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1. Introduction

By the tripartite auction theorem we mean the proposition that with two
bidders and known values first price, second price, and all-pay auctions are
equivalent from the point of view of the bidders. These auctions are relevant in
political economy because they provide a simple model of two groups competing
over a political prize. In voting this contest is usually an all-pay auction while
in lobbying for political favor this contest is usually a winner-pay auction, either
first or second price. The key point is that - under appropriate conditions - the
structure of the auction does not matter for the utility of the bidders. This
result has additional interest because it is known that for a variety of contests
with random outcomes, such as the Tullock contest, the utility of the bidders is
the same as in the all-pay auction.4

We study only two party auctions. While auctions have sometimes been used
to model multi-party political contests, and while it is by no means true that all
political contests involve only two parties, multi-party contests are complicated
by the fact that the prize can ordinarily be shared by several contestants, and
that coalitions can be, and often are, formed either prior to or after the contest.
In addition we treat each of the two parties as single decision makers although
in political economy parties are typically made up of many individuals. There
is a long tradition in political economy of treating groups as individuals, and
modern models such as those of ethical voters and social mechanisms provide
a theoretical underpinning for this approach.5 Social mechanism theory, in
particular, shows how particular cost functions for effort provision arise from
the underlying mechanism design problem faced by a group that must overcome
the public good problem of inducing individual members to provide effort.6 Here
we abstract from that and take the cost of effort provision as given. Hence, the
all-pay auctions models here apply to two parties or coalitions competing in an
election and the winner-pays auction to two coalitions lobbying for or against

4See Ewerhart (2017) and Levine, Mattozzi and Modica (2022).
5See See Feddersen and Sandroni (2006), Coate and Conlin (2004) and Levine and

Mattozzi (2020) .
6See Levine, Mattozzi and Modica (2022).
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some particular legislation.
As we are interested in auctions arising in political economy with effort

provision costs that arise from an underlying public goods problem for each
group, we study general cost functions. We allow bidding caps to reflect the
possibility that the parties have limited resources and we allow head starts (see
Siegel (2014)) to reflect the possibility that parties may have committed or
expressive members who will provide effort regardless of strategic considerations.
Both of these are common in the literature on auctions. We also allow the less
commonly studied possibility in which there is a fixed cost of entering into
the auction. This arises naturally in the theory of social mechanisms and is
essentially the opposite of head starts. We give precise conditions under which
the tripartite auction does hold, and conditions under which it does not. In
particular the tripartite auction theorem always holds in the generic case of
what we call standard auctions: either one group has a higher willingness to
pay or both an have equal willingness to pay and the bidding caps do not bind.
Che and Gale (1998) argue that it does not hold in the symmetric case when
there are binding bidding caps and linear cost. We extend their results to general
cost functions - and show in addition that this case is the only important one
in which the tripartite auction theorem fails.

Additionally, we study the revenue generation of the different types of auc-
tions and the implications for welfare. In the case of voting the effort has no
social value, but in the case of lobbying the effort may be in the form of trans-
fer payments to politicians, so revenue generation is of interest in that case.
Here we show that with convex cost and asymmetry the winner pay auctions
generate more revenue than the all-pay auction, and that this result continues
to hold provided cost is not “too concave.” This forms a sharp contrast to the
results for the symmetric case with linear cost and symmetric uncertain values
where Krishna and Morgan (1997) show that the all-pay auction generates
more revenue. In the political economy setting, where the value of the prize to
the parties is not easily kept secret, with linear cost it is only when values are
symmetric (or one party is unwilling to bid) that the all-pay auction does as
well as the winner pays auctions.
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2. The Model

Two bidders indexed by k 2 {1, 2} compete for a prize worth Vk > 0 to
contestant k. Each bidder chooses a bid bk � 0. We define ck(bk) the cost of bk
relative to the value of the prize Vk and without loss of generality we divide the
objective function by Vk so that the value of the prize is normalized to 1 and so
that the ck(bk) is the cost of bidding bk.

We assume that ck(bk) � 0 and that that ck(0) = 0. We assume that
ck(bk) is continuous for bk > 0 and that it is strictly increasing for ck(bk) > 0.
This allows for head starts where ck(bk) = 0 for some initial interval of bids
and for a fixed cost of entry where ck(bk) is discontinuous at bk = 0. We
define ck(0+) ⌘ limbk#0 ck(bk). If ck(0+) = 0, ck is clearly continuous. In the
discontinuous case where ck(0+) > 0 we allow a bid of 0+ which beats 0 and costs
ck(0+) - this corresponds to an infinitesimal bid. We assume ck(0+) < 1 for at
least one k - otherwise no bidding takes place. To avoid a horde of uninteresting
special cases we also make the generic assumption that ck(0+) 6= 1.

On the upper end of ck(bk), we assume that large enough bids are more
costly than the prize, that is, for some bk we have ck(bk) > 1. In addition there
are bidding caps: k cannot bid more than bk where ck(bk) > 0. Note that there
is no lack of generality in this: if ck(bk) > 1 the bidding caps will not bind.

We define bk ⌘ inf{bk|ck(bk) > 0}: this is the lowest bid that is not weakly
dominated. We define the desire to bid as Bk satisfying ck(Bk) = 1; in the
discontinuous case when ck(0+) > 1 we take Bk = 0. We define the willingness

to bid as Wk ⌘ min{Bk, bk} and say that bidder k is advantaged if Wk > W�k.
We use the letter d for disadvantaged, and write W�d > Wd; we may also write
Wd for minWk. Note that if ck(0+) > 0 then bk = 0 and observe that bk > bk,
Wk � bk and if either ck is continuous or ck(0+) < 1 then Wk > bk. Observe
also that if W�d > Wd it must be c�d(0+) < 1 (for ck(0+) � 1 implies Wk = 0).

We will study three types of auctions. In each both bidders submit bids. We
will assume that if both cost functions are discontinuous and both submit a bid
of 0 neither wins the prize. The first two auctions are winner pays auctions. In
a second price auction the high bid wins and pays the low bid. In a first price

auction the high bid wins and pays their own bid. In the all-pay auction both
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pay their bid and the high bid wins.

