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1 Introduction

The COVID-19 pandemic spread across the globe in several waves during the years 2020–

2022. Public policy responded quickly, first by imposing a series of lockdowns, later via

a massive vaccination effort. What do we know about the effectiveness of these policies?

Tackling this question empirically and establishing well-defined counterfactuals is notori-

ously difficult (e.g., Born et al., 2021; Brauner et al., 2021; Flaxman et al., 2020). In one

sense, however, the success of these policies was limited: They did not halt infection dy-

namics. In the US and Europe infections numbers reached very high levels after the policies

had been put in place for some time. In this paper, we argue that these policies—though

clearly desirable from a medical point of view—are bound to deliver somewhat disappoint-

ing results: Precisely because they create a safer environment, they induce people to adjust

their behavior in ways which may partly (or even fully) offset the direct effect of the policy.

Peltzman (1975) was the first to analyse this type of adjustment in the context of traffic

safety regulation. We put it at the center stage of our analysis of pandemics.

We use a very stylized Susceptible-Infected-Recovered (SIR) model, as frequently employed

to study infection dynamics, which we extend to allow for (rational) adjustment of behavior

(social activity) in response to both the state of the pandemic and the policy measures.

We derive a number of results. First, the effect of vaccinations on infections and deaths

is ambiguous. As vaccinations lower the risk of infection and death, they raise the level

of social activity—the Peltzman effect, which gives rise to more infections and deaths.

We show that this offsets the direct effect of vaccinations if the degree of risk aversion is

sufficiently large, potentially even making vaccination a welfare reducing policy.

Second, we argue that a Peltzman effect is likely to arise also for a lockdown policy, pro-

vided it is uniformly imposed on a heterogeneous population where some individuals are

more vulnerable to the disease than others. Being aware of their vulnerability, individuals

exercise different levels of self-restraint once the pandemic arrives. Consequently, a lock-

down is likely to constrain the behavior of less vulnerable individuals, thus lowering the

infection risk for all, but may well be non-binding for the more vulnerable ones. They have

room to adjust and will increase their social activity in response to the lower risk. This

unambiguously implies a higher case fatality rate and—depending on parameters—may

even increase mortality.

Finally, we present evidence on actual infection dynamics based on monthly observations for

US states and countries of the European Union (EU), respectively. First, we find that both
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current infections and deaths are not much correlated with vaccination rates in previous

months, consistent with the notion that behavioral adjustment largely offsets the direct

impact of vaccinations. Turning to lockdowns, we distinguish between an early period

prior to vaccinations and a later period when vaccinations had become available. We find

that the lockdown stringency is negatively related to mortality, and more so in the second

period, but positively related to case fatality, and more so in the first period. We argue

that these results are again consistent with a Peltzman effect of the type we highlight in

our model, since vaccinations lower the degree of heterogeneity in the population in terms

of vulnerability.

Pandemics have their own laws of motion. There is a large body of epidemiological lit-

erature that goes at length in describing these laws, mostly versions of the SIR-dynamics

pioneered by Kermack and McKendrick (1927), and each pandemic sees multiple attempts

to combine knowledge about these laws with vast amounts of data in order to generate

short term predictions of infections, hospitalizations and deaths caused by the pandemic

(see, for instance, Nixon et al., 2022). A fairly large economics literature complements such

epidemiological studies by bringing to the fore people’s rational response to a changing en-

vironment (for a survey, see Bloom et al., 2022). Our paper makes this point as transparent

as possible. We study what we consider the simplest extension of the SIR model, building

on Farboodi et al. (2021). Due to our simplifications, we are able to provide a succinct,

closed form analysis of pandemic-related policies instead of simulation results. Analytical

treatments are also offered by Toxvaerd (2019) and Rachel (2022), but our paper differs

from these in important ways. First, Toxvaerd (2019) solves for steady-state effects of

permanent policies in a continuous time framework, whereas we focus on short-run effects

of temporary policies in discrete time. The difference to Rachel (2022), who also uses a

continuous-time model, is that he describes the equilibrium trajectory of private mitigat-

ing behavior as well as optimal mitigation policy, but does not investigate how Peltzman

effects erode the effectiveness of non-optimal policies, as we do in this paper. Importantly,

none of these papers focuses on heterogeneity of the population, which is at the heart of

our analysis of social distancing.

Some papers suggest that Peltzman effects may govern the policy impact in the context

of the pandemic, for instance when it comes to wearing masks, to mandatory testing

(Diederichs et al., 2022; Geloso, 2020), or indeed to vaccination (Guo et al., 2021; Trogen

and Caplan, 2021). Our distinct contribution is to offer a formal analysis of these effects.

We also add an important additional element, which is heterogeneity among individuals
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in terms of vulnerability. The need to take account of this is widely acknowledged, and

some of the simulation studies do allow for such heterogeneity (Acemoglu et al., 2021;

Brotherhood et al., 2021). However, to the best of our knowledge, the implication of such

heterogeneity for lockdowns that we highlight here has so far not been acknowledged in

the literature or the policy debate.

2 A simple framework

In this section, we set the stage by introducing a simple model in which self-interested

individuals adjust to the pandemic without being forced to do so by government policy.

The pandemic is described using the well-known SIR-model, which we enrich to account for

social activity. For the sake of analytical tractability, we keep the model radically simple.

2.1 Infection dynamics and social activity

We start from a discrete-time version of the SIR-model, due to Kermack and McKendrick

(1927). Using It and St to denote the stock of infectious and susceptible persons, respec-

tively, at the beginning of period t, the change in I is

∆It = β
StIt
Nt

− µIt − ρIt. (1)

In this equation, Nt is the size of the population at the beginning of period t and β reflects

the average number of contacts per person during the period as well as the ease of virus

transmission through these contacts. We henceforth call this the transmission parameter.

