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Abstract

A monopoly seller is privately and imperfectly informed about the buyer’s value of

the product. The seller uses information to price discriminate the buyer. A designer

offers a mechanism that provides the seller with additional information based on the

seller’s report about her type. We establish the impossibility of screening for welfare

purposes—i.e., the designer can attain any implementable combination of buyer surplus

and seller profit by providing the same signal to all seller types. We use this result

to characterize the set of implementable welfare outcomes, study the seller’s incentive

to acquire third-party data, and demonstrate the trade-off between buyer surplus and

efficiency.
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1 Introduction

The use of consumer data has become an important and ubiquitous aspect of the interactions

between companies and consumers in the digital economy. Companies collect personal in-

formation and track consumers as they browse entertainment portals, post content on social

media, and buy products on e-commerce websites. This data is used to adapt online services

directly at the point of collection or later if transferred elsewhere. One prominent case is

the use of consumer data for price discrimination: A seller may use data on its customers

to learn about their preferences and tailor the prices of services and products via outright

personalized pricing, providing discount coupons, or steering customers to a more expensive

version of similar products.

As the importance of consumer data grows, various parties—such as policymakers, plat-

forms, and consumers themselves—are attempting to control the flow of consumer data to

sellers. However, the ability of these parties to control the allocation of data across sellers

is likely to be limited because of information asymmetry—i.e., sellers may be privately in-

formed about their market demands and customers. For example, a regulator might prefer

that sellers within a certain group not use certain data, but the regulator may not know

which sellers belong to that group. This raises questions about the scope of data provision

to privately informed sellers and its potential impact on consumer surplus, seller profits, and

overall efficiency.

Motivated by the above discussion, we study a model of data provision to a privately

informed seller. The seller is a monopolist and has a product for sale. The buyer has a

binary uncertain value for the product, which is either high or low. The seller’s interim

belief that the value is high, which we call the seller’s type, is her private information. The

seller may improve her pricing by obtaining additional information, which we model as a

statistical signal that is informative about the value. We take a mechanism-design approach

and consider a designer who offers a menu of signals to the seller. In practice, a menu

corresponds to a restriction imposed by a regulator or a platform regarding what data sellers

can use. Given a menu, the seller selects a signal and learns about the buyer’s value. Finally,

the seller sets a price and the buyer decides whether to purchase the product.
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Our focus is the set of all possible welfare outcomes the designer can implement by

offering an arbitrary menu of signals. If the designer observes the seller’s type, the set of

possible outcomes becomes the “surplus triangle,” as described by Bergemann, Brooks, and

Morris (2015)—i.e., any division of the total surplus between the buyer and the seller can be

achieved provided that the total surplus is not higher than the efficient surplus, the buyer

surplus is nonnegative, and the seller’s profit is no lower than the profit she can achieve

without additional information.

When the seller’s type is private, the designer can no longer attain the surplus triangle.

For example, the first-best buyer surplus, which attains efficiency and gives no extra rents

to the seller, requires that different types of sellers obtain different signals. However, if the

designer were to implement such an outcome by offering a menu of those signals, some types

would choose signals intended for other types in order to extract surplus from the buyer.

Our first main result shows that the designer cannot effectively screen the seller at all:

An outcome is implementable through some menu of signals if and only if it is implementable

by providing the same public signal to all seller types. This result illustrates the difficulty of

eliciting the seller’s private information and providing personalized data. To prove the result,

we develop novel structural properties of how personalized data provision can impact prices

across different seller types and buyer values. We then use these properties to explicitly

construct a public signal that replicates the equilibrium pricing behavior of any menu of

signals.

We build on this result and geometrically characterize the set of implementable outcomes

as the convex hull of an aggregate surplus function that averages across seller types. We

show that not only can the designer focus on public signals, but these signals do not need to

be complex: Any implementable outcome can be achieved using a signal with at most three

signal realizations, and any extreme implementable outcome requires at most two signal

realizations.

We use the above results to derive the surplus set in a closed form when the seller’s type

is uniformly distributed. Figure 1 depicts the set of implementable outcomes for observable

types (light blue triangle) and unobservable types (dark blue area). The seller’s private

information shrinks the implementable set. In this example, providing any signal reduces
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Figure 1: The sets of implementable outcomes for observable and unobservable seller types
when low value equals 1, high value equals 2, and types are uniformly distributed on [0, 1].
The horizontal axis and vertical axis represent the ex ante expected payoffs of the buyer and
the seller, respectively.

the buyer’s ex ante expected payoff because a large mass of seller types will use it to extract

surplus from the buyer. Moreover, the only efficient outcome leads to zero buyer surplus.

The right boundary of the surplus set is spanned by signals that reveal that the buyer has

the high value with some probability, and symmetrically, the left boundary is spanned by

signals that reveal the low value.

Our result on the impossibility of screening has three implications. First, the result

highlights a tension between consumer protection and efficiency regarding the provision of

consumer data to sellers. The provision of data may enable sellers to tailor pricing, benefit

consumers, and enhance efficiency. At the same time, how much and what kind of data

sellers should be allowed to use for such beneficial pricing will depend on the specific market

conditions and the prior information each seller faces. However, in reality, a regulator would

not be able to apply different rules to different firms, partly because of the informational

friction we highlight. In such a situation, allowing some sellers to use a certain piece of

information could increase total surplus, but other sellers may use the same information to

merely extract consumer surplus. In some settings, this trade-off can be so stark that it may

be impossible to attain efficiency without giving the entire total surplus to the seller.

Second, we study the seller’s incentive to acquire third-party data. Here, third-party
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data—such as the data a seller may purchase from a data broker—refers to the source of

information the seller can acquire but is out of the designer’s control. We can model this as

the seller’s choice to be privately informed about the buyer. From the designer’s perspective,

the seller’s private information shrinks the set of implementable outcomes, and in particular,

shifts the Pareto frontier downward. Thus, third-party data typically hurts the designer

who cares about social welfare. In contrast, the seller’s incentives to acquire third-party

data depend on which implementable outcome is selected. In particular, if the seller could

propose to acquire additional “first-party” data directly from the buyer but the buyer has the

authority to veto the proposal, the seller may prefer not to acquire third-party data. Indeed,

because of adverse selection, the buyer may optimally veto acquisition of any additional

data by a privately informed seller. As a result, the third-party data could crowd out the

first-party data and reduce the overall information available to the seller.

Third, we show that the surplus set we characterize subsumes the set of equilibrium

outcomes of various games in which the buyer and the seller exchange information with each

other, including cheap talk communication, voluntary disclosure of the buyer’s value, and a

request-consent protocol in which a privately informed seller chooses a signal subject to the

buyer’s consent. This observation underlies the fact that our mechanism-design approach is

useful for evaluating various communication protocols and data collection policies.

Our baseline model assumes that the buyer’s value is binary. On the one hand, this

assumption is crucial for our result whereby the designer cannot effectively screen the seller.

On the other hand, many of our key insights extend to the case of general multiple val-

ues. In particular, we show that the seller’s private information generally shrinks the set of

implementable outcomes and creates a tension between consumer protection and efficiency.

Related Literature First and foremost, our paper relates to the recent theoretical liter-

ature on the impact of information under third-degree price discrimination or, equivalently,

of market segmentation on market outcomes. In their seminal paper, Bergemann, Brooks,

and Morris (2015) show that all individually rational outcomes can arise in a single-product

monopoly setting. Their analysis was later extended to multiproduct markets (?Haghpanah

and Siegel (forthcoming)); competitive markets (Shi and Zhang (2020); Rhodes and Zhou
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(2022); Elliott, Galeotti, Koh, and Li (2022)); and two-sided markets (Condorelli and Szentes

(2022)).1 We contribute to this literature by highlighting the importance of the seller’s pri-

vate information, which is absent in those papers. The presence of such private information

is relevant in practice for regulators and platforms, which aim to control the flow of consumer

data but are likely to face information asymmetry vis-a-vis sellers. We show that the seller’s

private information limits possible welfare outcomes and introduces the trade-off between

consumer welfare and efficiency.

Second, our paper contributes to the literature on consumer privacy and privacy regula-

tion (Acquisti, Taylor, and Wagman, 2016; Choi, Jeon, and Kim, 2019; Fainmesser, Galeotti,

and Momot, 2022; Argenziano and Bonatti, 2021; Bergemann, Bonatti, and Gan, 2022). We

highlight the difficulty of tailoring a privacy regulation to unknown market conditions, as-

sess the impact of access to third-party data on first-party data collection, and compare the

performance of several communication protocols. To focus on the role of the seller’s private

information, we abstract away from other economic forces studied in the above papers, such

as the use of data for product selection and service improvement as well as information

externalities between consumers.

