly to the measured systemic
contributions. In this paper we compare the current systemic contributions to the current
capitalization and O-SII buffers that banks hold. In Dimitrov and van Wijnbergen (2023)
we develop the framework further to solve for the optimal macroprudential buffer sizes.

3 CDS Contracts, Default Probabilities and Systemic
Risk

3.1 What is a CDS contract and why we use them

A CDS is in essence an insurance contract, which is traded over-the-counter (OTC), and
in which the protection buyer agrees to make regular payments, the CDS spread rate over
a notional amount, to the protection seller. In return, the protection seller commits to
compensate the buyer in case of default of the contractually referenced institution. There
are multiple features of the CDS market that make it an attractive source of information
on the risks which are evolving in the financial sector.

First, it is more liquid and has fewer trading frictions compared to credit traded
directly through the corporate bonds market. In terms of information transmission, CDS

8See also IJtsma and Spierdijk (2017) for a discussion of fire sales, endogenous LGDs, and the relation
to systemic risk.
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spreads have been shown to lead bond markets, especially in distress periods, and have an
edge over credit rating agencies (Bai and Collin-Dufresne, 2019; Avino et al., 2019; Culp
et al., 2018; Annaert et al., 2013). Some evidence exists that they may even lead equity
markets, especially in revealing negative credit news. This relates to the fact that in
contrast to conventional asset markets, the CDS market almost by definition is composed
of insiders (Acharya and Johnson, 2005). Furthermore, liquidity and transparency in the
market have increased substantially in recent years. After the Financial Crisis of 2008/09,
OTC derivatives, and as such also CDS contracts, became subject to increased regulatory
scrutiny through the EMIR framework in Europe and the Dodd-Frank Act in the US. To
cope with systemic risk issues, central clearing was introduced with increased contract
standardization, and transparency was improved by introducing reporting mandates for
counterparties9.

Second, CDS prices trade on standardized terms and conditions and do not have be
bootstrapped or interpolated as do bond yields. Also, comparison between the underlying
institutions is easier, because, unlike corporate fixed-income securities, single-name CDS
contracts do not contain additional noise from issue-specific covenants, such as seniority,
callability, or coupon structure (Zhang et al., 2009; Culp et al., 2018).

Several general concerns regarding CDS prices need to be mentioned as well, however.
First, CDS rates also price in the risk of default of the protection seller and not only the
reference entity. The size of this extra premium, however, has been shown empirically
to be economically negligible (Arora et al., 2012), and with the recent rise of Central
Clearing for OTC derivatives it is likely to have decreased further (Loon and Zhong,
2014, 2016). Second, single-name CDS contracts are not as liquid as public equity and
this raises concerns that the spreads could be overstating default risk by confounding it
with an illiquidity premium. Even though the argument is valid, it misses two important
points. Illiquidity risk tends to be correlated with default risk, as protection dries up at
times when it is most needed (Kamga and Wilde, 2013; Augustin and Schnitzler, 2021).
Also, strong illiquidity in the CDS contract even in normal times may be indicative of
the market’s unwillingness to fund a particular financial institution due to fears that a
possible future fire sale could push it into insolvency.10

Overall, we take the view of Segoviano and Goodhart (2009), which they back up with
empirical evidence, that even though in magnitude CDS spreads may be overreacting
to bad news in certain situations, the direction is usually justified by information on
the reference institution’s creditworthiness. Thus, we use the CDS mid quotes without
correcting them further for non-credit related premia.

3.2 Extracting Default Probabilities: the Baseline Model

We start with a short discussion on how the observed CDS prices can be used to extract
the underlying banks’ risk-neutral probabilities of default (PD).

Following Duffie (1999) we assume at this stage that the expected Recovery Rates
(RR) are constant and known over the horizon of the contract. The goal at this point
is to extract the PDs through a basic and reliable model. For this reason we do not try
to capture the evolution of the RR as a separate process and accordingly we do not try

9For an overview of the market microstructure, and recent regulatory reforms of the CDS market see
Aldasoro and Ehlers (2018) and Paddrik and Tompaidis (2019).

10Cf. Diamond and Rajan (2011) and Shleifer and Vishny (1992) for a theoretical underpinning of
firesales and bank assets.
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to identify it separately from the observed CDS data.1112 At the simulation stage of the
model we will relax the assumption of fixed RRs.

We denote CDSi,t as the price at initiation date t of the CDS contract written on the
debt of bank i. By market convention the spread is set to ensure that the value of the
protection leg and the premium leg of the contract are equal, such that the contract has
a zero value at time date t:

CDSi,t

∫ t+TCDS

t

e−rτ τΓi,τdτ︸ ︷︷ ︸
PV of CDS premia

= (1− ERRi,t)

∫ t+TCDS

t

e−rτ τqi,τdτ︸ ︷︷ ︸
PV of protection payment

(1)

where TCDS is the term of the contract in years, rτ is the risk-free rate, CDSi,t is the
observed CDS spread for a contract traded on day t with an underlying bank i, qi,τ
is the implied annualized instantaneous risk-neutral default probability for the bank,
Γi,τ = 1−

∫ τ

t
qi,sds is the risk-neutral survival probability until time τ , and ERRi,t is the

expected recovery rate in case of default, assumed to be constant over time.
For simplicity, we assume that the risk-free rate rτ and the annualized default rate

qi,τ are fixed and known at the initiation of the contract. Then the default probability at
time t follows from equation (1):

qi,t =
aCDSi,t

a(1− ERRi,t) + bCDSi,t

(2)

with a =
∫ t+TCDS

t
e−rτdτ and b =

∫ t+TCDS

t
τe−rτdτ . Setting TCDS = 5 to capture 5-year

CDS contracts, we can imply the annualized default probabilities.13

3.3 A Structural Model of Default

Next, we define the structural credit risk model behind the occurrence of systemic losses.
Key here will be the assumption driving asset value correlations, as it will effectively
determine the correlations in the default probabilities of banks, and in their default
losses.

11There are alternative and more sophisticated approaches in the literature that try to identify sep-
arately the RRs and the PDs. For example, Pan and Singleton (2008) identify separately the RR and
the default intensity of the credit process exploiting the term structure of the CDS curve constructed
from contracts with different maturities. Christensen (2006) models jointly the dynamics of the RR, the
default intensity, and interest rate by breaking away from the standard Recovery of Market Value (RMV)
approach of Duffie and Singleton (1999) according to which at default the bondholder receives a fixed
fraction of the prevailing market value of the firm. Under the RMV approach, the default intensity only
shows up within a product with the recovery rate, so the two cannot be identified separately. Having one
collateral model when assessing LGD correlations and another one when extracting default probabilities
from observed CDS spreads comes down to an inconsistency that is well known in the literature (see
Tarashev and Zhu (2006)’s discussion of precisely this issue). Yet, the simplifying assumption we employ
in estimation is widely used in the literature and is hard to improve on given the identification problem
we just discussed.

12Furthermore, we should point out that we are ignoring correlation risk premia. We rely on evidence
provided by Tarashev and Zhu (2006) that such premia, if they exist at all, are quantitatively very small
in CDS prices.

13In credit risk (and more generally in survival analysis), the variable q relates to the hazard rate, the
constant arrival rate (in a Poisson sense) of a credit event. At any instant, given that default has not
yet occurred, the time until it does is exponentially distributed with parameter q. For a small ∆t and
small q, the probability of default is then ∆t · q. See Duffie (1999) for details.
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We start from Merton (1974) and describe the evolution of the value of assets of each
bank i = 1, ..., n under the risk-neutral measure through the process as

d lnVi,t = rdt+ σidWi,t (3)

where r is the risk-free rate, σi is the variance of asset returns, and Wt is a Brownian
Motion.

In Merton’s setting, default occurs at maturity (t+T ) when a firm’s assets fall below
the face value of its debt such that:

PDi,t = P(Vi,t+T ≤ Di)

= P

(
Vi,t exp

(
(r − σ2

i

2
)T + σiWi,t+T

)
≤ Di

)
Consider next the Distance-to-Default (DD) measure:

DDi,t =
ln

Vi,t

Di
+
(
r − σ2

i

2

)
T

σi

√
T

(4)

which allows us to rewrite the expression for the probability of default as:

PDi,t = P

Wi,t+T√
T︸ ︷︷ ︸

≡Ui

≤ −DDi,t︸ ︷︷ ︸
≡Xi,t


The relationship above provides a bridge between Merton’s structural default model to

the class of latent-variable default threshold models used in securitization.14 The random
variable Ui can be interpreted as a the standardized asset return over the coming one-
year period, and Xi,t as the standardized asset loss threshold below which the firm would
default. In our baseline model, Ui follows a standard normal distribution in line with the
Merton model assumptions in (3). In Section 3.5 we explore alternative distributional
specifications for this variable, deviating from the original Merton specification.

Assume going forward that the maturity of the firm’s debt is one year from the current
date so that T = 1. Then, we can write the one-year ahead probability of default as:

PDi,t = P(Ui < −DDi,t) = Φ(−DDi,t) (5)

where Φ(.) is the cumulative standard normal distribution. Note that by inverting this
relation, we can infer from observing the CDS spread for the day (correspondingly the
default probability) the default barrier

Xi,t ≡ −DDi,t = Φ−1(PDi,t) (6)

Any realization of the variable Ui below the threshold Xi,t would indicate a default of
bank i.

