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1 Introduction

Carbon taxes, which are key to curb climate change, will increase the price of energy

derived from fossil fuels. But the distributional consequences of carbon taxation are

still unclear. Propelled by the post-pandemic economic recovery first, and Russia’s

invasion of Ukraine later (Ari et al., 2022), wholesale energy prices in Europe more

than tripled in the first quarter of 2022 relative to the first quarter of 2021. Thus,

this energy crisis provides a unique window into studying the economic effects of

higher energy prices induced by carbon taxation. In the absence of government

intervention, shocks to wholesale energy prices pass through to household energy

bills, meaning price hikes can create significant welfare costs. Higher energy prices

likely have heterogeneous effects across socioeconomic groups and geographies,

due, at least in part, to the energy efficiency and the fuel mix of the residential

building stock, as well as to households’ ability to invest in energy efficiency to

shield themselves from price shocks. Thus, wholesale price shocks have the po-

tential to create differential incentives to invest in insulation and energy efficiency

measures (Houde and Myers, 2021). As such, the current crisis can inform the

debate on potential implications of a carbon tax in the residential building sector,

which accounts for 40% of energy consumption and 36% of energy-related green-

house gas emissions in Europe (European Union, 2021).

The United Kingdom represents an interesting context in which to study the

distributional consequences of the energy crisis and the policies deployed to counter

it for three reasons. First, for residential use, the UK relies disproportionally on

natural gas (63%, second only to the Netherlands in Europe), while renewables

and biofuels play a limited role (Figure 1). Partially due to this reliance on natural

gas, UK energy prices were projected to grow even more than in other European

countries, by over 600% between 2021 and 2023 (IEA, 2022). Second, the UK is

among the lowest ranking European countries in terms of the energy efficiency

of its residential building stock across several measures. For example, UK homes

lose heat faster than in most other European countries, according to data from the

company tado°.1 Moreover, its fuel poverty rates are among the highest in Europe,

standing at 12% in Wales, 13% in England, 18% in Northern Ireland and 25% in
1Source: https://www.tado.com/t/en/uk-homes-losing-heat-up-to-three-times-faster-

than-european-neighbours/ accessed on January 30, 2023.
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Scotland (Hinson and Bolton, 2022; Guertler et al., 2015). Third, the UK – just

as many other countries around the globe – has a wealth of underutilized data

that enable a distributional analysis of different energy pricing policies. As such,

quantifying the impact of the current energy crisis on UK households can shed light

on some of the worst-case scenarios that other countries and regions might face in

the transition to the decarbonisation of the residential building sector.

For this purpose, we develop a measure of energy consumption for properties

in England and Wales that allows us to assess the distributional impacts of differ-

ent energy price scenarios or policy interventions. First, we harness the Energy

Performance Certificate (EPC) database, which includes over 22 million certificates

detailing estimates of energy expenditure along with other granular public data on

energy consumption. The underlying set of unique properties – around 15 million –

represents a large share – at least 50% – of the English and Welsh residential build-

ing stock. Each EPC includes model-based energy consumption estimates for space

heating, hot water generation, and electrical light consumption based on the phys-

ical characteristics of a particular building, a thermodynamic modelling approach,

and assumptions on occupancy. We anchor the derived energy consumption measure

with anonymized individual-level meter reading data along with granular spatial

energy consumption data. This moment-matching rescaling approach allows us

to capture local demographics and socio-economic characteristics that may affect

energy consumption over and above what the model-based consumption figures can

provide. This anchoring is vital to study the distributional impacts and it may serve

as key input to future research. Out-of-sample validation approaches confirm the

accuracy of the modelling approach.

Second, we use these energy consumption estimates to project energy bills under

different price policies and energy efficiency investment scenarios. For example, we

model how energy bills change for different households as a result of changes in

the UK’s uniform energy price cap.2 Ours are intention-to-treat estimates which ab-

stract away from variation in energy expenditure driven by differences in behaviour

across households. Moreover, we leverage additional, desirable information in the

EPCs on recommended energy efficiency improvements by property and estimates

2The energy cap sets the maximum price that energy suppliers are allowed to charge customers,
and is chosen by regulator Ofgem.
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of reductions in energy use if these improvements were implemented.3 Thus, we

can develop a measure of energy savings potential and price this savings potential

under different policy scenarios. The difference between actual and potential en-

ergy use is the measure of exposure to the price shock that we use throughout our

analysis. It captures the extent of the energy price burden relative to a hypothet-

ical scenario in which residents upgraded their homes. This exercise allows us to

quantify the hidden cost of underinvestment in energy efficiency in both monetary

and physical units of energy consumption. Such a hidden cost is now highly salient

given recent dislocations in energy markets.

We carry out four sets of interconnected descriptive analyses at the Middle Layer

Super Output Area, of which there are 7,201 in England and Wales, to enable match-

ing with socioeconomic data. First, we characterise which areas are, on average,

more exposed to the energy price shock using a best-subset selection approach. We

focus especially on two area-level characteristics: median property prices and total

household income. In absolute terms, more affluent regions tend to be more ex-

posed to the shock, likely because well-off households tend to live in bigger, older,

and more energy inefficient properties.

Second, we document where the highest energy savings potential lies in Eng-

land. Our findings indicate that wealthy areas not only are disproportionately ex-

posed to the price shock, but also have larger energy saving potential. A natural

question, then, is why these apparently affluent households have so far not invested

in upgrading the energy efficiency of their homes. We speculate that low energy

prices in the past few decades translated into low projected annual savings from

these investments compared with their monetary and non-monetary costs (Adam

et al., 2022). As such, it is key to assess how the government’s response to the

current energy crisis might further affect incentives to invest.

Third, we evaluate the energy price shock under different pricing policies: we

consider both a uniform unit-price cap, which is the policy implemented by the UK

government in October 2022 under a scheme known as the Energy Price Guaran-

tee (EPG), as well as an alternative two-tier energy tariff, where an initial quantity

of energy consumption is charged at a subsidised rate but consumption beyond

3Improvements are specific to the characteristics of each dwelling. For example, the EPC only
recommends cavity wall insulation if a dwelling has an unfilled cavity wall. If a dwelling has a solid
wall, the EPC may recommend solid wall insulation.
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this threshold is priced at market rates. Because the energy price shock is more

pronounced in affluent areas, the current uniform price cap disproportionally ben-

efits these areas, with regressive implications considering the difference between

the cap and wholesale prices has to be funded, as highlighted in Fetzer (2022).

We also consider prices absent intervention during the energy crisis, that is at a

higher uniform cap intended to allow moderate profits for energy suppliers, for

example given wholesale energy costs. We refer to this as a market price scenario.

Importantly, our methodology accounts for variation in heating system and energy

efficiency performance at the property level, as well as area-specific demographic

characteristics.

Fourth, we analyse how different policies affect households’ incentives to invest

in energy efficiency. Not surprisingly: the uniform price cap weakens energy saving

incentives for higher earners living in well-off areas. In contrast, the two-tier tariff

maintains similar incentives as market prices while providing more targeted relief

for lower income households.

This work contributes to several strands of the literature. First, it furthers our

understanding of how interventions in energy markets affect the distributional im-

pact of the energy crisis (see e.g. Harari et al., 2022; Bhattacharjee et al., 2022;

Bachmann et al., 2022; Fetzer, 2022; Ruhnau et al., 2022). A key unknown is the

extent to which households can adjust their energy consumption. Labandeira et al.

(2017) carry out a meta-analysis, finding a short-term elasticity of -0.21 and a long

term elasticity of -0.61, with additional heterogeneity by fuel type.

Second, we contribute to research investigating the existence of an energy ef-

ficiency gap, its determinants, and implications for the targeting of policies to in-

crease take-up of energy efficiency investments (Allcott and Greenstone, 2012; Ger-

arden et al., 2017; Christensen et al., 2021). Regulatory barriers may be of particular

importance, especially in countries with a relatively old building stock (see e.g. Fet-

zer, 2023). In addition, lack of information might prevent investments. Attari et

al. (2010) document important deficiencies in the American public’s understanding

of own energy use and of the savings associated with different activities. In con-

trast, Myers (2019) finds that homebuyers are attentive to changes in fuel prices.

However, evidence on the existence of a ‘green premium’, i.e. the capitalization of

energy efficiency into higher prices and rents, is mixed and crucially hinges on the
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level of information in the market, which can be increased through mandatory dis-

closure (Dalton and Fuerst, 2018; Myers, 2020; Myers et al., 2022; Guin et al., 2022).

Related, Zhang et al. (2012) develop a model for archetyping UK energy consumers

based on behaviour and property characteristics, while Ahlrichs et al. (2022) detect

a strong correlation between energy efficiency and socioeconomic factors. Simi-

larly, Gregório and Seixas (2017) develop an index that characterises the energy

renovation capacity of a community based on socioeconomic variables, property

characteristics, and energy savings potential in historic town centres. Our work

shows that different pricing interventions in the market affect incentives to invest

in energy efficiency for households with different socioeconomic characteristics.

In the following section, we describe how we arrive at a measure of the (likely)

exposure to the energy price shock in England and Wales.

2 Developing an energy-price shock exposure measure

To model the likely exposure of a household to the energy price shock, we need

to gain an understanding of baseline energy consumption. Energy consumption of

household i in house p is driven by at least three factors:

Ei,p = f (Whatp, Whoi,p, Howi,p)

The Whatp captures the type of property or building in which energy is con-

sumed. The predominant sources of domestic energy use are space heating, hot

water generation, room lighting, and appliances. Certain properties, all else equal,

consume more energy across these uses because of their physical characteristics.

For example, poorly insulated and draughty properties experience more heat loss.

The second factor, Whoi,p, captures residents’ characteristics, for example house-

hold size and composition. For example, different socio-economic backgrounds

may imply different levels of energy demand. The third factor, Howi,p, represents

people’s preferences. For example, people have different perceptions as to what

constitutes a comfortable indoor temperature. In addition, whereas some house-

holds run dishwashers, others do dishes by hand. Moreover, these factors may

interact nonlinearly: energy demand may be structurally higher in a poorly in-
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sulated property, but even more so if its residents prefer a relatively high indoor

temperature.

We start our work with a measure of energy consumption based on the Whatp,

i.e. the underlying characteristics of a property. We augment this exogenous mea-

sure with anonymised data on actual energy consumption at the individual prop-

erty level, along with energy consumption aggregates at spatially granular levels

using a moment-matching approach. In doing so, we are also able to incorporate

the Whoi,p and the Howi,p into our measure of energy consumption, i.e. the pat-

terns of energy consumption behaviour that exist in reality across households. This

rescaling ensures that we are more likely to achieve a good simulated actual expo-

sure measure to the energy price shock. The data generation sequence is visually

described in Appendix Figure A1.