Our mechanism-design framework to study the regulation of a privately informed monop-

olist follows that of Baron and Myerson (1982). We employ this framework in the context of

restricting the use of consumer data by a monopolist. Similar mechanism-design machinery

in the context of information provision has recently been used by Kolotilin, Mylovanov, Za-

pechelnyuk, and Li (2017), Bergemann, Bonatti, and Smolin (2018); Smolin (forthcoming);

and Yang (2022). All of these allow for a fully flexible way of designing information, fol-

lowing the Bayesian persuasion literature (Rayo and Segal (2010); Kamenica and Gentzkow

(2011)).

1Relatedly, Roesler and Szentes (2017) and Deb and Roesler (2022) analyze the informational impact in
a second-degree price discrimination setting.

6



2 Model

There is a seller and a buyer. The seller has a unit good for sale. The buyer’s value v for

the good is uncertain and either high or low: v ∈ V ≜ {L,H} with H > L > 0. The

seller is privately informed about the value. The seller’s private information is captured by

θ ∈ Θ ⊆ [0, 1] and represents the seller’s belief that v = H. The type is distributed according

to measure F ∈ ∆([0, 1]).2

To improve her pricing, the seller seeks to acquire additional data. We model data as

a statistical signal that can be arbitrarily informative about the value. Formally, a signal

I = (S, π) consists of a set S of signal realizations s and a family of distributions {π(·|v)}v∈V
over S. Where it does not cause confusion, we write conditional distribution π(·|v) as π(v).

We adopt a mechanism-design approach and assume that signals are provided by a de-

signer. At the outset, the designer posts a menu M of signals to the seller. Then the game

between the seller and the buyer proceeds as follows. First, the nature draws the seller’s

type θ according to prior distribution F and the buyer’s value v according to θ.3 Second,

the seller privately observes her type θ and chooses a signal I = (S, π) ∈ M. Third, the

seller observes signal realization s drawn according to π(v) and posts a price p ∈ R for the

product. Finally, the buyer observes value v and price p and decides whether to buy the

product. If the trade occurs, the buyer obtains payoff v − p and the seller obtains payoff p.

Otherwise, both players obtain zero payoffs.

For any given menu M of signals, the solution concept is a perfect Bayesian equilibrium.

Any equilibrium induces an allocation rule a : V → [0, 1]×R, which specifies for each value

the probability of a trade and the expected payment from the buyer to the seller. We call

the corresponding ex ante expected payoffs of the buyer and the seller as the buyer surplus

and seller profit, respectively. A welfare outcome, or simply outcome, refers to a pair of

buyer surplus and seller profit. Each allocation rule leads to a unique outcome, but a given

outcome may come from multiple allocation rules. An allocation rule and an outcome are

implementable if they can arise in an equilibrium of some menu.

2Given set X, we write ∆(X) for the set of all probability distributions on X.

3By Bayes’ rule, this timing is equivalent to one in which the value is drawn before the type.

7



Our goal is twofold. First, we study how the seller’s private information limits the

designer’s ability to implement certain outcomes. To do so, in Section 3, we characterize

the set of implementable outcomes and compare it with the case in which the seller’s type

is observed. Second, we aim to derive implications on data policies for regulators and sellers

when the sellers may have private information or face heterogeneous demand conditions.

To this end, in Section 4, we use the characterization result to highlight a general tension

between consumer protection and efficiency, and we examine the seller’s incentives to acquire

external data that is outside the control of the designer. Finally, we show that the set

of implementable outcomes we characterize subsumes the equilibrium outcomes of various

communication protocols motivated by applications.

2.1 Discussion of Modeling Assumptions

Before proceeding with the analysis, we briefly discuss several modeling choices that are

characteristic of our model.

Data as a Signal. As is common in the literature on information design, we model data

as a statistical signal that is informative about the buyer’s value. This approach bypasses

the technical aspects of data analysis and algorithmic implementation and focuses directly

on the seller’s economic assessments of values. Different kinds of data, such as web cookies,

geolocation data, and consumer behavior on the seller’s website, are indicative of consumer

preferences and thus can be considered to be signals. In turn, a signal realization refers to

the specific instance of data, such as the contents of a consumer’s cookies, his geolocation,

or his web-browsing history. If we view the model as consisting of a continuum of buyers

with heterogeneous values and sellers with heterogeneous types, any given signal induces

a market segmentation with buyers belonging to the same segment if they have the same

realized signal. However, since sellers have different types, the same signal can lead to

different market segmentations depending on their types.

Role of the Designer. We abstract away from the designer’s objective and focus on all

implementable outcomes. This enables us to make predictions that do not depend on the
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designer’s preferences. This approach is also useful when considering a player who controls

consumer data with a particular objective. For example, the designer may be a regulator

trying to maximize consumer welfare by restricting the data that sellers can use about

consumers. Alternatively, the designer could be a platform or an information intermediary

that provides a seller with information about buyers. Specifying the designer’s objective or

a specific data collection protocol will select certain implementable outcomes.

Informed Seller. The seller’s private information about the value of the product to the

buyer can come from two sources. First, the seller may have some information about the

buyer that is beyond the designer’s control. Information could come from technological

constraints like knowledge of the consumer’s IP address or from uncontrolled consequences

of online interactions such as purchasing decisions. Second, the seller may be more informed

than the designer about the general quality of their product. If the seller has a high-quality

product, they believe that the consumer’s value is more likely to be high.

Price Discrimination. We assume that the seller uses data for third-degree price dis-

crimination. In practice, while sellers may be reluctant to display different base prices to

different consumers, there are at least two common and indirect ways to price discrimi-

nate in the digital economy. First, sellers may offer personalized discounts to consumers by

setting the base price high and changing the size or frequency of discounts to implement

discriminatory pricing. Second, sellers may offer personalized recommendations that point

consumers toward similar products that vary in price. By maintaining a large inventory of

such products, sellers can effectively engage in price discrimination.

3 Surplus Set Characterization

To study how the seller’s private information affects implementable outcomes, we begin our

analysis with the benchmark case in which the seller’s type is observable to the designer. We

then proceed to the primary scenario of unobservable types and present our main results.
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3.1 Observable Seller Type

First, suppose that the seller’s type is deterministic, i.e., Θ = {θ0}. Denote the maximum

feasible total surplus by W(θ0) ≜ θ0H+(1−θ0)L and the seller’s profit from optimal uniform

pricing by Π(θ0) ≜ max{θ0H,L}. Clearly, any feasible welfare outcome (U,Π) must belong

to the “surplus triangle” characterized by constraints U ≥ 0, Π ≥ Π(θ0), and U+Π ≤ W(θ0).

Bergemann et al. (2015) demonstrate that any such welfare outcome can be achieved by some

signal.

Claim 1. (Bergemann, Brooks, Morris (2015)) If the seller type is commonly known to be θ0,

then outcome (U,Π) is implementable if and only if U ≥ 0, Π ≥ Π(θ0), and U+Π ≤ W(θ0).

This result immediately generalizes to the case in which the seller’s type is drawn ac-

cording to distribution F but the designer observes the realized type. The aggregate set of

implementable outcomes is a Minkowski average of the surplus sets for each realized type.

For each type θ, by Claim 1, the implementable outcomes satisfy three linear constraints,

two of which feature type-dependent terms Π(θ) and W(θ). Denote their aggregate values

averaged across types by

Π ≜
∫ 1

0

Π(θ)dF (θ), (1)

W ≜
∫ 1

0

W(θ)dF (θ). (2)

From the ex ante perspective, Π is the profit the seller can guarantee, W is the maximum

feasible total surplus, and 0 is the welfare level the buyer can guarantee. Hence, the aggregate

welfare outcome must belong to a triangle outlined by these constraints. At the same time,

as in the case of a known type, the converse is also true (the omitted proofs are in Appendix).

Claim 2. (Observable type) If the seller type is commonly known and distributed according

to F , then outcome (U,Π) is implementable if and only if U ≥ 0, Π ≥ Π, and U+Π ≤ W.

The result implies that any efficient outcome is implementable as long as the seller’s

profit exceeds the profit under no additional data. One notable implementable outcome is

the buyer-optimal outcome (W − Π,Π), under which the allocation rule is efficient but the
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seller’s profit stays at the level of no additional information. At this outcome the buyer

obtains all surplus created by the data. As a result, if the seller’s type is observable, there

is no inherent trade-off between consumer protection and efficiency.

However, the buyer-optimal outcome generally requires that different seller types obtain

different signals. When the seller type is her private information this outcome may not be

implementable, and the trade-off between consumer surplus and efficiency reappears. To see

this, suppose that the seller’s type is either θ1 ∈ (0, L/H) or θ2 ∈ (L/H, 1)—i.e., the optimal

uniform price is L for type θ1 and H for type θ2. At the buyer-optimal outcome, type θ1

must not benefit from the data, because it is already willing to set price L. In contrast, for

the outcome to be efficient, type θ2 must be provided with an informative signal that reveals

that the buyer’s value is H with a positive probability.4 However, in that case type θ1 could

strictly benefit from the signal of θ2, which leads to a contradiction.