Furthermore, we can then relate the default under the Merton model to the PD implied
from the CDS spreads in Equation (1) by setting PDi ≡ qi,t from Equation (2). This

14Cf. Bolder (2018) and McNeil and Embrechts (2005).
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essentially implies that we are working under the risk-neutral distribution of default and
allows us to determine Merton’s DD based on the observed CDS prices.

The next step is to determine how the asset value changes between different institu-
tions correlate. For this purpose, note first that based on (4) we can link changes in a
bank’s DD between two periods to the log changes in the unobserved bank’s market asset
values. The discrete first difference of the DDi,t becomes:

∆DDi,t =
∆ lnVi,t

σi

The correlation between asset returns can be written as:

ρi,j = Corr(∆ lnVi,t, ∆ lnVj,t) (7)
= Corr(σi∆DDi,t, σj∆DDj,t)

Correlations are invariant to linear transformation, so we can drop the σ terms. Then
after substituting in the inverted relationship (5), the asset correlations can be implied
from the correlations between the transformed probabilities of default:

ρi,j = Corr
(
∆Φ−1(PDi,t), ∆Φ−1(PDj,t)

)
(8)

This equation is of crucial importance. Combining (7) with (8) we relate the co-
dependencies in changes in the (transformed) probabilities of default (PDs) to the unob-
served asset return correlations of the underlying banks.

This allows us to use PDs that can be derived from observed single-name CDS prices
to pinpoint values for the correlations between institutions. In the following section, we
discuss in detail how these asset correlations can be used as targets against which to
estimate the parameters of a factor model.

Our reliance on the Merton (1974) framework implies that we assume default to occur
when a fixed default barrier is crossed at debt maturity. Further refinements have been
developed to relax this assumption, of which we mention in particular Leland (1994)
who endogenizes the default barrier and defines it as the boundary beyond which equity
holders refuse to supply new equity to avoid default. 15

Even though the Merton framework may be conceptually restrictive, it is widely used
as a raw approximation of default. The related Merton-based DD has a wide application
to risk management as a predictable indicator of bank fragility (Gropp et al., 2006;
Chan-Lau and Sy, 2007), and actual defaults (Bharath and Shumway, 2008). Jessen and
Lando (2015) also shows that it has certain robustness against model misspecification.
As a result, we do not pursue any of the structural extensions in this study.

3.4 Modeling Interdependencies: the Baseline Gaussian Model

Next, we turn to the model of dependencies in the creditworthiness of individual banks.
This in turn will determine the propensity of several banks to default at the same time,
thus driving a key component of the systemic risk model. We start with the Normal
setting consistent with the Merton specification provided earlier. The following factor
setup is known in credit risk analysis as a Gaussian Factor Copula.

It is reasonable to assume that part of the bank’s asset risk Ui is driven by a set of
common factors, and part of it is entity-specific. The most widely used approach in credit

15See Sundaresan (2013) for a review of structural credit models and their applications.
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risk analysis, thus, is to model default dependency by specifying a Gaussian factor model
of the form

Ui = AiM +
√

1− AiA′
iZi (9)

where M = [m1, . . . ,mf ]
′ is the vector of stochastic systematic factors, and Zi is the firm-

specific factor, each of which follows a standard normal distribution. Ai = [αi,1, ..., αi,f ]
is the vector of factor loadings, such that AiA

′
i ≤ 1.16 All factors are assumed to be

mutually independent with zero mean and a standard deviation of one. All factors M
and Zi are characterized by standard normal distributions.

We do not provide a concrete interpretation of the factors, even though they can be
thought of as economy, industry, or geographically specific risk drivers.17 Instead, we use
a statistical procedure to extract the exposures of the individual banks to the factors by
observing the common components in the default probability variation across all banks
in our universe.

In the Gaussian framework, the asset return dependencies are linear and can be fully
captured by the correlation between the latent variables determining the creditworthiness
of two banks. In turn, the correlation can be expressed in terms of the banks’ exposures
to the common factors

Corr(Ui, Uj) = AiA
′
j

Note that if we assume that there is a single risk driver and all banks have the
same exposure to that driver we would get as a special case the well-known Vasicek loan
pricing model (Vasicek, 1987). In the approach used here, however, we allow for exposure
heterogeneity.

The next building block of the model is to determine the size of the potential losses if
a default were to occur. A common simplifying assumption in the systemic risk literature
to which we relate is that the RR is either fixed (Puzanova and Düllmann, 2013) or
stochastic but independent across firms and from the realization of default (Huang et al.,
2009, 2012; Kaserer and Klein, 2019).Relying on strong assumptions about default losses
is inevitable, as bank defaults, and especially defaults of SIFIs, are rarely observed.
Yet, there is strong empirical evidence that as default rates in the economy increase, the
recovery values on assets decrease (Altman et al., 2004; Acharya et al., 2007). We address
this stylized fact by allowing default losses to be dependent on the latent factors driving
asset correlations. Accounting for this will inevitably have significant consequences for
the quantification of systemic risk which naturally depends on the tail risk dependencies
between institutions.

To do so, we follow Frye (2000) and Andersen and Sidenius (2005) and model the RRs
based on the value of a stochastic collateral process Ci,t per euro of liabilities. The total
collateral backs up the bank’s liabilities. Dependency between the RR and the PD is
then achieved by making the value of the collateral dependent on the same set of factors
that drive the asset value processes. In particular, we define the stochastic changes in
the collateral value over the coming year as:

d lnCi = σcU
c
i (10)

16Here we follow the convention from the securitization literature where M is a column vector and Ai

is a row vector.
17Cf. Pascual et al. (2006) for an attempt at factor identification in a similar credit risk framework.
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where U c
i is a standard normal variable, and σc is a scaling parameter determining con-

sequently the variance of the RR.
We assume that the variation in the value of the collateral is driven by the same

common factors defining the asset correlations in (9) with the same factor exposures of
the bank estimated from the CDS data. This seems reasonable, as the collateral for the
bank’s liabilities after all has to correspond to the market value of the bank’s assets.
Formally, therefore, we have

U c
i = AiM +

√
1− AiA′

iZ
c
i (11)

where Zc
i defines an independent factor capturing possible firm-specific discrepancies

between the underlying assets of the firm and the value of recovered collateral. This
discrepancy could be due to a loss in the value of the bank’s intangible assets, any other
restructuring costs due to liquidation, or legal delays in seizing the collateral.

Finally, we make sure that in case of default, the recovery rate (RRi) as a proportion
of liabilities is never larger than 100% of the recovered liabilities, so we can write the
realization of the RR as:

RRi = ERRmin(1, Ci)

= ERRmin (1, exp{σcU
c
i })

(12)

where ERR and σc are calibrated to match the assumption of the expectation and the
variance of the RRs. This is discussed in detail in Section 4.1.

3.5 Modeling Interdependencies: Fat-tails and Extreme Depen-
dency

The main drawback of the Gaussian model of Equation 9 is that the thin tails of the
normal distribution may underestimate the chance of extreme events happening. There
is strong empirical evidence that asset price returns do not tend to favor the normality
assumptions, especially with higher frequency returns (Cont, 2001; Haas and Pigorsch,
2009).

Furthermore, since the Gaussian model presented so far is based on the dependency
structure of the multivariate normal distribution, it has no tail dependency. As a result,
it may underestimate the clustering over time of defaults (Cf. Bolder (2018)). We address
this problem in the next section by employing two fat-tailed alternatives to the Gaussian
Copula.

In order to examine the sensitivity of our baseline model to the realization of extreme
risk and dependencies, we propose two modifications of the factor model in Equation
(9) that will allow for fat-tails returns and for skewness, respectively, in the distribution
of the latent variable Ui whose behavior governs the credit-worthiness of the underlying
banks.

3.5.1 The Student-t Model

To introduce tail risk and tail dependency, we follow a setup by Bassamboo et al. (2008).
We add an aggregate multiplicative factor F to the set-up of Equation 9 with F inde-
pendent of M and Zi for any i. The new specification of the latent variable then is

Ui =
√

h(F )
(
AiM +

√
1− AiA′

iZi

)
(13)
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where h(F ) = ν
F

with F ∼ χ2(ν).18

The choice of the distribution of F and the specification of the function h(F ) govern
the distribution of the latent variable Ui. In general, F can be any positive-valued inde-
pendent stochastic variable, and h(.) is a continuous function. (McNeil and Embrechts,
2005) provides a discussion on the class of default-threshold models that come with the
choice of these specifications, known in general as normal-variance mixtures.19 For the
particular setup that we have selected, however, it can then be shown that Ui will be
multivariate student-t distributed with η degrees of freedom.

Even though the factor F is constructed mathematically as a way to impose a certain
distributional assumption on the latent variables Ui, it also has a convenient interpretation
as an additional factor that governs the intensity of risk. In our specification, for example,
smaller realizations of the variable F , i.e. draws from the χ-squared distribution closer to
zero, would imply larger amplification effects on the systematic and idiosyncratic factors
M and Zi respectively.20 This is how the factor F generates extreme tail dependency, by
simultaneously hitting all banks at the same time. Note, that the conditional distribution
Ui|F is still Gaussian, however.