In the next sections, we describe the underlying data and the generation of

energy consumption estimates.

2.1 Deriving proxy measures for energy consumption

The first step in our data construction involves deriving energy consumption mea-

sures from energy performance certificate (EPC) data. EPCs provide buyers and

tenants with information on the energy efficiency rating of residential properties as

well as estimates of likely energy costs. EPCs also contain recommendations of mea-

sures to improve the properties’ energy efficiency, including estimates of the costs

and impact on energy demand of these measures. These recommended improve-

ments are tailored to each property, including whether it has double glazing and

which type of insulation its walls permit. This information allows us to calculate

a measure of actual and potential energy consumption by property. The potential

measure captures an estimate of how much energy would be consumed, all else

equal, if all recommended energy savings measures were implemented.

The requirement for properties to have an EPC was introduced in 2007 following

the EU Directive on the energy performance of buildings (Department for Levelling

Up, Housing & Communities, 2017). This requirement was initially applied just to

homes for sale, but has since been extended to all domestic and commercial prop-

erties being sold, constructed, or rented (Department for Levelling Up, Housing &

7



Communities, 2021). EPCs for domestic and commercial buildings are available to

download online from the national database of all registered EPCs.4 In total, the

database includes 22,179,913 current certificates for more than 15,621,668 unique

properties across England and Wales. While we derive energy consumption mea-

sures for all certificates and the underlying properties, we focus in most exercises on

slightly smaller subsets of the data that include only properties that use electricity

and/or gas for space-heating and hot water generation. This amounts to 13,462,394

properties or around 51% of the English and Welsh residential building stock, as

council tax data estimates the total number of residential properties at 26,328,530.

A limitation of the EPC data is that certificates are valid for 10 years, meaning

properties may have undergone changes, for example via the addition of an exten-

sion or insulation, that are not reflected in their most recent certificate. A second

potential concern is that the EPC data may not be representative of the entire build-

ing stock, because buildings without EPCs might differ from those with EPCs. A

comparison by the ONS of the EPC data vis-a-vis the population of properties from

the Valuation Office Agency (VOA) data, built for council tax purposes, suggests

that the properties are very similar on observables.56 In fact, naive reweighting

of empirical moments from the EPC sample (multiplying aggregate metrics by a

factor of two) produces aggregate energy demand values that are very similar to

aggregate data. In terms of the potential energy savings, there are good reasons to

believe that the properties that do not have an EPC rating may have, on average an

even worse energy efficiency.7

The estimates of actual and potential annual energy costs included in the pub-

lic EPC data are expressed in terms of GBP and not in energy units (kWh). They

are provided separately for space heating, water heating, and lighting. The Stan-

4Data are available here https://epc.opendatacommunities.org/.
5See Office of National Statistics, Energy efficiency of housing in England and Wales: 2021,

https://www.ons.gov.uk/peoplepopulationandcommunity/housing/articles/energyefficienc
yofhousinginenglandandwales/2021.

6Still, Department for Business, Energy & Industrial Strategy (2020) suggests that that the EPC
database under-represents medium-sized properties and bungalows and over-represents smaller
properties and flats.

7This assertion is based on data suggesting that known energy efficiency measures produce larger
energy savings among properties without an EPC certificate. See BEIS National Energy Efficiency
Data-Framework (NEED): impact of measures data tables 2021, https://www.gov.uk/government/
statistics/national-energy-efficiency-data-framework-need-impact-of-measures-data-
tables-2021.
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dard Assessment Procedure (SAP) sets out the methodology used to produce these

estimates (BRE, 2014). We combine these estimates with price data to back out esti-

mated energy consumption in kWh for space heating, water heating, and lighting,

reverse-engineering the SAP calculations.8

This process yields a vector of two energy demand proxies measured in kWh for

each property p. We detail the technical approach in Appendix A and refine these

measures further in the next section.

EEPC
p,act = {Sp,act, Wp,act, Vp,act}

EEPC
p,pot = {Sp,pot, Wp,pot, Vp,pot}

These capture the actual modelled energy demand and potential demand if

properties were upgraded to their highest energy efficiency potential, respectively.

The three main energy use functions that are modelled are for space heating (S),

hot water generation (W), and electricity use for lighting (V).

These breakdowns allow us to model energy bills as a function of the fuel used

for each energy use type. For example, homes heated via electricity will face differ-

ent bills than those heated via gas. Note that these forms of energy use exclude the

running of appliances like TVs, computers, cookers, washing machines, or dish-

washers. The predominant driver of combined modelled energy consumption is

space-heating. Moreover, a natural mismatch between energy consumption across

properties and the EPC-derived measures of consumption can arise because prop-

erties are not inhabited by the number of people that are assumed in the model

used to produce the underlying EPC data. For example, a two bedroom house is

assumed to be inhabited by more than one person. If, in fact, the property is only

inhabited by one person, it might have lower energy consumption than what we

would naively estimate.

We next describe how we refine and rescale the EEPC
p,act measure to match with

other observed data on energy consumption.

8The Department for Business, Energy and Industrial Strategy (BEIS) publishes data on average
gas and electricity prices for 2010-2021. Data are available here https://www.gov.uk/government/
statistical-data-sets/annual-domestic-energy-price-statistics.
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2.2 Percentile-based rescaling

We refine the EPC-derived measures using two percentile matching-based rescaling

approaches. We leverage two sources of energy consumption data derived from

meter readings. By doing so, we are able to anchor EEPC
p,act and EEPC

p,pot in data reflecting

who lives in property p and how they live, which affect energy demand but are

missing from our EPC-derived hypothetical consumption measures.

Anonomized individual property level consumption data. The first approach

leverages anonymized energy data collected through the UK’s National Energy Ef-

ficiency Data Framework (NEED). This dataset includes gas and electricity meter

reading data for 4 million properties. The sample is designed to be representative

of domestic properties in England and Wales.9 The NEED data also include a range

of property and area-level characteristics, such as property age and region, which

can also be found in the EPC data, allowing for matching.

We rescale the EPC-derived energy consumption measures using these meter

reading-based energy consumption data based on the distribution of energy con-

sumption in each source. In other words, we rescale consumption estimates for

properties in the EPC data in a given percentile of EPC-derived energy consumption

using the consumption estimates for properties in the same percentile of NEED-

derived energy consumption. We do this separately for properties with different

characteristics. While this first rescaling allows us to account for variation in real

consumption behaviour driven by property characteristics, it may still exclude vari-

ation driven by local demographics. To incorporate the latter information, we em-

ploy a second rescaling method.

Local area consumption data. BEIS publishes energy consumption data down to

the postcode level, excluding only postcodes that include fewer than five readings.

The data include both mean and median consumption for electricity and gas.10 We

repeat the moment-matching approach described above, rescaling both the EPC and

9The data are available on https://www.gov.uk/government/statistics/national-energy-e
fficiency-data-framework-need-anonymised-data-2021.

10The data are available for electricity at https://www.gov.uk/government/collections/sub-na
tional-electricity-consumption-data and for natural gas at https://www.gov.uk/governmen
t/collections/sub-national-gas-consumption-data.
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EPC-NEED augmented measures using the mean and median energy consumption

values that correspond to a property’s postcode.

Appendix B describes this process in more detail. Importantly, we rescale both

the EPC-derived actual modelled energy demand and potential energy demand.

This process leaves us with four measures proxying actual and potential energy

demand at the individual property p level:

Ep,act = (EEPC
p,act, ENEED

p,act , ELocal
p,act , EEPC,NEED,Local

p,act )

Ep,pot = (EEPC
p,pot, ENEED

p,pot , ELocal
p,pot , EEPC,NEED,Local

p,pot )

We break down each measure into space heating, water heating, and lighting.

Again, it is worth reiterating that space heating is the dominant factor in domes-

tic energy use. For most of the analysis, we will leverage simple ensemble average

measures, Eensemble
p,act and Eensemble

p,pot , which are the unweighted average of each of the

respective four measures. Figure 2 presents the resulting patterns of energy sav-

ings potential across England and Wales. This is measured as the ratio of Eensemble
p,pot ,

potential energy demand, to Eensemble
p,act , actual energy demand. Patterns of savings

potential vary by energy use type. For example, areas of London have relatively

high energy savings potential in space heating and lighting but relatively low sav-

ings potential for hot water.

In the next section, we provide evidence on how rescaling affects the goodness-

of-fit of our estimates with respect to real consumption data.

2.3 Illustrating the goodness-of-fit of estimated consumption

We next describe how our derived property-level consumption measures fit ac-

tual energy consumption available at the MSOA level, while Section 2.4 presents

a validation exercise. In Figure 3 we plot the ensemble EPC-derived median en-

ergy consumption measure Eensemble
p,act against MSOA-level medians. While the fit

is very good, we note a mechanic underestimation of total energy consumption

by our EPC-derived estimates. This underestimation can be explained by the fact

that the EPC data covers only around 50-60% of properties. Appendix Figure A2

11



shows the goodness-of-fit of the underlying measures, highlighting that the crude

EEPC
p,act measure does a decent job at fitting the data but harnessing data on energy

consumption improves the goodness-of-fit substantially.11

Figure 4 sheds light on how the goodness-of-fit of various moments of the im-

puted consumption distribution varies as a function of the coverage of the EPC

data relative to MSOA building stock. It displays the R2 of a set of regressions

using MSOA-level energy consumption data: mean, median and total energy con-

sumption against corresponding moments from our ensemble consumption measure

Eensemble
p,act . Not surprisingly, the goodness-of-fit is quite low when we restrict our

sample to areas where the EPC data cover only a small fraction of the residential

housing stock. The fit improves rapidly as the data gets more representative. Ap-

pendix Figure A3 further emphasises that rescaling improves goodness-of-fit across

each of the three moments that we consider.

Interestingly, the goodness-of-fit appears to peak at around 75% across our four

energy consumption measures. In Appendix E we find a similar maximal goodness-

of-fit when trying to explain variation in actual individual property-level energy

consumption data even including property fixed effects. This result suggests that

the unexplained variation might be due to time-varying characteristics of who and

how people live in a property. This unexplained variation can explain, at least

partially, the difference between the engineering estimates of the benefits of energy

efficiency investments and smart technologies and estimates based on actual energy

use (Brandon et al., 2022).

We next consider an additional out-of-sample validation exercise comparing em-

pirical moments that were not used in the training step.