A fraction ρ of the infectious recovers and a fraction µ dies, whence the stock of the

deceased changes according to ∆Dt = µIt. We assume that the parameters β, µ as well

as ρ are time-invariant.1 Assuming that the recovered are no longer susceptible, we have

Nt = It +Rt + St.

We stipulate two modifications of the SIR-model. First, we collapse the entire pandemic

into three periods: Period 0 is the initial period of the pandemic in which no policy inter-

vention takes place. Period 1 is the policy period during which the pandemic evolves in

line with Equation (1), augmented by policy variables to be introduced below. And finally,

1Note, however, that all of these parameters depend on the length of the period.
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period 2 refers to the entire time after the policy period. Note that the three periods need

not be of equal length.

Essentially, what we want to analyze is how the number of new infections and, with it,

the number of deaths during period 1 are affected by the policy. For easier writing, we

drop all time-indexing and define I as pertaining to the beginning of period 1 and ∆I as

the number of new infections occurring during the policy period. Similarly, ∆D denotes

the number of additional deaths caused by these new infections. Moreover, we normalize

N = 1 so that S and I are shares of the population.

The second modification is to introduce social activity which generates utility but also

influences virus transmission. We interpret the transmission parameter β as holding for a

unit level of social activity, and—following Farboodi et al. (2021)—we multiply the stocks

of susceptibles and infectious individuals by the respective average activity levels during the

policy period, denoted by AS and AI . Implicitly, we assume that all individuals infected at

the beginning of period 1 either die or recover during the period. With these modifications,

Equation (1) changes to

∆I = βASSAII. (2)

As in Farboodi et al. (2021), we assume that the individual does not know her health status

(susceptible or infectious), hence we may simplify AI = AS = A.

We assume that a representative individual’s wellbeing may be described by a periodic

utility function u(a,A), where a denotes the individual’s level activity. Note that periodic

utility is the same for susceptible and infectious individuals. The utility function has the

following properties (subscripts indicate partial derivatives):

ua(·), uA(·) > 0, uaa(·), uAA(·) < 0, and uaA(·) ≥ 0. (3)

The second inequality assumes diminishing marginal utility, and the third inequality as-

sumes, plausibly, that the individual and the average level of social activity are comple-

ments. In addition to these assumptions, we assume that marginal utility approaches

infinity as social activity approaches zero.

Individuals decide about their activity levels at the beginning of period 1. Crucially, we

assume that the expected life time utility at the beginning of period 2 is affected by

the individual’s period-1 activity level only through the probability that the individual

survives to period 2. Individuals thus face an intertemporal trade off: A higher activity
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level increases their current wellbeing but lowers their probability of surviving period 1,

because the activity level determines the risk of becoming infected and thus the likelihood

of dying from an infection. We use δ(a) to indicate the probability of dying in period 1,

depending on the activity level a. Thus, an individual alive at the beginning of period 1

faces an expected life-time utility, denoted by W (a,A), which is given by

W (a,A) = u(a,A) + [1− δ(a)]ū2, (4)

where ū2 is expected life-time utility at the beginning of period 2. For simplicity, we

abstract from discounting and normalize utility such that ū2 = 1.

2.2 Externalities

Assuming individuals know about Equation (2), the perceived likelihood of becoming in-

fected during period 1, conditional on being susceptible, is equal to βaAI. By the law of

large numbers, the probability of any one individual being susceptible is equal to S, which

we assume is known to the individual. Moreover, we assume atomistic individuals who

treat the average level of activity A as a constant when deciding about a. Using δI > 0

to measure the excess probability of dying, caused by an infection, the perceived marginal

effect of the individual’s activity a on the likelihood of dying is

δ′(a) = δIβSAI. (5)

Individual behavior is then determined through the following maximization problem:

max
a
u(a,A) + 1− δ(a) s.t. δ′(a) = δIβSAI. (6)

The optimal level of activity, a∗, satisfies the first order condition

ua(a
∗, A) = δIβSAI. (7)

The second order condition is satisfied from uaa < 0. Homogeneity of agents implies that

the equilibrium satisfies a∗ = A∗ and is characterized by

ua(A
∗, A∗)− δIβSA∗I = 0. (8)

6



Under the assumptions made about the utility function, such an equilibrium exists.

We now compare this laissez-faire equilibrium with the social optimum. The social planner

knows she is dealing with a homogeneous population, and she knows that the social activity

level of infectious and susceptible individuals enter symmetrically in Equation (2). Hence,

she aims at a uniform optimal social activity. Replacing AI = AS = A in (2), we have

∂∆I/∂A = 2βASI. The social planner takes into account that a symmetric increase in the

level of social activity increases both, the risk of becoming infected as well as the risk of

becoming a virus spreader. In contrast, the individual is concerned only about the risk of

becoming infected.

The social planner solves the following maximization problem:

max
A

u(A,A) + 1− δ(A) s.t. δ′(A) = δI2βSAI. (9)

The first order condition for the socially optimal activity level Ã is:

ua(Ã, Ã) + uA(Ã, Ã)− δI2βÃSI = 0. (10)

Note that ua is the marginal utility with respect to an individual’s own activity while

uA is the marginal utility with respect to the average activity of the economy at large.

