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1 Introduction

Recent innovation literature has documented the benefits of cross-disciplinary research when

ideas are recombined across fields1 or when inventors with diverse academic backgrounds

collaborate2. As an illustration, fiber optics technology benefited greatly from the recombi-

nation of ideas across industries. In the 1960s, the British Post office approached Corning, a

leader in glass manufacturing, to explore whether optical glass fiber could be used for light-

transmission in telecommunications. Despite having no prior experience in the telecommu-

nications sector, Corning soon invented the first low-loss optical fiber, which paved the way

for long-distance optical communication.3

Governments and science funding bodies worldwide acknowledge the importance of an

integrative approach in tackling challenges through innovation, explicitly supporting inter-

disciplinary collaboration. The US defense agency DARPA is a prominent case - funding the

first materials-focused interdisciplinary laboratories in the late 1960s and having recently

launched a social media platform aimed at facilitating the cross-pollination of ideas between

industry and academia.4 In spite of this evidence, policy evaluation typically focuses only on

the direct effects of sector-specific policies, thereby missing possibly sizeable indirect spillover

effects across the rest of the economy.

In this paper we ask the following question: when a particular industry changes its

innovation strategy in response to an industry-specific competition shock (direct effect),

how does this effect propagate across the network of innovating firms through technological

linkages (indirect effect)? As a quasi-natural experiment, we use the 2001 removal of import

quotas on textiles following China’s accession to the WTO as a shock to the European textile

and clothing sector.

We study how patenting decisions by non-textile firms adjust to the changes experienced

by the textile industry after the competition shock. We use balance sheet information for a

panel of 45,012 European non-textile patenting firms in 13 countries after combining Bureau

Van Dijk’s ORBIS and Amadeus data sets. Detailed patent information (filings, citations,

technology classes) comes from matching the European Patent Office’s PATSTAT database

to our firm sample, which allows us to calculate firm-pair (dyadic) technological distances.

1See e.g., Acemoglu, Akcigit, and Kerr (2016), Uzzi et al. (2013), Jones (2009), Weitzman (1998).
2See e.g., Adams et al. (2005), Jones, Wuchty, and Uzzi (2008), Gruber, Harhoff, and Hoisl (2013).
3See Cattani (2006) for more details on Corning and the development of optical glass fiber.
4See e.g., https://www.darpa.mil/news-events/2015-08-14 or https://www.darpa.mil/

news-events/2019-03-19. The German Fraunhofer-Gesellschaft is another example. Instead of
being organized by scientific disciplines, its research portfolio is centered on issue-oriented ques-
tions that follow an interdisciplinary approach, such as health, security, mobility or communication.
https://www.fraunhofer.de/en/about-fraunhofer/profile-structure.html. Web links last accessed
on March 6, 2023.
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Our results can be summarized as follows. In terms of the direct effect, the average textile

firm experiences a 4% increase in patenting in response to the competition shock, such that

a greater quota reduction leads to larger increases in patenting activity (aligned with the

finding in Bloom, Draca, and Van Reenen, 2016). However, a more complex pattern emerges

once we split textile firms by their technological proximity to the rest of the economy. For

textile firms with distant technological ties to non-textile firms we replicate the baseline

result. By contrast, for textile firms with close technological ties to non-textile firms we

rather find a negative and significant coefficient, meaning that this subset of textile firms

reduces the number of patents generated.

Highlighting this heterogeneity in the direct effect is critical for this paper, as our main

goal is to evaluate how patenting adjustments in textile firms trickle down to firms in the

rest of the economy through dyadic technological linkages. Textile firms suffering the largest

drop in patenting activity are also those with stronger technological ties to firms in the rest

of the economy.

In terms of indirect effects, the average non-textile firm reduces patenting by 4% of a

standard deviation after the textile industry reduces its patenting by one standard deviation

in an OLS estimation. When we instrument textile patenting changes by the Chinese quota

shock, the economic magnitude remains stable.

These non-textile firms reduce their innovation activity in textile-intensive technology

classes and diversify patenting across a wider set of technology classes. Furthermore, they

adjust their knowledge sourcing as they cite fewer textile patents and start searching for new

sources of knowledge in more distant geographical and technological spaces. This result is

consistent with the finding by Hombert and Matray (2018) where U.S. firms with large R&D

stocks escape Chinese import competition by increasing their product diversification.

Furthermore, these non-textile firms react twice as strongly to reductions in patenting by

textile firms located in the same country and results are robust to accounting for industrial

input-output relationships; similar findings are obtained for quality-adjusted patent counts.

When aggregating the data at the SIC 4-digit industry level, the economic magnitude of

the effect doubles, which is aligned with the fact that larger non-textile firms experience the

bulk of the impact and are given more weight in these aggregated regressions.

In a final exercise, we aggregate the data at the country level. At the median European

country, the negative indirect effect on non-textile firms is 3 times larger than the positive

effect on textile firms.

Related Literature

Our paper contributes to several literature strands. First, in the literature on direct effects
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of competition shocks on innovation, Bloom, Draca, and Van Reenen (2016) explore China’s

opening up to globalization and find a positive effect on innovation by European textile firms.

By contrast, Dorn et al. (2020) find a negative effect on U.S. firms across a large variety of

sectors. Aghion et al. (2005)’s finding that competition and innovation have an inverted-U

relationship can help reconciling these differing results, since the U.S. is understood to be

a corporate environment with a higher degree of sectoral competition compared to Europe.

We contribute to this literature by highlighting the magnitude of the indirect effect across

the rest of the economy once technological linkages are carefully accounted for.

For papers looking at total factor productivity as the outcome variable instead of patent-

ing, Pavcnik (2002) uses Chilean data to estimate the direct effect of import competition

on productivity and Amiti and Konings (2007) undertake a related exercise in Indonesia.

Papers that incorporate the innovation dimension but rather look at the effects of exports

include Bustos (2011) using Argentinean data and Aw, Roberts, and Xu (2011) using Tai-

wanese data. Cai, Li, and Santacreu (2022) develop a theoretical model of trade, innovation

and knowledge diffusion to study the role of country and sector heterogeneity on aggregate

R&D and welfare. For an extensive literature review on the general relationship between

trade liberalization and innovation, we refer to Shu and Steinwender (2019).

Second, our paper contributes to the technology spillovers literature. In particular, our

study relates to Bloom, Schankerman, and Van Reenen (2013) who develop an empirical

methodology to identify the separate effects of technology and product market spillovers.

Using a panel of U.S. firms, they find that positive technology spillovers dominate negative

business stealing effects. In subsequent work, Lychagin et al. (2016) add a geographical

component to this discussion. Matray (2021) finds that exogenous shocks to innovation by

listed firms affect innovation by private firms in the same geographical area due to inventor

mobility and learning across firms, whereby these spillovers diminish rapidly with distance.

Zacchia (2019) constructs a network of companies and causally shows that individual rela-

tionships between inventors of different companies drive knowledge spillovers between firms.

We relate to Bloom, Schankerman, and Van Reenen (2013)’s notion of technological linkages

and advance this literature by comparing the magnitudes of direct and indirect effects of a

sector-specific policy shock on innovation.

Schnitzer and Watzinger (2022) show that venture capital investment in start-ups in-

creases innovation of established companies in technologically related fields due to knowledge

spillovers. Moretti, Steinwender, and Van Reenen (2020) uncover both national and inter-

national within-industry spillovers from government-funded R&D to private sector R&D. In

a regression discontinuity design, Dechezleprêtre et al. (2016) find that patenting spillovers

from R&D tax subsidies persist up to seven years for technologically close peer firms. Our
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empirical strategy allows us not only to gauge the average firm-level response, but also to

quantify the relative importance of the indirect effects at the industry and country level.

In a different context, Myers and Lanahan (2022) also find that the indirect effect is

quantitatively more important than the direct effect. Using grants awarded to small firms

from the U.S. Department of Energy, their estimates suggest that for every patent produced

by grant recipients, three additional patents are produced by others who benefit from geo-

graphical or technological spillovers. In line with the findings in our paper, they conclude

that a large fraction of these patent spillovers take place in technological areas substantially

different from those targeted by the grants.