At this point we digress briefly to discuss modeling choices. The strategy
spaces for these auctions are infinite and payoffs are fundamentally discontinu-
ous since shifting a bid from slightly below to slightly above an opponent’s bid
turns a certain loss into a certain win. Our base concept is Nash equilibrium, and
there is a satisfactory general theory of Nash equilibrium for these games - that
of Simon and Zame (1990). However, for existence of equilibrium this theory
requires that in cases of equal bids the tie breaking rule cannot be arbitrary but
must be correctly chosen. Moreover, Nash equilibrium is not always adequate
for our purposes. We can illustrate the issues in the first price auction where
one bidder is willing to bid less than the other. Here it is a Nash equilibrium
for the disadvantaged bidder to bid any amount greater than their value but
less than the value of the advantaged bidder and for the advantaged bidder to
bid the same with the endogenous tie-breaking rule that the advantaged bidder
wins. These equilibria make little sense as it is weakly dominated for the dis-
advantaged bidder to bid more than their value, and we wish to rule them out.
Indeed much of Bernheim and Whinston (1986)’s modeling of menu auctions
revolves around doing exactly this. There is, however, no general theory of Nash
equilibrium in weakly undominated strategies for discontinuous games with a
continuum of actions, and as indicated below we will make several modeling
choices to rule out “enough” weakly dominated strategies, while still assuring
existence of equilibrium.

Concerning tie-breaking rules, in both the first-price and all-pay auction we
introduce them at the top and at the bottom: except in these cases, in the event
of a tie each bidder has a 50% chance of winning. For the first-price and all-pay
auctions the tie-breaking rule at the top specifies that if W�d > Wd and there
is a tie at b�d = bd = Wd then �d wins for sure. This tie-breaking rule reflects
the fact that �d could bid a little higher and win for sure while d would not
wish to do so. At the bottom it specifies that if ck(0+) > 0 and c�k(0+) = 0

and both bid 0 then k loses for sure since �k can raise the bid at minimal cost
and �k cannot.

A strategy for bidder k is is a cdf Gk on [0,1). Corresponding this is a
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probability measure and if B is a measurable set we will write Gk[B] for the
probability of the set according to that measure.

Turning to weak dominance we mean with respect to all opponents bids,
feasible or not. As indicated, our equilibrium notion is Nash in which no bidder
plays any weakly dominated strategy, but we make one exception: a bidder
k may always bid Wk. The reason for this exception is that weak dominance
is not well behaved in games with a continuum of actions. Bids lower than a
headstart bk < bk are weakly dominated by bk and this is fine because the set
of undominated bids is closed. However, bidding Bk > 0 in a first price auction
is weakly dominated by bidding a bit less since bidding your value guarantees
getting nothing. This leads to an open set of undominated bids and that creates
an existence problem. In particular in a first price auction where bidding caps
do not bind and both bidders have the same value Bk = B�k we would like it to
be an equilibrium for both the bid their value and get nothing. In order to allow
this we must allow bidding Bk as the limit of weakly undominated strategies,
although it is itself weakly dominated.

We study both equilibrium strategies - in the winner pays auctions these
are relatively simple, but not so in the all-pay auction - and utility equivalence

meaning that the utilities of both bidders are the same in the auctions. In the
final section we also study revenue.

While we do not want to limit attention to “generic” parameters, and in
particular we want to allow the non-generic but important case of symmetry,
we do not study all auctions. As indicated above we always assume ck(0+) 6= 1.
Moreover, we say that an auction is special if for one bidder j we have cj(bj)  1,
so that the bidding cap binds, and for the other we have b�j � bj and c�j(bj) = 1.
Special auctions are weakly symmetric in the sense that Wj = W�j (because
both are equal to bj in this case). Special first price auctions are badly behaved:
it is an equilibrium for j to bid Wj and for �j to bid Wj with probability
1 � ⇡ > 0 and Wj � ✏ with probability 1�⇡ where ✏ (dependent on ⇡) is chosen
so that for j bidding Wj is at least as good as bidding slightly more than Wj�✏,
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that is (1� ⇡)(1� cj(Wj � ✏))  (1� ⇡/2)(1� cj(Wj)), equivalently

1� ⇡

1� ⇡/2
 1� cj(Wj)

1� cj(Wj � ✏)
.

Hence �j gets zero while j gets (1�⇡/2)(1�cj(bj)), that is any amount between
(1/2)(1�cj(bj)) and 1�cj(bj). By contrast in the second price auction the only
equilibrium is for both to bid W and for j to get (1/2)(1 � cj(bj)), so utility
equivalence fails rather badly.

As it would be a terrible coincidence if one bidder happened to be indifferent
between winning and staying out at the other’s bidding cap we study only
auctions that are not special. It is in the same spirit that we have ruled out the
case ck(0+) = 1 in which a bidder happens to be indifferent between staying out
and paying the fixed cost and winning for certain.

Roadmap

We say that an auction is standard if either one bidder is advantaged W�d >

Wd or if they have equal willingness to pay Wk = W�k = W and the constraints
do not bind so that Wk = W�k = Bk = B�k. An auction is weakly symmet-

ric with high stakes if both bidders have the same strictly binding bidding cap
bk = b�k with cj(bj) < 1 for both j. While weakly symmetric with high stakes
auctions are not generic, they are important. For example, in the theory of
voting, bidding caps are naturally interpreted as party size and Downsian plat-
form competition prior to the election may force equality of party sizes. In the
case of all-pay lobbying, as in Che and Gale (1998), the bidding caps are equal
because they are established by law and apply equally to each lobbying group.

We first show that if an auction is not special it is either standard or weakly
symmetric with high stakes.

Lemma 1. If an auction is neither standard nor special it is weakly symmetric

with high stakes.

Proof. Since the auction is not standard the bidders must have equal willingness
to pay Wk = W�k = W and the constraint must strictly bind for one of them,
that is, for one j we have cj(bj) < 1. This establishes that W = bj. Observe
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that if c�j(bj) > 1 then W�j < bj so that weak symmetry is violated. Hence
we can have weak symmetry and cj(bj) < 1 only when c�j(bj)  1. Moreover,
we cannot have b�j < bj as this would violate weak symmetry. Hence, since the
auction is not special, c�j(bj) 6= 1, so c�j(bj) < 1. This means in addition that
if b�j > bj weak symmetry is violated. Hence b�j = bj = W , so the auction is
weakly symmetric with high stakes.