This example shows that the seller’s private information restricts the set of implementable

outcomes. In the next section, we analyze the structure of the seller’s incentive compatibility

constraints and characterize the implementable allocation rules and welfare outcomes.

3.2 Unobservable Seller Type

From now on we focus on the case in which the seller’s type is unobservable and characterize

the set of implementable outcomes. We show that the seller’s private information leads to

an extreme adverse selection: Any outcome with heterogeneous data allocation, in which

different types self-select into different signals, can be implemented by providing all types

with the same public signal.

An important class of menus is a class of direct mechanisms. A direct mechanism is a

menu of direct signals indexed by θ so that I(θ) sends two signal realizations, S = {sL, sH},

and the likelihood functions π(θ) are such that each type θ is willing to choose signal I(θ)

and to set prices p = L and p = H after observing signal realizations sL and sH of I(θ),

respectively. Interpreting signal realization sv as a recommendation to set price v ∈ {H,L},

we can view a direct mechanism as sending a value-dependent price recommendation based

4By Bayes plausibility, some signal realization s will cause type θ2 to believe that value H is even more
likely than θ2. To cause type θ2 to price efficiently, signal realization s must reveal that the value is H.
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on the seller’s reported type. The following result shows that the designer can without loss

of generality focus on direct mechanisms (the proof is standard and omitted; it follows the

revelation principle argument of Myerson (1982) and Bergemann et al. (2018)).

Claim 3. (Direct Mechanisms) An allocation rule is implementable if and only if it is im-

plementable by a direct mechanism.

Given a direct mechanism, we can parameterize the direct signal I(θ) for each type θ by

probabilities α(θ) and β(θ) with which the signal sends realization sH conditional on values

H and L, respectively. Without loss of generality, we assume β(θ) ≥ α(θ). We can then

express signal I(θ) in matrix form as

I(θ) sL sH

v = L 1− α(θ) α(θ)

v = H 1− β(θ) β(θ)

. (3)

For truth-telling to be optimal, each type should prefer her own signal I(θ) to all other

alternatives. The value of a signal depends on the type’s response to recommendations, which

in turn depends on the posterior beliefs the recommendations induce. Because β(θ) ≥ α(θ),

the posterior belief rank is the same for all types: The posterior probability of v = H is

higher after observing sH than after observing sL. As such, no type would be willing to swap

the pricing decisions—i.e., set p = H after sL and set p = L after sH . Hence, the relevant

incentive constraints are those under which the seller misreports the type and follows the

recommendation. Type θ’s profit after such a deviation to type θ′ is

Π(θ, θ′) ≜ (1− θ)(1− α(θ′))L+ θ((1− β(θ′))L+ β(θ′)H) (4)

= (1− α(θ′))L+ θ (α(θ′)L+ β(θ′)(H − L)) .

Incentive compatibility requires that Π(θ, θ) ≥ Π(θ, θ′) for all θ, θ′ ∈ Θ. This property must

hold in any direct mechanism and allows us to pin down the structural properties of any

implementable allocation rule.
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Proposition 1. (Allocation Properties) In any direct mechanism, for any θ1, θ2, θ3 ∈ Θ such

that θ1 < θ2 < θ3, the following hold:

1. (Monotonicity) α(θ1) ≤ α(θ2) and β(θ1) ≤ β(θ2); and

2. (Relative Impact) (β(θ3)− β(θ2))(α(θ2)− α(θ1)) ≤ (β(θ2)− β(θ1))(α(θ3)− α(θ2)).

The equilibrium properties in Proposition 1 are direct consequences of the seller’s local

incentive constraints and do not necessarily hold if the seller’s type is observable. Both

properties can be interpreted in terms of comparative statics of the seller’s behavior with

respect to her type. The first property means that the higher the type—i.e., the more likely

high-value buyers are in the seller’s market—the greater the probability of a higher price for

all buyers, irrespective of the seller’s additional information. In other words, regardless of

the data-provision mechanism, high-value buyers impose negative externalities on low-value

buyers because the presence of high-value buyers increases the likelihood that low-value

buyers will face higher prices.

The second property evaluates the relative price impact of an increase in the seller’s

type on low-value and high-value buyers, and is more easily interpreted when viewed as

ratio monotonicity—i.e., α(θ3)−α(θ2)
β(θ3)−β(θ2)

≥ α(θ2)−α(θ1)
β(θ2)−β(θ1)

. Essentially, it states that the seller type’s

increasing disproportionately affects low-value buyers at higher types compared with lower

types. This property follows from the optimal change in the seller’s data strategy. Higher

seller types value and primarily choose signals in the menu that help identify low-value

buyers, because such signals are more likely to change the types’ prior behavior. These

signals pool low-value buyers with high-value buyers at high-price recommendations, thus

exacerbating the price impact of the type’s increase on those buyers. In contrast, lower

seller types value and choose signals that help identify high-value buyers. These signals pool

low-value buyers with high-value buyers at low-price recommendations, thus mitigating the

price impact of the type’s increase on those buyers.

The allocation properties of Proposition 1 outline the constraints imposed by the seller’s

private information in direct mechanisms. By Claim 3, this result applies to any mechanism,

with α(θ) and β(θ) being interpreted as the equilibrium pricing probabilities of different

types. In particular, it implies that if the designer provides a single public signal to all
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types, they optimally respond in such a way that the induced pricing behavior conforms

with Proposition 1. It turns out that the opposite is also true: The allocation rule of any

mechanism can be replicated by providing a single public signal.5

Proposition 2. (Public Signals) Any implementable allocation rule can be implemented by

a menu with a single signal in it.

Proof. The proof is constructive. Consider any direct mechanism (α(θ), β(θ))θ∈Θ. We con-

struct a public signal Î that implements the same outcome. The signal realization space of

Î is S = [0, 1]. The likelihood function π is such that for all x ∈ Θ, Pr(s ≤ x | v = L) = α(x)

and Pr(s ≤ x | v = H) = β(x). Doing so is possible, because Proposition 1 ensures that

functions α and β are increasing and take values in [0,1].6

The defining feature of signal Î is that pooling signal realizations s below and above θ

results in signal I(θ) = (α(θ), β(θ)). That is, Î is Blackwell more informative than either of

the signals in the original mechanism. However, no type can benefit from the extra infor-

mativeness of Î. Indeed, the second property of Proposition 1 implies that signal Î satisfies

a monotone likelihood ratio property.7 As such, lower signal realizations induce higher pos-

terior beliefs across all types, and for each type, a best response to Î is characterized by a

threshold s̃ such that the type sets price p = H for all s < s̃ and price p = L for all s > s̃.

By construction, the choice between different thresholds is equivalent to the choice between

different signals in the original mechanism. Hence, by the incentive compatibility of the

original mechanism, type θ optimally chooses the threshold s̃ = θ. The resulting allocation

rule mimics the allocation rule in the original direct mechanism type by type.

5Proposition 2 is reminiscent of the equivalence between the experiments and persuasion mechanisms
of Kolotilin et al. (2017). However, there are important differences between the settings and the results.
First, in our setting, the seller’s private information is correlated with the value, which affects the seller’s
assessment and response to data. Second, we obtain a stronger equivalence result, which applies to allocation
rules and not just to the seller’s interim utility profile. In our setting, this stronger result is necessary for
welfare analysis, because the seller’s interim utility profile alone does not determine the buyer’s surplus.

6If α(θ) and β(θ) are not right continuous, π employs their right-continuous modifications.

7The condition (α(θ3)− α(θ2))(β(θ2)− β(θ1)) ≥ (α(θ2)− α(θ1))(β(θ3)− β(θ2)) is the general definition
for CDF α dominating CDF β in the monotone likelihood ratio order (see Theorem 1.C.5 of Shaked and
Shanthikumar (2007)).
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3.3 Implementable Outcome Characterization

Proposition 2 implies that the set of all implementable outcomes coincides with the set of all

outcomes that are implementable by public signals. We derive the implementable outcomes

under public signals in two steps: First, for each signal, we derive the payoffs of the buyer

and the seller conditional on each signal realization but unconditional on the seller’s type.

Second, we then aggregate these payoffs across all signal realizations.

Specifically, for any given signal I and realization s, define by µ ∈ [0, 1] the posterior

belief that s induces in a hypothetical uninformed seller with a prior belief µ0 ≜ E[θ], so

that µ ≜ Pr(v = H | s, µ0). We call this belief µ a basic posterior belief. By Bayes’ rule,

the same signal realization observed by the seller of type θ results in the posterior belief

t ≜ Pr(v = H | s, θ) equal to8

t(µ, θ) =
θµ(1− µ0)

θµ(1− µ0) + (1− θ)(1− µ)µ0

. (5)

The posterior belief increases both in µ and θ, equals zero if either of the arguments equals

zero, and equals one if either of the arguments equals one. Formula (5) applies to all types.