2.4 Out-of-sample validation comparing empirical moments

For some local authorities, we have data that provide pairwise measures of both the

mean and median electricity and gas consumption by district and by property-type

and floor-area band.12 We did not use these data in the rescaling as it is coarser

11Appendix Figures A4 and A5 present corresponding scatterplots for estimates of average and
total energy consumption at the MSOA-level respectively.

12Local authority table, England and Wales, https://www.gov.uk/government/statistics/nat
ional-energy-efficiency-data-framework-need-consumption-data-tables-2021.
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than postcode-level data. We can therefore use these measures in an out-of-sample

validation exercise.

We do so by estimating

EBEIS
d,c = α + β× Eensemble

d,c,act + xd,p × ν + εd

where EBEIS
d,c stands for the median or mean energy consumption of a property

with a characteristic c in district d, that is, these are derived moments in the actual

energy consumption data. We construct the corresponding moment in aggregated

form, either the median or mean, at the district by property characteristic based

on the property-level ensemble measure: Eensemble
d,c,act . We control for property-level

controls and district fixed effects, xd,p.

Our attention will be on the estimated coefficient β. In the regressions that ex-

clude other control variables or shifters, this coefficient should be close to one if

there was a near one-to-one mapping of the EPC-derived consumption measures

and the actually observed consumption data. A second focus will be on the com-

bined R2 of these regressions. We would hope this R2 is close to one which would

indicate that, on average, our approach to measure hypothetical consumption cap-

tures the variation in actual consumption quite well.

Lastly, we are interested in whether, after absorbing district fixed effects and

property characteristics included in the vector xd,p, our EPC-derived consumption

measure Ej
d,c,act carries signal over and above area- and property characteristic-

specific idiosyncrasies. In other words, this exercise tests whether our two-way

rescaling approach achieves its goal.

Unconditional fit. In Figure 5 we present the simple unconditional scatterplot of

the two datasets. On the horizontal axis we plot the EPC-derived median energy

ensemble predicted energy consumption at the district by floor area combination

level in Panel A, and the district by property type level in Panel B, Eensemble
d,c,act . The

vertical axis plots the actual observed median consumption for 2019, EBEIS
d,c .

We observe a tight fit even in the unconditional regressions. We next explore

this validation more systematically.
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Conditional fit. We first compare the BEIS empirical moments of the median and

the mean electricity and gas consumption with the five measures we construct based

on the EPC measures. Table 1 presents these results, adding control variables across

panels. Based on the patterns in this table, we conclude that our empirical approach

calibrates the EPC-derived data to actual consumption data well, which allows us

to provide a richer view of the likely impact of the energy price shock. A similar

picture emerges when studying the district-by-property-type empirical moments

presented in Appendix Table A1. We next describe how we use the energy con-

sumption estimates to arrive at estimates of energy bills under different policy and

price scenarios.

2.5 Estimating energy bills

With the above vectors of energy demand proxies broken down by respective energy

use functions, along with information on which fuels are used to heat properties

and the appropriate energy tariff, we can derive estimates of household energy bills

under the following price and policy scenarios.

1. Historical energy price cap. In January 2019, the UK regulator, Ofgem, adopted

a uniform energy cap, that is a maximum price that energy suppliers are al-

lowed to charge customers for gas and electricity. This cap reflects the costs of

supplying energy and allows modest profits (Ofgem, 2022a). The cap has been

updated every 6 months until October 2022, when it started to be updated on

a quarterly basis. The price cap was originally conceived to protect inattentive

consumers from being charged unfair rates. In its early years, some energy

contracts on the market were cheaper than the cap, but since the summer of

2021, the cap has been the cheapest rate available. This phenomenon is due

to price increases between the time at which the price cap is set and the time

at which it comes into effect (Ofgem, 2022b).13 As such, the cap has been a

more accurate reflection of the prices faced by households in 2022 than in pre-

vious years. Our study incorporates price cap values from October 2021 and

October 2022.
13As of October 2022, this gap has been shortened from two months to 25 working days.
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2. Energy Price Guarantee (EPG). In September 2022, the UK government an-

nounced the Energy Price Guarantee (EPG) programme as a response to the

ongoing energy crisis. Another form of uniform price cap, the EPG reduces

the maximum per unit rate below the level of the October 2022 price cap in

an attempt to limit the average household energy bill to around £2,500. As

discussed in Fetzer (2022), the standing charge is maintained at the level of

the October 2022 price cap.

3. Two-tier tariff. As an alternative policy proposal to the EPG, discussed in more

detail in Fetzer (2022), we consider a two-tier tariff such that the standing

charge is fixed at the level of the October 2021 price cap, as are unit prices

for the first 9,500 kWh of natural gas consumption and the first 2,500 kWh of

electricity consumption. As 50% of UK households consume less than 12,100

kWh of natural gas and 2,900 kWh of electricity, this would drastically limit

energy price increases for the bulk of households.14 We consider a second

tier unit price of 20 pence per kWh for natural gas and 60 pence per kWh for

electricity, which, together with the first tier described above, would have a

similar cost to the government as the EPG. This tariff would offer much more

targeted support without undermining the incentive to save energy created by

higher unit prices.

For our property-level energy consumption estimates Ep,act and Ep,pot, we are

therefore able to produce vectors of spending estimates. For example, for the pre-

ferred ensemble average energy consumption estimate Eensemble
p,act , we produce the

following four spending estimates that use the October 2021, October 2022, EPG

and Two-tier tariff scenarios, respectively:

Censemble
p,act = (Censemble

p,act,21 , Censemble
p,act,22 , Censemble

p,act,EPG, Censemble
p,act,Two−tier)

These estimates allow us to measure changes in energy bills under different

price scenarios and policy interventions at the individual property-level. We next

carry out a distributional analysis under different price scenarios using data aggre-

gated to the MSOA-level to characterise how these measures affect households with

14See https://www.gov.uk/government/statistics/national-energy-efficiency-data-fra
mework-need-consumption-data-tables-2021.
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different characteristics.

3 Empirical analysis

Our empirical analysis aims to answer four questions:

1. Where will the energy price shock hit the hardest?

2. Where is energy savings potential the highest?

3. Which places stand to benefit most from the two policy alternatives considered

(EPG vis-a-vis two-tier tariff)?

4. How does policy affect energy savings investment incentives?

Due to data limitations, our analysis focuses on properties in England and em-

ploys aggregate data. In what follows, we use the ensemble measure of energy bills

and simplify the notation such that Censemble
p,act,j = Cj

p,act and Censemble
p,pot,j = Cj

p,pot for each

price scenario indicated by superscript j.

3.1 Where will the energy price shock hit the hardest?

We begin by statistically characterising which areas in England would have been

hardest hit by the energy price shock absent policy intervention. In this counterfac-

tual world, consumers would have faced significantly higher unit prices for energy

as determined by the relatively high uniform price cap announced by Ofgem in

2022. We compute the increase in the energy bills between the October 2021 to the

October 2022 price cap for each property p using actual estimated consumption as:

∆C22−21
p,act = C22

p,act − C21
p,act (1)

We then consider a vector of socio-economic variables and perform best-subset

selection (BSS), a machine learning method, to characterise which combinations of

attributes have the largest explanatory power for the energy shock. This method al-

lows us to uncover the patterns of vulnerability to the energy shock across England,
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a key step for understanding how to optimally design and target policies to provide

relief to households. We study the following specification at the MSOA level, m:

∆C22−21
m,act = αd(m) + xm × β + εd

where we use the BSS algorithm to include ever more sets of control variables

in xm. Throughout, we absorb district-level fixed effects as a set of features not

included in the BSS selection approach. This approach ensures that we only focus

on within-district variation across MSOAs. We build features in xm from public data

sources described in more detail in Appendix F. We identify the optimal model as

that which minimises the Akaike Information Criterion (AIC). The AIC measures

the quality of a model by weighing up its goodness-of-fit against its simplicity, i.e.

the number of features that are included in the statistical model.

Results. We present the results in Table 2. As we move across columns, the BSS

algorithm introduces more variables. The order in which these are added reflects

the signal carried by each variable. The first variable introduced, which is also never

dropped, is median house prices: the higher the house prices in an area, the higher

is the incidence of the shock. Places with an older and more educated population,

with higher shares of households with more than two members (typically, families),

and with more people living in fuel poverty (prior to the energy crisis) appear more

exposed to the energy price shock.

In other words, the effects of the energy price shock appear stronger at both ends

of the income distribution. Moreover, the shock appears less pronounced in areas

with relatively high shares of social or other private rented accommodation. This is

consistent with the fact that socially rented homes are typically flats or apartments,

which may be more efficient than houses (ONS, 2021). Furthermore, social housing

was the focus of the Decent Homes Programme, which sought to bring properties

to minimum efficiency standards by 2010 (Leicester and Stoye, 2017). Our analysis

thus underlines that targeting of interventions in energy markets will be key to

ensuring these interventions reach the right set of households.
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3.2 Where is the highest energy savings potential in England?

We next study where the highest energy savings potential is in England. To do so,

we construct the difference in expected energy bills between the actual and potential

energy consumption estimate derived from the EPC data, holding energy prices

constant at the October 2022 uniform price cap. This measure characterizes how

much lower could energy bills be if recommended energy efficiency investments

were implemented, even absent further government intervention on prices. In other

words, we compute:

∆C22
p,act−pot = C22

p,act − C22
p,pot (2)

Empirical specification We next want to characterise where the energy savings

potential is distributed using a best-subset selection (BSS) exercise. This character-

isation may cast some light on policy interventions to encourage energy savings

that can alleviate the likely hardship induced by the energy price shock. The fo-

cus here is on the components that we cannot measure in the property-level data:

the socio-economic makeup of the resident population. We estimate the following

linear specification at the MSOA level:

∆C22
m,act−pot = αd(m) + xm × β + εd

where xm measures socio-economic characteristics of the area or resident popu-

lation. We also absorb district fixed effects, αd(m).

Results. The results are presented in Table 3, which is structure like Table 2 except

that the dependent variable now measures the energy savings potential, as opposed

to exposure to the energy price shock. The patters that emerge are also similar. We

see a first cluster where the energy savings potential appears more concentrated in

areas with higher house prices and with an older and more educated demographic.

This is not surprising: prior to 2021, energy was relatively cheap and hence house-

holds had little financial incentive to save energy. A second cluster of high potential

savings highlights areas with high degrees of fuel poverty.

These patterns underline the importance of aligning incentives for able-to-pay
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households. One way to do so is by allowing market prices to signal scarcity while

providing assistance to fuel-poor households. In the next section, we document that

the existing policy framework does not meet these requirements.