Third, we speak to the literature on the recombination of ideas. Seminal theoretical

work by Levinthal and Cohen (1989) and Bernstein and Nadiri (1989) put at the forefront

how firms enjoy knowledge spillovers coming from innovation undertaken in other firms.

Weitzman (1998) provides micro-foundations for the knowledge production function, which

is modelled as a function of reconfigured old ideas. On the empirical front, Jones, Wuchty,

and Uzzi (2008) show that across all scientific disciplines, highest-impact papers are pro-

duced by teams that increasingly span university boundaries. Based on 18 million scientific

publication, Uzzi et al. (2013) show that the highest-impact papers are those that insert

novel features into otherwise conventional combinations of prior work. Acemoglu, Akcigit,

and Kerr (2016) analyze citation properties of 1.8 million U.S. patents to provide evidence

on knowledge sharing across technological fields. Griffith, Lee, and Straathof (2017) quan-

tify the relative cost for firms to access new ideas across firm boundaries, technology areas

and national borders. In line with this literature, we follow the notion that firms build on

previous knowledge generated by other firms or industries.We differ from previous work by

focusing on the technological linkages between firms, rather than their economic relatedness

in the product market.

Fourth, we relate to the literature on the evaluation of industrial policies and the input-

output linkages in the economy. In a theoretical framework, Liu (2019) analyzes industrial

policy when sectors are vertically linked through an input-output network. Market imper-

fections in one sector compound through backward linkages to upstream sectors. He shows

that the centrality of sectors in the production network matters when policy makers decide

which industry to target. We follow a similar idea; instead of production networks, we look

at innovation networks and assign more weight to firms that are technologically more cen-

tral. For papers looking at the amplification of micro shocks see Acemoglu et al. (2012),

Acemoglu and Tahbaz-Salehi (2020), Barrot and Sauvagnat (2016) or Carvalho et al. (2021).

Compared to them, we focus on the innovation network as opposed to the production net-

work. Carvalho and Draca (2017) study the propagation of U.S. military spending shocks
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through the production network and their effect on innovation outcomes. Related to our

approach, they also highlight the importance of the indirect effect. They investigate how

shifts in spending not only affect innovation decisions by main contractors, but also the ones

taken by the supplier network of these contractors.

The remainder of this paper is structured as follows: Section 2 describes the empirical

strategy. Section 3 provides details on the dataset, the construction of variables and shows

descriptive statistics. Section 4 presents the econometric analysis and discusses results.

Section 5 concludes.

2 Empirical Strategy

2.1 Baseline OLS Estimation

To measure the indirect effect of how a competition shock to the textile (thereafter, TXTL)

sector affects the rest of the economy, our empirical specification estimates within-firm

changes in patenting and knowledge sourcing of non-textile (thereafter, NTXTL) firms i

as a function of patenting changes of TXTL firms j, weighted by the pairwise technologi-

cal distance to each of these TXTL firms (techij). Consider a basic differenced firm-level

equation for patents of NTXTL firm i in sector s, country c, and year t as:

∆lnPatNTXTL
isct = β

∑
j

techij∆lnPatTXTL
jt + γs + γc +∆uisct (1)

where ∆ denotes the long five-year difference operator. The dependent variable is the

within-firm five-year log change in patents by a given NTXTL firm.5 The regressor of interest

is the change in patenting summed across all TXTL firms j, weighted by the corresponding

technological proximity at the firm-pair level (techij). We discuss the calculation of the

pairwise technological proximity between two firms in detail in Section 2.5. The specification

includes country and industry fixed effects to absorb country-specific and industry-wide

shocks. Similar to Bloom et al. (2016), we use overlapping five-year differences (e.g. 2001-

1996, or 2002-1997), in order to maximize the use of our data, and cluster the standard

errors at the 4-digit industry (SIC4) level.

5As we would like to include firms in the regressions with zero patents, we take the log of 1+PatNTXTL
isct .

In alternative specifications, we additionally consider dependent variables that reflect changes in knowledge
sourcing and in the direction of patenting.
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2.2 Instrumental Variable Estimation

A possible concern is an omitted variable bias by which TXTL and NTXTL firms are likely

to face an unobserved common technology shock if their patents belong to related technology

fields. Another concern may be reverse causality whereby changes in NTXTL firms cause a

change in the innovation decisions of TXTL firms.

We therefore use an instrumental variable approach to address these concerns. We use the

removal of import quotas on textiles and clothing from China as an instrument for changes

in the innovation output of European TXTL firms, in the spirit of Bloom, Draca, and Van

Reenen (2016). Following China’s accession to the WTO in 2001, these import quotas were

abolished and caused a competition shock for the TXTL firms in Europe. The underlying

quotas vary at the 4-digit SIC industry level and reflect their level in the year 2000 prior

to their abolishment. Our instrument for the endogenous regressor in equation (1) is the

technology-weighted level of quotas across TXTL firms, where again the assigned weights

differ for each NTXTL firm. Equation (2) presents the first stage of the IV estimation

approach:

∑
j

techij ∗∆lnPatTXTL
jt = λ

∑
j

techij ∗QUOTATXTL,2000
jt + γs + γc +∆uisct (2)

Identification comes from the instrumented change in patenting of TXTL firms [QUOTATXT,2000
jt ]

and from variation across NTXTL firms in their technological exposure to each of the TXTL

firms [techij]. The exclusion restriction is that shocks to the patenting activity of NTXTL

firms are uncorrelated with the level of quotas faced by TXTL firms that were determined

in the 1950s-70s. This seems highly plausible, especially when considering that differences

in quotas across 4-digit TXTL industries reflect historic bargaining power of the respective

industry in richer western economies when the quotas were introduced.6

A priori, there are two possible outcomes for the sign of the coefficient on the instrumental

variable in equation (2). If λ > 0, the larger the weighted quota reduction, the stronger the

weighted increase in domestic TXTL patenting. Instead, λ < 0 would imply that the larger

the weighted quota reduction, the stronger the weighted drop in domestic TXTL patenting.

2.3 Reduced Form

One can estimate the reduced form in the following way:

6For a more detailed discussion of the quotas instrument, we refer to Bloom, Draca, and Van Reenen
(2016).
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∆lnPatNTXTL
isct = δ

∑
j

techij ∗QUOTATXTL,2000
jt + γs + γc +∆uisct (3)

This equation estimates the (technology-weighted) effect of quota reductions experienced

by TXTL firms on five-year log changes in patenting by NTXTL firms. The model is esti-

mated at the NTXTL firm level over time. We again control for industry and country fixed

effects.

2.4 Direct Effect on TXTL Firms

While our paper focuses on how a competition shock in the TXTL sector trickles down to

the rest of the economy, similarly to Bloom, Draca, and Van Reenen (2016), we also estimate

the direct effect of the quota removal on the TXTL sector itself:

∆lnPatTXT
jct = η ∗QUOTATXT,2000

jt + γs + γc +∆ujct (4)

Compared to Equation (3), there are two key differences. First, while throughout the

paper we use a panel of NTXTL firms, for this particular exercise we use a panel of TXTL

firms (subindex j). Consequently, the dependent variable is now the five-year difference in

log patenting by each TXTL firm. Second, each TXTL firm is assigned its own quota in the

year 2000 as a regressor. A positive value of η would replicate the finding in Bloom, Draca,

and Van Reenen (2016): the stronger the quota reduction faced by a TXTL firm, the greater

the increase in patenting activity. In addition to estimating this equation for the full sample

of TXTL firms, we will then decompose it as a function of how central these TXTL firms

are in the technology network.