In standard auctions we will show that the first price and all-pay auctions
are utility equivalent, and the first and second price auctions are utility equiva-
lent unless both cost functions are discontinuous and the disadvantaged bidder
is unwilling to bid, in which case the second price auction is better for the
advantaged bidder.

In weakly symmetric auctions with high stakes we show that the first and
second price auctions are utility equivalent but the all-pay auction is not. We say
that a weakly symmetric high stakes auction has very high stakes if ck(bk) < 1/2

for both k: in this case the all-pay auction gives lower utility than the winner-
pays. To further study the all-pay auction in the remaining case where for at
least one bidder j we have cj(bj) > 1/2 - which we call moderately high stakes -
we make the additional generic assumption that ck(bk) /2 {1/2, (1 + ck(0+))/2}
for either k. In this case one bidder gets zero, less than in the winner-pays
auctions, but the other bidder may get either more or less.

We turn now to the details. We assume throughout, without further stat-
ing, that auctions are not special. By Lemma 1 this means auctions that are
either standard or weakly symmetric with high stakes. We always assume that
ck(0+) 6= 1 for both k.

3. Equilibrium

The characterization of second price auctions follows from the usual consid-
erations of weak dominance:

Theorem 1. In the second price auction unique equilibrium each bidder bids

her willingness to bid Wk. An advantaged bidder �d with W�d > Wd gets

1 � c�d(Wd) and the other bidder d gets nothing. If Wk = W�k = W > 0 then

bidder k gets (1/2)(1� ck(W )). If Wk = W�k = 0 both get 0.
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Proof. The strategies follow from the fact that in a second price auction bidding
the willingness to bid weakly dominates all other strategies. The payoffs follow
directly; in particular Wk = W�k = 0 implies both have discontinuous cost so
when bidding zero the prize is not awarded. Note that cd(Wd) might not be
equal to c�d(Wd) if the constraint b�d binds.

We turn to first-price auctions.

Theorem 2. In any equilibrium of a first-price standard auction:

1. If Wd = 0 then the disadvantaged bidder d bids 0 and gets nothing while

the advantaged bidder �d bids 0+ and gets 1 � c�d(0+). If �d’s cost is also

discontinuous this is not equivalent to the second price auction where �d gets

1� c�d(0) > 1� c�d(0+), otherwise it is.

2. If W�d > Wd then �d bids Wd and d loses for sure and chooses Gd with

support in [bd,Wd] such that it is optimal for �d to bid Wd. One such strategy

is to bid Wd for certain. The advantaged bidder �d gets 1� c�d(Wd). Utilities

are equivalent to the second price auction.

3. If Wk = W�k = Bk = B�k one k bids minWk and the other k chooses Gk

with support in [bk,Wk] such that it is optimal for �k to bid minWk, and both

get zero. Utilities are equivalent to the second price auction.

Proof. We start from the first case: For Wd = 0 it must be that cd(0+) > 1

(since we ruled out it being equal to 1), and by assumption then 1 > c�d(0+).
Hence d must bid 0. If �d bids 0 then �d loses for sure because the prize is not
awarded. As 1 > c�d(0+) it would be better to bid 0+ and needlessly costly to
bid more, so this is the equilibrium. The payoffs follow directly.

The other two cases we prove making use of a Lemma. We let Gk be the inf
of the support of Gk.

Lemma 2. In any equilibrium of a first price auction:

1. Bids by k are in the range [bk,minWk].

2. If minWk > minGk then one bidder gets zero and the other bidder bids

minWk.

Proof. By weak dominance bk  Wk and bk � bk. In no case does either bid
more than minWk. If W�d > Wd then the tie-breaking rule means it is better
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for �d to bid Wd than higher because this guarantees a win. Note that without
the tie-breaking rule d might not have an optimal bid. If W�d = Wd this follows
from bk  Wk. This proves (1).

Suppose minWk > minGk. If there is a k such that ck(bk) is discontinuous
and k plays 0 with positive probability, since a 0 bid yields zero for sure (either
because c�k(0+) = 0 or because both are discontinuous and if both bid zero
the prize is not awarded) then k gets 0. Suppose on the contrary that a k

with discontinuous ck (if any) does not play zero with positive probability. If
minGk = 0 it cannot be that both have an atom at 0+ since it would be better
to bid a bit more. For the same reason, if minGk > 0 it cannot be that both
have an atom at minGk > 0. Suppose that �k has no atom at 0+ if minGk = 0

or at minGk > 0. If Gk > minGk then �k gets zero. If Gk = minGk then
k bidding down to Gk and �k having no atom there implies that k gets zero.
The reason is that k is bidding with positive probability in any interval (Gk, bk]

and those bids win with probability at most G�k(bk) ! 0 as bk ! Gk. Finally,
suppose that k gets zero. If �k bids less than minWk then k would have a bid
giving a positive payoff, so �k must bid minWk with probability 1.

Next we prove Theorem 2.

Proof. As we have already dealt with case (1) we may assume Wd > 0. If
both bidders bid minWk this is an equilibrium and we are done. Suppose
instead that one bidder bids Gk with support in [bk,Wk]. If so Lemma 2 implies
minGk < minWk so from Lemma 2 one bidder gets zero and the other bids
minWk with probability 1. If W�d > Wd then �d does not get zero, so �d is
bidding minWk which means by the tie-breaking rule that d loses for sure. If
Wk = W�k = Bk = B�k then whichever k bids minWk also gets zero.

We now consider the case of a standard all-pay auction.

Theorem 3. In any equilibrium of a standard all-pay auction:

1. If Wd = 0 the strategies and payoffs are exactly as in the first price

auction.
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2. If Wd  b�d bids are bd = bd and b�d = b�d, hence d gets 0, and �d

gets 1 � c�d(Wd) = 1 � c�d(b�d) = 1. Utilities are equivalent to the first price

auction.