3.3 The EPG appears untargeted

We next characterise how untargeted the EPG is and how it distorts energy sav-

ing incentives, following Fetzer (2022). The EPG introduces a wedge between

consumer-facing prices and the price cap set by the Ofgem regulator. With the

EPG, the increase in bills that would have arisen if energy prices had been set as

per the Ofgem price cap announced in October 2022 relative to the October 2021,

∆C22−21
p,act , can be decomposed into two components. For each property p, the first

component represents the increase from October 2021 bills to the energy bills faced

by consumers under the EPG:

∆CEPG−21
p,act = CEPG

p,act − C21
p,act (3)

The second component represents the implicit subsidy that the government

pays, that is the wedge between the Ofgem price cap and the EPG price:

∆C22−EPG
p,act = C22

p,act − CEPG
p,act (4)

The same decomposition can be constructed for the two-tier tariff. We com-

pute MSOA-level averages of these metrics and then compare which socio-economic

characteristics drive the underlying variation. We then characterise how the energy

price shock affects different areas differently under the different policies.

Empirical specification. We estimate the following linear specification

∆Cj
m,act = αd(m) + xm × β + εd (5)

for the unmitigated shock, j = 22 − 21, as well as for the consumer-facing

and government subsidized components of the shock under the uniform price-cap

(EPG) and the two-tier tariff, j ∈ {EPG− 21, 22−EPG, Two-tier− 21, 22−Two-tier}.
xm measures socio-economic characteristics of the area that capture the relative de-
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privation of an MSOA. To assess the incidence of the energy price shock, we study

three measures of relative deprivation: median property prices, average household

income and a rank measure of income from the Indices of Multiple Deprivation.

We also absorb district fixed effects, αd(m).

Results. Figure 6 plots a binned scatterplot with the linear regression fit of bills

under different price scenarios against MSOA-level house prices (Panel A) and av-

erage household income (Panel B). We consider four scenarios for bills: 2021 values,

C21
p,act (black triangles), 2022 values without intervention, C22

p,act (navy circles), 2022

values under the EPG, CEPG
p,act (maroon diamonds), and 2022 values under the two-

tier tariff, CTwo-tier
p,act (gray squares).

In the absence of government support, bills would have increased drastically

between 2021 and 2022 (the blue circles are shifted up with respect to the black

triangles) and more so in high property-value and high-income MSOAs (the blue

line is steeper than the gray one). The energy price guarantee shifts consumer-

facing prices downwards, thereby providing relief for all households based on levels

of consumption. However, owing to the fact that wealthier households consume

more energy and tend to live in particularly energy-inefficient properties, the EPG

disproportionately benefits better-off areas (the maroon line is slightly flatter than

the blue one). Moreover, because energy prices are distorted downwards, energy

saving incentives are weaker under the EPG.

In contrast, a two-tier tariff keeps the house-price and energy bill gradient nearly

the same as under market prices. In other words, a two-tier tariff resembles a

lump sum transfer to households that have relatively low energy consumption. The

marginal price signal remains intact and in fact, is slightly steepened. As a result,

energy saving incentives are maintained and this intervention appears much less

regressive. Importantly, we note that this exercise is for illutration purposes only:

the tiers can be adjusted to provide more support to lower-income households, and

more tiers can be introduced.

Figure 7 presents the results from equation (5). First, the navy dot documents

that the energy price shock is progressive in absolute terms: the exposure of the

average property in our data is notably higher in areas with higher property prices

and higher average income. This is not surprising as the energy price shock has a
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greater effect on households that consume a lot of energy – who tend to be better

off. As a result, the energy price shock has a similar effect to carbon taxation.15

Second, the red diamond illustrates that under the EPG this correlation is about

halved, meaning that the EPG thereby exacerbates inequality across households in

different regions. Third, the grey square shows that the two-tier tariff restores the

correlation between wealth, as captured by house prices, or income and the size

of the bill shock to the level that we see without government intervention. This

pattern arises from the fact that the two-tier tariff is much more targeted than the

EPG implicit subsidy.

Figure 8 decomposes the effects of the EPG and the two-tier tariff into a consumer-

facing component and a government subsidy. The attenuation in the wealth and in-

come gradients of the energy shock under the EPG (red diamonds) is due, not sur-

prisingly, from an attenuation of this gradient for the consumer-facing price shock,

∆CEPG−21
p,act . Moreover, the government subsidy, ∆CEPG−22

p,act also appears regressive

in absolute terms: the government supports households that live in areas that are

economically better off. By contrast, the income gradient of the consumer-facing

energy price shock under the two-tier tariff is similar to that under market prices.

Moreover, the government subsidy is uncorrelated to area wealth and income un-

der the two-tier tariff due to the better individual targeting properties of this price

scheme. Table A2 presents these results in table format.

3.4 How does policy affect energy savings investment incentives?

We have documented three facts. First, the energy price shock will hit the most

affluent parts of England more than the least affluent parts. Second, these patterns

are due to decades of inaction: the more affluent parts of England boast a building

stock that is quite energy inefficient and is home to households who consume, on

average, more energy because they are economically better off. Third, as a result,

these households stand to benefit most from the EPG. Fourth, there exist policy

alternatives, such as a variable price cap, that preserve the incentives to invest in

energy efficiency otherwise provided by market prices (see Bhattacharjee et al.,

2022; Bachmann et al., 2022).

15The evidence on whether a carbon tax is progressive or regressive is mixed and based largely
on theoretical models. A notable empirical exception is Andersson and Atkinson (2020).
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We next characterise how the EPG disincentivizes energy efficiency investments

in different areas of England. To do so, we construct the measure of the value of

the energy savings measures under the October 2022 uniform price cap

∆C22
p,act−pot = C22

p,act − C22
p,pot (6)

as well as under the EPG

∆CEPG
p,act−pot = CEPG

p,act − CEPG
p,pot (7)

and the alternative two-tier tariff

∆CTwo-tier
p,act−pot = CTwo-tier

p,act − CTwo-tier
p,pot (8)

For each of these three price scenarios, j ∈ {22, EPG, Two-tier}, we regress

MSOA-level averages of the value of energy savings potential on MSOA-level mea-

sures of economic affluence, absorbing district fixed effects αd(m):

∆Cj
m,act−pot = αd(m) + xm × β + εd

Results. Table 4 presents the results. Column 1 reiterates that energy savings

potential is highest in affluent areas: the market value of energy savings increases

with an area’s house prices, household income, and overall income rank based

on the IMD data. Column 2 shows that under the EPG, the gradient of energy

savings value with respect to affluence becomes notably weaker. In other words,

energy savings measures, under the EPG, provide a weaker monetary incentive for

households in well-off areas as compared to a scenario with prices that are closer

to market prices in Column 1. By contrast, Column 3 documents how the energy

savings incentive is maintained and even strengthened by a two-tier tariff compared

to what market prices would imply Column 1.
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4 Conclusion

This paper develops a measurement framework that enables us to model the likely

impact of the energy price shock across England and Wales. This method gives us

a window into measuring the energy savings potential and quantifies the cost and

benefit analysis of energy savings investments. Fetzer (2022) presents more detailed

estimates.

First, we observe that the present UK policy path is quite incoherent. The EPG

disproportionately benefits well-off households because 1) the reduction in the unit

rate relative to market prices disproportionately benefits households with high en-

ergy consumption and 2) energy consumption increases with income. Moreover,

the financial benefit of the EPG appears skewed even among high-earners. Among

an estimated 280,000 households with an annual income above £150,000, around

14,000 households, representing the 95th percentile of energy consumption in this

group, consumes more than twice as much energy compared to the median of all

other households in this high-income group.

Second, our analysis highlights that the UK has a large and untapped energy

savings potential. We estimate that England and Wales alone could save up to 29%

of primary energy consumption in the residential sector through reduced electricity

and natural gas consumption used for space heating and hot water generation if

residential properties were upgraded to their highest energy efficiency standard

– primarily through improved insulation measures. The EPG weakens incentives

to invest in energy efficiency upgrades by around 30%: energy efficiency upgrade

investments would save households between £10 to 16 billion per year if they had

to pay current market prices for energy. The EPG lowers the prices that consumers

face, as a result, energy efficiency upgrade investments under the EPG would only

save households between £7 to 11 billion rendering them less economical.

Yet, energy savings investments could pay for themselves within a relatively

short period of time. We estimate that boiler replacements for the properties we

have EPC data for would cost around £10 billion. The insulation program would

cost around £50 billion. With an interest rate of 3%, projected savings of £10 bil-

lion, and an investment volume of £60 billion for the properties for which we have

EPC-based recommendations (around 50% of the building stock), we estimate that
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energy efficiency upgrades, in particular insulation and boiler replacement, would

pay for themselves within six to seven years.

On top of permanent financial relief to households, energy efficiency upgrades

would provide large environmental benefits. We estimate that the energy efficiency

upgrades may save between 25 to 40 million tons of CO2 per year which, with a

carbon price of £75 per ton, would provide further savings between £1.5 to £3 billion

per year. Thus, it is imperative to build more evidence to understand why existing

schemes have not been successful in achieving scale.