2.5 Technological Proximity between Firms

A central element of our empirical specification is the technological proximity (techij) be-

tween two firms. We calculate this pairwise proximity between any NTXTL firm and any

TXTL firm based on the overlap in patent portfolios. For each firm, we determine its patent

portfolio as of 2001 and construct a vector of patent shares across technology classes, which

reflects the firm’s technological profile. We then calculate the pairwise un-centered correla-

tion between any two firms’ patent portfolio vectors in the following way:7

7For similar approaches, see Jaffe (1986), Bloom, Schankerman, and Van Reenen (2013), and Lychagin
et al. (2016).
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techij =

∑
c PATic ∗ PATjc√∑

c PAT 2
ic ∗

√∑
c PAT 2

jc

∈ (0, 1), (5)

where c stands for technology class, i and j is a firm pair, and PAT is the number

patents. In order to determine the technological profile of a firm’s patent portfolio, we need

to assign each patent to a unique patent technology class. In our main specifications, we use a

technology classification that builds on 34 technology areas (TF34), aggregated from the IPC

codes following the proposal by Schmoch (2008), which unambiguously assigns each patent to

one of these technology areas. In an alternative specification, we use the Cooperative Patent

Classification (three-digit CPC codes) to classify each patent into more granular technology

classes. Under the three-digit CPC scheme, there are 126 distinct technology classes.8

We use technological linkages to define the innovation network. We hold the network

constant and study how shocks to one focal area (firms in the TXTL sector) propagate to

firms in other (NTXTL) sectors through technological linkages. Ideas can propagate across

industries thanks to firms’ ability to recombine technologically similar bodies of knowledge.

The notion of the mechanism is as follows: if inventions in TXTLs decrease, then spillovers

from TXTL to NTXTL firms will diminish; furthermore, inventions will decrease more for

those NTXTL firms that are technologically closest to the affected TXTL firms.

Figure 1 shows the patenting levels of NTXTL firms in the period prior to China’s

accession to the WTO. These NTXTL firms are decomposed into very granular subgroups

based on their degree of technological proximity to TXTL firms. The correlation is very weak,

suggesting no systematic relationship between a NTXTL firm’s patenting intensity in the

pre-shock period and its technological linkage to the TXTL industry. For this reason, our

regressions should not capture any differential patenting trends between strongly treated

NTXTL firms (high exposure to TXTL industry) and weakly treated NTXTL firms (low

exposure to TXTL industry) in the years prior to China’s entry into the WTO.

2.6 Testing for Alternative Mechanisms

Input-Output Relationships. A concern is that TXTL and NTXTL firms that are tech-

nologically close may also be closely linked through vertical input-output industrial rela-

tionships. The strength of a NTXTL firm’s vertical relationship with the TXTL industry

depends on two aspects: first, the share of production output it supplies to the TXTL indus-

8We consider only the main technology area or main three-digit CPC code of a patent, even if patents
may be assigned to multiple technology classes. CPC codes distinguish between the position and hence
importance of the different codes associated with one patent (i.e. cpc-position = “F” first or “L” later). We
use this information to determine the unique technology class for each patent.
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try; second, the share of inputs it receives from the TXTL industry. We therefore determine

each NTXTL firm’s input and output exposure to the TXTL industry and test whether these

factors drive any of our baseline results.

Industry Level Estimations. In our baseline firm-level estimation, all NTXTL firms

are given the same weight, as we use an unweighted estimation specification. This could

lead to the following scenario: suppose a 4-digit industry consists of one very large firm that

dominates the patenting activity of the industry and many smaller patenting firms. If all

the small firms reduce patenting but the one very large firm increases patenting, at the firm

level, our regression analysis might suggest that on average patenting decreases. However,

at the industry level, aggregate patents may actually increase.

We estimate industry-level regressions where the dependent variable is the log change

in patents in a 4-digit NTXTL sector k (∆lnPatNTXTL
kt ) and the independent variable of

interest is the log change in patents in each 4-digit TXTL sector l (∆lnPatTXTL
lt ) weighted

by the technological proximity at the industry-pair level (techkl).

We account for possible vertical relationships between a NTXTL industry k and a TXTL

industry l by using the 4-digit SIC input-output matrix (IOkl). For each NTXTL industry,

we use the output share it supplies to a TXTL industry, as well as the input share that it

sources from them.

In particular, as an additional regressor we include changes in TXTL sales (∆lnY TXTL
lt ),

weighted by this IOkl matrix. The term γSIC2D captures industry fixed-effects at the two-

digit SIC code level. In absence of a second instrument for changes in TXTL sales we

estimate equation (6) using OLS:

∆lnPatNTXTL
kt = β1

∑
l,l ̸=k

techkl∆lnPatTXTL
lt + β2

∑
l,l ̸=k

IOkl∆lnY TXTL
lt + γSIC2D +∆ukt (6)

Regional Effects. Consistent with the findings by Di Addario, Korchowiec, and Ser-

afinelli (2021) using plant closures in Italy, employees of TXTL firms affected by the shock

could relocate to NTXTL firms with a similar technological focus in the same local labor

market. In order to test for potential alternative channels at the regional level, we assess

if geographical distance plays a role in explaining our results. More precisely, we estimate

models where we only consider TXTL firms located in the same country or within a 50

kilometer radius of the NTXTL firm.
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3 Data & Descriptive Analysis

For our firm-level analysis, we link Bureau van Dijk’s (BvD) ORBIS and Amadeus databases

to the PATSTAT database, using ORBIS’ embedded BvD-to-PATSTAT link.9 The ORBIS

database is the largest cross-country firm-level database available and includes both public

and private firms from all industries. Among others, it includes firm-level data on financial

accounts, industry codes, and address data. We use the 2016 Fall version of BvD ORBIS,

which includes all historical ORBIS vintages from 2005-2016.10 We complement ORBIS with

the 2006 vintage of BvD’s Amadeus database, which includes firm financial data from 1995-

2006, in order to improve data coverage for the late 1990s. Amadeus is a similar database

of the same data provider (BvD), covering firms in Europe rather than globally.

As Kalemli-Ozcan et al. (2015) discuss, it is advisable to combine different BvD vin-

tages to obtain a consistent coverage of firms over time. We link ORBIS to Amadeus at

the firm-year level via BvD’s unique firm identifier (BvD-ID), while accounting for duplicate

accounts, different currencies and accounting standards as well as possible BvD-ID changes

over time. For the harmonization and cleaning of the ORBIS and Amadeus data, we broadly

follow Kalemli-Ozcan et al. (2015). In the following, we describe the sample of manufactur-

ing firms and the construction of variables used for our econometric analysis.

Sample of European Manufacturing Firms with Patenting Activity. Consistent

with the previous literature (e.g. Bloom et al., 2016; Dorn et al., 2020) our analysis focuses on

firms in the manufacturing sector. We use the 4-digit SIC industry information in ORBIS

to identify all firms that belong to the manufacturing sector in any of the 13 European

countries of Austria, Denmark, France, Germany, Italy, the Netherlands, Norway, Poland,

Portugal, Spain, Sweden, Switzerland, and the UK. From these approximately 2 million firms,

we identify those that were active as of 2001, the treatment year when the TXTL import

quotas were abolished in China. We use the incorporation date information in ORBIS, where

available, and otherwise deduce from non-missing entries for revenue or number of employees,

as to whether a firm has been active as of 2001. Keeping only these, we are left with about

1.6 million manufacturing firms. This includes patenting and non-patenting firms.

For our empirical analysis, we are interested in patenting firms. We use ORBIS’ embed-

ded BvD-to-PATSTAT link to merge the firm data to patent data. About five percent of the

9For the matching of ORBIS and PATSTAT, Bureau van Dijk uses string similarity matching between
a company name from ORBIS and the name of the patent applicant from PATSTAT, mapping BvD-IDs to
each PATSTAT person ID. Additional information like address information is used to enhance the matching
precision.

10For representativeness of ORBIS data, see Kalemli-Ozcan et al. (2015).
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1.6 million manufacturing firms have a link to the PATSTAT database. In order to calculate

a firm’s technological proximity to other firms based on its patent filings in the pre-period,

we further need to impose the condition that firms in our sample patented at least once

before 2001. The above steps result in a final sample of 45,012 NTXTL and 2,380 TXTL

firms. Figure 2 shows the ratio of TXTL to NTXTL firms for each region in our sample.

The largest concentration of TXTL firms is in Southern Europe (Spain, Portugal and Italy)

and in Poland. Nonetheless, the northern part of the United Kingdom and some areas in

Norway, France and Germany also have a high ratio of TXTL firms. In Galicia (North-West

of Spain), 20% of firms belong to the TXTL sector (90th percentile), whereas in the North

of Sweden, the share of TXTL firms is less than 1% (10th percentile).