Therefore, the basic posterior belief µ fully determines the distribution of the seller’s posterior

beliefs. The higher the µ, the higher the corresponding distribution of the seller’s posterior

beliefs in the sense of first-order stochastic dominance—i.e., the beliefs of different seller

types move in concordance upon observing the same signal realization.

In turn, the seller’s posterior belief determines her pricing decision: The seller sets price

p = H if t > L/H and price p = L if t < L/H. Equivalently, when observing a signal that

induces a basic posterior belief µ, the informed seller with type θ sets a high price if θ > θ̃(µ)

and a low price if θ < θ̃(µ), where the threshold type θ̃ is uniquely defined by the condition

t(µ, θ̃(µ))) = L/H.

By Bayes’ consistency, if the seller’s posterior belief is t, then the probability that the

consumer’s value is H is indeed t. Consequently, the players’ expected payoffs after signal

8Alonso and Camara (2016) use this property to analyze Bayesian persuasion with heterogeneous priors.
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realization s that induces a basic posterior belief µ can be written as

U(µ) =

∫ θ̃(µ)

0

t(µ, θ)(H − L)dF (θ), (6)

Π(µ) =

∫ θ̃(µ)

0

LdF (θ) +

∫ 1

θ̃(µ)

t(µ, θ)HdF (θ). (7)

The welfare functions U(µ) and Π(µ) aggregate consumer surplus and seller profit respec-

tively across seller types for any basic posterior belief. We can use these functions to char-

acterize the set of implementable outcomes. Define by graph(U,Π) a graph of the vector

function that keeps track of players’ payoffs (U(µ),Π(µ)) at different basic beliefs µ. Any

public signal is characterized by a distribution of the basic beliefs, which by Bayes’ rule

must average to the prior belief µ0. Therefore, any public signal implements an outcome in

a convex hull of graph(U,Π) with the first component equal to µ0. Vice versa, Aumann and

Maschler (1995) and Kamenica and Gentzkow (2011) show that any belief distribution that

averages to the prior can be induced by some signal. Therefore, any point in the convex hull

of graph(U,Π) such that the first component is µ0 can be implemented by some signal (cf.

Doval and Smolin (2023)).

Proposition 3. (Implementable Outcomes) The set of all implementable outcomes is

E = {(x, y) : (µ0, x, y) ∈ co(graph(U,Π))}, (8)

where functions U and Π are given by (6) and (7).

For any given type distribution, Proposition 3 enables a geometric characterization of

the set of equilibrium outcomes. The result highlights the fact that the type distribution F

affects the set of implementable outcomes via its impact on the indirect payoffs (6) and (7).

To simplify exposition, for the rest of this section we assume that θ is continuously

distributed over [0, 1]. The indirect payoffs are then continuous functions of basic belief µ,

because θ̃(µ) is continuous and the types are continuously distributed over [0, 1]. Hence, by

Proposition 3, the set E is compact and convex, and we can characterize its extreme points

via supporting Bayesian persuasion problems. Indeed, any extreme point of E maximizes
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some linear combination of buyer surplus and seller profit. This maximization problem

corresponds to a Bayesian persuasion problem over a public split of basic posterior beliefs

to maximize

W λ(µ) ≜ λUU(µ) + λΠΠ(µ) (9)

for some (λU , λΠ) ∈ R2. We then obtain the following result:

Proposition 4. (Extreme Outcomes) If the seller type is continuously distributed over [0, 1],

then the set of extreme implementable outcomes is spanned by solutions to Bayesian persua-

sion problems parameterized by λ = (λU , λΠ) ∈ R2:

max
τ∈∆(∆(V ))

Eµ∼τ [W
λ(µ)] subject to

∫
∆(V )

µτ(dµ) = µ0. (10)

Propositions 3 and 4 imply bounds on the necessary complexity of the signals used. When

the type is continuously distributed, the indirect payoffs are continuous functions of basic

belief µ and graph(U,Π) features a single connected component. Thus, by Fenchel-Bunt’s

theorem, every point in the convex hull of graph(U,Π) can be generated by a randomization

over at most |V |−1+2 = 3 of its points. Such randomization corresponds to a signal with at

most 3 signal realizations. Moreover, any extreme point of E is implemented by a solution of

a Bayesian persuasion problem that can be set to contain at most |V | = 2 signal realizations.

Corollary 1. (Signal Complexity) If the seller type is continuously distributed over [0, 1],

then any implementable outcome is implementable by a public signal with at most 3 signal

realizations. Any extreme point of the set of implementable outcomes is implementable by a

public signal with at most 2 signal realizations.

Corollary 1 shows that even when there are many seller types, the ex ante consumer and

seller payoffs can be obtained if the seller obtains coarse data that features at most 3 labels.

Furthermore, extreme outcomes, such as a buyer-optimal outcome, can be obtained with

even coarser data that features at most 2 labels.
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3.4 Uniform Type Distribution

So far we have established the general properties of implementable allocations, characterized

the set of implementable outcomes, and placed upper bounds on the complexity of necessary

signals. However, we have been silent with respect to a few important questions, such as

when providing some data can benefit the buyer or how to achieve a buyer-optimal outcome.

To tackle these questions and to further illustrate our results, we now consider the special

case of the seller’s type being uniformly distributed over the unit interval. This case captures

a natural benchmark in which all seller types are possible and equally likely.

To state the next result, we introduce two classes of signals. Consider a signal whose

likelihood function in tabular form is

I sL sH

v = L 1− α α

v = H 1− β β

(11)

for some α, β ∈ [0, 1]. A signal is high-value flagging if α = 0, so that realization sH can arise

only if v = H. A signal is low-value flagging if β = 1, so that realization sL can arise only

if v = L. Note that the fully informative signal (α = 0 and β = 1) and the uninformative

signal (α = β = 0) belong to these classes.

Proposition 5. (Uniform Types) Let the seller type be uniformly distributed on [0, 1]. The

full-information outcome and the no-information outcome are extreme points of E. The left

and right boundaries of E connect these two outcomes and are spanned by low-value and

high-value flagging signals, respectively. Moreover, the following hold:

1. If L
H

≥ 1
2
, then the buyer-optimal outcome in E is generated by the uninformative signal.

2. If L
H

< 1
2
, then the buyer-optimal outcome in E is generated by the high-value flagging

signal with flagging rate β = H−2L
H−L

.

The proof of Proposition 5 builds on Proposition 4. Any extreme point of E solves

a Bayesian persuasion problem (10) and is generated by a public signal with two signal
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Figure (a) L = 1, H = 3
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Figure (b) L = 2, H = 3

Figure 2: Implementable outcomes when seller types are uniformly distributed on [0, 1].
Light blue denotes the case of observable type. Dark blue denotes the case of unobservable
type. Black boundaries are spanned by flagging signals. Points C indicate buyer-optimal
outcomes in E .

realizations. We can thus present the persuasion problem as a maximization problem with

respect to α and β and solve it in closed form.

Intuitively, data provision affects the buyer surplus in two ways. On the one hand, it

can benefit the buyer by persuading some seller types θ > L/H to set price p = L even

when the buyer has value H. On the other hand, data provision may harm the buyer if

θ < L/H, because such seller types would set price p = L in the absence of data. Because

all implementable outcomes are spanned by public signals, any data provision increases the

buyer’s surplus for some seller types and decreases it for other types. If L/H is high—i.e.,

a large fraction of seller types set price L in the absence of data—then the negative effect

dominates and any data provision is detrimental for the buyer (Part 1). If L/H is low, then

some data provision is Pareto improving (Part 2).

Figure 2 depicts the sets of implementable outcomes for two concrete cases of value

distribution. When the seller type is observable, any individually rational outcome—i.e.,

the whole surplus triangle—can be implemented by data provision. In contrast, when the

seller’s type is unobserved, the sets of implementable outcomes shrink. The uninformative

signal implements the “south” end of E as an extreme point, which is also the seller-worst
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outcome. The right boundary is spanned by high-value flagging and the left boundary by

low-value flagging. As we move along each boundary from south to north, the corresponding

signals have higher flagging rates and become more informative.9 The two boundaries meet

at the “north” end of E , which is the seller-optimal outcome and implemented by providing

full information. In fact, this is the only efficient outcome and gives zero surplus to the

buyer. The buyer-optimal outcome differs in the two cases. Figure 2(a) depicts part 2 of the

proposition: As L/H = 1/3 < 1/2, we have β = 1/2, so the buyer surplus is maximized by

flagging one-half of high-value buyers. Figure 2(b) depicts part 1: As L/H = 2/3 > 1/2, the

buyer surplus is maximized by providing no data. In this case, adverse selection is so severe

that any additional information would on average hurt the buyer.