Crucially, the UK government has much of the data needed to ensure timely,

targeted, and cost-effective interventions at its disposal. With these data, a broad

set of alternative policies could be considered. For example, instead of a uniform

price cap, the government could propose a two-tier tariff providing more gener-

ous targeted support without eroding energy savings incentives. Alternatives that

provide even more targeted support with better incentive preservation may also

be implementable (see Bhattacharjee et al., 2022; Bachmann et al., 2022). The two

tier-tariff could be designed to have a similar costing as the government’s uniform

price cap but could be even more targeted.
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Figures and tables

Figure 1: Share of fuels in final energy consumption across EU countries
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Figure 2: Energy saving potential measured in real quantities

Panel A: Hot Water Panel B: Light Fittings Panel C: Space Heating

Notes: Figures present aggregate energy savings potential, measured in % of real units (kwh), that is the ratio of potential energy consumption over actual energy consumption.
The higher the % the higher the gap between actual and potential consumption in relative terms.
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Figure 3: Median property-level energy consumption at the MSOA-level compared
with median imputed energy consumption measures from EPC-NEED data
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Notes: Figures provide a scatterplot of estimates of the median energy consumption per meter from published data at the
MSOA-level (for metered electricity and gas only) on the vertical axis and the median of the ensemble imputed energy
consumption measure on the horizontal axis.
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Figure 4: Correlation between moments of derived consumption and moments from
actual consumption data
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Notes: Figures plot the R2 that is obtained from validating the derived ensemble consumption measure and three moments:
the total, mean, and median consumption against actual consumption data that is published from gas and electricity meters
across the country. We compare the goodness-of-fit of each derived moment against the corresponding moment from subna-
tional statistics. The horizontal axis captures the ratio of the number of EPC properties against the population of properties
in an area based on council tax data. A value of 0.4 on the axis implies that the estimating sample includes data from all
MSOAs that have at most 40% of their building stock captured in the EPC data.
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Figure 5: Unconditional raw scatter plot district-by-floor-area or district-by-property-type median energy consump-
tion data vis-a-vis our EPC-derived ensemble consumption estimate

Panel A: District x Floor Area Band Panel B: District x Property Type
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Notes: Figures plot a raw scatterplot of the median district-level energy consumption by floor area in Panel A or district-level energy consumption by property type in Panel
B against the corresponding median constructed from our EPC-derived ensemble measure. The corresponding regression is presented in column 10 of Table 1 and Table A1
respectively.
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Figure 6: Visualisation of the empirical link between measures of affluence and the expected increase in average
energy bills under Ofgem prices (market price proxy), the EPG, and the alternative two-tier tariff

Panel A: Median house prices Panel B: Average annual household income

Notes: Figures plot the relationship between median house prices at the MSOA-level against the expected increase in the energy bills to study the degree to which the specific
measures are targeted in providing relief.
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Figure 7: Comparison of income/wealth gradient in the energy price shock incidence under alternative price policies

Panel A: Median house prices Panel B: Average annual household income

Notes: Figures present regression results showing how the energy-price shock on average bills varies with socio-economic measures at the MSOA-level capturing income or
wealth. The “without intervention“ scenario shows the overall shock to bills between 2021 and 2022. All regressions include district fixed-effects. Standard errors are clustered
at the district level. Bars indicate 95% confidence intervals.
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Figure 8: Comparison of income/wealth gradient in the energy price shock incidence under alternative price policies,
decomposing consumer- and government-facing shocks

Panel A: Median house prices Panel B: Average annual household income

Notes: Figures present regression results showing how the energy-price shock on average bills varies with socio-economic measures at the MSOA-level capturing income
or wealth. The “without intervention“ scenario shows the overall shock to bills between 2021 and 2022. Correlations under EPG and two-tier pricing are decomposed in
consumer-facing shock and government subsidy. All regressions include district fixed-effects. Standard errors are clustered at the district level. Bars indicate 95% confidence
intervals.
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Table 1: Comparison of district-by-floor-area BEIS-reported average and median electricity and gas consumption vis-a-vis corresponding
EPC-derived and rescaled proxy measures

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

EPC NEED EPC + Local EPC + NEED + Local Average

Panel A: No controls
Derived energy consumption proxy 0.859*** 0.857*** 0.924*** 0.929*** 0.977*** 1.067*** 1.035*** 1.129*** 0.919*** 0.938***

(0.011) (0.011) (0.015) (0.014) (0.007) (0.005) (0.010) (0.009) (0.010) (0.009)

R2 0.884 0.899 0.884 0.895 0.957 0.966 0.944 0.950 0.927 0.933
Observations 1650 1650 1650 1650 1650 1650 1650 1650 1650 1650

Panel B: Floor Area Band FE
Derived energy consumption proxy 0.192*** 0.298*** 0.185*** 0.298*** 0.580*** 0.806*** 0.525*** 0.714*** 0.357*** 0.484***

(0.029) (0.031) (0.039) (0.041) (0.039) (0.037) (0.047) (0.044) (0.042) (0.042)

R2 0.953 0.947 0.952 0.946 0.971 0.973 0.965 0.964 0.958 0.955
Observations 1650 1650 1650 1650 1650 1650 1650 1650 1650 1650

Panel C: District FE
Derived energy consumption proxy 0.901*** 0.890*** 0.960*** 0.955*** 0.986*** 1.071*** 1.046*** 1.137*** 0.939*** 0.952***

(0.009) (0.009) (0.012) (0.012) (0.007) (0.006) (0.009) (0.008) (0.008) (0.008)

R2 0.943 0.949 0.929 0.931 0.972 0.978 0.959 0.963 0.959 0.961
Observations 1650 1650 1650 1650 1650 1650 1650 1650 1650 1650

Panel D: District FE and Floor Area Band FE
Derived energy consumption proxy 0.196*** 0.286*** 0.109*** 0.185*** 0.399*** 0.606*** 0.278*** 0.448*** 0.265*** 0.367***

(0.024) (0.026) (0.027) (0.029) (0.026) (0.028) (0.038) (0.042) (0.031) (0.034)

R2 0.986 0.982 0.984 0.979 0.989 0.988 0.986 0.983 0.986 0.983
Observations 1650 1650 1650 1650 1650 1650 1650 1650 1650 1650

Moment: Mean Median Mean Median Mean Median Mean Median Mean Median

Notes: Table presents regression results comparing the district-level average electricity and gas consumption average from BEIS micro data by floor-area type with the
measures that we constructed as part of our proxy variables. Across the panels more control variables are included. The goodness-of-fit improves and even after con-
trolling for district- and floor-area band, the district specific measures carry strong signal. The observation that the coefficient is near one suggests that the calibration
exercise is not producing a biased estimate of the population mean despite the data being from a subsample of the population of properties.
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Table 2: Correlates of the exposure to the energy-price shock at the MSOA level - best-subset selection approach

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

median house price 2.686*** 2.201*** 1.685*** 1.620*** 1.446*** 1.318*** 1.187*** 1.108*** 1.079*** 1.094*** 1.069*** 1.098*** 1.091*** 1.089*** 1.078*** 1.073***
(0.337) (0.338) (0.337) (0.342) (0.346) (0.348) (0.335) (0.337) (0.334) (0.339) (0.340) (0.343) (0.342) (0.343) (0.348) (0.348)

% population in social rented accommodation -9.735*** -16.655*** -8.432*** -5.977*** -9.189*** -8.414*** -9.304*** -9.838*** -9.982*** -10.225*** -9.824*** -9.740***
(0.881) (1.275) (1.321) (1.344) (1.683) (1.725) (2.018) (2.052) (2.092) (2.218) (2.445) (2.407)

% population aged 65 plus 40.057*** 57.770*** 54.323*** 30.258*** 43.072*** 35.037*** 33.565*** 30.095*** 29.723*** 31.090*** 31.761*** 31.624*** 31.495***
(4.916) (6.409) (6.138) (3.906) (6.429) (6.883) (6.781) (8.526) (8.481) (7.950) (7.790) (7.741) (7.869)

% population disabled -42.397*** -64.503*** -66.713*** -27.670*** -28.534*** -26.044*** -25.232*** -26.965*** -32.036*** -32.773*** -32.904*** -32.873***
(5.330) (7.840) (7.690) (8.469) (8.461) (8.227) (8.592) (8.750) (9.040) (9.379) (9.421) (9.433)

% population in fuel poverty 28.528*** 33.629*** 54.710*** 36.241*** 38.844*** 48.918*** 49.522*** 47.993*** 47.439*** 47.387*** 46.945*** 45.928*** 45.810***
(5.586) (5.875) (6.898) (5.976) (6.482) (7.415) (7.347) (7.710) (7.654) (7.681) (8.262) (8.282) (8.356)

population density -3.968*** -4.567*** -4.778*** -4.609*** -4.295*** -4.023*** -4.004*** -4.077*** -4.065*** -4.079*** -4.031*** -4.041***
(0.815) (0.801) (0.756) (0.741) (0.735) (0.695) (0.699) (0.703) (0.705) (0.700) (0.709) (0.702)

% population with university degree 16.265*** 16.503*** 12.417*** 13.467*** 14.879*** 15.236*** 17.137*** 17.217*** 17.316*** 17.632*** 17.612***
(2.972) (2.849) (2.865) (2.911) (2.973) (3.017) (3.360) (3.380) (3.374) (3.526) (3.527)

% population in private rented accommodation -16.342*** -7.678*** -6.939*** -8.022*** -8.818*** -8.870*** -8.937*** -8.351** -8.311**
(2.308) (2.495) (2.539) (3.047) (3.104) (3.128) (3.149) (3.301) (3.276)

% households with more than 2 members 17.564*** 15.411*** 9.502*** 9.435*** 8.251*** 8.762*** 8.800*** 8.740*** 8.076** 8.061**
(2.618) (2.686) (3.054) (3.054) (3.121) (3.112) (3.115) (3.130) (3.335) (3.345)

% population commuting with public transport -6.758* -6.719* -6.538* -6.676* -6.919** -6.867** -6.875**
(3.465) (3.492) (3.474) (3.426) (3.428) (3.404) (3.404)

% inactive 4.213 3.513 3.295 3.476 3.724 3.679
(3.779) (3.869) (3.728) (3.876) (3.857) (3.829)

average annual household income -4.901 -4.979 -4.888 -5.139 -5.119
(3.679) (3.666) (3.654) (3.730) (3.740)

% population in bad or very bad health 11.193 10.001 9.646 9.544
(17.024) (16.086) (16.120) (16.054)

% unemployed 6.269 6.986 6.813
(14.300) (14.310) (14.274)

% population in whole house or bungalow 0.894 0.871
(1.547) (1.553)

% population in shared accommodation -5.304
(14.218)

Best Subset X
Observations 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789
R2 .346 .359 .37 .381 .388 .394 .398 .4 .401 .402 .403 .403 .403 .403 .403 .403

Notes: Table presents best-subset-selection regression results. The best-subset is indicated in the table footer. All regressions control for district fixed effects. The analysis presents correlational patterns that help characterize the incidence of the energy price shock in terms of the
socio-economic characteristics of areas that are expected to be hit the most. Standard errors are clustered at the district level.
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Table 3: Correlates of the energy-savings potential at the MSOA level - best-subset selection approach

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

median house price 1.244*** 0.900*** 0.999*** 0.856*** 0.671*** 0.612*** 0.548*** 0.505*** 0.513*** 0.543*** 0.526*** 0.511*** 0.510*** 0.499*** 0.494*** 0.495***
(0.151) (0.146) (0.170) (0.160) (0.159) (0.154) (0.157) (0.159) (0.161) (0.164) (0.163) (0.161) (0.162) (0.163) (0.165) (0.166)