Patent Filings. Our main dependent variable is the change in the number of patents

filed by a firm. We consider patents at the DOCDB patent family level. We refer to patent

families interchangeably as patents. Our sample of 45,012 NTXTL firms filed around 615,000

patent families during the years 1996-2005, while the TXTL firms filed approximately 10,000

patent families during the same period.

As we aggregate patent applications to the patent family level, we need to take a few

decisions as to how we unify patent attributes. The year is determined by the filing year

of the patent member that was filed first within the family. For the technology class, we

consider the modal technology area under the TF34 scheme. In the event of ties, we use

the numerically lowest technology area. When using the CPC scheme, we prioritize the

so-called “F” codes. CPC codes distinguish between the position and hence the importance

of different technology classes associated with one patent (i.e. cpc-position = “F” first or

“L” later). Where this information is available, we prioritize the “F” codes, and consider

the modal code in case there are multiple “F” codes.

We use technology class information to assess changes in the direction and diversity of a

firm’s patenting activities. Focusing on the patents filed by TXTL firms, we identify those

technology classes where TXTL firms are more actively patenting. For each NTXTL firm,

we then calculate the fraction of patents filed in these ‘TXTL-intensive’ technology classes

and assess whether there is any redirection of patenting towards or away from them.11

Furthermore, we calculate a Herfindahl-Hirschman-Index (HHI) that reflects the level of

specialization of a firm’s patent portfolio in terms of filings by technology class. We use

this index to assess if firms diversify more or less as part of their broader adjustments in

11More precisely, we weight the number of patents a firm files in a given technology class by multiplying
it with an indicator that reflects the technology class’ ‘TXTL-intensity’. The indicator value ranges between
0 and 1 and is measured as the share of patents in this technology class filed prior to 2001 by TXTL firms.
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patenting and knowledge sourcing decisions.

The technological proximity network is calculated based on firms’ pre-2001 technological

profiles. That is, we consider patents filed prior to 2001 for the calculation of the pairwise

technological proximity between two firms.

Import Quotas Data for the IV Approach. For the import quotas on textiles and

clothing that were abandoned following China’s entry into the WTO, we use data from

Bloom, Draca, and Van Reenen (2016). The quotas variable reflects the toughness of quotas

at their initial level in 2000 prior to China’s WTO entry and varies at the 4-digit indus-

try level. It is calculated as the proportion of (import value-weighted) HS 6-digit product

categories that were covered by a quota within that 4-digit industry. Based on the 4-digit

industry codes of each TXTL firm, we can calculate a firm-specific intensity of the quota

reduction.12

Geocoding & Geographical Distance between Two Firms. We have detailed

address data from ORBIS, which allows us to geocode the location of firms. We use the

HERE Geocoder API and, where available, a firm’s street name, ZIP code, city name and

NUTS code to obtain the corresponding longitude and latitude geo-coordinates.13 We then

compute the geographical distance between any NTXTL firm and any TXTL firm in our

sample, using the STATA package “geodist”.

Patent Citation Data. As a measure of patent value, we use the number of forward

citations received from EPO patents within five years after the first filing date (Harhoff et al.,

1999). We also use patent citation data to study the knowledge sourcing behavior of firms.

Based on patent-to-patent citations, we form dyads consisting of the citing firm and the cited

firm. In terms of citing patents, we only consider citations made by EPO patents that were

filed with the EPO directly or under the PCT, so as to have consistent citation behavior.14

In terms of cited patents, we consider all patents, irrespective of the office they were filed at.

Due to the restriction to citing patents filed via EPO/PCT, the sample is slightly smaller in

those specifications where we evaluate citation behavior.

We can then compare the technological versus geographical distance to the cited firms,

12A firm can have multiple primary and secondary SIC 4-digit industry codes. We follow the approach
of BDVR, applying a two-third weight to primary codes, a one-third weight to secondary codes, and equal
weighting within these groups.

13For approximately 97% of the firms in our sample, we know the address at the street level; for 1% the
info is at the ZIP or city level; for 2% we have no address info.

14See, e.g., Alcácer, Gittelman, and Sampat (2009) and Bacchiocchi and Montobbio (2010) for a discussion
of different patent citation behavior between USPTO and EPO.
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and evaluate if NTXTL firms have to ‘travel further’ in the knowledge or geographical space

when a given TXTL industry becomes less pivotal as a source of knowledge.

Vertical Industrial Input-Output Relationship. We want to account for potential

confounding factors associated with vertical linkages between TXTL and NTXTL firms. In

order to capture a NTXTL firm’s vertical input and output exposure to the TXTL industries,

we use a SIC4 industry-level input-output matrix, as conventionally used in the literature.15

If a firm has multiple industry SIC codes, we weight them as before: two-third weight to

primary codes, a one-third weight to secondary codes. For each NTXTL firm, we calculate

the output share it supplies to the TXTL industries, as well as the input share it sources

from them. Figure 3 displays histograms for these two measures of vertical input-output

relationship to TXTL industries. The correlation with our technological proximity measure

is slightly positive but small (0.06 and 0.08, respectively).

Table 1 provides descriptive statistics for our sample of NTXTL firms. The median firm

employs 52.5 workers, has annual revenues of 7.4 million Euros and total assets of 4.6 million

Euros. It files 0.2 patents per year and the median patent stock amounted to 2.0 patents as

of 2001. The sample is skewed in terms of firm size as well as patenting activity.

While in the next section we will present empirical results accounting for endogeneity

and alternative channels, a raw look at the data already provides suggestive evidence of our

main finding: Figure 4 shows that NTXTL firms that are technologically more connected to

the TXTL industry are also the ones experiencing a larger reduction in patenting.

4 Results

4.1 Direct Effect On TXTL Industry

Using a panel of TXTL firms, Table 2 presents the direct effect of the quota removal experi-

enced by a TXTL firm on its patenting activity. As suggested by Campbell and Mau (2021),

in all specifications we include both country and industry fixed effects. Column (1) replicates

the baseline result found in Bloom, Draca, and Van Reenen (2016). We also obtain a positive

estimated coefficient in this unweighted estimation, such that a greater quota reduction leads

to larger increases in patenting activity. In Column (2), we weight each TXTL firm by its

average technological proximity to the pool of NTXTL firms. The coefficient turns negative

(albeit not yet statistically significant), suggesting that the positive coefficient in Column

15E.g. Javorcik (2004), Liu (2019).
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(1) seems to be driven by TXTL firms with a low technological proximity to NTXTL firms.

In Column (3) we additionally weight by each firm’s patent stock and now the estimated

coefficient is both negative and statistically significant. In summary, while Columns (1)-(3)

include the same panel of TXTL firms, accounting for both technological proximity to the

rest of the economy and also firm size switches the sign of the estimated coefficient from

positive to negative. We choose to account for both technological proximity and firm size as

these elements will be weights of critical importance when estimating Equation (1).

In Columns (4)-(5) we split the sample of TXTL firms by the median technological

distance to NTXTL firms. For firms with distant technological ties to NTXTL firms, we

again replicate the positive and statistically significant coefficient obtained in Bloom, Draca,

and Van Reenen (2016) (Column (4)). For firms with close technological ties to NTXTL

firms, we rather find a negative and significant coefficient (Column (5)). The fact that the

TXTL firms most negatively affected by the competition shock are also the ones driving the

negative propagation to the rest of the economy - due to their close technological ties to

NTXTL firms, as we see in Table 2, Column (5) - is of critical importance for understanding

our main result of the paper regarding the indirect effect on NTXTL firms.

4.2 Reduced Form

Moving to our main panel of NTXTL firms, we start by presenting the reduced form esti-

mation results in Table 3. The dependent variable is the within-firm five-year log change

in patents by each NTXTL firm. The regressor of interest is the average toughness of quo-

tas faced in the year 2000 by each of the 2,380 TXTL firms in our sample, weighted by the

dyadic technological distance between our NTXTL firm and each of these TXTL firms. Con-

sequently, more weight is given to TXTL firms in close technological proximity to NTXTL

firms. As the technological proximity varies at the firm-pair level, the matrix weights vary

for each NTXTL firm.