The moments of the marginal distribution of Ui that the factor implies can easily be
verified to correspond to the student-t distribution.21 The expectation of Ui, due to the
assumption of independence between all factors, is

E(Ui) = 0

The variance and covariance are

VarU st
i =

ν

ν − 2

Corr(U st
i , U st

j ) = AiA
′
j

The skew S(Ui) and kurtosis K(Ui) of the variable can be shown to be:s

S(Ui) = E

((
Ui − E(Ui)√

VarUi

)3
)

= 0

K(Ui) = E

((
Ui − E(Ui)√

VarUi

)4
)

= 3
η − 2

η − 4

(14)

As a result, the new specification does not change the structure of the latent variable
correlations, their expected values, or their skewness. What changes, however, is the
kurtosis of the distribution.

The multivariate Student-t distribution is still symmetric, as can be seen from its
specification and the derivations so far. This means that the joint occurrence of extreme
positive and extreme negative events is equally likely. This is not always empirically

18An equivalent specification, also appearing in the literature and leading to the same multivariate
model, is to set h(F ) = 1

F with F ∼ Γ(ν2 ,
ν
2 ), where Γ(.) is the Gamma distribution. This is the

specification that appears, for example in Chan and Kroese (2010).
19For example, Bolder (2018) shows that for h(F ) = F with F ∼ Γ(a, a), the latent variable will be

variance-gamma distributed, and for h(F ) = F with F ∼ GIG(a, a) it will be generalized-hyperbolic.
20Chan and Kroese (2010) also suggest a mathematical specification where the amplification can be

heterogeneous across systematic vs. idiosyncratic shocks. This however raises significantly the degrees
of freedom for fitting the model, so we do not explore that alternative here.

21See Section C for derivations.
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viable, as one might expect that in a market crash dependencies between institutions. In
the following section, we extend the model further to allow for different dependencies in
positive and negative markets. This is done by referring to a model generalization in the
class of the normal-mean-variance mixtures (McNeil and Embrechts, 2005).

3.5.2 Skewness and Skewed Dependency

We follow an approach suggested by Chan and Kroese (2010), who modify Equation (15)
with an additional factor that induces skewness and asymmetric dependencies. They
suggest the following structure of the fat-tailed latent variable

Ui =

√
ν

F

(
δG+ AiM +

√
1− AiA′

iZi

)
(15)

where G ∼ TN
(
−
√

2
π
, 1
)
, with TN(µ, σ) is a normal distribution truncated left at

−
√

2
π
.

Again, G is an aggregate stochastic factor and it affects all variables in the same way
through the shared exposure δ. This non-symmetric distribution of the common factor
G then creates the non-linear dependency structure between banks.

In the complete portfolio model, formally, we assume that the collateral process of
Equation (10) is also amended in line with chosen model. In the most general specifica-
tion, therefore, we have

U c
i =

√
ν

F

(
δG+ AiM +

√
1− AiA′

iZ
c
i

)
(16)

As a special case, in the symmetric Student-t model then δ = 0, while in the Gaussian
case, F is fixed to be one, and δ is zero.

3.5.3 Model Comparison

As an illustration of how the different models behave, Figure 1 below shows a simulation
of two latent variables Ui and Uj with each of the three models define so far.

Chart 1a shows clearly how the standard normal multivariate distribution forms be-
tween the two variables. The realization of scenarios further away from zero than three
standard deviations is not at all likely. Chart 1b on the other hand, shows how symmetric
extreme events start to appear, in line with a multivariate Student-t distribution with
six degrees of freedom. Figure 1d finally visualizes the multivariate model implied by the
specification of Equation (15) with a skewness parameter δ = −2. We can see that in
this chart the occurrence of joint large negative events is much larger than that of joint
positive events.

3.6 Measuring Systemic Risk

We now have the machinery in place to start modeling systemic risk. We define systemic
risk as the potential for large default losses in the banking system. A single entity’s
contribution to systemic risk then will be measured as its propensity to increase that
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Figure 1: Simulated Factor Copula
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Note. This plot shows 1,000 simulations using the three specifications of the factor model. Common
factor loading of .8 is used in each of the cases. For the Student-t and the Skewed-t versions, we use
degrees of freedom of ν = 6, and skewness parameter δ = −2.

potential. To capture these effects, we model the universe of supervised institutions as a
structured credit portfolio.

Several elements can thus drive the systemic risk contributions of an institution: first,
both increases in the default probability and decreases in the proportion that can be
recovered in case of default; second, the size of the institution, measured by its outstand-
ing liabilities relative to the size of others; third, the propensity of the institution to
become distressed or to realize large losses whenever other institutions in the portfolio
are distressed.

An institution becomes distressed if a credit event occurs in its subordinated debt.
From the point of view of a regulator, each institution’s total liability amounts to the
regulator’s Exposure at Default (EAD). A fraction of the EAD is lost whenever an in-
stitution defaults and cannot deliver the full promise of its outstanding liabilities to its
counterparties.

Thus, formally, we define the default loss on an individual bank, scaled by the size of
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its liabilities, as

Li = 1i(1−RRi) (17)

where RRi is defined in (12) and 1i is a stochastic default indicator behaving in line with
the Merton model in Section 3.3, such that

1i =

{
1 if Ui ≤ −DDi

0 otherwise
(18)

So, overall, the loss will be zero if bank i does not default and will be equal to the random
realization of the RR if the bank does default.

With the distribution of losses known, we can evaluate risk through Expected Shortfall
(ES), which measures the average losses of a bank or portfolio of banks in the worst α-th
percentile of its potential loss distribution:

ESi = E(Li|Li ≥ V aRi) (19)

where V aRi stands for the Value-at-Risk of the institution at confidence level 1− α:22

P(Li ≥ V aRi) = α

The ES thus measures the average loss once the V aR-threshold of an institution
has been exceeded.23 It quantifies the potential losses that could occur if an institution
is distressed. However, it does not take into account correlated losses and the fact that
distress in one institution may correlate with or even cause the failure of other institutions.
From a macroprudential point of view, we thus need to define a measure that does take
this co-dependency into account.

For this reason, we define total systemic loss Lsys as the weighted sum of the individual
losses of each bank:

Lsys =
n∑

i=1

wiLi (20)

where wi =
Bi∑N

j=1 Bj
is the relative weight of the institution’s liabilities (Bi) in the systemic

portfolio.
Then, we follow Acharya et al. (2017) to capture a bank’s systemic risk sensitivity

through its Marginal Expected Shortfall (MES), which is the average loss of institution
22Typically, α stands for the tail probability and takes values of e.g. 5%, 1%, .01% depending on

how far in the tail we want to measure the potential for extreme losses. Then, given the potential loss
distribution, we are (1− α)% certain that losses will not exceed the corresponding V aR estimate.

23An appealing feature of the ES is that it is coherent, in the sense of Artzner (1999), and thus
allows for capturing diversification in an intuitive way when the losses of a portfolio are aggregated. The
set of coherent risk measures are defined axiomatically through a number of intuitive properties: (1)
Monotonicity : comparing several random payoffs, lower losses in all states of nature imply lower risk;
(2) Positivide homogeneity : scaling a portfolio random payoff by a positive factor also scales its risk by
the same factor; (3) Sub-additivity : the risk of the portfolio is not greater than the sum of the risks of
the assets which comprise it; (4) Invariance: adding cash to a portfolio reduces its risk by the amount
added. ES covers all of the properties, while VaR fails at sub-additivity. In fact, functionals that satisfy
(2) and (3) are convex, a feature that defines mathematically the concept of diversification in modern
portfolio theory (Rachev et al., 2008).
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i given that the systemic portfolio is in the worst α-th percentile of its distribution of
potential losses:

MESi = E (Li|Lsys ≥ V aRsys) (21)

One can easily show that the weighted sum of all MESs in the portfolio provides the
ES of the system.24This follows from (20) and (19):

ESsys =E

(∑
i

wiLi|Lsys ≥ V aRsys

)
=
∑
i

wiE (Li|Lsys ≥ V aRsys)

=
∑
i

wiMESi

(22)

This additivity property allows us to break down the total ES of the systemic portfo-
lio into shares of the total risk attributable to each bank. We thus define Percentage
Contribution to ES (PCES) as:

PCESi =
wiMESi

ESsys

(23)

which will be a useful metric further on in attributing risk across institutions and ranking
them by systemic importance.

4 Empirical Analysis

We apply the model presented so far to a universe of key banks from the Eurozone. First,
we go through a description of the dataset, and then we outline the results.

4.1 Data and Parameter Assumptions

The portfolio of banks that we consider consists of 27 large European institutions for
which CDS rates are available. Table (1) provides a list of the banks included in the
analysis. We use weekly mid prices for ISDA2014-compliant CDS contracts on the sub-
ordinated debt of the banks. Five-year CDS rates are used for all banks. The data is
collected from Bloomberg. Figure 2 shows an aggregated overview of the evolution of the
CDS spreads.

About a third of the banks included in our universe are not publicly traded, as indi-
cated in Table 1. This latter group consists of coöperative banks such as France’s CRMU,
Germany’s DZ, BAY, LBBW, HESL; Netherland’s state-owned VB ; and private banks
such as RABO and INGB. ABNAMRO’s equity has been re-listed in 2015 after earlier
government intervention, and only just for a minority share. Using CDS rates allows us
to include them in the analysis, and as a result to get a more complete picture of the
financial system.