% population in social rented accommodation -6.900*** -10.524*** -10.556*** -12.631*** -11.664*** -11.809*** -10.487*** -10.040*** -10.901*** -10.615*** -9.972*** -10.316*** -9.847*** -9.933*** -9.908***
(0.431) (0.668) (0.643) (0.737) (0.700) (0.703) (0.795) (0.831) (0.903) (0.897) (1.001) (1.040) (1.228) (1.412) (1.436)

% population in fuel poverty 19.510*** 24.122*** 35.739*** 35.275*** 36.745*** 37.355*** 37.669*** 37.007*** 36.381*** 34.478*** 33.909*** 32.921*** 32.667*** 32.646***
(2.891) (2.874) (3.959) (3.733) (3.854) (4.003) (3.972) (3.956) (4.072) (4.491) (4.785) (4.662) (5.132) (5.097)

% population aged 65 plus 13.496*** 9.336*** 8.262*** 14.512*** 13.707*** 12.418*** 12.101*** 13.719*** 15.099*** 15.180*** 14.783*** 14.529***
(1.695) (1.676) (1.599) (3.724) (3.596) (3.632) (3.718) (3.784) (3.564) (3.607) (4.540) (4.279)

% population with university degree 6.936*** 6.667*** 6.786*** 5.208*** 6.011*** 8.141*** 8.147*** 8.866*** 9.032*** 9.377*** 9.385*** 9.376***
(1.389) (1.313) (1.349) (1.306) (1.338) (1.557) (1.556) (1.580) (1.586) (1.652) (1.652) (1.661)

% population in private rented accommodation -9.324*** -6.909*** -6.338*** -5.944*** -5.509*** -6.785*** -6.578*** -5.315*** -5.379*** -4.705*** -4.785** -4.771**
(1.127) (1.071) (1.090) (1.104) (1.169) (1.288) (1.269) (1.484) (1.490) (1.688) (1.869) (1.883)

population density -1.364*** -1.306*** -1.154*** -1.224*** -1.256*** -1.320*** -1.340*** -1.290*** -1.282*** -1.285***
(0.368) (0.356) (0.329) (0.330) (0.327) (0.318) (0.314) (0.311) (0.318) (0.320)

% population disabled -11.828** -10.407** -12.390*** -12.464*** -11.186** -13.115*** -13.464*** -13.376*** -12.370**
(4.817) (4.611) (4.563) (4.574) (4.680) (4.359) (4.509) (4.682) (4.920)

% population commuting with public transport -3.805** -3.597** -3.640** -3.598** -3.973** -3.914** -3.923** -3.905**
(1.736) (1.739) (1.738) (1.733) (1.674) (1.649) (1.639) (1.620)

average annual household income -5.514*** -5.455*** -5.846*** -5.793*** -6.141*** -5.991*** -5.974***
(1.882) (1.878) (1.831) (1.811) (1.871) (1.950) (1.943)

% population in shared accommodation -16.695** -15.923** -15.520** -15.221** -15.071** -15.114**
(7.349) (7.240) (7.121) (7.197) (6.905) (6.836)

% households with more than 2 members 2.701 2.692 2.062 1.853 1.834
(1.671) (1.665) (1.842) (1.828) (1.843)

% unemployed 9.159 9.766 10.085 10.365
(7.977) (7.909) (8.621) (8.252)

% population in whole house or bungalow 0.956 1.011 1.021
(0.921) (0.855) (0.863)

% inactive 0.583 0.638
(2.400) (2.307)

% population in bad or very bad health -2.351
(9.121)

Best Subset X
Observations 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789 6789
R2 .314 .34 .36 .374 .379 .384 .387 .389 .39 .391 .391 .392 .392 .392 .392 .392

Notes: Table presents best-subset-selection regression results. The best-subset is indicated in the table footer. All regressions control for district fixed effects. The analysis presents correlational patterns that help characterize the variation in energy savings potential in terms of the
socio-economic characteristics of areas. Standard errors are clustered at the district level.
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Table 4: Comparison of income-wealth gradient in the value of the energy-savings potential
contrasting the full price shock, the EPG-mitigated, and the two-tier tariff mitigated shock

(1) (2) (3)

Energy savings incentive without intervention with EPG with two tier tariff

Panel A:
median house price 1.244*** 0.853*** 1.526***

(0.151) (0.103) (0.178)

R2 0.281 0.288 0.302
Observations 6789 6789 6789

Panel B:
average annual household income 15.029*** 10.349*** 18.436***

(0.968) (0.670) (1.110)

R2 0.245 0.250 0.258
Observations 6789 6789 6789

Panel C:
income rank 0.070*** 0.048*** 0.085***

(0.004) (0.003) (0.005)

R2 0.264 0.270 0.279
Observations 6789 6789 6789

District FE: X X X

Notes: Table presents regression results showing how the various energy-price shock measures affect
the gradient of average energy savings potential with respect to various socio-economic measures at the
MSOA-level capturing income or wealth. Column 1 displays the overall shock to bills between 2021 and
2022. Column 2 presents the energy savings potential under the EPG, while column 3 presents it under
the two-tier tariff. All regressions include district fixed-effects. Standard errors are clustered at the district
level with stars indicating *** p <0.01, ** p <0.05, and * p < 0.1.
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Figure A1: Schematic flowchart of the data processing pipeline to arrive at household-level energy price shock expo-
sure measure

Notes: Figure provides a visual summary of the data construction process and the different steps and inputs that go into the derivation of the energy consumption and bill
estimates.
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Figure A2: Median property-level energy consumption measures at the MSOA-level
compared with median imputed energy consumption measures from EPC-NEED
data
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Panel C: EPC + Local Moments Panel D: EPC + NEED + Local Moments
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Notes: Figures provide a scatterplot of estimates of the median energy consumption per meter from published data at the
MSOA-level (for metered electricity and gas only) on the vertical axis and the median of various imputed energy consumption
measures that leverage different data on the horizontal axis. Panel A provides the implied consumption estimates from the
EPC data as is. Panel B augments the EPC data with a matching-of-moments approach based on anonymized individual
level meter reading data collected under the NEED framework. Panel C uses the EPC raw energy consumption estimates and
augments it with matched granular area-specific moments. Panel D is the final measure that combines the EPC raw data, the
property-specific moment-matching and the local area specific moment matching.
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Figure A3: Correlation between moments of derived consumption proxy measures
and moments from actual consumption data
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Panel C: EPC + Local moments Panel D: EPC + NEED + Local moments
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Notes: Figures plot the R2 that is obtained from validating the derived implied consumption measures and three moments:
the total consumption, the mean, and median consumption against actual consumption data that is published from gas and
electricity meters across the country. For the four different derived measures, we compare the goodness-of-fit of the three
moments against the corresponding moment from subnational statistics. The horizontal axis captures the ratio of the number
of EPC properties against the population of properties in an area based on council tax data. A value of 0.4 on the axis implies
that the estimating sample includes data from all MSOAs that have at most 40% of their building stock captured in the
EPC data. We note that the goodness-of-fit remains stable across each of the moments when the estimating sample includes
MSOAs with an EPC coverage of up to 60%.
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Figure A4: Average property-level energy consumption measures at the MSOA-
level compared with imputed energy consumption measures from EPC-NEED data
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Panel C: EPC + Local Moments Panel D: EPC + NEED + Local Moments
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Notes: Figures provide a scatterplot of the mean energy consumption per meter estimates from published data at the MSOA
level (for metered electricity and gas only) on the vertical axis and the average of various imputed energy consumption
measures that leverage different data on the horizontal axis. Panel A provides the implied consumption estimates from the
EPC data as is. Panel B augments the EPC data with a matching-of-moments approach based on anonymized individual
level meter reading data collected under the NEED framework. Panel C uses the EPC raw energy consumption estimates and
augments it with matched granular area-specific moments. Panel D is the final measure that combines the EPC raw data, the
property-specific moment-matching and the local area specific moment matching.
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Figure A5: Total property-level energy consumption measures at the MSOA-level
compared with imputed energy consumption measures from EPC-NEED data
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Notes: Figures provide a scatterplot of the total energy consumption per meter estimates from published data at the MSOA
level (for metered electricity and gas only) on the vertical axis and the average of various imputed energy consumption
measures that leverage different data on the horizontal axis. Panel A provides the implied consumption estimates from the
EPC data as is. Panel B augments the EPC data with a matching-of-moments approach based on anonymized individual
level meter reading data collected under the NEED framework. Panel C uses the EPC raw energy consumption estimates and
augments it with matched granular area-specific moments. Panel D is the final measure that combines the EPC raw data, the
property-specific moment-matching and the local area specific moment matching.
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Table A1: Comparison of district-by-property-type BEIS-reported average and median electricity and gas consumption vis-a-vis correspond-
ing EPC-derived and rescaled proxy measures

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

EPC NEED EPC + Local EPC + NEED + Local Average

Panel A: No controls
Derived energy consumption proxy 0.789*** 0.859*** 0.903*** 0.975*** 0.949*** 1.071*** 0.993*** 1.121*** 0.888*** 0.975***

(0.013) (0.011) (0.013) (0.010) (0.008) (0.011) (0.010) (0.012) (0.010) (0.009)

R2 0.756 0.850 0.823 0.896 0.887 0.942 0.881 0.927 0.845 0.918
Observations 2303 2303 2303 2303 2303 2303 2303 2303 2303 2303

Panel B: Property Type FE
Derived energy consumption proxy 0.697*** 0.782*** 0.810*** 0.892*** 0.989*** 1.111*** 0.969*** 1.102*** 0.891*** 0.968***

(0.038) (0.037) (0.032) (0.029) (0.017) (0.028) (0.022) (0.032) (0.024) (0.024)

R2 0.822 0.888 0.846 0.906 0.899 0.947 0.882 0.928 0.871 0.929
Observations 2303 2303 2303 2303 2303 2303 2303 2303 2303 2303

Panel C: District FE
Derived energy consumption proxy 0.807*** 0.863*** 0.930*** 0.994*** 0.937*** 1.057*** 1.004*** 1.130*** 0.888*** 0.969***

(0.009) (0.008) (0.011) (0.010) (0.007) (0.009) (0.010) (0.011) (0.008) (0.008)

R2 0.807 0.891 0.853 0.920 0.888 0.947 0.881 0.932 0.863 0.933
Observations 2303 2303 2303 2303 2303 2303 2303 2303 2303 2303

Panel D: District FE and Property Type FE
Derived energy consumption proxy 0.707*** 0.729*** 0.855*** 0.893*** 0.951*** 1.056*** 1.020*** 1.150*** 0.893*** 0.922***

(0.033) (0.039) (0.043) (0.047) (0.024) (0.038) (0.040) (0.053) (0.027) (0.035)