All columns control for country-specific macro shocks by including a full set of country

dummies. Furthermore, Columns (2)-(3) also include sector-year dummies at the SIC 2-digit

and 4-digit industries, respectively. We normalize dependent and independent variables in

all our regressions, such that results can be interpreted in standard deviation terms. We find

that a one standard deviation increase in (tech-weighted) quota toughness faced by TXTL

firms is associated with a 2% of a standard deviation decrease in patenting by any given

NTXTL firm.

One can think of this finding as follows. Patents by NTXTL firms build on previous

knowledge embedded in previous TXTL patents. Knowledge is mostly absorbed from the
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subset of TXTL firms with stronger technological overlap to NTXTL firms. But it is precisely

this subset of TXTL firms (more central in the technological network) that suffer the largest

patenting reduction after the competition shock. Consequently, their generated pool of new

knowledge shrinks and, as an indirect effect, NTXTL patenting is negatively affected due to

a reduction in knowledge absorption.

As an illustrative example, suppose a given NTXTL firm has been learning from the

knowledge embedded in patents granted to two different TXTL firms, which we label as

Firm A and Firm B. The research and development interests between the NTXTL firm

and Firm A are very aligned, but the research and development overlap with Firm B is

rather weak. This implies that while Firm A has been a major source of inspiration for the

innovation undertaken by the NTXTL firm, Firm B has only had a negligible impact. After

the competition shock, Firm A suffers and reduces its innovation effort, while Firm B boosts

its innovation activity. These two reactions offset each other, such that the overall TXTL

patenting activity stays pretty constant. But critically for our line of reasoning, the NTXTL

firm will indirectly experience the negative consequence of the shock, since it relied much

more on the shrinking Firm A than on the growing Firm B. Consequently, a neutral direct

effect can still lead to a negative indirect effect in NTXTL sectors.

4.3 Baseline OLS Results

Table 4 displays the baseline OLS estimation results for the same panel of NTXTL firms.

The dependent variable is again the within-firm five-year log change in patents by NTXTL

firms. The regressor of interest is now the tech-weighted average patenting change across

all TXTL firms. In Column (1) we find an elasticity of 4%, meaning that a decrease in

(tech-weighted) TXTL patenting by one standard deviation is associated with a 4% of a

standard deviation decrease in the patenting activity of a NTXTL firm. Results remain

stable in Columns (2) and (3) after adding a full set of 2-digit and 4-digit industry dummies,

respectively.

4.4 Instrumental Variable Estimations

Table 5 presents instrumental variable results. The odd numbered columns report the first

stage results and the even numbered columns report the second stage results. The en-

dogenous variable is the tech-weighted average change in patents by TXTL firms, and the

instrument is the tech-weighted toughness of quotas faced by TXTL firms. The observed

negative coefficient in Column (1) implies that the removal of tougher quotas is related to

stronger reductions in TXTL patenting. Column (2) presents the second stage results that
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show a strong and significant effect of (instrumented) reductions in TXTL patenting on re-

ductions in NTXTL patenting with a magnitude of 3.6%. Similar to previous tables, the

next columns incorporate industry-year dummies leading to only minor changes.

The second stage of the IV estimation in Table 5 indicates that the OLS coefficients

(Table 4) are very much in line with IV coefficients. Both the F-test statistic for weak iden-

tification (Kleibergen-Paap rk Wald statistic) and the test statistic for under-identification

(Kleibergen-Paap rk LM statistic) show that the first stage is very strong in all cases. Given

the robust IV results, we prefer the third specification with country fixed effects and industry

fixed effects at the 4-digit level; we will consider Column (6) as our baseline specification go-

ing forward. Appendix Table A-1 shows that our baseline results also hold when we condition

on a sample of firms for which we have non-missing financial data in ORBIS.

4.5 Mechanisms

We claim that the main mechanism driving our results is a classical spillovers channel: if

inventions in TXTL firms decrease, then spillovers towards technologically close NTXTL

firms will be weaker. Consequently, patenting activity will shrink in those NTXTL firms,

leading to a possible readjustment of their knowledge sourcing towards other technological

and geographical areas in the innovation network.

Patenting Direction and Citation Behavior. In Table 6 we identify the technology

classes with the largest share of patents originating from TXTL firms. Column (1) is our

baseline result already discussed in Column (6) of Table 5; in Column (2) we find that the

reduction in patenting by TXTL firms leads NTXTL firms to move away from technology

classes with a high share of textile patents and to refocus their patenting towards technology

areas where TXTL firms are less prevalent. At the same time, in Column (3) the HHI

concentration index decreases, meaning that NTXTL firms diversify their patenting across

a larger set of technology classes after the shock.

Table 7 addresses the refocusing of innovation efforts by NTXTL firms from a different

angle. In line with our previous findings, the result in Column (1) suggests that NTXTL

firms are less likely to cite patents of TXTL firms after the China WTO accession. The

remaining columns turn to analyzing whether NTXTL firms have to look in more distant

locations (both technologically and geographically) to partially substitute for the knowledge

absorption lost from TXTL firms. The estimated coefficients in Columns (2) and (3) are

negative, implying that NTXTL firms start citing more technologically distant patents; re-

sults are mainly driven by large firms, defined as the ones in the fourth quartile of the size

16



distribution. Columns (4) and (5) report that, for the case of large firms, NTXTL firms

also start citing patents from more geographically distant firms. Overall, these results are

consistent with NTXTL firms trying to mitigate the loss of knowledge coming from TXTL

firms by exploring new sources that are in more distant technological and geographical areas.

Geographical Heterogeneity. To address the traditional narrative that spillovers

tend to be locally contained, we now describe how the intensity of the observed reduction

in NTXTL patenting depends on the average geographical distance to TXTL firms. For

illustrative purposes, Column (1) of Table 8 reproduces the baseline result of Column (6)

in Table 5, which is based on a (tech-weighted) average of all European TXTL firms in our

sample. Next, we split these TXTL firms into two groups based on whether they are located

in the same country as the NTXTL firm (Column 3) or not (Column 2). The estimated

coefficient is substantially larger in Column 3 (0.0575 vs. 0.0324), suggesting that geograph-

ical proximity amplifies the impact that TXTL firms have on NTXTL firms, conditional

on a given technological distance. One could expect to possibly find heterogeneous effects

within the same country, for example, due to local labor markets allowing for the realloca-

tion of affected employees across firms with a similar technological focus. Columns (4) and

(5) split the TXTL firms into being closer or further away than 50 kilometers, respectively.

Coefficients are similar and do not seem to be consistent with any major labor reallocation

mechanism.

Accounting for Input-Output Relationships. A concern is that the main channel

driving our results might be industrial input-output relationships that correlate with our

technological proximity measures. For example, suppose that certain TXTL firms are input

suppliers to a given NTXTL firm. If these TXTL firms suffer from the competition shock,

they might be unable to continue trading with the NTXTL firm, which will therefore be

negatively affected. To address this concern, for each NTXTL firm, Figure 5 plots the

average technological proximity to the TXTL industry against both the share of inputs

received from TXTL firms (left panel) and the share of production outputs supplied to TXTL

firms (right panel). The correlation between these two input/output exposure measures and

our technological proximity measure is positive, albeit small at 0.08 and 0.06, respectively,

which mitigates the possibility that our results are driven by this alternative mechanism.

Nonetheless, Table 9 explicitly accounts for these input-output relationships in our econo-

metric framework. As before, Column (1) is the baseline IV result. Columns (2) and (3)

split NTXTL firms by the median output exposure to the TXTL sector, while Columns (4)

and (5) redo the same exercise for the median input exposure. We reassuringly do not ob-
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serve any substantial variation in the magnitude of the estimated coefficient, meaning that

the industrial input-output channel seems to be orthogonal to our story. Columns (6) and

(7) compare NTXTL firms with weak input and output links to the TXTL industry (below

25th percentile on both dimensions) to the ones with strong input and output links (above

75th percentile on both dimensions). Both results remain statistically and economically sig-

nificant. Overall, these results reassure us in the claim that input-output relations are not

driving the main result in the paper.