Evaluating the left-hand side of Equation (10) at the laissez-faire level A∗, we obtain

ua(A
∗, A∗) − δI2βA

∗SI + uA(A∗, A∗). Benchmarking the laissez-faire case characterized

by Equation (8) against this expression, we recognize that the individual’s optimal choice

implies ua(A
∗, A∗)−δIβA∗SI = 0, which reduces the expression to −δIβA∗SI+uA(A∗, A∗),

reflecting two externalities. The first is the so-called infection externality which means that

the individual ignores the fact that becoming infected raises the odds of others becoming

infected, too. The second is a social externality which means that the individual ignores the

positive effect that her own activity has on the utility of others. If−δIβA∗SI+uA(A∗, A∗) <

0, then the infection externality dominates and the laissez-faire equilibrium involves too

much activity, and vice versa for −δIβA∗SI+uA(A∗, A∗) > 0. If this term is equal to zero,

then the two externalities offset each other and the laissez-faire equilibrium is efficient.

7



3 Vaccination

The first policy we consider is vaccination. For simplicity, we assume that the entire popu-

lation is vaccinated at the beginning of the policy period. Decisions are again made at the

beginning of period one, but after the policy was implemented. The effects of vaccination

are common knowledge. Specifically, people understand that vaccination has two direct

effects. First, it lowers δI , the excess death probability caused by an infection (medical

protection). And secondly, it lowers the likelihood of susceptibles becoming infected as well

as the likelihood of infectious individuals to transmit the virus (epidemiological protection),

thus lowering β.2

For easier writing, we define u′(A) := ua(A,A) and assume that u′′(A) = uaa(A,A) +

uaA(A,A) < 0. This means, plausibly, that the marginal utility of social activity is dimin-

ishing as social activity is increased in “pari-passu” fashion (i.e., equally by all individuals).

Moreover, we define σ := −[u′′(A∗)/u′(A∗)]A∗ > 0, which we refer to as the coefficient of

relative risk aversion (or the inverse of the elasticity of intertemporal substitution).3 Writ-

ing Equation (8) in log-changes, we obtain −σ∆V logA∗ = ∆ log δI + ∆ log β + ∆V logA∗,

where ∆V indicates a vaccination induced change.4 This implies:

∆V logA∗ = −η (∆ log δI + ∆ log β) > 0. (11)

In this equation, we use η := 1/(1 + σ), a parameter which lies between zero and unity,

with a lower value of η indicating a higher degree of risk aversion. The inequality in (11)

conveys a simple but important insight: For a finite degree of risk aversion, vaccination

will generally raise the level of social activity, for the simple reason that individuals now

perceive a lower risk associated with this activity. This is the Peltzman (1975) effect for

vaccination, which we also refer to as risk-compensating adjustment below.

We may write Equation (2) for the laissez-faire equilibrium as ∆I = β(A∗)2SI. Taking

logs and differentiating, we obtain log ∆I = ∆ log β + 2∆ logA∗. In the sequel, we write

∆V log ∆I for the change in the number of new infections brought about by vaccination,

2Plausibly, we assume that the medical protection effect does not apply to individuals who were infected
already prior to the start of the vaccination program.

3The elasticity σ describes the curvature of the utility function u(A,A). One might also describe the
degree of risk aversion through the curvature of u(a,A) with respect to a, holding A constant. Obviously,
for comparative static analysis we must use the above definition of σ.

4This expression relies on a first-order Taylor series approximation ∆ log u′(A∗) ≈ u′′(A∗)
u′(A∗) A

∗A−A∗
A∗ and

on A−A∗
A∗ ≈ log(A)− log(A∗) = ∆ logA∗.
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and likewise for deaths D. Substituting from Equation (11), we obtain:

∆V log ∆I = (1− 2η)∆ log β − 2η∆ log δI . (12)

The effect of vaccination on new infections is potentially ambiguous since, depending on

η, the direct vaccination effect and the risk-compensating adjustment run in opposite

directions.

Next, turn to the effect of vaccination on the number of deaths. We have ∆D = δI∆I for

the additional pandemic-induced deaths, or log ∆D = log δI + log ∆I. Substituting from

above, we have

∆V log ∆D = (1− 2η) (∆ log β + ∆ log δI) . (13)

Proposition 1 (effect of vaccination on new infections and deaths).

a) Vaccination reduces the deaths caused by the pandemic if and only if σ > 1.

b) The necessary and sufficient condition for vaccination to reduce the number of new

infections is σ > 1 + 2∆ log δI
∆ log β

.

Proof. Part a) follows immediately from Equation (13), given that ∆ log β < 0 as well as

∆ log δI < 0. In turn, the condition for part b) is 1−2η
2η

> ∆ log δI
∆ log β

> 0, which may be written

as η
(

1 + ∆ log δI
∆ log β

)
< 1/2, which implies σ > 1 + 2∆ log δI

∆ log β
.

The intuition for this proposition is straightforward. The strength of the Peltzman effect

is higher with a lower degree of risk aversion σ. For σ > 1, the effect is not strong enough

to make vaccination ineffective regarding mortality (part a). However, the condition for

vaccination to reduce the number of new infections is stronger (part b), because the strength

of the Peltzman effect is determined by ∆ log β + ∆ log δI while vaccination helps for new

infections only on account of ∆ log β.

To see how vaccination affects welfare, we recall that the laissez faire equilibrium involves

two externalities: the infection externality working towards too much activity and the

social externality working in the opposite direction. Except for the knife-edge case where

these externalities exactly offset each other, vaccination has a first-order effect on welfare.

Since vaccination unambiguously raises the equilibrium level of activity, the first-order

effect is positive if the social externality dominates the infection externality. Adding the

medical effect of vaccination it follows that in this case vaccination is unambiguously welfare
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increasing. However, if the infection externality dominates, then the first-order effect is

negative and vaccination raises welfare only if the Peltzman effect is not too strong.

Proposition 2 (Vaccination and welfare).