24Note that (22) implies also that the MES measure can be interpreted as the sensitivity of the
system’s tail risk to the weight of the institution in the portfolio since ∂ESsys

∂wi
= MESi.
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Table 1: Data Sample Descriptive Table

Short Code Country Bank Full Name Public CDS Type Start Date

ERST Austria Erste Group Y SR 1/3/2006
KBCB Belgium KBC Y SUB 1/4/2006
DANK Denmark Danske Bank Y SUB 1/10/2006
NORD Finland Nordea Y SUB 1/3/2006
BNP France BNP Paribas Y SUB 1/3/2006
CRAG France Credit Agricole Y SUB 1/3/2006
CRMU France Credit Mutuel N SUB 2/23/2010
SOCG France Societe Generale Y SUB 1/3/2006
COMZ Germany Commerzbank Y SUB 1/3/2006
DB Germany Deutsche Bank Y SUB 1/3/2006
DZ Germany DZ Bank N SR 6/30/2008
BAY Germany Bayern LB N SR 5/13/2019
LBBW Germany LBBW N SR 5/13/2019
HESLN Germany Helaba N SR 5/13/2019
INTE Italy Intesa Sanpaolo Y SUB 1/3/2006
UNIC Italy Unicredit Y SUB 1/3/2006
RABO Netherlands Rabobank N SUB 1/3/2006
ABN Netherlands ABN Amro Y SUB 1/3/2006
INGB Netherlands ING Bank N SUB 1/3/2006
VB Netherlands Volksbank N SUB 1/3/2006
CAIX Spain Caixabank Y SUB 8/12/2016
SAB Spain Sabadell Y SUB 1/3/2006
SANT Spain Santander Y SUB 1/3/2006
BBVA Spain BBVA Y SUB 1/3/2006
SWEN Sweden Handelsbanken Y SUB 5/14/2008
SEB Sweden Skandinaviska Enskilda Banken Y SUB 1/3/2006
SWED Sweden Swedbank Y SUB 1/3/2006

Note. This table shows the basic properties of the dataset: the country to which each bank belongs, the
bank short code used throughout this paper, whether the bank’s equity is traded on the market (’Y’) or
it is privately owned (’N’); and the type of CDS spreads used as input for the study (on senior debt (SR)
or on subordinate debt (SUB)). Senior Debt CDSs are corrected for the median spread between senior
and subordinate debt.

Note that we use the CDS rate for ING Bank (INGB), a subsidiary of ING Group
(which is publicly traded). INGB operates mostly in Europe and thus is more relevant
for European regulators. The availability of this CDS contract allows us to focus more
accurately on the risks embedded in the European operations of the bank.

Figure 2 below provides an initial description of the distribution of the CDS prices. 2b
shows the median spreads per country over time, providing an initial view of the possible
dependencies in the (co)occurrence of credit events, as well as an initial idea of which
country’s banks may be subject to higher credit risk. Figure 2b shows the distribution
of cross-bank correlations over time.

We evaluate the risk attribution in a cross-section, using the period from August 31st,
2019 to August 29th, 2022 to evaluate and rank the institutions by their contribution to
systemic risk.

Annual balance sheet data is collected from FactSet and from publicly available finan-
cial statements of the firms whenever the data provider has a gap. The annual numbers
are interpolated to weekly with a cubic spline to avoid jumps at fiscal year-end, driven
by accounting conventions.

For five banks, domiciled in Germany and Austria, only CDS rates on their senior
debt are available, indicated with SR in column CDS Type in Table (1)). Senior debt is
lower-risk than the subordinated (SUB) debt and is sensitive only to very large shocks.
As a result, senior CDS rates are lower and less responsive to news compared to the
subordinated CDS rates of the same issuer. To ensure that these five banks are on
the same footing as the rest of the universe we add to each of them the median cross-
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Figure 2: Data Overview: CDS Time Series
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sectional spread between the subordinate and senior CDS prices the period (excluding
banks domiciled in Italy and Spain).

We use an expected RR assumption (ERR) of 60% for all banks. This is roughly
consistent with related studies. Kaserer and Klein (2019); Huang et al. (2012); Black et al.
(2016) use survey data on expected RR reported on Markit and find that expectations
do not vary significantly over time and stay between 30% and 40%. Over a wide sample,
however, Jankowitsch et al. (2014) find the median RR for banks to be around 60%. Given
the empirical evidence, and the tightening of financial regulation post-2009 in Europe,
we use the 60% as our baseline rate. In any case, the LGD assumption made here mainly
affects the levels, and we are interested in changes over time of the risk trends and in
the relative risk attribution (the PCES) across banks. As a result, the LGD assumption
here is immaterial for our results.

Finally, in the RR process defined in (12), we assume a homogeneous σc = .5 for all
banks. This produces a roughly 30% standard deviation in the simulated RR, which is
in line with related studies (cf. Huang et al. (2012)).

4.2 Factor Model Estimation and Asset Correlations

The first building block for evaluating the potential systemic losses relies on the estimation
of the latent factor model.

First, we have to determine the number of factors to be included in the model specified
in (9). We are looking for the smallest number that can explain the bulk of the co-variation
in the data. To find out we run a Principal Component Analysis (PCA) directly on the
universe of CDS rates and observe that the first three principal components (PC) explain
cumulatively about 80% of the variance of the weekly CDS prices changes (the solid black
curve in Figure (3)). After the third factor, the incremental explained variance from each
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Figure 3: Share of Total Explained Variance
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Note. This figure shows the share of explained variance for the overall variation in the CDS log changes
for the universe of banks in the sample.

next factor becomes marginal and less than 1% (the dotted blue curve).
As a result, using a three-factor model, the next step is to estimate each bank’s factor

exposures. The structural model of Section 3.4 allows us to translate the factor exposures
into asset correlations between banks since that model implies:

Corr(∆ lnVi, ∆ lnVj) = AiA
′
j (24)

As a result, in the model estimation procedure, we pick the factor coefficients which
minimize the squared error between this factor-implied correlation and the asset corre-
lation matrix estimated from co-movements in the transformed default probabilities (ρi,j
in Equation 7):

min
A1,...,An

N∑
i=2

N∑
j=1

(ρij − AiA
′
j)

2 (25)

We use an algorithm suggested by Andersen and Basu (2003) which solves this mini-
mization problem numerically through an iteration over the asset correlations’ PCs, rather
than by direct minimization. The algorithm is outlined in Annex B.25

The next set of figures shows the output from the estimated factor model. First, Figure
4 presents the estimated factor loadings for each bank. The clustering of exposures across
banks can provide some clues on the type of variation each factor may be capturing. The
first factor (F1 on Chart 4) for example seems to account for the overall market variation
in the sample. All factor loadings are positive, and with few exceptions close to the upper
bound of one. The other two factors capture any residual common variation with the
notable clustering of similar exposures for banks from Sweden and Finland to the second
factor, and for Spanish banks to the third factor.

25For an alternative approach using Kalman Filtering techniques see Tarashev and Zhu (2006). As
they show, the two extraction methods produce practically the same results.
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Figure 4: Factor Loadings

 

F1 F2 F3

Aus ERST 0.93               0.02                0.04                

Bel KBCB 0.15               0.13                (0.14)               

Den DANK 0.95               0.09                0.11                

Fin NORD 0.61               (0.69)               0.20                

France SOCG 0.93               0.18                0.07                

BNP 0.96               0.20                0.06                

CRAG 0.95               0.23                0.07                

CRMU 0.51               0.09                (0.06)               

Germany DZ 0.86               0.01                0.10                

HESLN 0.92               (0.06)               0.08                

COMZ 0.95               0.16                (0.01)               

BAY 0.92               (0.07)               0.03                

DB 0.92               0.13                (0.08)               

LBBW 0.91               (0.03)               0.09                

Italy UNIC 0.92               0.11                0.05                

INTE 0.92               0.12                0.08                

Netherlands RABO 0.95               0.15                0.08                

ABN 0.72               0.00                (0.29)               

INGB 0.74               (0.07)               0.12                

VB 0.65               0.11                (0.21)               

Spain CAIX 0.19               (0.08)               (0.49)               

SAB 0.30               (0.09)               (0.64)               

SANT 0.96               0.15                (0.00)               

BBVA 0.94               0.16                (0.02)               

Swed SWEN 0.69               (0.62)               0.05                

SEB 0.65               (0.71)               0.02                

SWED 0.66               (0.36)               (0.28)               

Note. This figure shows the estimated factor loading for the universe of banks, ranked by domicile
country.

Figure 5: Share of Common Factor Risk
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Note. This figure shows the share of common factor risk for each bank in the universe, where a share close
to one indicates that most of the variance of the bank’s assets is factor-driven, rather than idiosyncratic.