4.6 Robustness

Firm Size Heterogeneity. Appendix Table A-2 reports the IV results by quartiles of

NTXTL firm size. While the effect is statistically significant for all four quartiles, the es-

timated coefficient increases with firm size, and the magnitude for the largest firms (4th

quartile) is approximately three times larger than for the smallest firms (1st quartile).

Patent Quality. The distribution of patent quality is known to be skewed. We there-

fore re-estimate our baseline model restricting the patent count to the subset filed at the

European Patent Office (EPO) and using a cite-weighted patent count. Appendix Table A-3

shows that the main result still holds, meaning that the effect is not driven by major changes

in patent quality.

Lag Specifications. We further test alternative models that use lagged regressors. The

estimated coefficients in Appendix Table A-4 show robust results, with larger effects for the

two-year lag on the regressor of interest.

Alternative Measure of Technological Proximity. In addition to calculating the

pairwise technological proximity of two firms based on the overlap of their patent filings,

we also consider calculating it based on the overlap in their patent citation behavior. The

idea is that technological proximity could be understood as two firms building on the same

type of pre-existing technology. We can construct a vector of patent citations made to

the different patent technology classes for each firm, and again calculate the pairwise un-

centered correlation between any two firms’ citation vectors. Appendix Table A-5 shows

that the estimated effect is smaller in size but qualitatively unchanged. We further check

for robustness by using the more fine-grained CPC scheme, instead of the TF34 scheme, for

the calculation of the technological proximity measure. We find in non-reported results that
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the findings also hold.

4.7 Aggregate Analysis: Industry-Level & Regional Effects

Industry-Level Regressions. In all the previous tables we conducted a within-firm anal-

ysis of NTXTL companies where all firms are given the same weight in the regression. From

a policy perspective, it is relevant to understand the evolution of NTXTL patenting at the

industry level. Industry-level estimations implicitly assign more weight to larger firms and

can hence lead to different results if large and small firms respond differently to changes in

TXTL patenting.

For the industry-level analysis, we assign each NTXTL firm to its main SIC4 industrial

category and estimate the five-year within-industry changes in patenting.16 To capture

possible vertical product market relationships to TXT industries, we include as an additional

regressor the changes in TXTL sales at the industry level, weighted by the industry-specific

input-output intensity links (see Equation 6).17 In absence of a second instrument for changes

in TXTL sales, we run an OLS instead of an IV estimation.

Table 10 presents OLS estimations for a panel of SIC4 industries over time including a

complete set of SIC2 dummies. The baseline regression in Column (1) presents the main re-

gressor of interest, the five-year log change in (tech-weighted) patenting in TXTL industries.

Note that the new technological distances are constructed across industry pairs as opposed

to firm pairs.

A decrease in (tech-weighted) TXTL patenting by one standard deviation is associated

with a 8.13% of a standard deviation decrease in NTXTL patenting. This result, in which

the estimated coefficient is two times larger than in our firm-level sample, is consistent with

our finding in Appendix Table A-2 that large firms reduce their NTXTL patenting by a

greater degree than small firms.18

The remaining columns aim to account for vertical product market linkages. In Column

(2) we add a regressor capturing changes in sales by the TXTL sector, weighted by how

much a NTXTL industry supplies its output to the TXTL sector. In Column (3) we add a

similar regressor, but now weighted by how relevant TXTL products are as inputs for each

of the NTXTL industries. Column (4) incorporates both variables. Estimation results for

our regressor of interest are unchanged, supporting the idea that industrial linkages cannot

16The log of industry-level sum of patents is not the same as the sum of the firm-level log of patents
(summed to the industry level), as per Jensen’s Inequality.

17We cannot include such an additional regressor in the firm-level regressions as the input-output level is
defined at the industry pair level. Hence, in Table 9 we ran the baseline IV specification with a split sample.

18Bloom, Draca, and Van Reenen (2016) also find that industry coefficients are about twice as large as
firm-level coefficients.
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explain our finding and that the economic magnitude at the industry-level estimations is

more than twice as large compared to firm-level results.

Aggregate Magnitudes at the Country Level. In a final exercise, we aggregate the

data at the country and European level to gauge the relative magnitudes of the removal of

import quotas on TXTL firms (direct effects) and NTXTL firms (indirect effects).

In Figure 6, we plot European regions by the relative magnitude of the direct effect on

TXTL firms compared to the indirect effect on NTXTL firms. While there is a positive

geographical correlation with the relative number of TXTL firms in the region (Figure 2),

strong direct effects are not confined to regions with a high concentration of TXTL firms.

This can be explained by the following factors. First, at the firm level, the intensity of quota

removals differs across 4-digit industries within the TXTL sector. Second, technological

proximity between NTXTL and TXTL firms also differs across regions.

Table 11 documents the steps taken to obtain country-level estimates. First, at the

firm level, we estimate the predicted change in the number of patent filings for each single

firm. Second, at the country level, we take the median value of the predicted change in

patent filings and multiply it by the number of firms in the country. We do this exercise

twice: first for TXTL firms; then for NTXTL firms. When looking at the whole of Europe,

these estimates illustrate that the (negative) indirect effect on NTXTL firms is 4.97 times as

large as the (positive) direct effect on TXTL firms. When looking at the median country, the

(negative) indirect effect on NTXTL firms is 3.41 times as large as the (positive) direct effect

on TXTL firms. Consequently, the reduction in NTXTL patenting due to China entering

the WTO is between 3 and 5 times as large as the increase in TXTL patenting.19

Figure 7 visually illustrates the variation across countries of these relative magnitudes

just described. The vertical axis is the ratio of the indirect over direct effect. The horizontal

axis is the ratio of NTXTL over TXTL firms. We observe a positive association: the larger

the relative presence of NTXTL firms, the larger the relative magnitude of the indirect effect.

This makes intuitive sense - countries that predominantly have NTXTL firms will be most

harmed by the lack of access of knowledge sources coming TXTL firms.

5 Conclusion

Academic research provides different viewpoints on industrial policy: while the innovation

literature tends to emphasize the benefits of cross-pollination of ideas across a variety of

19For a paper with strong amplification and propagation effects in an input-output production network,
see Carvalho et al. (2021).
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industries and technology fields, traditional work in the trade literature highlights the gains

from specialization and comparative advantage.

This paper addresses this debate by estimating and quantifying the overall impact of an

industry-specific policy shock on the innovation network in the whole economy. This includes

not only estimating the direct impact on firms affected by the policy, but also including

the indirect impact on innovating firms in the rest of the economy. We construct a firm-

level manufacturing panel of 13 European countries with information on innovation activity,

knowledge sourcing, and technological distances across each pair of firms and sectors. We use

the removal of import quotas on Chinese textile firms in 2001 as an exogenous competition

shock to the European textile sector to help identify the induced changes in innovation on

non-textile firms through technological linkages to textile firms (Bloom, Schankerman, and

Van Reenen, 2013).

Our key result is that an exogenous shock induced by the removal of Chinese import

quotas on textile firms strongly propagates through technological linkages across the network

of innovating non-textile firms. In fact, the indirect harm on the economy’s innovation

output turns out to be larger in magnitude than the positive direct impact experienced by

patenting increases in the textile sector. Moreover, our analysis shows that non-textile firms

shift their innovation away from ‘textile-intensive’ technology areas, cite fewer patents from

textile firms, and instead turn to new sources of knowledge that are further away in both the

geographical and technological space. Results are robust when accounting for vertical input-

output linkages to the textile sector, are visible at all firm sizes, and the effect upholds when

aggregating the panel to the 4-digit industry level or to the country level. These findings

highlight the importance of accounting not only for the direct effect, but also for indirect

effects, when evaluating the implications of sector-specific industrial policies.

There are a number of avenues that could be explored in future work. First, one could

complement our study with an assessment of inventor mobility following the policy shock

in order to analyze whether inventors relocate from the textile sector to other industries.