R2 0.883 0.936 0.876 0.931 0.902 0.952 0.883 0.933 0.894 0.947
Observations 2303 2303 2303 2303 2303 2303 2303 2303 2303 2303

Moment: Mean Median Mean Median Mean Median Mean Median Mean Median

Notes: Table presents regression results comparing the district-level average electricity and gas consumption average from BEIS micro data by property type (de-
tached, semi-detached, (mid/end) terraced, flat and/or bungalow) with the measures that we constructed as part of our proxy variables.
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Table A2: Comparison of income/wealth gradient in the energy price shock incidence under alternative
price policies

(1) (2) (3) (4) (5)

Energy bill shock without intervention with EPG with two tier tariff
Consumers Govt Consumers Govt

Panel A:
median house price 2.686*** 1.492*** 1.194*** 2.852*** -0.166***

(0.337) (0.186) (0.152) (0.321) (0.058)

R2 0.315 0.324 0.301 0.394 0.188
Observations 6789 6789 6789 6789 6789

Panel B:
average annual household income 34.175*** 19.131*** 15.044*** 35.936*** -1.761**

(2.176) (1.253) (0.933) (1.793) (0.749)

R2 0.276 0.284 0.266 0.326 0.186
Observations 6789 6789 6789 6789 6789

Panel C:
Income Rank (IMD) 0.154*** 0.085*** 0.069*** 0.156*** -0.003

(0.009) (0.005) (0.004) (0.007) (0.003)

R2 0.296 0.304 0.286 0.350 0.185
Observations 6789 6789 6789 6789 6789

District FE: X X X X X

Notes: Table presents regression results showing how various energy-price shock measures on average bills vary with various
socio-economic measures at the MSOA-level capturing income or wealth. Column 1 displays the overall shock to bills between
2021 and 2022. Columns 2 and 3 decompose this shock in the consumer- and the government-facing average bill increase un-
der the EPG. Columns 4 and 5 present the same breakdown for the two-tier tariff intervention. All regressions include district
fixed-effects. Standard errors are clustered at the district level with stars indicating *** p <0.01, ** p <0.05, and * p < 0.1.
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Appendix to “Distributional and climate
implications of policy responses to the energy

crisis: Lessons from the UK”
For Online Publication

Thiemo Fetzer Ludovica Gazze Menna Bishop

A Step 1: Deriving a physical energy consumption mea-

sure for each property in the EPC data

An essential ingredient in our energy consumption calculations was the set of fuel

prices faced by a given property for each type of energy consumption (space heat-

ing, water heating, and lighting). For example, while gas is the most common

heating method across properties in the EPC data, many use either electricity or oil

and therefore face different prices. Additional complexity follows from the range of

possible tariffs used to price a household’s electricity use. The prices used in EPC

calculations dating back to 2013 for all possible fuel types are published by BRE.1

We had to infer which of these had been applied to each energy consumption type

for each property in order to estimate expenditures.

To decide the assignment of fuel prices, we consulted four variables from the

EPC database: main heating system (MAINHEAT_DESCRIPTION), water heating system

(HOTWATER_DESCRIPTION), type of fuel used to power the central heating (MAIN_FUEL),

and electricity tariff (ENERGY_TARIFF). For example, if the main heating system was

recorded as “boiler and radiators, mains gas”, main fuel as “mains gas”, hot water

system as “from main system” and energy tariff as “single”, a property was as-

signed the “mains gas” fuel price for space and water heating and the “standard

tariff” price for lighting from the SAP price list. The raw data contain 9,796 unique

combinations of these four variables, and so we restricted our attention to the 30

most common combinations, excluding those containing oil.2 In total, these 30 com-

1Data are available here https://bregroup.com/sap/standard-assessment-procedure-sap-2
012/

2We excluded properties using oil as there is no price cap for this fuel, which is our source of
price data for gas and electricity (see the next section for details).
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binations account for 85% of the sample. For the remaining 15%, we infer energy

consumption using ENERGY_CONSUMPTION_CURRENT, a variable which estimates total

energy consumption in kWh per metre squared of floor area. We scale this variable

by FLOOR_AREA and multiply by the cost share of each energy use type to produce

estimates of energy consumption for space and water heating and lighting.

We followed the SAP documentation to the best of our ability in the process

of assigning fuel prices to energy consumption types, though in places the appro-

priate correspondence was not clear. Ambiguities also arose in interpreting how

prices, which include a standing charge and price per kWh, had been applied to

consumption to produce the spending estimates available in EPC data, complicating

the reverse-engineering of this calculation. To account for this uncertainty, we have

included a lower-bound estimate, which incorporates standing charges, as well as

an upper-bound estimate, which excludes standing charges from consumption cal-

culations. This inevitably introduces some measurement error, which we intended

to tackle via spatial aggregation.

The consumption estimates we produce for water heating, space heating and

lighting are intention-to-treat estimates, as the underlying physical SAP model used

to produce the EPC data considers three factors:

1. The physical characteristics of a property, such as build-type, insulation tech-

nology, floor area, window area, number of rooms and light fixtures

2. Time-invariant climatic factors that affect fuel demand and are ultimately de-

termined by property location

3. Fixed relationships between estimated use due to time-invariant estimates of

likely occupation and use determined by the physical makeup of the property

such as the number of bedrooms, the floor area, etc.

Consumption estimates stemming from EPC data will therefore not map one-to-

one with consumption estimates which reflect actual patterns of energy consump-

tion by residents, such as those produced from meter readings. Rather, EPC data is

based on exogenous and typically fixed characteristics of the underlying buildings,

a desirable feature for an econometrician. In this sense, our consumption estimates

should be understood as theoretical as opposed to real consumption estimates.
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B Step 2: Anchoring technically-required energy con-

sumption measure with anonymized meter-level data

In step two, we produce a second consumption measure that incorporates anony-

mous micro data on energy and gas consumption from the National Energy Effi-

ciency Data-Framework (NEED).3 We refer to these as real consumption estimates

as, unlike the EPC-based estimates, they reflect patterns of energy consumption

behaviour by households. The sample includes four million properties and is de-

signed to be representative of domestic properties in England and Wales. Data are

available annually for years 2005-19, of which our analysis uses 2017-19. The data

include estimates of energy and gas consumption which are derived from meter

readings, alongside a number of property and area-level characteristics.

We use this real consumption data to develop a refinement of the theoretical con-

sumption measure derived in Step 1. We match moments of the NEED meter-level

data with moments from the EPC-derived consumption measure, in effect rescal-

ing our theoretical consumption measure. This is possible because the NEED data

include a range of property characteristics which are also present in the EPC data:

• property type (six categories)

• property age band (four categories)

• an indicator for whether gas is the main heating fuel (two categories)

• floor area band (five categories)

• a measure of the relative deprivation of the area in which a property is located,

measured in 2019 (five categories each for Wales and England)

• region (nine categories for England, one for Wales).

In theory, there are 6× 4× 2× 5× 5× 9 = 10, 800 unique combinations of these

features in England and 6× 4× 2× 5× 5 = 1, 200 unique combinations in Wales.

For each unique combination, we calculate the deciles of combined gas and

electricity consumption in the NEED data, excluding combinations which contain

3The data can be found here https://www.gov.uk/government/statistics/national-energy
-efficiency-data-framework-need-anonymised-data-2021.
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300 properties or fewer out of the total 12 million (4 million for each of the years

2017-19).

We then replicate this exercise using the EPC consumption estimates derived

in Step 1. When calculating total consumption, we take weighted averages of the

upper and lower bounds for our light, water, and space energy consumption esti-

mates, before summing over these to derive aggregate energy consumption. The

weight assigned to the upper bound of each consumption estimate is 5 minus the

floor area band (1-5), meaning a higher weight is assigned to the lower bound for

larger properties.

Next, we match the NEED energy consumption deciles for each unique combi-

nation of property attributes to the corresponding EPC energy consumption deciles.

For example, a property that is in the top decile of theoretical consumption (derived

from EPC data) among properties with the same combination of property attributes

will be assigned the top decile of real consumption (derived from NEED data) for

properties with these same attributes. The latter provides us with a potentially

more accurate representation of real consumption behaviour at the property level.

We then update our property-level estimates of theoretical consumption by mul-

tiplying by the ratio of real to theoretical energy consumption (both actual and

potential) for a property’s attributes and consumption decile.4

We then perform a second rescaling using postcode-level gas and electricity

consumption data, again for the years 2017-19.5 For each postcode, we compute the

sum of median gas and electricity consumption across years. We then repeat this

exercise for the theoretical consumption estimates developed in Step 1 as well as the

estimates which were adjusted using NEED data. Next, we rescale the property-

level theoretical and NEED-adjusted consumption estimates by multiplying by the

ratio of the median postcode-level energy consumption from the postcode data to

the corresponding value in the EPC data. We perform this rescaling of theoretical

consumption estimates only for properties in postcodes with at least 25% coverage

in the EPC data. Here, coverage is defined as the number of properties per postcode

4Note that energy consumption estimates for properties whose combinations of attributes in-
cluded less than 300 properties were not rescaled.

5The electricity data can be found on https://www.gov.uk/government/collections/sub-nati
onal-electricity-consumption-data; the gas data is on https://www.gov.uk/government/coll
ections/sub-national-gas-consumption-data.
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in the EPC data relative to the number of energy meters used to form the energy

consumption estimates in the postcode data.6 We then perform this same rescaling

for NEED-adjusted consumption estimates. We exclude from both rescaling exer-

cises properties in postcodes with five or fewer properties in the EPC data or five

of fewer energy meters in the postcode consumption estimates. For properties in

postcodes which fail these coverage requirements, we rescale consumption using

the same methods but with LSOA-level data. Here, we impose a looser restriction

of 50% coverage of EPC properties in a property’s LSOA.

C Step 3: Converting consumption measures to time-

varying spending estimates

In our third step, we convert the time-invariant consumption estimates from Steps

1 and 2, measured in kWh, into time-varying estimates of actual spending in GBP.

In practice, this is not straightforward as the energy prices faced by households,

which consist of a unit price and standing charge, depend on the particular energy

supply contract which they have entered into.