Rolling out vaccination as described above affects aggregate welfare as follows:

a) If the social externality weakly dominates the infection externality, uA(A∗, A∗) ≥
βSA∗I, then vaccination is unambiguously welfare increasing.

b) If the infection externality dominates the social externality, then the welfare effect of

vaccination may be negative.

c) If the net effect of vaccination on the rate of new infections is zero or negative, then

its welfare effect is unambiguously positive.

Proof. The formal proof is given in the appendix.

That vaccination may reduce welfare is a somewhat provocative result since the direct

effect of vaccination, reducing the risk of infection and the risk of dying from an infection, is

surely welfare increasing. But once we recognize the presence of a negative first-order effect

deriving from risk-compensating behavioral adjustment the welfare-reducing potential is

quite obvious.

4 Social distancing with heterogeneous individuals

We now turn to an analysis of social distancing measures, or “lockdowns”. Our baseline

model suggests that constraining people’s social behavior is a natural way to achieve the

optimal level of social activity. In this section, we demonstrate that behavioral adjustment

comes back with a vengeance and may hamper the effectiveness of lockdowns once we

consider a heterogeneous population and assume—in line with actual practice—that a

lockdown is imposed uniformly on this population.

4.1 Heterogeneity and social activity under laissez-faire

To begin with, we present the extension of our model looking at the laissez-faire equilibrium.

We distinguish between two types of people, differing only in terms of the excess death

risk that they face once infected. For want of a better term, we call the more vulnerable

group the old and the less vulnerable group the young, and we denote variables relating to
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these groups by a subscript index g = y, o. Denoting the group-specific excess death risk

by δIg, we assume δIo > δIy. We use ω to denote the share of the old in the population and

ig to denote the initial (beginning of the lockdown period) share of infectious individuals

within group g and sg for the share of susceptibles. The initial share of infectious old in

the population is then equal to Io = ωio (likewise for the young), and accordingly for the

shares of susceptibles So. By analogy to Equation (2), we have

∆ig = βAgsg (AoIo + AyIy) . (14)

The key assumption here is that in their social activity people mingle across groups. The

term (AoIo + AyIy) thus captures the risk to susceptibles that emanates jointly from the

infectious in the two groups. We assume that individuals know about their vulnerability

status g but are not sure about their health status, as in the baseline model.

Periodic utility for the two groups is perfectly analogous to the homogeneous case and

written as ug = u(ag, A), where A := ωAo + (1 − ω)Ay. We have ua > 0, uAo = uAω > 0

and uAy = uA(1− ω) > 0. Lifetime utility of a type-g individual is given by:

Wg(ag, A) = u(ag, A) + [1− δg(ag)]ū2g, g = y, o (15)

where the term ū2g denotes the expected life time utility at the beginning of period 2.

Given the dynamics of infections in (14), the probability of an individual becoming infected,

conditional on being susceptible, is equal to βag (AoIo + AyIy). Invoking the law of large

numbers, the individual sets the probability of being susceptible equal to sg, which we

assume to be public knowledge. Consequently, the individual’s perceived probability of

dying during period 1 is δg(ag) = δIgβagsg (AoIo + AyIy), and

δ′g(ag) = δIgβsg (AoIo + AyIy) > 0. (16)

In what follows, we simplify by assuming sy = so = s and by writing vg := δIg ū2g > 0,

referred to as group g’s vulnerability.

The first-order conditions for an optimal level a∗g are:

ua
(
a∗g, A

)
= vgβs (AoIo + AyIy) , g = y, o. (17)

Note that the “atomistic” individual treats the average level of activity A as given. The
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second-order condition is satisfied from the assumption of diminishing marginal utility.

Equilibrium requires that ag = Ag for g = y, o and is therefore determined by

ua(Ao, A) = voβs (AoIo + AyIy) , (18)

ua(Ay, A) = vyβs (AoIo + AyIy) . (19)

Note that ua indicates the derivative of u with respect to the first argument, i.e., the

individual activity level, but evaluated at the group average. This is a two equation system

that jointly determines the equilibrium average activity levels within each group, which we

denote by A∗y and A∗o. Equation (18) describes the “best-response” for the average activity

of the old to alternative average activity levels of the young, and conversely for Equation

(19).5

Dividing Equation (18) by Equation (19), we obtain

ua(A
∗
o, A

∗)

ua(A∗y, A
∗)

=
vo
vy
. (20)

This implies that A∗o < A∗y, the old are less active than the young, provided that they are

more vulnerable, vo > vy, an assumption we make for the rest of our analysis.

To pave the ground for a comparative static analysis of a lockdown, we derive the slopes

of these best-response functions. By analogy to the homogeneous case above, we define

u′o(Ao, A) := ua(Ao, A) and u′′o(Ao, A) := uaa(Ao, A) + uaA(Ao, A)ω. While it is plausible

that uaA ≥ 0 (as assumed above), it is no less plausible that u′′o(Ao, A) < 0, meaning that

the direct effect uaa(Ao, A) < 0 is dominating. We define σo := − [u′′o(A
∗
o, A

∗)/u′o(A
∗
o, A

∗)]A∗o

> 0, which is the analogue to the elasticity σ for the homogeneous case. Moreover, we

introduce the cross- elasticity εo := [u′oy(A
∗
o, A

∗)/u′o(A
∗
o, A

∗)]A∗y ≥ 0, where u′oy denotes

the derivative of u′o with respect to Ay. The inequality follows from the assumption that

uaA ≥ 0.