4 Implications

We derive three implications of the above results. First, we show that the seller’s private

information creates a trade-off between buyer protection and efficiency. Second, we study the

impact of the seller’s use of third-party data, which we capture as the seller’s choice to acquire

private information. Finally, we demonstrate that the implementable set subsumes the

equilibrium outcomes of various games in which the buyer and the seller exchange information

with each other.

4.1 The Trade-off Between Buyer Protection and Efficiency

If the seller’s type is observable, the designer can distribute the efficient total surplus flexibly

between the buyer and the seller (Claim 2). However, implementing an efficient outcome

typically requires providing different signals to different types, which is infeasible when the

seller’s type is her private information (Proposition 2). The impossibility of heterogeneous

data provision introduces a tension between enhancing consumer surplus and total surplus—

and in many cases, achieving efficiency implies that the buyer receives no surplus at all.

Below, the seller’s “rent” means the seller’s expected profit under a given outcome minus

9This observation is general—see the proof in Appendix, which characterizes those flagging signals in
closed form.
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her profit in the absence of additional data.

Proposition 6. (Efficiency and Buyer Surplus) Assume that the type distribution is non-

degenerate and places probability 1 on (0, 1). Then the following hold:

1. If there is a positive measure of types strictly above L/H, then any efficient outcome gives

a strictly positive rent to the seller.

2. If there is a strictly positive measure of types in any neighborhood of 1, then the only

efficient outcome is the outcome in which all seller types obtain full information and

perfectly price discriminate the buyer.

The intuition is as follows. To incentivize type θ > L/H to price efficiently, a signal has

to reveal the buyer’s value with some probability β > 0 when v = H, so that in the remaining

event, the seller sets price L, believing that the value is likely to be L. The higher the θ, the

higher the probability β must be and the more informative the signal becomes. While it is

possible for the designer to choose β so that the seller with a known type achieves the same

profit as with no additional information, this is not the case for a privately informed seller.

With the privately informed seller, a signal provided to one type for efficient pricing will

also be used by lower types to earn positive rents. Moreover, a type that is arbitrarily close

to 1 must receive the (almost) fully informative signal to price efficiently. The impossibility

of screening implies that all seller types receive full information and the buyer receives no

surplus.

The result has an implication for policies regarding the use of consumer data by firms.

Consumer data may enable sellers to tailor pricing, which can benefit consumers and enhance

efficiency. At the same time, how much and what kind of data sellers should be allowed to

use for such beneficial pricing will depend on the specific market conditions and the initial

endowment of data and technology for each seller. However, in practice, a regulator would

not be able to tailor a regulation to each firm, partly because of the informational friction

highlighted in this paper. In such a case, the same regulation is applied to heterogeneous

sellers. Our result yields two relevant distortions in such a situation: First, some sellers

obtain too little information, which leads to inefficient pricing. Second, some sellers obtain

too much information, which not only allows them to create surplus but also to extract
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surplus from consumers. Our result clarifies this economic force and further shows that the

distortion can lead to an extreme outcome in which ensuring efficient pricing erodes the

entire buyer surplus.

4.2 Third-party Data

In some applications, the seller can obtain third-party data at her will from outside sources.

For example, a seller may learn about buyers from tracking tools or data brokers. We can

analyze the acquisition of such data by interpreting it as the seller’s choice to be privately

informed.

Specifically, we can study the welfare impact of third-party data by comparing the in-

formed seller—who has private type θ ∼ F with a strictly positive probability of being below

and being above L/H—with the uninformed seller, whose type is deterministic and known to

be θ0 ≜ Eθ̃∼F [θ̃]. In general, the seller’s private information shrinks the set of implementable

outcomes (e.g., Figure 2). For example, if the type distribution has full support over [0, 1],

then no efficient outcome, except for the outcome in which the seller extracts full surplus, is

implementable when the seller has private information (Proposition 6).

A natural question is how the seller’s acquisition of third-party data affects the seller

and the buyer. The answer depends on which implementable outcome is selected. As an

illustration, suppose that the selected outcome is the constrained seller-optimal outcome—

i.e., the implementable outcome that maximizes seller surplus subject to the constraint

whereby the buyer must weakly benefit from the data provision in terms of his ex ante

expected surplus. This outcome reflects a commonly observed feature of the digital economy,

in which firms specify the terms of data collection and usage, but harmful data collection

may be prevented by a user’s opting out or by a regulator’s intervention.
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Proposition 7. (Third-party Data) Let (U,Π) and (U′,Π′) be the constrained seller-optimal

outcomes given the uninformed seller and the informed seller. Then the following hold:

1. If θ0 > L
H
, then Π > Π′ and U < U′—i.e., the seller is worse off and the buyer is better

off when the seller has private information.

2. If θ0 < L
H
, then Π < Π′ and U > U′—i.e., the seller is better off and the buyer is worse

off when the seller has private information.

The intuition for Part 1 is as follows. The condition θ0 > L/H means that the uninformed

seller believes that the buyer’s value is likely to be high, so she optimally sets price H, which

leads to zero buyer surplus. In such a case, the constrained seller-optimal outcome is that

the seller obtains full information and extracts the efficient total surplus. In contrast, the

constrained seller-optimal outcome for the privately informed seller dictates that the seller

never obtains full information, because the buyer surplus at no additional data provision

is still positive. Consequently, the seller’s private information decreases the seller’s profit

and increases buyer surplus. Part 1 of the result suggests that the seller may choose not

to be privately informed about the buyer in order to eliminate adverse selection and obtain

superior first-party data. This choice, while seemingly privacy friendly, could in fact harm

the buyer.10

The argument for Part 2 is symmetric: Given that the uninformed seller sets price L, the

constrained seller-optimal outcome is to provide no data. Compared with this outcome, the

seller’s private information increases her profit at the expense of buyer surplus and efficiency.

4.3 Communication Protocols

So far, we have adopted a mechanism-design approach and studied the set of implementable

outcomes. We now show that this set contains the equilibrium outcomes in a large class of

communication protocols with an informed buyer and seller, such as cheap-talk communica-

tion, voluntary disclosure, and the collection of verifiable data.

10In other words, third-party data may crowd out first-party data. A similar interplay between several
sources of information is the main focus of Alonso and Zachariadis (2021) in an investment setting.
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Formally, assume that the buyer and seller are privately informed about value v, having

types t and θ, respectively, which are independent conditional on v. Before trade, the

players can communicate via a predefined two-stage protocol.11 A protocol P is a triple

(AS, {AB(t)}t∈T ,Ψ). The sets AS and {AB(t)}t∈T denote the seller’s action space and the

buyer’s action space, respectively. The buyer’s action space AB(t) can depend on his type

t, which enables us to capture, e.g., voluntary disclosure settings. The signal scheme is

denoted by Ψ = (S, π). Here, S is the set of signal realizations the seller can possibly

observe in the protocol and π : V × AS × AB → ∆(S) is the likelihood function of different

signal realizations, which can depend on the value and, importantly, on the players’ actions.

In the protocol, first the seller takes an action. Second, the buyer observes the seller’s action

and chooses his own action. A seller strategy is σS : Θ → ∆(AS) and a buyer strategy

is σB : T × AS → ∆(AB(t)). At the end of the communication, the seller observes signal

realization s according to Ψ.

After communicating within the protocol, the seller sets the price p. The buyer learns

the value v, observes the price, and decides whether to purchase the good. If trade occurs,

the buyer’s ex post payoff is v−p and the seller’s ex post payoff is p. If trade does not occur,

both players obtain a zero payoff. The solution concept is a perfect Bayesian equilibrium.

Any equilibrium in a protocol results in an allocation rule a : V → [0, 1] × R, which as

before specifies the probability of a trade and the expected payment from the buyer to the

seller for each value. We continue to use (welfare) outcome, buyer surplus, and seller profit

to mean relevant ex ante expected payoffs.

Proposition 8. (Menu Mechanisms) An allocation rule can arise in an equilibrium with

some communication protocol if and only if it can arise in an equilibrium of a menu mecha-

nism.

Proof. The proof follows the revelation principle argument of Myerson (1982, 1983), but is

adapted to fit the specific details of our environment. For the “if” direction, note that any

menu mechanism is itself an example of a communication protocol with AB(t) ≡ {a0}. For

the “only if” direction, consider any protocol and an equilibrium in it. In this equilibrium,

11This is a large class of protocols that are natural in applications. However, like a revelation principle,
our results can be stated with respect to a broader class of protocols at the expense of additional notation.