3. If Wd > b�d the advantaged bidder �d gets 1 � c�d(Wd) and the dis-

advantaged bidder gets 0. The range (max bk,minWk) is nonempty, and in

that open interval the strategies are given by Gd(bd) = 1 � c�d(Wd) + c�d(bd)

and G�d(b�d) = cd(b�d) while Gk(minWk) = 1. All remaining probability

is on {bd, b�d, 0
+}. The disadvantaged bidder d has an atom at b�d of size

G0
d = 1 � c�d(Wd) + limbd#max bk c�d(bd). The advantaged bidder �d has an

atom at b�d if c�d(b�d) is continuous and at 0+ if not. The size of the atom is

G0
�d = limbd#max bk cd(bd). Utilities are equivalent to the first price auction.

While the detailed proof of the crucial third case is complex the idea which
dates back to Hillman and Riley (1989) is not. They studied the case of linear
cost and no bidding caps, but the case of strictly increasing continuous cost
with Wd < W�d, which is in Levine and Mattozzi (2020) is no more difficult.
The idea is to deal first with low bids then with high bids. Low bids have to
be very near zero, for if not someone is losing almost for sure and bidding a
positive amount and would do better to bid zero. The near zero bidder must
be earning zero, and it must be the disadvantaged bidder since the advantaged
bidder can insure a positive utility by bidding a bit more than Wd. This is
the first half of equivalence: the disadvantaged bidder gets nothing. Then we
turn to the high bids. These have to be near Wd for if not the disadvantaged
bidder can bid close to Wd and get positive utility. However, the disadvantaged
bidder cannot actually bid Wd with positive probability since then it would get
negative utility. Hence the advantaged bidder must be indifferent to bidding
at Wd and winning for sure, which is exactly what they do in the winner-pays
auctions, hence the equivalence.

Proof. In the first case for Wd = 0 it must be that cd(0+) > 1 (since we ruled
out it being equal to 1). Hence d must bid 0. Given this, the auction now
becomes a first price auction for �d.

In the second case by weak dominance neither bids more than minWk. If
W�d > Wd then for �d the tie-breaking rule means it is better to bid Wd rather
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than higher because this guarantees a win. Note that here again without the
tie-breaking rule d might not have an optimal bid. Since b�d � Wd > 0 then
c�d cannot be discontinuous for that would imply b�d = 0. Suppose then that
Wd  b�d and c�d(b�d) is continuous. The unique equilibrium is bd = bd and
b�d = b�d, hence d gets 0, and �d gets 1. The third case we prove through a
series of Lemmas in Appendix I.

4. High Stakes in Symmetric Auctions

We turn now to the non-standard case. As we are not studying special
auctions, this means by Lemma 1 that we study symmetric auctions with high
stakes in which the bidding caps are identical and strictly bind on both bidders.

Theorem 4. In weakly symmetric high stakes first or second price auction there

is a unique equilibrium and both bid bk = W and utility for k is (1/2)(1�ck(W )).

Proof. In the second price auction the equilibrium strategies are given by 1.
Turning to the first price auction, notice that both k must get positive utility

since by bidding W they get at least 1/2� (1/2)ck(bk). In a weakly symmetric
high stakes auction this is strictly positive. Hence Lemma 2 shows that this
implies W  minGk, that is, neither can bid less than W . From the equilibrium
strategies each has a 1/2 chance of winning so the payoffs follow.

We next turn to the all-pay auction. Our treatment generalizes that of Che
and Gale (1998) who study only linear cost functions. Recall that a weakly
symmetric high stakes auction has very high stakes if ck(bk) < 1/2 for both k.

Theorem 5. In a weakly symmetric very high stakes all-pay auction there is a

unique equilibrium, both bid bk = W and utility for k is 1/2� ck(W ).

Proof. Notice that both k must get positive utility since by bidding W they get
at least 1/2 � ck(bk) > 0. Lemma 3 shows that then neither can bid less than
W . From the equilibrium strategies each has a 1/2 chance of winning so the
payoffs follow.
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In these auctions, while the all-pay strategies are the same as in the winner
pays auctions, utility is strictly less since the bid has to be paid even when the
auction is lost.

We next study the remaining weakly symmetric high stakes case with mod-

erate stakes in the sense that for one bidder j we have cj(bj) > 1/2. In Lemmas
5, 6 and 7 we characterize the equilibria and payoffs for the moderately high
stakes case. For one part of the result we need the additional generic assumption
that ck(bk) 6= (1 + ck(0+))/2 .

Theorem 6. In a weakly symmetric moderately high stakes auction with ck(bk) 6=
1/2 for either k, if ck(0+) < 2ck(W )�1 we may define b̃k as the unique solution

to ck(bk) = 2ck(W )� 1 and otherwise set b̃k = 0.

1. if max b̃k > max bk there is a unique equilibrium. Choose z 2 {1, 2} so

that b̃z � b̃�z. Then z gets zero and �z gets û�z = c�z(max b̃k)�(2c�z(W )�1).

At W there are atoms Gk[{W}] = 2(1� c�k(W )� û�k). In (max bk,max b̃k) the
equilibrium strategies are given by Gz(bz) = c�z(bz)+ ûz and G�z(b�z) = cz(bz).

All remaining probability is on {bz, b�z, 0
+}. Bidder z has an atom at b�z.

Bidder �z has an atom at b�z if c�z(b�z) is continuous and at 0+ if not. The

size of the atoms are G0
�k = limbk#max b` ck(bk) + ûk.

If max b̃k  max bk but ck(bk) 6= (1 + ck(0+))/2 for both k then

2. if c�j(b�j) > 1/2 there are three equilibria. In one both bidders get zero

and have an atom at W of Gk[{W}] = 2(1 � c�k(W )), with the remaining

probability at 0. For each bidder z there is an equilibrium in which z gets 0

and �z gets û�z = c�z(0+) � (2c�z(W ) � 1). Bidder �z has G�z[{W}] =

2(1� cz(W )) with the remaining probability at 0+ while Gz[{W}] = 2(c�z(W )�
c�z(0+) with the remaining probability at 0.