Armed with these definitions, we now describe the slope of the best-response function for

the old, evaluated at the equilibrium. Differentiating Equation (18) gives [uaa + uaAω] dAo+

uaA(1− ω)dAy = voβs (IodAo + IydAy), where all derivatives are evaluated at the equilib-

rium values A∗g and A∗ = ωA∗o + (1 − ω)A∗y. Collecting terms and moving to log-changes,

5This is a slight abuse of the term best-response function, since decisions are not being made collectively
by the groups, but by individuals holding group averages constant.
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we arrive at

− (σo + ζo) d logAo = (1− ζo − εo) d logAy, (21)

where the elasticities σo and εo are as defined above and ζo := AoIo/(AoIo + AyIy). Ap-

proximating d logAo ≈ ∆ logAo and d logAy ≈ ∆ logAy, we arrive at

∆ logAo = −ηo∆ logAy, (22)

where ηo := (1− ζo − εo) /(ζo + σo). The term ηo is the analogue for the case of a heteroge-

neous population to η := 1/(1 + σ) in the homogeneous case above. A perfectly analogous

equation can be derived for the log-slope of group-y’s best-response function with respect

to Ao. Note that εo ≥ 0 means complementarity: with strict inequality, the marginal

utility of the old increases as the young become more active. On this account, if group y

becomes more active, individuals of group o will respond by becoming more active too. At

the same time, however, a higher activity level Ay increases the risk of infection for group-

o individuals, depending on 1 − ζo, the share of group y in the overall “infection-base”

AoIo + AyIy. This will prompt individuals of group o to become more cautious, reducing

Ao. We assume that this latter effect dominates, 1− ζo > εo, in which case ηo > 0 and the

best-response function is downward-sloping. A corresponding assumption is made for the

young. Taken together, these assumptions rule out extreme values of ζg. Note that ηg, like

η in the homogeneous case above, is increasing in σo, the coefficient of risk aversion. But

unlike η, ηg is not bounded from above by unity.

4.2 The effectiveness of lockdown policies

We are now in a position to study how a lockdown affects new infections, the case fatality

and mortality. We assume the lockdown is introduced in a laissez-faire equilibrium with

A∗y > A∗o. More specifically, the lockdown imposes a uniform maximum level of activity

ā < A∗y. We assume full compliance.

Proposition 3 (lockdown binding only for the young).

a) A lockdown ā ∈ (a`, A
∗
y) is binding for the young but non-binding for the old, where

a` = ηo+1
α∗ηo+1

A∗o = α∗(ηo+1)
α∗ηo+1

A∗y, with α∗ := A∗o/A
∗
y < 1.

b) As a result of this lockdown, the old will increase their activity level according to

∆ logA∗o = −ηo
(
ā/A∗y − 1

)
> 0.
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Proof. The lockdown enforces a change in the activity level of the young equal, in per-

centage terms, to
(
ā/A∗y − 1

)
< 0. Using A`o to denote the desired activity level for

the old after imposition of the lockdown on the young, Equation (22) implies logA`o −
logA∗o = −ηo

(
ā/A∗y − 1

)
> 0. But the lockdown will only allow them to respond in

this way if A`o < ā. Writing logA`o − logA∗o as A`o/A
∗
o − 1 and solving for A`o, we obtain

A`o = −ηoāα∗+(1+ηo)A
∗
o. Setting A`o = ā gives us an equation which determines the value

a` for ā, which may be written as in part of the proposition.

The intuition for Proposition 3 is that of a Peltzman (1975) effect. Intuitively, the range of

lockdown stringency levels allowing for this type of adjustment depends on the degree of

asymmetry of the initial equilibrium, captured—inversely—by α∗. This is seen from fact

that the value a` is rising in α∗. The window of risk-compensating adjustment by the old

closes if α∗ = 1, i.e., if heterogeneity vanishes. The fraction α∗ also becomes larger with a

higher value of ηo, which implies a lower degree of risk aversion σo.
6

The situation is illustrated by Figure 1, based on a simple parameterization of the utility

function.7 The equilibrium levels of Ao and Ay are depicted on the vertical axis, with the

lockdown stringency measured by 1− ā, on the horizontal axis. The dashed blue line holds

for the young, with a flat segment for low lockdown-stringency levels a` > A∗y. Here the

lockdown is not binding for the young, because the young, too, show some social restraint

under laissez faire. This changes once 1− ā becomes smaller than 1−A∗y: The activity level

of the young then falls with a slope equal to unity. The solid red line displays the activity

level for the old. Absent any lockdown, the old exercise much more social restraint than

the young because they are more vulnerable. Yet once the lockdown binds for the young,

the old start to raise their activity level—the Pelzman effect. At some point the activity

levels of both groups are equalized: The two lines intersect once the lockdown stringency

reaches the 1 − a`. For any lockdown that reduces the activity level further (stringency

6There is an interesting corollary of Proposition 3 relating to the degree to which the young are restricted
by the lockdown ā. Ex ante, that degree may be measured through the ratio A∗y/ā. Ex post, however,
the degree to which the young will feel constrained by the lockdown is lower. The reason is that, given
risk-compensating adjustment by the old, the young would choose an activity level lower than A∗.

7 We chose the functional form u(a,Ay, Ao) = ln a+ ω lnAy + (1− ω) lnAo − a+ 1. This specification
satisfies all assumptions made above. Our calibration assumes that at the beginning of the policy period
2% of the population in each group are infected: io = iy = 0.2. The share of old in the population is
assumed as ω = 18%, consistent with US data on the share of population older than 65. The expected
lifetime utility at the beginning of period 2 for the young is ū2,y = 100 and ū2,o = 10 for the old. The
probability of an infected individual to die is δIy = 0.002 for the young, and δIo = 0.252 for the old. This
is consistent with estimates by the CDC of a 126 times larger mortality rate if infected for those 65 years
or older. The parameter β is set to 1.
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Figure 1: Quantitative illustration of how lockdown impacts activity levels
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Notes: Vertical axis measures activity level of the young (dashed line) and the old (solid line) against
lockdown intensity (1− ā), measured along horizontal axis. For model parameterizations, see footnote 7.

above 1− a`), both Ao and Ay decline with a slope equal unity.