Our data do not allow us to undertake a detailed assessment of employment effects. To

the extent possible, we test for potential labor reallocation within the local labor market

as an alternative mechanism through our geographical analysis. Our estimated coefficients

based on firms within a 50km radius (proxy for the local labor market) versus firms outside

a 50km radius are very similar to our baseline. This tentatively speaks against a major

labor reallocation of inventors. Future research using worker-level data, which may account

for labor mobility, could provide additional insights. Second, our empirical strategy uses a

policy shock that targeted the European textile sector. This sector is not among the most

innovation-intensive sectors, hence our results can be considered a ‘lower bound’. Further
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analysis exploring policy shocks in the context of more innovation-intensive industries would

be valuable. Third, a general equilibrium model could help parse out potential mechanisms

related to labor reallocation effects and allow for counterfactual analysis of policies that

target different types of industries.
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Tables

Table 1: Summary Statistics for Non-textile Firms

Mean p5 p25 Median p75 p95 Obs

No. of Employees 538.31 2.00 16.75 52.50 169.40 1,138.00 29,510
Revenue (1000s Euros) 120,285.28 250.00 2,150.00 7,372.25 26,896.50 240,868.70 29,338
Total Assets (1000s Euros) 13,8861.30 98.85 1,177.23 4,597.00 19,871.80 240,714.80 24,389
Patent Stock 29.03 0.20 1.00 2.00 7.20 53.00 45,012
Patent Filings per year 1.35 0.00 0.00 0.20 0.40 3.00 45,012
No. of Primary SIC Codes 1.50 1.00 1.00 1.00 2.00 4.00 45,012
No. of Secondary SIC Codes 1.07 0.00 0.00 0.00 1.00 5.00 45,012

Observations 45,012

Notes: This table presents summary statistics for our sample of non-textile firms. The first three financial variables are
provided by Bureau Van Dijk and approximately a third of the sample has missing values. Patent stock and patent filings
come from PATSTAT, the industry SIC codes come from Bureau van Dijk; these variables are available for all firms.

Table 2: Direct Effects of Quotas Removal on Textile Firms

Dep. Var.: Base Weighted by Sample split

∆lnPat textile firms (1) (2) (3) (4) (5)

tech-connect.
tech-connect.
& pat.stock

tech-connect.
<p50

tech-connect.
>p50

Toughness of quotas 0.0401∗∗∗ −0.0166 −0.1344∗∗ 0.0977∗∗∗ −0.0248∗∗

(0.007) (0.020) (0.049) (0.008) (0.010)
Country FE Yes Yes Yes Yes Yes
Industry(SIC-4D) FE Yes Yes Yes Yes Yes

No. of clusters 13 13 13 13 13
Observations 11,900 11,900 11,900 5,905 5,995
Unique Firms 2,380 2,380 2,380 1,181 1,199

Notes: This table presents the direct effects results for the panel of 2,380 textile firms in our sample. The
dependent variable is the change in the log of patents by textile firms. The regressor of interest is the
quota toughness prior to China’s accession to the WTO faced by each of these textile firms. Column (1)
is an unweighted regression on the full sample of textile firms. Column (2) weights each textile firm by
its average technological proximity to the pool of non-textile firms, Column (3) additionally weights each
textile firm by its patent stock. Columns (4) and (5) split the textile firms by the median technological
proximity to non-textile firms. ***/**/* indicate significance at the 1%/5%/10% level. Standard errors
are clustered at the SIC4 industry level.
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Table 3: Reduced Form Results

Dep. Var.: ∆ lnPat non-textile firms
(1) (2) (3)

Toughness of quotas in 2000 −0.0196∗∗∗ −0.0191∗∗∗ −0.0176∗∗∗

(0.003) (0.003) (0.003)

Country FE Yes Yes Yes
Industry(SIC-2D) FE No Yes No
Industry(SIC-4D) FE No No Yes

No. of clusters 471 471 471
Observations 225,060 225,060 225,060
Unique Firms 45,012 45,012 45,012

Notes: This table presents the reduced form results for the full panel of non-textile firms. The dependent
variable is the change in the log of patents by non-textile firms. The regressor of interest is the quota
toughness prior to China’s accession to the WTO for each textile firm, weighted by the technological
proximity between a given non-textile firm and each textile firm. To clarify, given that we have 2,380
textile firms in our sample, each regressor is a weighted average of 2,380 quota changes, and the closer
the technological proximity to the non-textile firm, the greater the weight assigned. Column (1) is the
baseline specification that controls for country fixed effects. Columns (2) and (3) additionally include
a full set of industry 2-digit and 4-digit dummies, respectively. ***/**/* indicate significance at the
1%/5%/10% level. Standard errors are clustered at the SIC4 industry level.

Table 4: OLS Results

Dep. Var.:
∆ lnPat of non-textile firms (1) (2) (3)

∆ lnPat of textile firms 0.0421∗∗∗ 0.0420∗∗∗ 0.0417∗∗∗

(0.004) (0.003) (0.003)

Country FE Yes Yes Yes
Industry(SIC-2D) FE No Yes No
Industry(SIC-4D) FE No No Yes

No. of clusters 471 471 471
Observations 225,060 225,060 225,060
Unique Firms 45,012 45,012 45,012

Notes: This table presents the baseline OLS results for the full panel of textile firms. The dependent
variable is the change in the log of patents by non-textile firms. The regressor of interest is the change in
the log of patents by textile firms, weighted by the technological proximity between a given non-textile
firm and each textile firm. To clarify, given that we have 2,380 textile firms in our sample, each regressor
is a weighted average of 2,380 changes in the log of patenting, and the closer the technological proximity
to the non-textile firm, the greater the weight assigned. Column (1) is the baseline specification that
controls for country fixed effects. Columns (2) and (3) additionally include a full set of industry 2-digit
and 4-digit dummies, respectively. ***/**/* indicate significance at the 1%/5%/10% level. Standard
errors are clustered at the SIC4 industry level.
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Table 6: Patenting Direction: ‘Textile-Intensity’ and Diversity of Tech Classes

(1) (2) (3)
∆ in patent

filings (baseline)
∆ in Share pat.
’txt-int.’ classes

∆ in HHI
(1/diversity)

∆ lnPat of textile firms 0.0329 ∗∗∗ 0.1421∗∗∗ 0.0354∗∗∗

(0.006) (0.012) (0.008)

Country FE Yes Yes Yes
Industry(SIC-4D) FE Yes Yes Yes

Underidentification test 51.9 51.9 51.9
Weak identification test 15,613.3 15,613.3 15,613.3
No. of clusters 471 471 471
Observations 225,060 225,060 225,060
Unique Firms 45,012 45,012 45,012

Notes: Column (1) is our baseline IV result (as in Table 5 Column (6)). The dependent variable in
Column (2) is the share of patents granted in textile-intensive technology areas. Column (3) has the HHI
concentration index as dependent variable. All specifications include country fixed effects and industry 4-
digit fixed effects. ***/**/* indicate significance at the 1%/5%/10% level. Standard errors are clustered
at the SIC4 industry level.

Table 7: Citation Behavior

∆ in % Cites
to textile firms ∆ in TechDist ∆ in GeoDist

(1) (2) (3) (4) (5)
all all large firms all large firms

∆ lnPat of textile firms 0.0683 ∗∗ −0.0044 −0.0851∗∗ 0.0027 −0.1072∗∗∗

(0.034) (0.031) (0.039) (0.028) (0.038)

Country FE Yes Yes Yes Yes Yes
Industry(SIC-4D) FE Yes Yes Yes Yes Yes

Underidentification test 37.3 31.7 19.5 32.4 20.8
Weak identification test 1,010.5 622.3 440.1 708.7 446.1
No. of clusters 283 243 198 239 197
Observations 12,010 8,482 4,805 8,213 4,653
Unique Firms 5,690 3,996 1,815 3,855 1,754

Notes: In Column (1), the dependent variable is the share of citations made to textile firms. Columns
(2) and (3) look at the technological distance to cited patents, for the full sample and for the 25% of
largest non-textile firms, respectively. Columns (4) and (5) repeat the exercise but with geographical
distance to cited patents instead. All specifications include country fixed effects and industry 4-digit
fixed effects. ***/**/* indicate significance at the 1%/5%/10% level. Standard errors are clustered at
the SIC4 industry level.
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Table 10: Industry-Level (SIC4) Regressions: OLS