3. if c�j(b�j) < 1/2 there is a unique equilibrium in which j gets 0 and �j

gets û�j = c�j(0+)� (2c�j(W )� 1). Bidder �j has G�j[{W}] = 2(1� cj(W ))

with the remaining probability at 0+ while Gj[{W}] = 2(c�j(W )� c�j(0+) with

the remaining probability at 0. This is the same as the second type of equilibrium

in case (2) in which z = j.

The proof can be found in Appendix II, and an immediate implica-
tion is
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Corollary 1. In a weakly symmetric moderately high stakes all-pay auction

with ck(bk) /2 {1/2, (1 + ck(0+))/2} for either k, a bidder z that gets 0 in the

all-pay auction gets strictly less than in the winner-pays auctions. If max b̃k >

max bk then �z gets c�z(max b̃k)� (2c�z(W )� 1), otherwise �z gets c�z(0+)�
(2c�z(W )� 1). This can be greater than the payoff in the winner-pays auctions

(1/2)(1 � c�z(W )), if for example c�z(W ) is close to zero; it can also be less,

for example, if b̃z = b̃�z and both get zero.

5. Revenue and Welfare Considerations

We turn now to the more standard question in auction theory, that of revenue
equivalence. That is, so far we have been considering the utility of the parties.
What happens with the bids? Even for elections politicians and some others
seem to feel that high turnout, that is, high revenue as measured by the number
of votes, is a vindication of democratic ideals or something like that, or, in the
case of politicians, they simply view it in much the same way as athletes who like
a larger audience. In the case of bribes, whether in the form of lavish dinners or
high paying low responsibility jobs either for relatives or after the fact, the bids
are to an extent a transfer payment, so the revenue is not entirely lost. Hence,
from an efficiency point of view, given that the parties are indifferent between
the different types of auctions, higher expected revenue is welfare improving.
Hence we now take the point of the auctioneer and ask which auction yields the
highest expected revenue?

The first price auction and second price auction are easily seen yield the
same revenue - this is the standard revenue equivalence result in the simplest
case of known values. If 1 > c�d(0+) > 0 and Wd = 0 the winner incurs a greater
cost but still pays nothing to the auctioneer; in the other cases the winning bid
is the same for both auctions, so in all cases the auctioneer gets minWk. Note
that the second price auction is more efficient than the first price auction when
it avoids an unnecessary fixed cost. What about the all pay auction?

To get a bit of intuition recall from Theorem 3 that the equilibrium cdfs in
the all pay auction are roughly given by the opponents cost plus their utility.
If the cost - and so the cdf - is convex then the density is downwards sloping
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meaning that bids tend to be low, while if it is concave then the density is
upwards sloping meaning that bids tend to be high. Hence we might expect
that convexity also means low revenue, while concavity means high revenue.
Our first result addresses the convex case and shows that this intuition is exact.

Theorem 7. In a standard auction

1. if Wd = 0 or Wd = W�d and ck(bk) is linear for both k then the all-pay

auction is expected revenue equivalent to the first price auction. Otherwise

2. if ck(bk) is convex for both k then the all pay auction yields strictly less

expected revenue than the first price auction.

Proof. If Wd = 0 we already observed in Theorem 3 that the all pay auction is
the same as the first price auction so certainly yields the same expected revenue.
We treat the remaining cases.

Let b̃k be the random variable on [0,Wd][{0+} that is the equilibrium bid of
k in the all pay auction and let pk represent k’s equilibrium chance of winning.
From Theorem 3 �d gets 1�c�d(W ) so 1�c�d(W ) = p�d�Ec�d(b̃�d). Similarly
as d gets 0 we have 0 = pd � Ecd(b̃d). Adding these together we see that in
equilibrium c�d(Wd) = Ec�d(b̃�d) + Ecd(b̃d). Dividing through by c�d(Wd) as
this is certainly positive we can write this as

Ec�d(b̃�d)

c�d(W )
W +

cd(Wd)

c�d(Wd)

Ecd(b̃d)

cd(Wd)
Wd = Wd

where we know that Wd is the revenue from the first price auction. Moreover,
if ck(bk) is (weakly) convex since ck(0) = 0 it follow that ck(bk) � ck(Wd)bk/Wd

including for bk = 0+ with strict inequality unless ck(bk) is linear. We may write
this as

bk 
ck(bk)

ck(Wd)
Wd (5.1)

so that
Eb̃�d +

cd(Wd)

c�d(Wd)
Eb̃d  Wd (5.2)

with strict inequality if either ck(bk) fails to be linear. Recalling that this is
a standard auction, in the symmetric case cd(Wd) = c�d(Wd) and with linear
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cost this holds with equality which is the second part of (1). Otherwise the
inequality is strict.

What about the concave case? To start with, the reverse result is not true.
The inequality 5.1 is reversed so the revenue inequality 5.2 is reversed reading

Eb̃�d +
cd(Wd)

c�d(Wd)
Eb̃d � Wd

but while concavity pushes revenue in favor of the all pay auction, this is not
enough because of the term cd(Wd)/c�d(Wd) which is less than one unless the
auction is symmetric. Roughly speaking the more asymmetric is the auction
the greater the concavity needed in cost for the all pay auction to generate more
revenue that the first price auction. In one important special case we can make
this trade-off explicit.

We say the �d has a homogeneous cost advantage over d if c�d(b�d) =

⌫cd(b�d) with ⌫ < 1. Define ⌦ = (1/Wd)
RWd

0 cd(bd)dbd. This is a measure of
the convexity of cd(bd). In fact, ⌦ = 1/2 if cd(bd) is linear, ⌦ > 1/2 if cd(bd) is
strictly convex, and <1/2 if cd(bd) is strictly concave.

Theorem 8. In a standard auction if �d has a homogeneous cost advantage,

bd = 0 and ck(bk) is concave for both k, the all pay auction generates more

expected revenue than the first price auction if and only if

⌦ <
⌫

1 + ⌫
cd(Wd).

Note that the RHS is no greater than 1/2. We see from this that there are
two forces working against revenue in the all pay auction: the RHS is increasing
in ⌫ so less symmetry, meaning smaller ⌫ requires greater concavity meaning
smaller ⌦. Second, the RHS is increasing in cd(Wd) so that when the constraint
binds on d and cd(Wd) < 1 greater concavity is also required.