Assessing the overall effect of the lockdown on infections, we must consider two opposing

effects: a lower activity level of the young coupled with a higher activity level of the old.

Without the lockdown, we have

∆ig = βsAg(AoIo + AyIy), (23)

where ∆ig denotes the rate of new infections within group g. For the economy at large

we have ∆I = ∆Io + ∆Iy, where ∆Io = ω∆io. In the following, we use the operator ∆L

to denote changes brought about by the lockdown. For instance, ∆L log ∆Ig denotes the

lockdown-induced relative change in the aggregate rate of new infections. Obviously, we

have ∆L log ∆Ig = ∆L log ∆ig.

Proposition 4 (lockdown and new infections).

A lockdown ā ∈ (a`, A
∗
y)

a) unambiguously lowers the rate of new infections among the young, and it

b) raises the rate of new infections among the old if and only if ηo >
1−ζo
1+ζo

.
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c) It is unambiguously true that ∆L log ∆io > ∆L log ∆iy.

Proof. The proof is provided in the appendix.

A lower activity level of the young means they pose less of a threat (to either group) if

infectious and are less exposed to this threat if susceptible. This is the direct effect of the

lockdown. The induced Peltzman effect implies that the exact opposite holds true for the

old. Part a) of the proposition simply tells us that for the young the direct effect always

dominates, since they are affected by the Peltzman effect only on account of a higher

infection threat from the old. However, for the old, the Peltzman effect strikes twice since

their higher activity level also renders them more exposed to their own higher threat. In

addition, it also counteracts the lower threat they now face from the young. Hence, if

strong enough the Peltzman effect may dominate for the old, as stated in part b). Part c)

is a simple corollary of the asymmetry implied by parts a) and b).

Next, we look at the number of deaths relative to the population (mortality rate, denoted

by m) and the number of deaths relative to the newly infected persons (case fatality,

denoted by f). Under laissez-faire, we have

m = δIoω∆io + δIy(1− ω)∆iy and f = m/∆I. (24)

Proposition 5 (lockdown and pandemic-induced deaths).

A lockdown ā ∈ (a`, A
∗
y) has the following effects on the number of deaths caused by the

pandemic:

a) It unambiguously increases the fatality rate.

b) It increases the mortality if and only if − ω∆L log ∆io
(1− ω)∆L log ∆iy

>
δIy
δIo

A∗y
A∗o
.

Proof. The proof is provided in the appendix.

Part a) of this proposition is an obvious consequence of ∆L log ∆io > ∆L log ∆iy; see part c)

of Proposition 4. This implies that the composition of those infected changes in favor of the

old who are more likely to die from the disease. To understand part b), suppose that risk

aversion is high whence ∆L log ∆io < 0. In this case, since we always have ∆L log ∆iy < 0,

the condition in part b) is clearly violated, so that the lockdown lowers mortality. But

suppose risk aversion is low so that ∆L log ∆io > 0. Then, the condition will be violated if

ω is sufficiently large and
δIy
δIo

A∗
y

A∗
o

is sufficiently small due to strong heterogeneity, δIy < δIo.
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5 Evidence

We now confront the predictions of the theory with data for US states, on the one hand, and

a group of countries in Western Europe on the other. These are two fairly homogeneous

sets of countries. Still, each US state or European country has experienced its distinct

dynamics of the pandemic and has implemented its own policy measures, which make

them particularly suitable for our empirical analysis. We provide detail on the data sets

in Appendix B.

In what follows, we relate different outcome variables, xit, for a given country/state i and in

a given month t to public policy measures implemented in the previous month. We consider

three outcome variables, namely the log of infections, the log of Covid-related deaths and

the case-fatality rate (CFR). To account for the time that elapses between infection and

death we lead the CFR by 2 weeks, see Appendix B. In terms of policy measures we focus

on the vaccination rate, vit−1, and the lockdown stringency, sit−1. Importantly, we interact

the effect of lockdown stringency with an indicator variable, Vit, which assumes a value of

zero for all observations in 2020, that is, prior to the start of vaccinations in early 2021.

In this way we account of the fact that, according to our model, the Peltzman effect in

the reaction to the lockdown first and foremost depends on whether there is heterogeneity

in the population in terms of vulnerability. Since the vaccinations were initially targeted

mostly at the more vulnerable, an important effect of the vaccination was to reduce the

degree of heterogeneity of the population. We thus expect the Peltzman effect to show up

in our results primarily for the no-vaccination regime in 2020.

Formally, we estimate the following equation with an error term uit:

xit = γ1(1− Vit−1)sit−1 + γ2Vit−1sit−1 + ηvit−1 + βXit + θi + uit. (25)

In this expression, θi are fixed effects for countries/states and Xit is a vector of control

variables which includes two lags of the dependent variable and the number of tests in

the current as well as in the two previous months, and the lag of the indicator variable.

Our main interest lies in the parameters γ and η, which we estimate using OLS, reporting

robust standard errors.