24



each action of the seller induces a signal I(a) = (S, π(a)) with π(a) : V → ∆(S), where the

likelihood function averages over the buyer’s equilibrium strategy and the signal scheme. We

can replace this protocol with a menu mechanism M = {I(a)}a∈AS
. This change does not

alter the seller’s equilibrium strategy and results in the same allocation rule as the original

protocol. Indeed, the only thing that matters at the trading stage is the seller’s estimate of

the buyer’s value. It does not matter whether this estimate is obtained through direct data

provision or equilibrium inference. Moreover, the buyer type is not useful for screening the

seller type because they are conditionally independent. As a result, menu mechanisms with

direct data provision implement all equilibrium allocation rules.

Below, we describe protocols that select different subsets of the implementable outcomes,

as depicted in Figure 3. For simplicity, assume that the seller’s type distribution F has a

full support on [0, 1].

Cheap Talk. As a benchmark, suppose that the buyer knows the value and can inform

the seller about it via an unverifiable, cheap-talk message—i.e., t ≡ v, AS = {a0}, AB(H) =

AB(L) = AB, and s ≡ aB. This protocol leads to a no-information outcome. Indeed, if

an equilibrium entailed some nontrivial communication—i.e., if v = L were strictly more

likely after message m ∈ AB than after message m′ ∈ AB—then sending m would lead

to lower prices for all seller types and strictly so, given the full-support assumption. An

H-buyer would then never send message m′, which would contradict the presumption that

messagem indicates a higher likelihood of an L-buyer. The result implies that for informative

communication to occur, information provision must be verifiable to some extent.

Voluntary Disclosure. We turn to the buyer’s voluntary disclosure of verifiable infor-

mation.12 In this protocol, given the full-support assumption, the buyer is never willing to

verify that he has value H, because the buyer would then face a high price and lose a positive

surplus. As a result, any equilibrium strategy of the buyer generates a low-value flagging

signal.

12If the seller is uninformed, this setting is a special case of Ali, Lewis, and Vasserman (forthcoming).
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Figure 3: Equilibrium outcomes selected by different communication protocols. Seller types
are uniformly distributed on [0, 1], and (L,H) = (1, 3).

Formally, we consider the following protocol: t ≡ v, AS = {a0}, AB(v) = {{v}, ∅} for

each v ∈ {H,L}, and s ≡ aB, so that the buyer can choose whether to disclose his value.

We argue that the set of equilibrium outcomes coincides with all implementable outcomes

spanned by the low-value flagging signals. Indeed, if an L-buyer sends message ∅ with a

positive probability, then the seller with a sufficiently low type θ sets price L after observing

message ∅. But then, an H-buyer strictly prefers sending ∅ to {H}. Thus, there could be

only two kinds of equilibrium: (i) an L-buyer mixes between messages {L} and ∅ and an

H-buyer sends ∅ with probability 1, and (ii) an L-buyer sends message {L} for sure, and an

H-buyer sends ∅ or {H} revealing his value H. In fact, any such buyer strategy can arise

in equilibrium, because an L-buyer never obtains a positive surplus and thus is indifferent

between any messages, and any possible deviation by an H-buyer can be deterred by the

seller’s skeptical belief that places probability 1 on H.

The low-value flagging characterization, combined with Proposition 5, implies that if the

seller’s type is uniformly distributed, the equilibrium outcomes of the voluntary disclosure

game span the left boundary of the surplus set (see Figure 2), which highlights the potential

inefficiency of this protocol. This inefficiency remains even if the seller can communicate

before the buyer’s disclosure—i.e., if AS is general. In that case, in equilibrium, each message

sent by the seller induces some low-value flagging signal, but any two low-value flagging
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signals are ranked in Blackwell informativeness. Hence, all seller types send a message that

induces the same low-value flagging signal.

Request-Consent Protocol. The seller’s action space AS is given by the set of all signals

with S = [0, 1], and the buyer’s action space is given by AB(H) = AB(L) = {accept, reject}.

The seller first chooses a signal, and then the buyer observes the requested signal (but not

its realization) and decides whether to accept it. The seller obtains the requested signal if

the buyer chooses accept and does not observe any additional information otherwise.

In this protocol, if the buyer is perfectly informed (i.e., t ≡ v), then any implementable

outcome can arise in some equilibrium: Take any implementable outcome and the public

signal I that implements it. The following equilibrium has all seller types obtain signal I.

On the equilibrium path, all seller types request signal I and the buyer accepts it regardless

of his value. The seller’s deviation to an off-path signal can be deterred if the buyer, following

the deviation, believes that the seller’s type is θ = 0. The buyer with this belief thinks that

the seller will set price L, so the buyer never strictly benefits from providing additional

information. In turn, if the seller believes that any buyer who deviates and rejects the signal

request has value H, then the buyer finds it optimal to accept signal I.

In contrast, if the buyer is not informed when deciding on the request acceptance (i.e.,

t ≡ t0), then the set of equilibrium outcomes is smaller and coincides with the set of imple-

mentable outcomes such that the buyer is at least as well off as under no data provision.

Indeed, if all seller types request the same signal I, the uninformed buyer will accept it if and

only if signal I weakly increases his ex ante payoff; the seller cannot use the off-path belief

punishment because the buyer is uninformed. The result then follows from Proposition 2.

Importantly, in some cases there may be no public signal that strictly increases buyer surplus

(see Figure 2 (b)). In those cases, the unique equilibrium outcome of the request-consent

protocol with an uninformed buyer would be no data collection.
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4.4 Many Values

There are multiple ways in which our setting can be extended. One is to allow many possible

buyer values, V = {v1, ..., vn} with v1 < · · · < vn, n > 2. The seller’s type θ ∈ ∆(V ) is

now multidimensional, and the complete characterization of implementable outcomes is not

attainable because it involves multidimensional screening. Nevertheless, we show that our

main qualitative findings extend to this setting and provide necessary clarifications.

First of all, private information held by the seller generally limits the set of implementable

outcomes, as in the case of binary values. However, in the case of many values, the limits

are less stark, since public signals do not necessarily span all implementable outcomes. Dif-

ferentiated data provision can be welfare enhancing in this setting, and it can even attain

the buyer’s first-best outcome, which attains efficiency without increasing the seller’s profits.

The following example illustrates such a possibility.

Example 1. (Benefits of Heterogeneous Data Provision) Let the possible values be V =

{L,M,H} = {1, 3, 4}. Let there be three seller types, θ1 = (1/2, 1/4, 1/4), θ2 = (1/2, 1/2, 0),

and θ3 = (1/2, 0, 1/2), where the three types are equally likely. In the absence of additional

data, the types set prices p1 = M , p2 = M , and p3 = H, and buyer surplus is U0 = 1/12.

We derive the buyer-optimal outcome and show that it is efficient and cannot be attained

by a public signal. Namely, consider a menu in which the types are provided with the

following signals:

I(θ1) s1 s2

L 1 0

M 1/2 1/2

H 1/2 1/2

,

I(θ2) s1 s2

L 1 0

M 1/2 1/2

H 1/2 1/2

,

I(θ3) s1 s2

L 1 0

M 2/3 1/3

H 1/3 2/3

, (12)

so that each signal has two possible realizations with the likelihood function π as presented

in the tabular form. It is straightforward to verify that no type wants to deviate. Moreover,

the outcome is efficient and each type earns the same profits as in the absence of additional

information: Given these signals, types θ1 and θ2 set prices p = L and p = M after signal re-

alizations s1 and s2, respectively, and type θ3 sets prices p = L and p = H, respectively. The
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buyer surplus is then maximal among all feasible allocations, given the individual rationality

of the seller.

However, we cannot implement this outcome by providing the same signal to all seller

types: Any efficient public signal must give strictly positive rents to type θ1. Indeed, for

signal I = (S, π) to attain efficiency, it must be that whenever π(s0|L) > 0 for some s0 ∈ S

all types charge p = L following that signal, which means that π(s0|L) ≥ 2π(s0|M) to

persuade type θ2 and π(s0|L) ≥ 3π(s0|H) to persuade type θ3; in turn, these incentive

constraints together guarantee that θ1 also charges a low price. Since type θ1 never charges

a price below p = L, her profit decreases as we increase the frequency of signal s0—i.e., as

we increase π(s0|L), π(s0|M), and π(s0|H) subject to the incentive constraints. Therefore,

of all efficient public signals, the profit of type θ1 is minimized at the signal

Î s1 s2

L 1 0

M 1/2 1/2

H 1/3 2/3

, (13)

which is efficient and maximizes the probability of type θ1 setting price p = L while ensuring

that type θ1 offers the remaining buyers the second-lowest price p = M . The resulting θ1’s

minimal profit equals 19/12, which is strictly greater than her outside option of 3/2 and,

as such, necessarily results in lower buyer surplus than under the multi-item mechanism

presented above. □

Intuitively, as in most mechanism-design problems, the multidimensionality of the seller’s

type gives rise to a richer structure of incentive constraints and implementable outcomes. In

particular, the buyer-optimal efficient signals are not necessarily Blackwell-comparable and

can appeal to the “right” buyer type. As a result, complete characterization of the set of

implementable outcomes becomes more complicated. Nevertheless, we show that the welfare

implications of Section 4.1 generalize: Seller heterogeneity introduces a trade-off between

efficiency and consumer welfare.13

13All conditions of Proposition 9 hold, for example, whenever F has full support over ∆(V ).
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Proposition 9. (Efficiency and Buyer Surplus) Assume that the type distribution F places

probability 1 on the interior of ∆(V ). Then the following hold:

1. If F admits a positive density over an open set of types who, in the absence of data, charge

prices p > v1, then any efficient outcome gives a strictly positive rent to the seller.

