DISCUSSION PAPER SERIES

DP17891

HIRING FRICTIONS AND FIRM GROWTH

Thomas Le Barbanchon, Maddalena Ronchi and Julien Sauvagnat

LABOUR ECONOMICS AND BANKING AND CORPORATE FINANCE

HIRING FRICTIONS AND FIRM GROWTH

Thomas Le Barbanchon, Maddalena Ronchi and Julien Sauvagnat

Discussion Paper DP17891 Published 08 February 2023 Submitted 23 January 2023

Centre for Economic Policy Research 33 Great Sutton Street, London EC1V 0DX, UK Tel: +44 (0)20 7183 8801 www.cepr.org

This Discussion Paper is issued under the auspices of the Centre's research programmes:

- Labour Economics
- Banking and Corporate Finance

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Thomas Le Barbanchon, Maddalena Ronchi and Julien Sauvagnat

HIRING FRICTIONS AND FIRM GROWTH

Abstract

This paper studies the effect of hiring frictions on firms' outcomes. We use a shift-share identification strategy combining occupation-specific changes in the difficulty of filling job vacancies within a local labor market (the shifts) and variation across firms in their pre-sampled occupation mix (the shares). We show that hiring frictions have negative effects on firms' employment, capital, sales, and profits. Firms partially adjust to hiring frictions by increasing the wages and retention rate of incumbent workers, and by lowering their hiring standards. We then document larger effects of hiring frictions for labor-intensive firms, firms in expanding sectors, and for non-routine cognitive, high-skill, high-wage, and specialized occupations. Taken together, our findings indicate that hiring frictions are an important determinant of the growth and profitability of firms across time and space.

JEL Classification: J21, J63, G32, M51

Keywords:

Thomas Le Barbanchon - thomas.lebarbanchon@unibocconi.it Bocconi University and CEPR

Maddalena Ronchi - maddalena.ronchi@unibocconi.it Institute for Fiscal Studies (IFS)

Julien Sauvagnat - julien.sauvagnat@unibocconi.it Bocconi University and CEPR

Hiring Frictions and Firm Growth

Thomas Le Barbanchon Maddalena Ronchi Julien Sauvagnat *

January 23, 2023

Abstract

This paper studies the effect of hiring frictions on firms' outcomes. We use a shift-share identification strategy combining occupation-specific changes in the difficulty of filling job vacancies within a local labor market (the *shifts*) and variation across firms in their pre-sampled occupation mix (the *shares*). We show that hiring frictions have negative effects on firms' employment, capital, sales, and profits. Firms partially adjust to hiring frictions by increasing the wages and retention rate of incumbent workers, and by lowering their hiring standards. We then document larger effects of hiring frictions for labor-intensive firms, firms in expanding sectors, and for non-routine cognitive, high-skill, high-wage, and specialized occupations. Taken together, our findings indicate that hiring frictions are an important determinant of the growth and profitability of firms across time and space.

Keywords: hiring frictions, labor demand, firm growth, firm performance.

JEL Codes: J21, J63, M51.

^{*}Le Barbanchon: Bocconi University, CEPR, IGIER, J-PAL and IZA; Ronchi: Institute for Fiscal Studies and IZA; Sauvagnat: Bocconi University, CEPR, IGIER and BIDSA. We thank Abi Adams-Prassl, Oren Danieli, Christian Dustman, Jason Faberman, Kory Kroft, Camille Landais, and Andy Mueller for their helpful discussions and comments. We thank seminar participants at the Bank of Canada, Berkeley, Bocconi University, Einaudi Institute, ETH Zurich, KU Leuven, Oxford University, Norwegian School of Economics (NHH), NYU, Princeton University, Queen Mary University of London, Rutgers University, University of Bristol, University of Essex, University of Mannheim, University of Michigan, University of Toronto, ASSA meetings 2023, 5th Bank of Italy-CEPR workshop on labour market policies and institutions, CSEF-RCFS Conference on Finance, Labor and Inequality 2022, and CSEF-IGIER Symposium 2022. We are grateful to the French Public Employment Services for letting us access their data. We thank the Italian Ministry of Education for financial support (PRIN 2017).