Using the factor loadings, we can also evaluate the share of total asset return variation
for each bank that is due to common risk vs. the share which is due to idiosyncratic
variation unrelated to overall market conditions. Formally, the inner product of the
factor loadings for each bank indicates the proportion of factor risk as:
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Var(∆ lnVi)

σi

= Var(∆Wi)

= AiA
′
iVar(Mi) + (1− AiA

′
i)Var(Zi)

= AiA
′
i︸︷︷︸

Factor Risk Share

+ (1− AiA
′
i)︸ ︷︷ ︸

Idiosyncratic Risk Share

= 1

(26)

This can be seen as an initial crude estimate of the systemic sensitivity implied in an
institution’s assets. The higher the share of a bank’s factor risk, i.e. the closer it is to
one, the more its assets will tend to co-move together with the rest of the universe. The
closer the share is to zero, the more the bank’s risk is driven by idiosyncratic components
that do not move with the rest of the universe. Figure 4 shows the estimates for each
bank in the sample. Among the most sensitive institutions are BNP, CRAG, SANT,
COMZ and RABO.

4.3 Correlations and Probabilities of Joint Defaults

Next, we take a closer look at the dependencies that the model implies. Figure 6 shows
the implied correlations between banks’ assets.

First of all, banks that have high market exposures (i.e. exposure to F1 closer to one
in Figure 4) also have high implied correlations. Most notably, this includes the cluster
of German, French, Italian, and Dutch banks BAY, BBVA, BNP, DANK, DB, DZ, EST,
RABO, SANT, UNIC.

In addition, the multifactor model allows for certain network effects to crystallize.
This can be seen again in Figure 6 where clusters of correlations due to exposures to
lower order factors show up. For example, SEB, SWEN, SWED and NORD appear to
be highly correlated among each other, while they otherwise have low correlation to all
other banks in the universe. This is due to their relatively low correlation to the market
factor (F1) and the high exposure to the second factor (F2). Similarly, CAIX and SAB,
the two banks with the highest exposure to factor F3 appear to have a relatively high
correlation to each other, even though other correlations are close to zero.

Combining the asset correlations with the default threshold formulation of Section 3.2
leads us to the next building block of the risk framework: estimation of the probabilities
of joint default (JPD) between banks. This step is performed through a Monte Carlo
simulation.
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Figure 6: Implied Asset Correlations (%)
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Note. This figure shows the implied asset correlations between banks in the universe. The estimates are
based on the observed CDS rates and the assumptions underlying the Merton model from Section 3.3.

We draw 500K independent simulation scenarios for the idiosyncratic and the common
factors based on their distributional assumptions. Then, based on each institution’s factor
exposures, outlined in the previous section, the factor scenarios can be translated into
scenarios of (standardized) asset value changes over the coming year (Ui in (9)). When
assets fall below the default boundary, implied through the observed CDS rate for the day
as shown in relation (6), the simulated scenario indicates that the bank has defaulted.
The average number of joint default scenarios then gives us the overall probability that
multiple banks jointly fall into default.

Figure 13a in Annex A shows the estimated probabilities of joint distress as the off-
diagonal terms of the plotted matrix. In comparison to the asset correlations, now we
also factor in the probability that banks may actually become distressed. The underlying
intuition is that high asset correlation by itself is not necessarily an indication of systemic
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distress, as long as the probability of any of the bank pairs to be distressed is low. In
that sense, some clusters of high correlations observed earlier do not lead to significant
joint default probability. We can see, for example, the relatively high joint distress rate
between COMZB, SANT, UNIC, INTE, DB and DANK. On the other side are CRAG
and INGB which have relatively high correlations to the rest. Yet having relatively low
own default rates they do not show up on top of the ranking in terms of joint default
potential.

Figure 7: Dependency Pairs
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Note. This figure shows a scatterplot of each pair of banks in terms of the estimated asset correlation
and probability of joint default.

We can translate the joint probabilities into probabilities of one institution’s default
conditional on the default of another institution using the relationship:

CPDi|j ≡ P(1di = 1|1dj = 1) =
P(1di = 1, 1dj = 1)

P(1dj = 1)

Through the definition above we can also see that as long as the probability of bank j
to default is low, observing a high probability of joint distress between i and j would
indicate high potential for i to go down given that j goes down. Figure (13b) in Annex
A provides the detailed results.

When interpreting these results several aspects of the derived distress probabilities
should be kept in mind to avoid misinterpretation. First, they are risk-neutral and
should not be interpreted as physical probabilities of default. Since asset risk premia are
typically positive, the risk-neutral estimates can be expected to be more conservative than
real-world default probabilities.26 Second, the magnitude of the probabilities depends on
the size of the expected RR assumption. For a given observed CDS spread a lower RR
assumption in (2) implies a higher default probability.

26The discrepancy between risk-neutral and physical default probabilities has been noted among others
in Altman (1989); Hull et al. (2005). Translating from one to the other requires an estimation of the
respective risk premia. This is not a trivial task, especially considering the time-varying nature of risk
premia. There is ongoing research in this area. See Ross (2015); Bekaert et al. (2022) for some suggested
approaches, and Figlewski (2018); Cuesdeanu and Jackwerth (2018) for an overview of the challenges.
Heynderickx et al. (2016) compare risk-neutral densities estimated from European CDS contracts to
physical densities derived from rating agencies.

25



Table 2: Rank Correlations between Dependency Pairs

AC JPD CPDi|j CPDj|i
AC
JPD 0.91
CPDi|j 0.93 0.88
CPDj|i 0.92 0.88 0.74

Note. This table shows a matrix of the rank correlations between dependency pairs, where dependency is
measured by the implied asset correlations, joint default probability, and conditional default probabilities.

We are, however, first of all, interested in the rankings in systemic risk between
institutions. Our focus is on risk attribution, not on measuring actual physical default
probabilities nor in predicting the average number of defaults over the coming period.
Therefore we can refrain from taking a stance on the formation of risk premia and from
attempts to extract the physical default probability from asset prices. Moreover, we
are more interested in structural changes in systemic risk over time, rather than in the
absolute level of the risk estimate. From that point of view, focusing on the risk-neutral
distribution may even be beneficial, as it captures purely structural factors and excludes
shifts in the estimates due to for example changes in risk perceptions.

Finally, we rank all bank dependency pairs, defined either as asset correlation (AC),
JPD, or CPD, from highest to lowest. That allows us to observe the extent to which each
measure gives similar ranking information. Table 2 summarizes these relationships by
showing the Spearman rank correlations between these dependency measures, showing
that the rankings by asset correlation (AC) are similar to those obtained from the JPD
and the CPD. It needs to be noted, however, as Figure 7 shows, that the relation between
AC and the JPD is highly non-linear. By considering the JPD rather than pure asset
correlations, we can capture this specific aspect of systemic risk: higher asset correlations
tend to be associated with exponentially higher the probability of joint distress.

4.4 MES and Systemic Risk Attribution

The analysis so far does not take into account the fact that the default of larger in-
stitutions is likely to have a larger impact on systemic losses. The default of a larger
institution can be expected to have wider repercussions on the economy, and bailing it
out is likely to be more costly for the regulator and its.

So, our next step is to incorporate precisely that in the systemic risk attribution
measure that we develop. First, we take into account the stochastic nature of expected
losses and the way they are correlated across institutions in line with the specification
in Section 3.4. Second, we incorporate the size of the institution by weighting potential
losses by the size of banks’ liabilities as indicated in Section 4.4.

We proceed to attribute the overall systemic risk to individual banks. Table 3 shows
the details for the universe that we consider. First, we show the standalone tail risk
for each bank, measured by its ES. Second, we provide also each bank’s sensitivity to
systemic risk, assessed through its MES, following Acharya et al. (2017). The percentage
contribution figures (PCES) defined in (23) then evaluate the share of the overall risk
that can be attributed to each individual bank.

First, we want to point out the relationship between banks’ vulnerability rankings
with respect to their own risk, and the vulnerability of the system as a whole. Figure 8a
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Table 3: Systemic Risk Attribution Ranking (Gaussian Model)