2. If there is a strictly positive measure of types in any neighborhood of the type that places

probability 1 on vn, then the only efficient outcome is that under full information.

Proposition 9 is a counterpart of Proposition 6 for the case of many values. The first

part of Proposition 9 is based on the fact that signals that yield no rents to the seller must

be carefully tailored to the seller’s type. Specifically, consider the types over which F has a

density. Efficiency requires that these types occasionally set price p = v1 to serve the lowest-

value buyer, and therefore must be given additional information. However, if some type

weakly prefers to set the lowest price after receiving some signal realization, nearby types

would strictly prefer to set the lowest price following that realization and would therefore

strictly prefer to change their prior action. This means that they can earn strictly positive

rents from that signal and must earn strictly positive rents when faced with any efficient

menu.

For the second part of Proposition 9, we can show that under the stated condition, there

exists a sequence of types with the following properites. First, types converge to the extreme

type that places probability 1 on the highest possible value. Second, along the sequence,

the corresponding signals, which induce efficient outcomes, converge to the fully informative

signal. In particular, we show that the types along this sequence need to be persuaded

to charge all possible prices and thus must be provided with progressively more detailed

information. The limit argument, coupled with incentive compatibility, then implies that all

types must be offered a fully informative signal.

5 Conclusion

We studied the provision of consumer data to a monopoly seller who has imperfect private

information about the value of its product. Without private information, the designer can
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flexibly provide the seller with data to distribute efficient total surplus between the buyer

and the seller. We show that the seller’s private information prevents the designer from

providing different signals to different seller types, which leads to the impossibility of effective

screening. Our results provide insights into data policies for policymakers and businesses.

For policymakers or platforms that aim to control the follow of consumer data to sellers,

the results highlight the trade-off between consumer protection and efficiency driven by

adverse selection regarding data use. From the seller’s perspective, our results clarify why

the collection of third-party data without consumer consent might harm profits. To clarify

the economic intuition, we have focused on a simple setting in which the buyer has binary

values and the seller uses data for price discrimination. However, the issues that arise

when a firm’s private information hinders the effective allocation of consumer data—and the

resulting challenges faced by regulators and firms with regard to data policies—would be

relevant in broader contexts.
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Appendix: Proofs Omitted from the Main Text

Proof of Claim 2. To show the “only if” direction, take any feasible welfare outcome

(U,Π) =

(∫ 1

0

U(θ)dF (θ),

∫ 1

0

Π(θ)dF (θ)

)
.

Claim 1 implies that for each θ, we have U(θ) ≥ 0, Π(θ) ≥ Π(θ), and U(θ) + Π(θ) ≤ W(θ).

Integrating both sides of each inequality with F , we obtain U ≥ 0, Π ≥ Π, and U+Π ≤ W.

To show the “if” direction, take any (U,Π) ∈ R2 such that U ≥ 0, Π ≥ Π, and U+Π ≤ W.

The point (U,Π) belongs to the triangle whose vertices are (0,W), (0,Π), and (W − Π,Π).
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Let α, β ∈ [0, 1] with α + β ≤ 1 satisfy

(U,Π) = α(0,W) + β(0,Π) + (1− α− β)(W − Π,Π)

=

(∫ 1

0

(1− α− β)[W(θ)− Π(θ)]dF (θ),

∫ 1

0

αW(θ) + βΠ(θ) + (1− α− β)Π(θ)dF (θ)

)
.

For each θ, the point

(U(θ),Π(θ)) ≜
(
(1− α− β)[W(θ)− Π(θ)], αW(θ) + βΠ(θ) + (1− α− β)Π(θ)

)
is in the surplus triangle and thus feasible. Aggregating the welfare outcome (U(θ),Π(θ))

across possible θ, we conclude that (U,Π) =
(∫ 1

0
U(θ)dF (θ),Π(θ)dF (θ)

)
is also feasible.

Proof of Proposition 1. Part 1. Fix any θ2 > θ1. The system of mutual incentive constraints

is

(1− α(θ1))L+ θ1(α(θ1)L+ β(θ1)(H − L)) ≥ (1− α(θ2))L+ θ1(α(θ2)L+ β(θ2)(H − L)),

(14)

(1− α(θ2))L+ θ2(α(θ2)L+ β(θ2)(H − L)) ≥ (1− α(θ1))L+ θ2(α(θ1)L+ β(θ1)(H − L)).

(15)

Summing over the inequalities (14) and (15) and using the fact that θ2 > θ1 we obtain

α(θ2)L+ β(θ2)(H − L) ≥ α(θ1)L+ β(θ1)(H − L). (16)

In turn, (14) and (16) together imply α(θ2) ≥ α(θ1) because

(α(θ2)− α(θ1))L ≥ θ1(α(θ2)L+ β(θ2)(H − L)− α(θ1)L− β(θ1)(H − L)) ≥ 0. (17)

Finally, (15) and (17) imply β(θ2) ≥ β(θ1) because

(β(θ2)− β(θ1))θ2(H − L) ≥ (α(θ2)− α(θ1))(1− θ2)L ≥ 0. (18)
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Part 2. Fix any θ1 < θ2 < θ3. The system of incentive constraints of type θ2 toward

types θ1 and θ3 can be written as

(β(θ2)− β(θ1))θ2(H − L) ≥ (α(θ2)− α(θ1))(1− θ2)L, (19)

(β(θ3)− β(θ2))θ2(H − L) ≤ (α(θ3)− α(θ2))(1− θ2)L. (20)

By property in Part 1, all sides of (19) and (20) are positive. Multiplying the respective

smaller and larger parts and dividing the resulting inequality by θ2(1 − θ2)(H − L)L, we

obtain the desired inequality of Part 2.

Proof of Proposition 5. Step 1. We use the “boundary” to mean the boundary of E . By

Proposition 4 and Corollary 1, any extreme point on the boundary can arise with a signal

that has two signal realizations. We parameterize such signals by (α, β), β ≥ α as

I(θ) sL sH

v = L 1− α α

v = H 1− β β

. (21)

Given any such signal, we write the objective λUU+ λΠΠ in terms of the highest and lowest

types that respond to the signal realizations. In particular, for any given (α, β) with β ≥ α,

we can find two cutoffs x, y with x ≤ y such that types below x set price L after both

realizations; types above y set price H after both realizations; and types between x and y

will set prices H and L after sH and sL, respectively. Cutoffs x and y solve

L = (1− α)L+ x (αL+ β(H − L)) ,

yH = (1− α)L+ y (αL+ β(H − L)) ,

which implies

x =
αL

αL+ β(H − L)
, y =

(1− α)L

H − αL− β(H − L)
.
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Alternatively, we can write (α, β) as functions of (x, y):

α =
x(Hy − L)

L(y − x)
, β =

(Hy − L)(1− x)

(y − x)(H − L)
.

Cutoffs (x, y) can arise under some signal if and only if 0 ≤ x ≤ L
H

≤ y ≤ 1. The interim

profit of type θ ∈ [x, y] is

Π(x, y | θ) = (1− θ)(1− α)L+ θ((1− β)L+ βH)) = L+
(Hy − L)(θ − x)

y − x
.

The interim profits of types θ ≤ x and θ ≥ y are L and θH, respectively. The ex ante seller

profit is

Π(x, y) =

∫ x

0

Ldθ +

∫ y

x

L+
Hy − L

y − x
(θ − x)dθ +

∫ 1

y

θHdθ

= Ly +
1

2
(Hy − L)(y + x)− (Hy − L)x+

H

2
(1− y2). (22)

The buyer surplus is

U(x, y) ≜(H − L)

∫ x

0

θdθ + (1− β)(H − L)

∫ y

x

θdθ

=(H − L)

∫ x

0

θdθ +

(
H − L− (Hy − L)(1− x)

y − x

)∫ y

x

θdθ

=(H − L)

∫ y

0

θdθ − (Hy − L)(1− x)

y − x

∫ y

x

θdθ

=
1

2
(H − L)y2 − 1

2
(Hy − L)(1− x)(y + x). (23)

Step 2. We characterize signals that span the “right” boundary that corresponds to λU ≥ 0.