Proof. With a homogeneous cost advantage bd = b�d so both are zero. Con-
cavity implies ck(0+) = 0. Hence from Theorem 3 Gd[{0}] = 1 � c�d(Wd)

and 1 � G�d[{Wd}] = cd(Wd) and these are the only atoms. Moreover in
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(0,Wd) we have G�d(b�d) = cd(b�d) and Gd(bd) = c�d(bd) + 1 � c�d(Wd). In-
tegrating by parts we have Eb̃�d =

RWd

0 [1� cd(b�d)] db�d = Wd � ⌦Wd and
Eb̃d =

RWd

0 (c�d(Wd)� c�d(bd))dbd = Wdc�d(Wd)� ⌫⌦Wd. Adding up we get

Eb̃�d + Eb̃d = (1� ⌦+ ⌫cd(Wd)� ⌫⌦)Wd

Hence the all pay auction generates more expected revenue than the first price
auction exactly as stated.

6. Conclusion

We conclude by mentioning some economic conclusions to be drawn from
our thoretic results. First, there is a long literature about the fact that small
groups have an advantage in lobbying7 - while the opposite is the case in voting.8

Payments to politicians, when they are not direct cash payments, are typically
in the form of employment contracts after leaving office, book deals, employment
for spouses, and so forth9 - and these are only paid by the winner. Empirically,
then, lobbying is typically a winner pays auction, while, of course, voting is an
all pay auction. In principle this difference in mechanism might favor either
larger or smaller groups: but the results here show that this is not the case -
we have shown that only in very special circumstances do the consequences of
the auction mechanism make a difference to the utility of the bidders. Hence
we must look elsewhere to explain why small groups excel at lobbying and large
groups in elections. Second: the reason for the difference in mechanisms should
be clear - again, except under special circumstances, the winner pays auctions
generate more revenue than the all-pay auction, so naturally politicians have an
incentive to employ the former rather than the latter.

7See Olson (1965).
8See Levine and Mattozzi (2020)
9See Levine, Mattozzi and Modica (2022)
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Appendix I: All-Pay Auction Proofs

We now develop the key properties of the all-pay auction that lead to The-
orem 3.

Lemma 3. In an all pay auction with b�d < Wd  W�d

1. Bids are either min bk, 0
+

or in the range [max bk,minWk] and in partic-

ular Gk(minWk) = 1.

2. In the non-empty range (max bk,minWk) there can be no atoms and

bidder k with bk < b�k cannot have an atom at b�k.

3. Unless both have an atom of size 1 at minWk one of the two bidders

must get zero and there is a G such that there can be no open interval with zero

probability for either bidder in (max bk, G), and [G,minWk) has zero probability.

If one does not have an atom at minWk then G = minWk and in particular

each bidder must bid arbitrarily close to max bk and minWk.

4. Suppose that Wd = W�d and for one k we have ck(bk) > 1/2. Then both

do not have an atom of size 1 at minWk. If the auction is a standard one then

both do not have an atom at minWk.

Proof. 1. The hypothesis b�d < Wd  W�d implies that Wk > 0 for both k.
This implies ck(0+) < 1 so Wk > bk. By weak dominance we may assume there
are no bids bk 2 [0, bk) as these are weakly dominated by bk. By weak dominance
we may assume that bk  Wk since bk > Wk is weakly dominated by bidding 0.

After applying weak dominance we are free to apply iterated strict domi-
nance as this does not eliminate any equilibrium strategies. By strict domi-
nance we may assume that bk  W�k since bk > W�k is strictly dominated by
bk � (bk �W�k)/2. In particular Gk(minWk) = 1 as asserted. By strict dom-
inance we may assume there are no bids bid bk for which bk < bk < b�k since
b�k � b�k so that such bids are costly but losing.

Putting this together, we may restrict bids bk to be either min bk, 0
+ or in

the range [max bk,minWk]. By assumption Wk > b�k for both bidders. Since
Wk > bk this implies (max bk,minWk) is nonempty.

2. In the range (max bk,minWk) there can be no atoms by the usual ar-
gument for all-pay auctions: if there was an atom at bk then bidder �k would
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prefer to bid a bit more than bk rather than a bit less, and since consequently
there are no bids by �k immediately below bk bidder k would prefer to choose
the atom at a lower bid. It is also the case that a bidder k with bk < b�k cannot
have an atom at b�k. If �k has an atom there, then k should increase its atom
slightly to break the tie. If �k does not have an atom there, then k should shift
its atom to bk since it does not win either way.

3. Assume it is not the case that both bidders have an atom of size 1 at
minWk.

Let Gk ⌘ inf{bk|Gk ((bk,minWk)) = 0} - this is basically the highest bid by
k with positive probability - and G = maxk Gk. We observe that in (maxk bk, G)

there can be no open interval with zero probability from either bidder. If bidder
k has such an interval, then bidder �k will not submit bids in that interval
since the cost of the bid is strictly increasing so it would do strictly better to
bid at the bottom of the interval. Hence there would have to be an interval in
which neither bidder submits bids. But then, for the same reason, it would be
strictly better to lower the bid for bids slightly above the interval. This implies
that if G > max bk each bidder must bid arbitrarily close to maxk bk.

We can now show that one of the two must get zero. Denote by B ⌘
{bd, b�d, 0

+}. If G > max bk both must bid arbitrarily close to max bk. If
G = max bk since both do not have an atom of size one at minWk one must
put positive weight on the set B. If only one does so they get zero, so we may
assume both do so.

Suppose first that max bk > 0 or both have continuous cost. From (2) a
bidder k with bk < b�k cannot have an atom at b�k. If bk = b�k > 0 or both
have continuous cost both cannot have an atom at bk since both would like to
bid a bit more.

If G > max b` since one k has an opponent without an atom at max b` and
(Gk,minWk) has zero probability, then bidding down to max b` bidder k can get
more than zero only if �k has positive probability of playing less than max b`;
this implies that max b` = bk and that �k gets zero since her bids below bk lose
for sure and have positive probability.