Short Code w EL ES MES PCES

BNP 13.24 (1) 1.48 (17) 81.25 (2) 80.12 (1) 16.33 (1)
CRAG 10.51 (2) 1.43 (19) 81.28 (1) 79.85 (3) 12.93 (2)
SANT 7.87 (3) 1.89 (9) 81.24 (3) 79.97 (2) 9.70 (3)
SOCG 7.32 (4) 1.72 (12) 81.19 (6) 78.63 (7) 8.86 (4)
DB 6.64 (5) 2.72 (3) 81.10 (8) 78.25 (9) 8.00 (5)
INTE 5.28 (6) 2.70 (4) 81.10 (7) 78.40 (8) 6.37 (6)
UNIC 4.49 (8) 2.96 (2) 80.94 (12) 78.00 (10) 5.39 (7)
BBVA 3.22 (11) 2.02 (7) 81.23 (4) 79.08 (6) 3.93 (8)
RABO 3.15 (12) 1.43 (18) 81.22 (5) 77.75 (11) 3.77 (9)
DANK 2.66 (15) 2.29 (6) 81.04 (10) 79.74 (4) 3.26 (10)
DZ 3.14 (13) 1.36 (21) 79.34 (19) 64.70 (16) 3.13 (11)
COMZ 2.33 (16) 2.65 (5) 81.07 (9) 79.57 (5) 2.85 (12)
INGB 4.71 (7) 0.68 (27) 72.66 (24) 34.28 (19) 2.49 (13)
ERST 1.51 (21) 1.61 (13) 80.84 (13) 74.81 (12) 1.74 (14)
LBBW 1.41 (22) 1.38 (20) 80.54 (16) 68.50 (15) 1.49 (15)
BAY 1.34 (23) 1.48 (17) 80.54 (17) 70.75 (14) 1.46 (16)
CRMU 4.15 (9) 1.83 (11) 71.54 (26) 22.70 (24) 1.45 (17)
NORD 2.82 (14) 1.21 (24) 80.75 (14) 28.08 (23) 1.22 (18)
HESLN 1.07 (26) 1.52 (14) 80.57 (15) 72.46 (13) 1.19 (19)
ABN 1.99 (17) 0.98 (25) 75.84 (22) 36.84 (17) 1.13 (20)
SWEN 1.61 (19) 1.24 (23) 80.44 (18) 34.77 (18) 0.86 (21)
SEB 1.59 (20) 1.28 (22) 80.99 (11) 31.78 (21) 0.78 (22)
SWED 1.32 (24) 1.49 (15) 78.67 (20) 33.97 (20) 0.69 (23)
CAIX 3.38 (10) 1.98 (8) 72.26 (25) 8.01 (26) 0.42 (24)
SAB 1.25 (25) 2.98 (1) 78.54 (21) 13.99 (25) 0.27 (25)
VB 0.34 (27) 0.90 (26) 73.09 (23) 29.00 (22) 0.15 (26)
KBCB 1.67 (18) 1.89 (10) 64.96 (27) 5.37 (27) 0.14 (27)

System 100 1.79 64.92 64.92 100

Note. This table shows the liability weight (w), Expected Loss (EL), Expected Shortfall (ES), Marginal
Expected Shortfall (MES), and the Percentage Contribution to Expected Shortfall (PCES) evaluated at
99% Confidence Level. The numbers in brackets show the ranking based on the corresponding statistic.
The statistics are evaluated for August, 29, 2022 using a two-year weekly time window to estimate the
factor model loadings.

plots the rankings between the ES and MES. Overall, the relationship is positive. This is
consistent with the fact that higher individual risk will inevitably correspond to a larger
threat to the other players in the system when banks are interlinked. However, there
are also some notable differences between individual and systemic risk rankings. Most
notably, NORD and SEB are around the middle of the ranking scale in terms of ES,
but they are at the bottom of the scale in terms of MES. The banks were identified as
having small factor exposure to the main common factor and large negative exposure to
the second factor which clusters banks from Sweden and Finland, as shown in Figure 4.

Figure 8b on the other hand shows the positive relationship between size and PCES
rankings. It can be expected that for the same level of risk sensitivity (MES), the larger
an institution, the larger its PCES will be. This positive relationship is strongly evident
at the upper end of the rankings, where the top six banks by size and by weight are
the same. After that, however, we start seeing some differences. For example, INGB is
ranked seventh by size but 13th by contribution to ES. This can be traced back to the
fact that it has a lower own risk (ES) and much lower sensitivity (MES) than the rest
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of the universe (Cf. Table 3). At the middle and bottom end of the rankings, banks are
relatively the same size, so now their different MES helps us distinguish between degrees
of risk contribution. Such is the case with, for example, KBCB which is ranked 18th
by size but 27th in terms of contribution to systemic risk due to its low sensitivity to
systemic losses, indicated by the MES of 5.37%.

Note that the five largest banks in the universe, the BNP, CRAG, SANT, SOCG and
DB account for about 45% of the outstanding liabilities in the system, measured in Table
3 by w. At the same time, they account for 55% of the downside risk in the system,
measured by PCES99.

Figure 8: Risk Rankings
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Note: This set of charts shows scatterplots of the rankings in size, risk, risk sensitivity, and risk contri-
bution for the individual banks.

4.5 Expected Systemic Shortfall

So far, we have discussed the use of the shortfall measures as a way to attribute total
systemic risk across banks and to rank institutions by their contribution to systemic risk.
Next, we show how systemic risk itself is quantified by calculating the Expected Systemic
Shortfall ESS, measured as the ES of the total portfolio of banks. We then evaluate the
potential of the ESS measure as an early indicator of financial distress. For this purpose,
we evaluate the evolution of total systemic risk over the period from March 1st, 2010 up
to August 28th, 2022.

Figure 9 below plots the ESS over time for respectively the 95% and 99% confidence
levels, on a rolling-window basis starting in January 2012 until the end of August 2022.
We also include as a model-free indicator the VSTOXX (on the right axis).

We place on the chart several key events for the development of systemic risks. First,
we can see how the ESS at 95% declines gradually after Draghi’s "courageous leap" speech
(a), and "whatever it takes" speeches in 2012, indicating that the measure was able to
capture the subsequent decline in systemic risk from the Euro debt crisis. Then we can
see the sudden spike in risk with the first Covid lockdowns in Europe in January 2020
and the subsequent decline after the ECB’s involvement to secure liquidity in the market.
The Russian invasion of Ukraine in 2022 had a much smaller impact on the ESS than
on VXTOXX, possibly because the ESS is strictly focused on the banking sector, while
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Figure 9: Expected Systemic Shortfall vs. VSTOXX
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Note. This plot shows the tail risk of the systemic portfolio quantified by the ES at a confidence level
of 95% and 99%. The grey dotted line represents the VSTOXX index. The verticle lines indicate the
dates for (a) Mario Draghi’s "courageous leap" speech to save the euro; (b) Draghi’s “whatever it takes
speech”; (c) the first Covid lock-downs in Europe (in Italy); (d) the Russian invasion in Ukraine.

VSTOXX covers the direct effects of the war on all sectors.
We see that the 95 % ESS estimates are responsive in the short term to fluctuations

in asset prices compared to the 99% based ESS. The ESS at 99% on the other hand tends
to move with the overall trend and catches the major events but seems less responsive
(than ESS at 95%) to period-by-period changes, unless an unexpected tail event hits, as
the first Covid lockwons in Europe.

Figure 9 also compares the constructed ESS measures of systemic risk with the value
of the VSTOXX index, which is often used to track risk appetite and market panic.
VSTOXX, like its US counterpart VIX, measures the implied volatility derived from
near-term exchange-traded options on the Euro Stoxx 50 equity index. The options are
widely used by investors for hedging purposes. As a result, the index indicates informally
the current price investors are willing to pay in order to hedge extreme risks and can
serve as a measure of investors’ view on the potential for systemic events to realize.27

It is interesting to observe that our constructed risk measure, especially the one based
on a 95% confidence interval, matches closely the VSTOXX index. The match becomes
particularly notable from 2018 onwards. A benefit of the constructed ES measure relative
to the implied variance index, however, is that it is less noisy over time.

4.6 Capital Requirements and Systemic Risk

In the introduction, we noted that there exists an apparent large disconnect exists between
the academic and regulatory approaches used to measure systemic risk. The academic
approach, as we saw in Section 2, favors the use of market data and asset pricing methods.
Regulators on the other hand rely on balance sheet and regulatory data. In particular,

27The composite implied volatility indices are often seen as indicators of the (lack of) risk appetite in
the economy. A low appetite for risk (high implied volatility) relates to a greater cost of capital for the
economy, thus lower investments and lower asset prices, while a high appetite (lower implied volatility)
relates to credit and asset price bubbles, increasing the chance for future recessions and stress in the
financial system (Cf. Illing and Aaron (2005); Gai and Vause (2006); Aven (2013)). On the other hand,
Bekaert et al. (2013) decompose the US counterpart of the index in risk-aversion and expected equity
market volatility and show the effect monetary policy has on both components.
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for European regulators, the general guidance by the EBA is to focus on several criteria
of systemic relevance such as size, importance, complexity, and interconnectedness (EBA,
2020). At a national level, a score is provided in each systemic category and the four
categories are weighted up to a single O-SII score number.

Figure 10: PCES vs. Capitalization
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(b) Current Capitalization

Note. This figure shows our model estimates for systemic risk contribution measured by PCES at 99%
confidence level versus (a) the size of the required O-SII buffer rate for 2022, and (b) banks’ total CET1
capitalization ratio for 2022.

The mapping from O-SII scores to capital buffers, however, is very discretionary
across countries in Europe (Cf. ESRB (2017)). The mapping technology may vary
significantly: either a direct mapping can be applied with banks bucketed based on their
O-SII score, and with O-SII capital buffer surcharges applied in each bucket accordingly;
or an indirect approach may be applied aiming to equalize the score between a systemic
and a non-systemic bank weighted by each bank’s default probability. And even when
the same methodology is applied, the choice of assumptions and parameters may still
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create a source of discrepancy.
The methodology developed in this paper allows us to compare banks’ capitalization

rates across countries to their contributions to systemic risk. Our approach is indepen-
dent of regulatory scores and mapping assumptions, which puts countries on the same
level playing field, and thus gives us the possibility to focus purely on banks’ systemic
importance. The use of CDS data allows us also to include in the analysis also banks
that do not have equity listings.