Take any (λU , λΠ) ∈ R2 with λU ≥ 0. Because Π(x, y) is linear in x and U(x, y) is convex

in x, W (x, y) is convex in x and maximized at x = 0 or x = L/H. Note that (x, y) =

(L/H, y) implies (α, β) = (1, 1) and (x, y) = (0, L/H) leads to (0, 0), but both are the same

uninformative signal. Thus we can without loss of generality assume x = 0 and focus on the
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problem max L
H
≤y≤1W (0, y), where

W (0, y) = λU

[
1

2
(H − L)y2 − 1

2
(Hy − L)y

]
+ λΠ

[
Ly +

1

2
(Hy − L)y +

H

2
(1− y2)

]
=

λU

2
Ly(1− y) +

λΠ

2
(Ly +H).

If λU = 0, then the function is maximized at y = 1 for λΠ > 0 and at y = 0 for λΠ < 0.

Thus, the point that maximizes the seller profit is attained by the fully informative signal,

and the point that minimizes the seller profit is attained by the uninformative signal.

If λU > 0, the function W (0, y) is strictly concave in y so we can use the first-order

condition to determine an interior solution:

y =
λU + λΠ

2λU

=
1

2

(
1 +

λΠ

λU

)
.

If L
H

≤ 1
2

(
1 + λΠ

λU

)
≤ 1, then the optimal y is 1

2

(
1 + λΠ

λU

)
. Otherwise, there is a corner

solution y = L
H

or y = 1 for low or large values of λΠ, respectively.

Plugging x = 0 into (α, β) above, we obtain α = 0—i.e., the signal sends realization sH

only if the value is H, so it is a high-value flagging signal. Thus each point on the right

boundary arises under some high-value flagging signal. As we move the right boundary

from the seller-worst point to the seller-optimal point, cutoff y increases (or equivalently, β

increases) and the corresponding signal changes from the uninformative signal to the fully

informative signal. If L
H

≥ 1
2
, the buyer optimal point is λΠ = 0, so we have y∗ = L/H—i.e.,

the uninformative signal maximizes the buyer surplus. If L
H

< 1
2
, the buyer optimal point is

y∗ = 1/2—i.e., a partially informative high-value flagging signal maximizes buyer surplus.

In this case, plugging the optimal (x, y) into (α, β), we obtain α = 1 and β = H−2L
H−L

.

Step 3. We characterize the “left” boundary that corresponds to λU < 0. The seller profit

Π(x, y) is linear in y and the buyer surplus is strictly concave in y. Because λU < 0, the

function W (x, y) is strictly convex in y, which means that the optimal y will be L
H

or 1.

Because y = L
H

is equivalent to (x, y) = ( L
H
, 1), we can without loss of generality assume
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that y = 1. We have

W (x, 1) = λU

[
1

2
(H − L)− 1

2
(H − L)(1− x)(1 + x)

]
+ λΠ

[
L+

1

2
(H − L)(1 + x)− (H − L)x

]
=

λU

2
(H − L)x2 +

λΠ

2
[2L+ (H − L)(1− x)] .

The first-order condition with respect to x yields

λUx− λΠ

2
= 0 ⇐⇒ x =

λΠ

2λU

. (24)

Thus any point on the left boundary can arise under a low-value flagging signal. As we

move the left boundary from the seller-worst point to the seller-optimal point by raising

λΠ, the corresponding signal changes from no disclosure (x, y) = (L/H, 1) to full disclosure

(x, y) = (0, 1).

Proof of Proposition 6. To prove part 1, take any efficient outcome. By Proposition 2, all

types can be assumed to obtain the same signal. If the signal is fully revealing, then the

seller obtains a strictly positive rent because almost all seller types belong to the interior

(0, 1) of the type space. If the signal is not fully revealing, then there must exist signal

realization s such that the posterior is non-degenerate and induces all types to set price L.

By the martingale property of belief, there must exist another signal realization s′ under

which types in (L/H, 1) optimally set price H. Because the outcome is efficient, s′ perfectly

reveals that the value is H. Then, there are two possibilities. First, if all types in (L/H, 1)

are concentrated on a single point, then distribution F , which is non-degenerate, must place

a positive probability on types in [0, L/H]. Those types would earn a strictly higher profit

than without additional information, because they would strictly benefit from observing s′.

Second, if types strictly above L/H are not concentrated on a single point, then below the

highest type in the support of F there is a positive measure of types who strictly prefer to

set price L after observing signal realization s. These types earn a strictly higher profit than

without additional information.

To prove part 2, consider an implementable outcome in which a positive mass of types

do not obtain the fully informative signal. Profit Π(θ) of any such type satisfies Π(θ) <
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θH + (1 − θ)L. Proposition 2 implies that there exists a public signal I that implements

the same outcome. Signal I is not fully informative, because otherwise we would have

Π(θ) = θH + (1− θ)L for all types. Thus there is a set of signal realizations that can arise

under both v = H and v = L with positive probabilities. After observing such realizations,

types that are sufficiently close to 1 set price H, which leads to no trade when v = L.

Because the set of any such types has a strictly positive measure, the efficiency loss is

strictly positive.

Proof of Proposition 7. Part 1. If the seller’s type is known to be θ0 > L/H, then in the

absence of additional data the seller would set price H, leading to zero buyer surplus. As a

result, at the constrained seller-optimal outcome the seller extracts full surplus. In contrast,

if the seller is privately informed, then the buyer surplus under no data provision is positive,

because the seller sets price L whenever her type is below L/H. As a result, the buyer

surplus under the constrained seller-optimal outcome is strictly positive, and 0 = U < U′,

W(θ0) = Π > Π′.

Part 2. If the seller’s type is known to be θ0 < L/H, then in the absence of additional

data the seller sets price L. Because this is the uniquely best possible outcome for the buyer,

the constrained seller-optimal outcome is the same as under no data provision. In contrast,

when the seller is privately informed, then she has a strictly positive measure of types above

L/H at which she sets price H and earns strictly higher profits than under no data provision.

Thus Π(θ0) = Π < Π′, W(θ0)− Π(θ0) = U > U′.

Proof of Proposition 9. Part 1. Assume the stated condition holds. Consider a direct menu

that leads to an efficient outcome. Let Θ̃ ⊆ ∆(V ) be the open set over which F has a

positive density. By the condition described in Part 1, we can take Θ̃ so that any type in

Θ̃ chooses a price strictly above the lowest possible value v1 in the absence of additional

information. In this set, a positive measure of types assign positive probability to v = v1, so

there exists a type θ̃ ∈ Θ̃ such that the direct signal I(θ̃) recommends p = v1 with a strictly

positive probability. Let µ(θ̃) be the posterior belief of θ̃ after that recommendation. If types

in an open neighborhood of θ̃ observe recommendation p = v1, they would have posterior

beliefs over an open neighborhood of µ(θ̃), in accordance with equation (5). Because pricing
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indifference curves in ∆(V ) have measure zero, a strictly positive measure of types in Θ̃

would strictly prefer to follow that recommendation, and would thus strictly benefit from

I(θ̃). It follows by incentive compatibility that the seller’s rents are strictly positive.

Part 2. Assume the stated condition holds. Consider any direct menu that leads to an

efficient outcome. There exists ε > 0 such that for all 0 < ε < ε, type θε, defined as

θε ≃ (εn−1, εn−2, . . . , ε2, ε, 1−
n−1∑
k=1

εk), (25)

belongs to Θ and prices efficiently after observing direct signal I(θε), where the approxima-

tion means being in an εn-neighborhood.

Start with value v = v1. Since θε attaches strictly positive probability to v = v1 and prices

efficiently, I(θε) recommends p = v1 at value v1 with probability 1. For the recommendation

to be incentive compatible, this recommendation must be sent with probability O(εk−1)

at all values vk, 1 < k ≤ n.14 Proceed to value v = v2. Because θε attaches strictly

positive probability to v = v2 and prices efficiently, and I(θε) recommends price p = v1 with

probability O(ε) at v = v2, it must be that I(θε) recommends price p = v2 with probability

1−O(ε) = O(1) at v = v2. For the recommendation to be incentive compatible, it must be

sent with probability O(εk−2) at all values vk, 2 < k ≤ n. Proceeding analogously for all

higher values, we obtain that signal I(θε) must take the following form:

θε I(θε) p = v1 p = v2 . . . p = vn

εn−1 v = v1 1 0 . . . 0

εn−2 v = v2 O(ε) O(1) . . . 0

. . . . . . . . . . . .
. . . 0

1−
∑n−1

k=1 ε
k v = vn O(εn−1) O(εn−2) . . . O(1)

. (26)

When ε → 0, I(θε) converges to a fully informative signal. Since ε can be set arbitrarily

small, incentive compatibility implies that each type θ ∈ Θ earns a maximal possible rent

and thus is offered a fully informative signal.

14That is, the recommendation probability is bounded by L · εk−1 for some fixed L.
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