Dep. Var.: ∆ lnPat of (1) (2) (3) (4)
non-textile industries (SIC4) Base Output Input Input & Output

∆ lnPat of techij-weighted 0.0813∗∗∗ 0.0874∗∗∗ 0.0835∗∗∗ 0.0871 ∗∗∗

textile industry (0.011) (0.013) (0.012) (0.013)

∆ lnY of IOij output-weighted −3.8394 −6.6127
textile industry (3.653) (5.915)

∆ lnY of IOij input-weighted −2.0646 4.3505
textile industry (4.507) (7.296)

Industry(SIC-2D)-Year FE Yes Yes Yes Yes

Observations 2,065 2,065 2,065 2,065
Unique SIC4 Industries 413 413 413 413

Notes: This table presents 4-digit SIC industry-level regressions, including 2-digit SIC industry fixed
effects in all specifications. The dependent variable is the change in the log of patents by non-textile
firms in each 4-digit industry. The regressor of interest is the change in the log of patents by textile
firms, weighted by the technological proximity between a given non-textile 4-digit industry and each
textile 4-digit SIC industry. Similar to Table 9, Columns (2)-(4) control for industrial input-output
relationships. ***/**/* indicate significance at the 1%/5%/10% level. Standard errors are clustered at
the SIC4 industry level.

Table 11: Direct vs. Indirect Effects at the Aggregate Level

Predicted change Formula
in patent filings (ŷ)

Firm Level

Direct effect ŷdirj = η̂ ∗QUOTATXTL
j ∗ PatIntj

Indirect effect ŷindiri = δ̂ ∗ (
∑

j techij ∗QUOTATXTL
j ) ∗ PatInti

Country level

Direct effect ŷdirc = Median[ŷdirj,c ] ∗Nc,TXTL

Indirect effect ŷindirc = Median[ŷindirj,c ] ∗Nc,NTXTL

Ratio [Europe] ŷindirEU /ŷdirEU = 4.97

Ratio [Median Country] ŷindirc /ŷdirc = 3.41

Notes: This table estimates the ratio of the indirect effect of patenting divided
by the direct effect of patenting, aggregated at the country and European
levels, as a consequence of the removal of import quotas on Chinese textiles.
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Figures

Figure 1: Patenting in Pre-Period vs. Technological Proximity to textile firms

Notes: The scatter plot shows the average pre-period patenting levels of non-textile firms by
percentiles of their technological proximity to textile firms. The greater the variable on the
horizontal axis, the closer the technological proximity to textile firms. We split our sample of
non-textile firms into 100 bins.
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Figure 2: Number of TXTL vs. NTXTL Firms

Country Non-Textile Firms (in %)

AT 839 1.86
CH 3,114 6.92
DE 15,366 34.14
DK 661 1.47
ES 1,655 3.68
FR 5,525 12.27
GB 8,672 19.27
IT 5,164 11.47
NL 1,849 4.11
NO 571 1.27
PL 92 0.20
PT 67 0.15
SE 1,437 3.19

Total 45,012 100.00

Notes: The map shows the relative number of textile firms to non-textile firms in each NUTS2
region in the 13 European countries of our sample. Red-shaded regions have a relatively high
share of textile firms, blue-shaded regions have a relatively low share of textile firms.
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Figure 3: Vertical Production Links in the Input/Output Matrix

Notes: This figure plots the distribution of the vertical input & output exposure measures across
the non-textile firms. The left panel shows the histogram for the share of inputs received from
textile industries, the right panel shows the histogram for the share of output supplied to textile
industries.

Figure 4: Changes in Log-Patenting vs. Technological Proximity to TXT

Notes: The scatter plot shows the average changes in log-patenting of non-textile firms in the
post-period, by percentiles of their technological proximity to textile firms.
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Figure 5: Technological Connectedness vs. Vertical Connectedness to TXTL Firms

Notes: This figure shows the correlation between technological proximity and vertical input &
output exposure measures for the sample of non-textile firms: share of inputs received from textile
industries (left) and share of outputs supplied to textile industries (right).

Figure 6: Aggregate Effects at the Regional (NUTS2) Level

Notes: The figure maps the relative magnitude of the indirect effect at the NUTS2 regional level.
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Figure 7: Country-level Estimates: Relative Importance of Indirect Effect

Notes: This figure collapses firms at the country level and measures how the relative impact of
the China shock on non-textile firms is a function of the relative number of non-textile firms.
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A Appendix: Tables

Table A-1: Baseline Results
Conditional on Financial Data Availability for Sample Firms

Dep. Var.: ∆ lnPat
of non-textile firms (1) (2) (3) (4)

IV 1st stage IV 2nd stage Reduced Form OLS

Toughness of quotas in 2000 −0.5334∗∗∗ −0.0183∗∗∗

(0.005) (0.005)
∆ lnPat of textile firms 0.0343∗∗∗ 0.0377∗∗∗

(0.008) (0.004)

Country FE Yes Yes Yes Yes
Industry(SIC-4D) FE Yes Yes Yes Yes

Underidentification test 41.1
Weak identification test 13,971.7
No. of clusters 441 441 441 441
Observations 121,945 121,945 121,945 121,945
Unique Firms 24,389 24,389 24,389 24,389

Notes: This table estimates the same models as in the baseline IV, Reduced Form and OLS specifications,
but restricted to the sample of firms for which we have non-missing financial data in ORBIS. Columns (1)
and (2) correspond to Table 5 Columns (5) and (6). Column (3) corresponds to Table 3 Column (3), and
Column (4) to Table 4 Column (3). All specifications include country fixed effects and industry 4-digit
fixed effects. ***/**/* indicate significance at the 1%/5%/10% level. Standard errors are clustered at
the SIC4 industry level.
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Table A-3: Accounting for Patent Quality

(1) (2) (3)
Dep. Var.: ∆ lnPat of non-textile firms All patents EPO patents EPO cit.-weight

∆ lnPat of textile firms 0.0329∗∗∗ 0.0191∗∗∗ 0.0135 ∗∗

(0.006) (0.006) (0.005)

Country FE Yes Yes Yes
Industry(SIC-4D) FE Yes Yes Yes

Underidentification test 51.9 51.9 51.9
Weak identification test 15,613.3 15,613.3 15,613.3
No. of clusters 471 471 471
Observations 225,060 225,060 225,060
Unique Firms 45,012 45,012 45,012

Notes: In this table we address patent quality by non-textile firms in an IV framework where the second
stage is presented. Column (1) is our baseline IV result (as in Table 5 Column (6)), which includes patents
filed with any patent authority. Column (2) restricts the patent count to those filed with the European
Patent Office (EPO); as citations across patent authorities cannot be directly compared, we believe it
is sensible to focus only on the most important patent authority for our European manufacturing firms.
Finally, Column (3) weights the change in the log of patents by the number of citations received in
the first five years post-grant. All specifications include country fixed effects and industry 4-digit fixed
effects. ***/**/* indicate significance at the 1%/5%/10% level. Standard errors are clustered at the
SIC4 industry level.

Table A-4: Alternative Lag Specification

Dep. Var.: ∆ lnPat of
non-textile firms (1) (2) (3)

∆ lnPat of textile firms 0.0329∗∗∗

(0.006)
L.∆ lnPat of textile firms 0.0381∗∗∗

(0.008)
L2.∆ lnPat of textile firms 0.0588∗∗∗

(0.014)

Country FE Yes Yes Yes
Industry(SIC-4D) FE Yes Yes Yes

Underidentification test 51.9 52.4 52.4
Weak identification test 15,613.3 4,830.5 2,373.4
No. of clusters 471 471 471
Observations 225,060 180,048 135,036
Unique Firms 45012 45012 45012

Notes: Column (1) repeats our baseline IV result. Columns (2) and (3) use one-year and two-year lags
of the regressor, respectively. All specifications include country fixed effects and industry 4-digit fixed
effects. ***/**/* indicate significance at the 1%/5%/10% level. Standard errors are clustered at the
SIC4 industry level.
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