Figure 10a shows the results: in that Figure, we plot the regulatory O-SII buffer rates
against the corresponding PCES numbers. The results are striking: although there seems
to be a strong positive relationship between the two approaches for most banks, there is
a cluster of large banks which does not fit the pattern in that their buffers seem low by
comparison to the rest of the sample. The cluster is located on the right side of the chart
and consists of the four largest banks in our universe, three of them domiciled in France
SOCG, CRAG, BNP, and one domiciled in Spain SANT. Location on the right side of the
plot implies that their required O-SII buffers are low compared to their contribution to
systemic risk: they are required to hold between 1% and 1.5% buffers, even though their
respective contributions to systemic risk are several times higher than those of smaller
banks with a comparable buffer requirement.

In order to verify if other types of capital buffers compensate for their relatively low
O-SII rates, Figure 10b sets off their total CET1 capital ratio against their contribution to
systemic risk. Figure 10b tells the same story: it shows again that the largest contributors
to systemic risk are undercapitalized relative to their share in total systemic risk when
compared to the smaller banks.

So for an important subgroup of large European banks the size of the buffers they
are required to hold does not seem to be in proportion to their contribution to systemic
risk: the buffers are lower than for other banks with comparable or lower contributions to
systemic risk. This leads to two questions. First of all, how appropriate are the current
buffer rates when risk spillovers outside of the national economy and within the Eurozone
are taken into account? And second: how consistent are the approaches of translating
systemic importance into buffer requirements between European countries? In (Dimitrov
and van Wijnbergen, 2023) we explore the calibration of macroprudential capital buffers
based on systemic risk using the methodology developed in this paper and address the
capitalization discrepancies observed here.

4.7 Robustness Check-1: Alternative Measures of Systemic Risk

As we saw in the literature review of Section 2, there is a wide variety of systemic risk
measures which make use of market data. As a robustness check, we look at which of
those measures comply with the MES and PCES rankings established earlier.

First, we look at the CoV aR measure proposed by Adrian and Brunnermeier (2016)
to quantify the tail-dependency between an institution and the system it is part of. As
modified by Huang et al. (2012), CoV aR is evaluated as the worst α% losses of the
system, given that institution i is in its worst α%28. To align this measure with the

28Actually Adrian and Brunnermeier (2016) define CoV aR by conditioning on individual losses being
equal to a quantile rather than a region of their distribution as:

P(Lsys ≥ CoV aRi|Li = V aRi) = α

This allows the use of quantile regression for the estimation of the measure. On the negative side,
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concept underlying the MES, we invert its conditioning to get the Exposure ECoV aR,
which now like MES also quantifies the sensitivity of the institution’s losses to a systemic
tail event:

P(Li ≥ ECoV aRi|Lsys ≥ V aRsys) = α

Both the MES and the ECoV aR measure the institution’s losses if the system ends up
in the tail of its potential losses over the coming year. However, in contrast to MES,
which measures the average loss once the system is its tail, the ECoV aR zooms in deep
in the tail of the potential losses of the institution, measuring the α-th quantile not only
with respect to the systemic losses but also with respect to the institution’s own losses.

Second, we compare the MES results to another measure that is not influenced by
the assumptions on how losses are formed and how they correlate between companies, as
these assumptions inevitably affect both the MES and the ECoV aR which are driven
by the same loss simulations. We use the measure of systemic sensitivity of Zhou (2010)
labeled as a Vulnerability Index (VI). It is defined as the probability that institution i
will be in distress conditional on having more than one bank in distress in the system:

V Ii = P(1di = 1|Nd > 1) (27)

Note that Zhou (2010) relies on Extreme Value Theory to estimate the proposed measures.
Also, we rely on default as an indication of distress, whereas the original measure is
constructed to capture large tail movements in the equity value of the institution.29

Finally, we consider also w, the relative size of banks’ liabilities, as a naive model-free
measure of systemic importance.

Table 4 summarizes the results, first for the indicators unweighted by size (see Table
4a). The closest correlation is between the MES and the ECoVaR measures, the corre-
lation between the MES and the VI measure is somewhat lower. All measures have a
relatively low correlation to bank size.

Table 4b compares the estimated PCES, which in fact is a size-weighted version
of the MES, to size w again and to the size-weighted variants of ECOV AR and V I.
Naturally, the measures now become much more correlated once we all weigh them by
the same factor w. Note that the rankings by PCES have a much lower correlation to
the rankings by size than the other two measures ECoV aR and V I. The explanation is
that the PCES, by including the risk components, embeds additional information into
the ranking.

We have to emphasize that from the proposed measures, only the individual banks’
weighted MES sums up to total systemic risk. This is due to its additivity property (22).

such conditioning can give a misleading tail-risk indication when the loss distribution is fat-tailed, by not
capturing the probability mass below the V aR quantile. In our case, the losses of the systemic portfolio
are strongly non-Gaussian, so we use the modified version of CoVaR, as in Huang et al. (2012), which
conditions on Li ≥ V aRi. See also Nolde and Zhou (2021) for the same argument, and the relation to
Extreme Value Theory of the modified measure.

29The VI index is constructed by inverting an earlier measure of conditional default proposed by
Segoviano and Goodhart (2009). To evaluate the impact of each institution upon the system, they
measure the probability that at least one more institution becomes distressed (PAO) conditional on the
distress of one particular institution: PAOi = P(Nd > 1|1di = 1). We do not explore systemic impact
measures here, as an initial analysis shows that there is very little difference in rankings between the
impact measures (PAO and SII) and the sensitivity measure (SII) for our sample.
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Table 4: Systemic Rankings Comparison

w MES ECoVaR VI

w
MES 0.54
ECoVaR 0.39 0.80
VI 0.28 0.74 0.64

(a) Rank Correlations

w PCES w ∗ ECoV aR w ∗ V I

w
PCES 0.79
w ∗ ECoV aR 0.99 0.85
w ∗ V I 0.89 0.89 0.91

(b) Rank Correlations, Weighted Measures

Note. This set of tables shows the systemic risk rankings according to alternative measures and the rank
correlations between them.

The two other risk measures do not have this property and their weighting can therefore
only be seen as heuristic; they can produce instructive rankings but they do not indicate
how much each bank contributes to overall systemic risk.

4.8 Robustness Check-2: The Student-t and the Skewed-t Model

Finally, we verify how the risk attribution is affected by modifying the Gaussian asset
returns assumption in line with the model extensions in Section 3.5, where we considered
two alternatives: the Student-t distribution to introduce fat tails; and a variant, the
Skewed-T model which in addition introduces skew.

Figure 11 shows how the three models compare against each other in estimating
total risk. First, Figure 11a shows the full tail of the distribution of systemic losses, by
quantifying the probability that total losses may be larger than a certain threshold L,
with losses measured relative to the size of the aggregate liabilities in the system. We
can clearly see that adding a fat-tailed factor in line with specification (14) increases
the estimated probability of large losses occurring (the red dashed curve in the figure),
compared to the normal model (the black curve). Adding a skew factor on top of that in
line with the specification in Equation (15) increases the tail risk even further (the red
curve) for the whole range of scenarios. We can see that the tail of the normal model
declines much faster than that of the others, indicating that the probability of observing
large losses declines to zero much faster than when a fat-tailed or skewed factor is included.

Figures 11b and 11c then show the estimated systemic risk by varying the skewness

29Formally, this is known as the Euler property of a risk measure. See Hull (2018) (Chapter 12) for
details. For a discussion on the additivity property of the V aR in the context of systemic risk, see
Puzanova and Düllmann (2013).
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Figure 11: Aggregate Tail Risk, Model Comparison
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Note. This plot shows the overall risk in the system, measured by the systemic portfolio’s ES. Figure (a)
compares the probability of realizing a loss larger than a given threshold L for the Normal, the Student-t
with ν = 6, and the Skewed-t model (with ν = 6 and δ = −1). Figures (b) and (c) show the portfolio’s
ES as a function of the skewness parameter δ and the tail-fatness parameter ν.

parameter δ and the tail-fatness parameter ν. It is interesting that the systemic ES
appears to be much more sensitive to negative skewness than to symmetric fatter tails, as
can be seen in Figure 11c. For ν around 30 and δ of zero, the model becomes normal. The
risk estimate then increases sharply with more negative δ, even with otherwise thinner
tails (degrees of freedom close to 30). The highest level of risk appears with high skewness
and high tail-fatness parameters.

Next, Figure 12 compares the risk attribution numbers across the banks in the uni-
verse. With few exceptions, the PCES estimates follow the overall trend and rankings
established earlier with the Gaussian model (Cf. Table 3). This overall tendency can be
expected as we model tail risk and skewness as aggregate factors that affect all banks in
the same way.

Note, however, that the specification of the factor governing the tails of the banks’
asset distributions has some implications for the idiosyncratic risk of the banks. In the
alternative model specifications, the bank-specific factors Zi are multiplied by the inverse
of the common factor F . Therefore banks which in the normal-distribution model had low
exposures to the linear common factors M , and thus low overall correlation with the rest
of the universe, now do have an additional source of (nonlinear) common risk. In the very
extreme, this means that now even if banks have full exposure to their idiosyncratic risk
factors and none to the common linear factors, a low realization of F will drive up their
tail risk anyhow. As a result, the common factor F will have the propensity to jointly
drive up the tail risk of all banks at the same time after all, even with low or no exposure
to the linear factor M . As a consequence, we observe in the new rankings some relocation
of risk from the top contributors in the Normal model (BNP, CRAG, SANT, SOCG) to
the lower end of the attribution ranking (e.g. INGB, CRMU, NORD, CAIX ). The latter
is a group of banks that under the normal model have a relatively small proportion of
factor risk (Cf. Figure 5). Adding extra aggregate risk factors for tail risk and skewness
increases the interdependency between these banks in extreme scenarios and as a result,
increases their contribution to the total risk.
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Figure 12: Model Comparison PCES
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Note. This figure shows the share of systemic risk measured by PCES at 99% confidence level for the
three asset returns distributional models. The Student-t model uses degrees of freedom ν of 6 and the
Skewed-t uses, in addition, a δ parameter of −1.