If G = max bk then both must have a positive probability of playing B so
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for one k it must be that bk = max bk so k has an atom there. This means that
�k does not so loses for sure and gets zero.

Suppose now that max bk = 0 and that k has a discontinuous cost. If k bids
0 with positive probability then k gets zero, so we may assume this is not the
case. Hence if �k bids 0 with positive probability then �k gets 0 so we may
assume neither has an atom at 0. They cannot both have an atom at 0+ so one
` has an opponent without an atom there. If G = 0 then ` should not bid 0+

since this loses for sure. This implies that ` has an atom of size 1 at mink Wk

and since �` does not �` has a bid that loses for sure, so cannot get more than
0 so �` must get 0. If G > 0 then ` bidding down to zero must get zero.

This establishes that unless both have an atom of size 1 at minWk one must
get zero.

Suppose that one does not have an atom at minWk. If neither has an
atom and G < minWk then each can get can get a positive utility by bid-
ding (minWk + G)/2, contradicting the fact that one must get zero. If k has
an atom and �k does not and G < minWk then k should move their atom to
a lower bid.

4. Suppose in addition that either W�d > Wd or if Wd = W�d then for one
k we have ck(bk) > 1/2. Then both do not have an atom of size 1 at minWk. If
in fact the auction is a standard one then both to not have an atom at minWk.

Suppose that Wd = W�d and for one k we have ck(bk) > 1/2. If both have
an atom of size one at minWk then k has a negative utility. So this is ruled out.

If W�d > Wd and �d has an atom at minWk then d loses for sure so has
negative utility. The other standard auction case is Wk = W�k = Bk = B�k

so if both have an atom both get negative utility because the probability of
winning Bk is less than one, while the probability of paying Bk is one. This
shows that in the standard case both do not have an atom.

Next we prove Theorem 3.

Proof. In both cases from Lemma 3 (3) and (4) G = minWkso both must bid
arbitrarily close to minWk.

If W�d > Wd then �d can get û�d = 1� c�d(Wd) > 0 by bidding Wd. Hence
it must be �d that gets zero. On the other hand �d cannot get more than
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this as they must bid arbitrarily close to Wd so must get less than or equal
this amount. In the symmetric case each k must bid arbitrarily close to Wk so
cannot get a positive amount.

We now find the equilibrium strategies. From the absence of zero probability
open intervals in (max bk,minWk) it follows that the indifference condition for
the advantaged bidder �d is

Gd(b�d)� c�d(b�d) = 1� c�d(Wd)

must hold for at least a dense subset. For the disadvantaged bidder we have

G�d(bd)� cd(bd) = 0

for at least a dense subset. This uniquely defines the cdf for each bidder in
(max bk,minWk):

Gd(bd) = 1� c�d(Wd) + c�d(bd)

and
G�d(b�d) = cd(bd)

As these are differentiable they can be represented by continuous density func-
tions which are by taking the derivative.

The remaining probability mass must be on B = {bd, b�d, 0
+}. If d has an

atom at 0+then �d does not.
If �d gets positive then �d does not have an atom at 0, In this case d must

have an atom at bd which must lose for sure. This means that for �d the mass
is on either b�d or if c�d(b�d) is discontinuous, on 0+. Note that in the case
where b�d < bd so the advantaged bidder has less of a head start advantage than
d it could only be the case that �d had an atom at b�d if �d was also getting
zero. However, in this case we see that G�d(max bk) = G�d(bd) = cd(bd) = 0 so
in fact �d places no probability on B.

If both get 0 and b` > 0 for some ` then each k must put their mass on bk.
Finally if both get 0 and bk = b�k = 0 then Gk(0+) = c�k(0+) each must

put their mass on zero, otherwise the other would strictly prefer 0+.
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We may compute the size of these atoms from the excess probability mass
from Gk as G0

d = 1�c�d(Wd)+c�d(max bk) and G0
�d = cd(max bk). In particular

if max bk = bd then G0
�d = 0, otherwise G0

�d = cd(b�d) which means if d bids b�d

and wins for sure that d gets 0. Moreover if c�d(b�d) is discontinuous so that
b�d = 0 then max bk = bd so there is no atom.

Appendix II: Weakly Symmetric Moderately High Stakes Auctions

Here we prove Theorem 6.

Lemma 4. In a weakly symmetric moderately high stakes auction with ck(bk) 6=
1/2 for either k, both have an atom at W of size less than one, one bidder, z,

gets zero and there is a G < W such there can be no open interval with zero

probability for either bidder in (max bk, G) and [G,W ) has zero probability. If

ûk are the equilibrium utilities the size of the atoms are given by Gk[{W ]} =

2(1� c�k(W )� û�k).

Proof. By definition for some j we have cj(W ) > 1/2. The parts that do not
follow directly from 3 and 4 are that both must have an atom, the size of the
atoms, and that G < W . Observe that the utility to �k from bidding W is
û�k = 1 � Gk[{W}] + Gk[{W}]/2 � c�k(W ) = 1 � Gk[{W}]/2 � c�k(W ). We
may write this as Gk[{W ]} = 2(1 � c�k(W ) � û�k), the result for the size of
the atom. Since ûz = 0 it follows that G�z[{W ]} = 2(1 � cz(W )) > 0 so that
�z has an atom. If z does not have an atom then G = W otherwise �z would
lower their atom a bit. The result will follow from G < W .

The intuition for G < W is this. In the asymmetric case where the con-
straints bind z = d the disadvantaged bidder. Although �z has an atom at W

if z were to try to bid minWk then the tie-breaking rule means that z would
lose for sure reflecting the fact that �d is willing to bid a bid more than minWk

and d is not. Here, however, neither is able to bid more than W , so if z bids
W they win with probability 1�G�z{[W ]}/2 > 1/2 and this is a substantially
higher probability than bidding just below W .