We are interested in four types of price scenario:

1. Energy price cap.

The energy cap sets the maximum price that energy suppliers are allowed to

charge customers, and is chosen by regulator Ofgem for gas and electricity

prices to reflect the costs of supplying energy and to allow modest profits

(Ofgem, 2022a). The cap has been updated every 6 months since its introduc-

tion in January 2019, but from October 2022 will be updated on a quarterly

basis. The price cap was originally conceived to protect inattentive consumers

from being charged unfair rates. In its early years, some energy contracts on

the market were cheaper than the cap, but since the summer of 2021 the cap

has been the cheapest rate available. This phenomenon is due to price in-

creases between the time at which the price cap is set and the time at which

it comes into effect (as of October 2022, this gap has been shortened from two

6The postcode-level data includes the number of meters used to form the estimates of median
gas and electricity consumption respectively, and we use the highest of these two figures.
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months to 25 working days) (Ofgem, 2022b). As such, the cap has been a more

accurate reflection of the prices faced by households in recent months than in

previous years. Our study incorporates price cap values from October 2021

and October 2022.

2. Energy Price Guarantee.

In September 2022, the UK government announced the Energy Price Guaran-

tee programme as a response to the ongoing energy crisis. The EPG reduces

the maximum per unit rate below the level of the October 2022 price cap in

an attempt to limit the average household energy bill to around £2,500. As

discussed in Fetzer (2022), the standing charge is maintained at the level of

the October 2022 price cap.

3. Historical average energy prices.

The Department for Business, Energy and Industrial Strategy (BEIS) publishes

data on average gas and electricity prices for 2010-2021.7 These data are par-

ticularly valuable for estimating energy bills pre-2019, when the energy price

cap had not yet been introduced.

4. Two-tier tariff.

This is an alternative policy proposal to the energy-price guarantee that is

discussed in more detail in Fetzer (2022). It consists of a two-tier tariff wherein

the standing charge would be fixed at the level of the October 2021 price cap,

as would unit prices for the first 9,500 kWh of natural gas consumption and

the first 2,500 kWh of electricity consumption. As 50% of UK households

consume less than 12,100 kWh of natural gas and 2,900 kWh of electricity, this

would drastically limit energy price increases for the bulk of households.8 The

second tier of the energy tariff would be set at steeper levels which could be

aligned with the EPG. For example, a second tier unit price of 20 pence per

kWh for natural gas and 60 pence per kWh for electricity, together with the

first tier described above, would have a similar cost to the government as the

7Data are available here https://www.gov.uk/government/statistical-data-sets/annual-d
omestic-energy-price-statistics

8See https://www.gov.uk/government/statistics/national-energy-efficiency-data-fra
mework-need-consumption-data-tables-2021.
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EPG. This would offer much more targeted support without undermining the

incentive to save energy created by higher unit prices.

Energy prices consist of a standing charge and unit rate which differ according

to region, payment method (for example, direct debit versus pre-paid), fuel type

(electricity versus gas), and electricity metering arrangement (whether the electric-

ity tariff varies by time of use). We use information on these dimensions from the

EPC data to assign the appropriate price to each property. In the absence of data

on payment method, we assume direct debit for all households.9

We then estimate energy expenditure for a given property and energy use (space

heating, water heating, or lighting) as follows:

spendier f mt = consier f m × pricer f mt + charger f mt

Here, consier f m is the consumption estimate for energy use type e by property i

in region r with fuel f and metering arrangement m, as calculateds in Steps 1 and

2. pricer f mt and charger f mt are the unit price and standing charge at which the cap

has been set for their region, metering arrangement and fuel in period t (assuming

payment by direct debit).

In essence, this spending calculation converts the intention-to-treat consumption

estimate in physical energy units, which reflects the physical characteristics of a

property, back into energy cost estimates that are, in turn, exogenous to household-

specific choices with respect to their energy supply contract. This data structure is

also ideal for merging in different price scenarios to forecast their likely impact on

household bills across different groups and regions within the UK.

Most households are on one-year fixed term contracts at the energy supply con-

tracts.
9Direct debit is the most popular payment method (Ofgem, 2019).
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D Step 4: Energy efficiency upgrade recommendations

and its costing

Lastly, we also examine the specific energy efficiency upgrade investments recom-

mended in the EPCs. We were not able to confirm how the costing of these rec-

ommendations is done. We thereby convert the estimates of the costs for specific

measures, which typically include an upper- and a lower-bound range, to a further

upper and lower bound based on an inflation rate estimate.

To do so, we construct a version of the cost estimate that is expressed in current

GBP which effectively uprates the upper- and lower-bound cost estimate by what

we judged to be the most appropriate inflation rate from the lodgement date (the

date the EPC was drawn up) to the current date.

E Bounding the what, who, and how

It is inherently challenging to separate the drivers of energy consumption. Natu-

rally, there is an interaction across at least three factors:

Ei,p = f (Whatp, Whoi,p, Howi,p)

We leverage anonymized meter-reading data from England and Wales at the

property-level to bound the extent to which we can explain variation in energy use

between the Whatp. In the NEED anonymized microdata we observe a range of

property characteristics that could drive variation in energy demand.10 We char-

acterise the extent to which we can capture variation in the observed energy con-

sumption data across properties (or households) saturating simple linear regression

specifications of the form

Ei,p,t = xi,p,t × β + εi,p,t

The features in xi,p,t include:

10The data are a stratified random sample from the population of properties. Unfortunately, BEIS
does not make the sampling weights available for each strata, which means we can not correct for
the respective under- and oversampling. We have requested this information but are still awaiting a
response.
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• Property characteristics: property type (six categories) such as detached, semi-

detached, or flat; property age band (four bands) capturing the date range

when a property was built; an indicator for whether gas is the main heating

fuel; floor area bins (five categories) ranging from less than 50 square meters

to over 200 square meters. Further, we also have measures capturing whether

a property has had some energy efficiency measures such as cavity wall insu-

lation or loft insulation installed.

• Socio-economic characteristics: quintiles of the English and Welsh indices of

Multiple Deprivation (IMD) from 2019 and council tax bands. That is, for

every property, we know the region (10 regions make up England and Wales)

and whether a property falls into a region in a specific quintile of the English-

or Welsh deprivation ranking.

In addition, we have a property identifier which will serve as a property fixed

effect in some specification as the most demanding, but also least informative, way

of trying to absorb property- and time-invariant resident-specific observable and

unobservable characteristics.

To allow for potential non-linear interactions between different property char-

acteristics driving energy consumption such as an interaction between floor area

and property age, we construct a measure that captures the unique combinations of

each of the property characteristics. That is, each unique combination of property

characteristics is identifying an own group which we refer to as Property. There are

9,846 unique combinations in the data of these characteristics.

We follow the same procedure for the socioeconomic indices to exploit typi-

cal patterns of socio-economic segregation in residential choice. As with property

characteristics, we combine these into a group variable that captures all unique

combinations that exist in the data. We refer to this as Socioeconomics.

Lastly, we interact each of these variables with year fixed effects to allow for

non-linear interactions of property characteristics and year-on-year unobservable

shocks.

Results. We present the results from this characterisation exercise by plotting the

estimated adjusted R2 in Figure A6 showing both combined gas and electricity, along
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with gas and electricity consumption separately. We note that property and socio-

economic characteristics can, at most, capture 50% of the variation in energy con-

sumption. In particular, electricity consumption appears much more idiosyncratic

compared to natural gas consumption. This finding is not surprising given that

demand for natural gas is predominantly driven by space-heating and hot-water

generation which do not vary much with household composition and tastes com-

pared to electricity consumption. We note that the adjusted R2 can reach up to

around 75% in the specifications with property fixed-effects.

Interpretation. The results of this characterisation exercise suggest that property

characteristics alone cannot explain much of the variation in energy demand. At

most, characteristics can explain around 50% of the variation in residential en-

ergy use. Moreover, the maximal goodness-of-fit attainable appears to be bounded

around 75%, obtained when we control for property fixed-effects, which may cap-

ture some of the underlying unobservable socio-economics factors (who lives there)

along with behavioural factors (how do they live).

Interestingly, our validation exercise for the property-level energy demand mea-

sure we constructed produces a goodness-of-fit vis-a-vis statistical moments such as

the mean and in particular, the median, that also achieves an adjusted R2 of around

75%. This provides us with further confidence that our energy demand measures

can do a good job at picking up variation in the data.
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Figure A6: Decomposition of variance in the anonymized individual property-level energy consumption data docu-
menting to what extent different features can characterise the variation in energy consumption

Panel A: Combined Panel B: Gas Panel C: Electricity
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Notes: Figures plot out the adjusted R2 obtained from regressing combined, gas, and electricity anonymized property-level consumption data against a set of features.
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F Data used for correlational analysis

The following covariates were sourced from the 2011 UK census:

Category Covariates
Demographics Highest qualification obtained, ethnicity, county of birth, age,

household size, self-reported health, disability
Housing Tenure, population density, dwelling type, method of commute
Economic activity Economic activity, industry of employment (2007 SIC)

These data were supplemented by the following variables:

Household income. Model-based income estimates at the MSOA-level are pro-

duced by the Office of National Statistics (ONS).11 Our analysis used estimates of

average total annual income for the year 2018.

Fuel poverty. Annual statistics on the number of individuals in fuel poverty at

the LSOA-level are produced by the Department for Business, Energy & Industrial

Strategy (BEIS).12. These adopt the Low Income Low Energy Efficiency (LILEE)

metric of fuel poverty, which considers a household fuel poor if it lives in an energy

inefficient property and has disposable income below the poverty line. Our analysis

uses figures for the year 2020. These were aggregated from Lower Layer Super

Output Area (LSOA) level to the MSOA level using population estimates.

Median house prices. Data on median house prices by MSOA are published by

the ONS, calculated using open data from the HM Land Registry.13 Our analysis

uses figures for the year ending March 2022.

11Data are avaliable here https://www.ons.gov.uk/employmentandlabourmarket/peopleinwor
k/earningsandworkinghours/datasets/smallareaincomeestimatesformiddlelayersuperoutput
areasenglandandwales

12Data are avaliable here https://www.gov.uk/government/collections/fuel-poverty-sub-r
egional-statistics

13Data are avaliable here https://www.ons.gov.uk/peoplepopulationandcommunity/housing/
datasets/hpssadataset2medianhousepricebymsoaquarterlyrollingyear
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Index of Multiple Deprivation (IMD). English Indices of Deprivation (IoD) are

published by the Department for Levelling Up, Housing & Communities.14 These

are relative measures of deprivation which incorporate the seven following do-

mains: income; employment; health deprivation and disability (in our analysis, we

refer to this as health); education, skills and training (education); crime; barriers to

housing and services (housing and services) and living environment. Our analysis

uses rankings along these dimensions for each LSOA for the year 2019. These were

aggregated to the MSOA-level using population estimates.

14Data are available here https://www.gov.uk/government/statistics/english-indices-of-
deprivation-2019

13