Table 1 shows the results, in the left panel for US states, in the right panel for the coun-

tries in Western Europe. The first line reports the estimated coefficient which speaks to

a possible effect of the lockdown in the pre-vaccination period: stronger lockdowns are
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Table 1: Effect of public policy measures
US states Western Europe

Infectionst Deathst CFRt Infectionst Deathst CFRt

γ1 -1.025∗∗∗ -0.726∗∗ 0.630∗∗ -1.565∗∗ -0.448 1.251∗∗

(-3.87) (-2.75) (-2.97) (-3.31) (-0.73) (-2.64)
γ2 -1.275∗∗∗ -1.010∗∗∗ 0.152 -1.815∗∗∗ -1.120∗ 0.769∗

(-4.70) (-4.48) (-0.65) (-3.48) (-2.39) (-1.97)
η 0.415∗ 0.321∗ -0.237 -0.377 -0.418 0.181

(-2.51) (-2.14) (-1.49) (-1.47) (-1.76) (-1.06)
Controls yes yes yes yes yes yes
State FE yes yes yes yes yes yes
N 988 975 975 282 277 277
r2 0.812 0.790 0.500 0.795 0.773 0.707

Notes: parameter estimates for model (25); monthly observations 2020:03–2022:01; containment index is
the log of stringency index, dependent variables are measured per 100 thousand population for Deaths and
Infections; robust standard errors used; t statistics in parentheses, based on robust standard errors;
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

associated with fewer infections and deaths following month. However, the association is

weaker in the case of deaths, where it is not even significant for European countries. Most

importantly, in column three, we find that more stringent lockdowns are associated with

increasing case fatality rates, particularly in Europe. This is consistent with the prediction

of our model that a lockdown, if imposed uniformly across a heterogeneous population,

triggers a Peltzman effect which causes a higher case fatality.8 The second line shows the

estimate for the same relationship once vaccination has become available. In this case the

association between lockdown stringency and CFR becomes much weaker, again as our

model suggests it will. Note, too, that with the Peltzman effect arguably subdued due to

vaccination (lower degree of heterogeneity), the negative association between the lockdown

stringency and infections as well as deaths is stronger in line two than in line one.

The third line of the table reports the estimate for the relationship between the vaccination

rate, vit−1, which varies on the interval [0, 1], rather than between zero and one, as our

indicator variable Vit−1. Here again we detect a striking pattern. Contrary to common-

sense expectation, the vaccination rate in the previous months is not strongly associated

with lower infections or deaths in the current months. In Western Europe there is no

significant relationship at all, while in the US it is even positive—and marginally significant.

Such a pattern, if studied through the lens of our model, does not suggest that vaccinations

are not effective. Indeed, it is because they are highly effective they trigger a Peltzman

8See also early evidence by Cao et al. (2020). They find that stricter lockdown measures are associated
with higher case-fatality rates in high-income countries.
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effect which may limit or even offset their direct medical effect.9 Nor does the presence of

a Peltzman effect suggest vaccinations is a welfare reducing policy.

6 Conclusion

Our analysis highlights the role of Peltzman effects—or risk-compensating behavioral

adjustment—for the effectiveness of public policies aimed at reducing the health hazard

from a Covid-19-like pandemic. With almost all public policies implemented during the

Covid-19 pandemic over the past two years, policy makers have at some point been frus-

trated by disappointing results. Our analysis demonstrates that risk-compensating behav-

ioral adjustment may lie behind this. Our analytical framework extends the well-known

SIR-dynamics of virus transmission to include an incentive for social activity that fosters

virus transmission. Weighing the marginal benefit of present social activity against the

marginal cost deriving from a higher likelihood of infection and earlier death, individuals

adjust to the emergence of the pandemic as such, but more importantly, also to public poli-

cies aimed at reducing the risk of infection and/or the risk of death caused by an infection.

We analyse two types of public policies, vaccination and lockdowns. Our theoretical anal-

ysis suggests the presence of Peltzman effects: People become less careful in their behavior

as a result of risk-reducing policies and thus erode the effectiveness these policies. Such

effects likely reduce the apparent effectiveness of policies. Our empirical analysis detects

pattern in the data that suggest these effects are non-negligible in magnitude.

9Consistent with this interpretation, Guo et al. (2021) provide cross-country evidence suggesting that
vaccination increases social mobility.
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A Appendix. Proof of Propositions

Proposition 2 states:

Rolling out vaccination as described above affects aggregate welfare as follows:

a) If the social externality weakly dominates the infection externality, uA(A∗, A∗) ≥
βSA∗I, then vaccination is unambiguously welfare increasing.

b) If the infection externality dominates the social externality, then the welfare effect of

vaccination may be negative.

c) If the net effect of vaccination on the rate of new infections is zero or negative, then

its welfare effect is unambiguously positive.

Proof. The relevant welfare equation is

W (A∗, A∗) = u(A∗, A∗) + 1− δ(A∗). (1)

In a vaccination scenario, we have

∆V δ(A
∗) = ∆V (δI∆I) = ∆I∆δI + δI

∂∆I

∂β
∆β + δI

∂∆I

∂A
∆A∗. (2)

The first two terms capture the direct vaccination effect, with ∆δI < 0 and ∆β < 0

while the third captures behavioral adjustment governed by Equation (8). In a laissez-

faire equilibrium we have ∆I = βA∗2SI, hence ∂∆I/∂A = 2βA∗SI > 0 and ∂∆I/∂β =

βA∗2SI > 0. The welfare change emerges as

∆W ≈ [ua(A
∗, A∗) + uA(A∗, A∗)− δI2βSA∗I] ∆A∗

−
[
∆I∆δI + δI

(
A∗2SI

)
∆β
]

(3)

The first-order condition (8) allows us to rewrite the bracketed term in the first line above as

[uA(A∗, A∗)− βδISA∗I]∆A∗. The expression in the second line is unambiguously positive.

Moreover, we know that vaccination increases A∗.

Adding the first-order condition for individual behavior it then follows that under the

condition stated in part a) of the proposition the welfare effect must be positive. By the

same token, it may be negative if this condition is violated, wich proves part b).