Specifically if G = W there must be a sequence of bids by z approaching W

with zero utility. That is, these bids have cost nearly cz(W ) and have very little
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chance of losing except to the atom by �z at W . Specifically as bz " W it must
be that 1�G�z[{W}]� cz(bz) ! 0. Since cz is continuous at W > 0 it follows
that 1�G�z[{W}]� cz(W ) = 0. Hence for bidding W we find that z gets

1�G�z[{W}]/2� cz(W ) = 1� (1� cz(W ))/2� cz(W ) = (1/2)(1� cz(W )) > 0

which contradicts the fact that z must not get more than zero from any bid. It
follows that G < W . This in turn shows that �z has an atom at W .

Lemma 5. In a weakly symmetric moderately high stakes auction with ck(bj) 6=
1/2 for either k, the equation ck(bk) = 2ck(W )�1 has a unique solution b̃k > bk
if and only if ck(W ) > 1/2 and ck(0+) < 2ck(W )� 1.

Proof. If ck(W ) < 1/2 then ck(bk) = 2ck(W ) � 1 has no solution. Otherwise,
the LHS is strictly increasing and continuous for bk > bk and limbk#bk ck(bk) =

max{ck(0+), ck(bk)}. Certainly ck(bk) = 0 < 2ck(W ) � 1, while ck(W ) >

2ck(W )� 1, so the former is the condition for a solution.

Lemma 6. A weakly symmetric moderately high stakes auction with ck(bj) 6=
1/2 for either k has an equilibrium with G > max bk if and only if max b̃k >

max bk, in which case it is unique, there is a bidder z satisfying b̃z � b̃�z who

gets zero and û�z = c�z(max b̃k) � (2c�z(W ) � 1). At W there are atoms
Gk[{W ]} = 2(1 � c�k(W ) � û�k). In (max bk, G) the equilibrium strategies
are given by Gz(bz) = c�z(bz) + ûz and G�z(b�z) = cz(bz). All remaining

probability is on {bz, b�z, 0
+}. bidder z has an atom at b�z. bidder �z has an

atom at b�z if c�z(b�z) is continuous and at 0+ if not. The size of the atoms are

G0
�k = limbk#max b` ck(bk) + ûk. If max b̃k > max bk there is no other equilibrium.

In case c�j(b�j) < 1/2 then z = j.

Proof. First we show that an equilibrium with G > max bk also has G = max b̃k,
then finish the proof by constructing the unique equilibrium when max b̃k >

max bk.
Assume that G > max bk. Observe by Lemma 3 there are no atoms in

(max bk,W ), and since G > max bk both must bid up to G. In particular
when z bids at G then z gets (1 � G�z[{W ]}) � cz(G)) = 0 while by Lemma
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4 G�z[{W ]} = 2(1 � cz(W )), so (2cz(W ) � 1) � cz(G)) = 0, and in particular
G = b̃z. Notice this shows that the bidder z that gets zero must be one for whom
cz(W ) > 1/2. Moreover, at G we have that (1�Gz[{W ]})� c�z(G)) = û�z and
Gz[{W ]} = 2(1� c�z(W )� û�z) giving (2c�z(W ) + 2û�z � 1)� c�z(G)) = û�z

or û�z = �(2c�z(W ) � 1) + c�z(G) � 0. Hence it must be that c�z(G) �
2c�z(W )� 1 which since c�z(b�z) is strictly increasing in b�z for bz > bz means
that G � b̃�z. Note that if �z has c�z(W ) < 1/2 then c�z(G) � 2c�z(W )� 1 is
always satisfied and in this case by definition we have b̃�z = 0. Hence indeed the
bidder getting zero must satisfy b̃z � b̃�z and û�z = �(2c�z(W )� 1) + c�z(G)

as asserted.
Now assume that G = b̃z � b̃�z. The construction of equilibrium proceeds

much as in the proof of Theorem 3. The atoms at W are given by Lemma 4.
Between [G,W ) the cdfs are flat. In (max bk, G) the indifference condition for
�z is

Gz(b�z)� c�z(b�z) = û�z

must hold for at least a dense subset. For bidder z we have

G�z(bz)� cz(bz) = 0

for at least a dense subset. This uniquely defines the cdf for each bidder in
(max bk,minWk) as given in the result.

The argument concerning B = {bz, b�z, 0
+} is exactly as in the proof of

Theorem 3 replacing d with z.
Finally, we show that there is no other equilibrium if max b̃k > max bk.

Observe that if G = max bk then ` bidding b` > max bk earns (2c`(W}�1+2û`)�
c`(b`)) which is greater than û` for max bk < b` < b̃`. Hence G > max bk.

Lemma 7. In a weakly symmetric moderately high stakes auction with ck(bk) /2
{1/2, (1 + ck(0+))/2} for either k, suppose that max b̃k  max bk. Then there

are three possible types of equilibria. In one both get zero, have an atom at W of

Gk[{W ]} = 2(1� c�k(W )) with the remaining probability at 0. For each z there

is an equilibrium in which z gets 0 and �z gets û�z = c�z(0+)� (2c�z(W )� 1).
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bidder �z has G�z[{W ]} = 2(1 � cz(W )) with the remaining probability at

0+while Gz[{W ]} = 2(c�z(W )� c�z(0+) with the remaining probability at 0. If

c�j(b�j) > 1/2 then all three types co-exist. If c�j(b�j) < 1/2 the only the latter

type exists, and only for z = j, so it is unique.

Proof. The only case in which max b̃k > max bk fails is if ck(0+) > 2ck(W ) � 1

for both k so max bk = 0. In this case G = 0 from Lemma 6.
Each k faces probability 1�G�k[{W}] = 2ck(W )�1+2ûk) of �k playing in

{0, 0+}. Bidder z therefore cannot bid 0+ since even if �z was not bidding 0+

it would still create a loss for k to bid 0+. This implies that if c�j(b�j) < 1/2

then z = j.
There are now two possibilities. If c�j(b�j) > 1/2 it is an equilibrium for

�z also to get zero and bid zero for the same reason.
There is also an equilibrium where û�z > 0 in which case �z must bid 0+

but not 0. In this case we must have 2c�z(W ) � 1 + 2û�z � c�z(0+) = û�z

giving û�z = c�z(0+)� (2c�z(W )� 1) and Gz[{W ]} = 2(1� c�z(W )� û�z) =

2(c�z(W )� c�z(0+).
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