5 Conclusion

In this paper, we examined the systemic linkages and the potential systemic risks in the
European banking sector. To do so we addressed a common challenge in estimating and
monitoring the build-up of systemic risks: a regulator cannot observe the market price of
equity for institutions that are privately or state-held. In these cases, we show that high-
frequency data from the CDS market can still be used to imply views on co-dependencies
and joint losses. We apply the model to the European banking sector, where many key
banks are not publicly traded. The model allows us to rank banks in the Eurozone by
their contribution to overall systemic risk in the Euro Area. We find that on a European
scale, there is a discrepancy in the capitalization between the largest contributors to
systemic risk relative to smaller less systemically important banks. This has important
implications for the policy debate on conducting macroprudential policy at a European,
rather than a national level.

In contrast to the micro-prudential view, an appropriate macro-prudential policy
should monitor not only the risky positions of an institution on its own but also the
interdependencies between institutions and the potential for several of them to realize
large losses at the same time. In the universe that we consider, we confirm that a risk
ranking incorporating tail dependence across banks is different from a ranking based on
standalone tail risk. From an aggregate risk point of view, it is clear that a focus on
contributions rather than standalone risk is more important.

In the process, we present a model that builds upon the existing academic literature
but addresses systemic risk more from a structured credit angle. The financial institutions
in the system are seen as part of a defaultable loan portfolio. Systemic losses occur in the
case of the default of one or several institutions. The average tail losses of the portfolio
(the ES measure) speak for the magnitude of the systemic risk. The average losses of each
institution, given that the system is in its tail, speak for the sensitivity of each institution
to systemic risk. Then, the share of the portfolio tail risk that can be attributed to an
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institution represents its contribution to systemic losses.
We also show that the estimate of aggregate systemic risk in itself, as measured by

the expected shortfall ES of the portfolio of systemic banks, is a useful indicator for
the development or resolution of systemic risks in the banking sector. We illustrate
the sensitivity of this measure to recent events, such as the resolution of the Euro debt
crisis, the initiation of the Covid-related market turmoil, and the initiation of the war in
Ukraine.

Methodologically, we extend the existing literature, in particular - the approaches
used in Huang et al. (2012) and Puzanova and Düllmann (2013), in two ways. First,
we allow for risk dependencies to appear not only in the form of default correlations but
also in the form of dependencies in the size of default losses. This reflects the empirical
evidence collected from the observation of historical defaults, as well as insights from the
theory of firesales and contagion. Second, we allow for higher-order common factors to
account for asset return fat-tails, skewness, and asymmetric dependencies. This takes
into account the potential for extreme events to materialize more often than presumed
by the Gaussian distribution, and the tendency of assets to have a higher dependency in
crises than in booms.

As an application of the model, we examine the extent to which the European banks’
capitalization is consistent with their contribution to systemic risk within the Eurozone,
rather than, as the current regulatory framework guides, within national borders. We find
that the largest institutions on a European scale in terms of size and risk contribution are
less capitalized compared to smaller institutions, both in terms of the regulatory O-SII
capital buffers and in terms of the actual CET1 capital. This finding should be relevant
in the policy debate on the systemic resilience of the individual banks in the Euro Area
and on the adequacy of current capital requirements.

Overall, we conclude that there are strong arguments in favor of embedding market-
based implied measures of systemic risk, like ours, into the policy process. The approach
developed in this paper makes that possible even in the presence of state-owned or coöper-
ative banks that lack the equity listing necessary for the application of the techniques
developed in the current academic literature. First of all, such measures provide a way
to verify the ranking that policymakers come up with based on EBA’s guidelines using
regulatory data only. Any discrepancy in the rankings based on the two approaches raises
important questions, the answers to which may well improve the regulator’s approach to
assessing systemic risk. And even if no discrepancy between the two approaches appears,
a market-based measure such as the MES and the PCES can be used to assess risks
between annual policy assessments.

In the current study, we have also touched upon the field of extreme risk, and how
risk results are affected by the addition of common factors responsible for skewness and
tail-fatness in asset returns. Further research could explore additional features in the sys-
temic risk model. In fact, the currently proposed portfolio approach could be considered
a basic architecture, which is extendable to incorporate specific observed stylized features
of asset prices or of the structure of the examined financial network. Since tail correla-
tions between the institutions are a key driver of systemic contributions, it is worthwhile
exploring the non-linear structures of these dependencies. The ability to model large
multi-dimensional dependencies is key. Oh and Patton (2018) for example suggests the
use of a dynamic factor copula approach. Wang (2021) suggest a deep learning approach.
Alternatively, network models could be used to mimic the often observed core-periphery
structure of the financial sector (Bräuning and Koopman, 2016; Andrieş et al., 2022).
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Institutions that constitute the core of the network could well be dominant drivers of
systemic risk (Glasserman and Young, 2016; Jackson and Pernoud, 2021).

To sum up, estimating systemic risk contributions properly is essential for the efficient
regulation of the financial system. The additional capital surcharges are a cost that
needs to go to the institutions generating the systemic externality, so identifying these
institutions is crucial. Further research into the methods used to quantify and attribute
systemic risk is thus important.
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A Conditional Probabilities of Default

Figure 13: Risk-Neutral PDs
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(a) Joint Probability of Default (%)

Note: This set of charts show the risk-neutral probabilities that (a) two institutions may default together
over a one-year horizon; (b) an institution j may default, conditional on institution i being in default.
The estimates are evaluated as of the end of August 2022.

B Latent Factor Model Estimation

We apply the following algorithm based on Andersen and Basu (2003) to estimate the
latent factor model from time-series data of the institutions’ CDS prices.
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Assume that Σ is an n × n matrix containing the target asset correlations between
the key institutions. Assume the following factor model

U = AM +Z

where U is an n × 1 vector of standardized asset returns for the n institutions, A is an
n × f common factor loadings matrix, M is an f × 1 vector of common factors and Z
is a n× 1 vector of idiosyncratic factors. All factors are independent of each other with
zero expectation and unit variance.

The problem is one of solving for A by minimizing the least squared difference of the
model correlation matrix to the target one, such that:

min
A

{
(Σ−AA′ − F ) (Σ−AA′ − F )

′}
where F is a diagonal matrix such that diag(F ) = 1− diag(AA′).

The numerical solution algorithm then is

1. Guess F 0

2. Perform PCA on Σ−F i and compute Ai = Ei
√
Λ

i
, where i is an iterations counter,

E is a matrix of the normalized column eigenvectors of Σ − F ,
√
Λ is Cholesky

decomposition of the diagonal matrix containing the f largest eigenvalues of Σ−F .

3. Calculate F i+1

4. Continue with Step 2, until F i+1 is sufficiently close to F i.

C Moments of the Student-t Model
We can imply the moments for the latent variable for the Student-t model.

Define as Un
i the random variable that results from specification (9); and define as U st

i

the student-t specification of (13). Due to independence between the multiplicative factor
F and all other factors in the specification, the factor model still implies expectation of
zero for the latent variable

E(U st
i ) = 0

The variance is

VarU st
i = E

(
h(F ) (Un

i )
2) = E (h(F ))E (Un

i )
2

= E (h(F ))

= E
( ν
F

)
=

ν

ν − 2

where the last step follows from the expectation of an inverse chi-squared distribution, and
we use the shorthand notation introduced earlier where Un

i =
(
AiM +

√
1− AiA′

iZi

)
.

Similarly, it can be shown that Cov(U st
i , U st

j ) = E(U st
i U st

j )−E(U st
i )E(U st

j ) = AiA
′
jEh(F )

which implies that he correlation is invariant to the factor F :

Corr(U st
i , U st

j ) = AiA
′
j (28)
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Following Bolder (2018) we can derive the skew S(Ui):

S(U st
i ) = E

(U st
i − E(U st

i )√
VarU st

i

)3


= E

( U st
i√

VarU st
i

)3


=

(
Eh(F )EUi√

VarU st
i

)3

= 0

(29)

where the last equality follows from EUi = 0.
Finally, the kurtosis of K(Ui) can be determined as

K(Ui) = E

((
Ui − E(Ui)√

VarUi

)4
)

=
E ((U st

i )4)

(Var(U st
i ))2

=
E(h(F )2)E (U4

i )

(E(h(F ))2

= 3
E (h(F )2)

(Eh(F ))2

Again, considering the fact that from the inverse chi-squared distribution we have

Eh(F ) = E
( ν
F

)
=

ν

(ν − 2)

E(h(F )2) = E

(
ν2

F 2

)
=

ν2

(ν − 2)(ν − 4)

(30)

Then we have

K(U st
i ) = 3

ν − 2

ν − 4
, for ν > 4
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