As to part c), note that the net effect of vaccination on new infections is 2βSA∗I∆A∗ +

A∗2SI∆β. If this is equal to zero (part a), we are left with ∆W = [ua(·) + uA(·)]∆A∗ −
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∆I∆δI , which is clearly positive. The same is true, a fortiori, if the net effect on the rate

of new infections is negative.

Proposition 4 states:

A lockdown ā ∈ (a`, A
∗
y)

a) unambiguously lowers the rate of new infections among the young, and it

b) raises the rate of new infections among the old if and only if ηo >
1−ζo
1+ζo

.

c) It is unambiguously true that ∆L log ∆io > ∆L log ∆iy.

Proof. In view of Equation (23), the lockdown-induced relative changes in the rates of new

infections in the two groups are

∆L log ∆io = ∆ logAo + ζo∆ logAo + (1− ζo)∆ logAy (4)

∆L log ∆iy = ∆ logAy + ζo∆ logAo + (1− ζo)∆ logAy (5)

A lockdown ā ∈ (a`, A
∗
y) implies ∆ logAy = (ā/A∗y − 1) < 0 and risk-compensating adjust-

ment implies ∆ logAo = logAlo − logA∗o = −ηo∆ logAy; see Equation (22). Inserting this,

we obtain:

∆L log ∆io = [1− ζo − (1 + ζo)ηo] ∆ logAy (6)

∆L log ∆iy = [2− ζo(ηo + 1)] ∆ logAy (7)

Part a): Since ∆ logAy < 0, ∆L log ∆iy < 0 if and only if 2 − ζo(ηo + 1) > 0, which is

equivalent to ηo < 2/ζo − 1. Inserting the definition of ηo := (1− ζo − ηo) /(ζo + σo) , this

results in σo > −ζo (1 + εo) /(2− ζo) By definition, ζo < 1 and σo > 0, hence the equality

is satisfied.

Part b): By analogous logic, this follows from setting 1− ζo − (1 + ζo)ηo < 0.

Part c): Equations (6) and (7) imply that ∆L log ∆io = ∆L log ∆iy + ∆ logAo−∆ logAy,

which in turn implies ∆L log ∆io = ∆L log ∆iy − (1 + ηo)∆ logAy > ∆L log ∆iy. The

inequality follows from ∆ logAy = (ā/A∗y − 1) < 0 and ηo > 0.

Proposition 5 states:

A lockdown ā ∈ (a`, A
∗
y) has the following effects on the number of deaths caused by the

pandemic:

23



a) It unambiguously increases the fatality rate.

b) It increases the mortality if and only if − ω∆L log ∆io
(1− ω)∆L log ∆iy

>
δIy
δIo

A∗y
A∗o
.

Proof. Part a): We rewrite the laissez-faire case fatality rate as

f = δIo
∆Io
∆I

+ δIy
∆Iy
∆I

= δIy + (δIo − δIy)
∆Io
∆I

, (8)

where the second equality follows from ∆I = ∆Io + ∆Iy. The lockdown-induced change in

f follows as

∆Lf = (δIo − δIy) ∆L
∆Io
∆I

(9)

Remember that Io = ωio, whence ∆Io = ω∆io and ∆L log ∆Io = ∆L log ∆io. In view of

δIo > δIy, ∆Lf is positive if and only if ∆L log ∆Io > ∆L log ∆I. Since ∆I = ∆Io + ∆Iy,

∆L log ∆I is a weighted average of ∆L log ∆Io = ∆L log ∆io and ∆L log ∆Iy = ∆L log ∆iy.

But we know from Proposition 4 that ∆L log ∆io > ∆L log ∆iy. Hence, this condition is

fulfilled.

Part b): Differentiating equation for m in (24) yields

∆Lm = δIoω∆io∆L log ∆io + δIy(1− ω)∆iy∆L log ∆iy. (10)

Setting ∆Lm > 0, we obtain

δIoω∆L log ∆io + δIy(1− ω)
∆iy
∆io

∆L log ∆iy > 0. (11)

In view of Equation (14), we may set ∆iy
∆io

=
A∗

y

A∗
o
. Remember we have assumed so = sy. Since

∆L log ∆iy < 0, we may rearrange terms in the above inequality to obtain the inequality

in part b) of the proposition.
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B Data

In our analysis, we rely on data for infections and mortality provided by Dong et al. (2020).

In addition, we use the “Containment and Health Index” compiled by Hale et al. (2021) to

measure the stringeny of lockdown measures. It takes into account lockdown measures such

as school and workplace closures, bans on social gatherings, stay at home orders and travel

restrictions, but also face covering mandates, and measures directed at the protection of the

elderly, infection contact tracing systems or vaccination policies. Our data on vaccinations

is provided by Mathieu et al. (2021). Lastly, we receive data on tests from Hasell et al.

(2020). Our sample spans from March 2020 until January 2022 and covers all US states,

as well as 15 countries in western Europe: Austria, Belgium, Denmark, Finland, France,

Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden and the

United Kingdom.

We measure monthly infections It, deaths Dt and tests Ti all relative to 100,000 people.

We define the monthly case fatality rate CFRt as:

CFRt =

∑N
d=1 Deathsd+14∑N
d=1 Infectionsd

. (12)

In the expression above, Deathsd is the number of new deaths on day d and Infectionsd the

number of new infections on day d of month t. N is the number of days in the respective

month. We move the number of deaths forward by two weeks in order to account for the

average time between infection and death of COVID-19 (Pachetti et al., 2020). Leading

the death count in the Definition (12) is meant to allow for an average 14-day duration of

illness until death occurs, if it does so at all.
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