1 Introduction

Firms frequently report that they had job offers they could not fill.¹ Even though a number of empirical studies have explored the reasons for why some firms have a hard time finding suitable workers for their jobs (see e.g. Haskel and Martin, 1993, 2001; Kerr et al., 2016; Weaver, 2021), we know surprisingly little about the causal impact of hiring frictions on firms' outcomes. On the one hand, hiring frictions might lead firms to be short of essential inputs in their operations, and prevent them from growing. On the other hand, firms might be flexible enough to adapt to hiring frictions, in which case their impact on firms' performance might be limited.² Providing evidence on this topic comes with data and identification challenges. In particular, one needs large-scale datasets containing linked information on firms' outcomes and measures of the hiring frictions that they face in their local labor market, as well as an identification strategy that addresses the endogeneity of hiring frictions to unobserved market-level and firm-level shocks.

In this paper we overcome both challenges and provide causal evidence on how hiring frictions affect firms' outcomes. Our empirical setting exploits a large-scale micro dataset from the French Public Employment Services that contains detailed information on job vacancies over the sample period 2010-2017, which we can link to matched employer-employee data and financial statements for the universe of French firms. Importantly, the vacancy-level dataset contains information on final recruitment success and the time it takes to fill vacancies, which we use to build our measure of hiring frictions.³ To identify the effects of interest, we construct plausibly exogenous variation in hiring frictions at the firm level by using a shift-share design combining occupation-specific changes in the difficulty of filling job vacancies within a local labor market (the *shifts*) with variation in firms' exposure given by their pre-sampled occupation mix (the *shares*).

Taking into consideration the recent papers on shift-share instruments (Goldsmith-Pinkham et al., 2020; Borusyak et al., 2021), there are two important clarifications

¹In the Federal Reserve Banks' 2017 Small Business Credit Survey, the three most important reasons reported by firms for why they experienced hiring difficulties were "*Lack of job-specific skills, education, or experience*", "*Too few applicants*", and "*Lack of soft skills*", see Terry and de Zeeuw (2020) for more details.

²Hiring frictions might also be an opportunity for the economy as a whole in that they could lead to an improvement in the quality of jobs, see Autor (2021).

³We discuss in greater detail our measure of hiring frictions in Section 2.1.

to make when thinking about our empirical design. First, using pre-sampled information about the occupation mix of a firm workforce when computing the shares ensure that our estimates are unaffected by contemporaneous shocks to firms' technologies, that would affect both the types of workers required to produce and firms' outcomes. Second, to ensure that the shifts are indeed "exogenous" to the firm, we apply a leave-one-out correction at the industry level and instrument the difficulty of filling a vacancy for a given firm in a given occupation by using the probability and average time it takes for other firms in the same local labor market but in different industries to fill their vacancies in the same occupation. Overall, as firms differ in their baseline occupation mix even within an industry and local labor market, our approach allows us to exploit variations in hiring frictions that are exogenous from the firm perspective in specifications in which we can include granular market-level (i.e. industry × commuting zones × year) fixed-effects to absorb any other confounding shocks that could occur in the firm own product market.

We first document that there is substantial variation in year-by-year changes in hiring frictions for a given occupation across commuting zones and time, the underlying source of identification in our empirical analysis. We then validate our vacancy-based measure of hiring frictions by documenting that lower hiring success and higher time-to-fill aggregated at the occupation, industry, and geography levels strongly correlate with survey-based measures of perceived hiring difficulties. We then show in a first-stage specification that our firm-level shift-share measure of hiring frictions strongly predicts the actual hiring difficulties faced by firms in filling their own vacancies. We turn to our first main result, the effect of hiring frictions on firm employment. Quantitatively, our estimate implies that a firm facing the average degree of hiring frictions in our sample would experience a drop of around 7% in firms' employment, compared to a counterfactual firm that could hire workers in a frictionless way.

We assess the robustness of our result along a large series of dimensions. We experiment with alternative ways of constructing the firm-level shift-share measure of hiring frictions. To exclude the possibility that potential differences in firm characteristics could confound our findings, we augment our specification with controls for pre-sample firm characteristics interacted with year fixed effects. We also address the concern that local business stealing effects from firms operating in the same local product market could bias our estimates upward (e.g. in non-tradable industries such as restaurants), by comparing our baseline estimate to the one obtained in the sub-sample of firms operating in tradable industries only. We then check whether our estimates are similar in the sub-samples of firms posting vacancies on the French Public Employment Services versus other firms (those that never posted a vacancy on the French job center, and presumably use alternative means to recruit workers), in order to mitigate the concern that systematic differences in the type of firms posting vacancies on the French Public Employment Services could have biased our results. Finally, a possible threat to our strategy is that labor demand shocks may be correlated across connected industries. In this case, our leave-one-out correction at the industry-level may not be enough to isolate supplydriven shocks to hiring frictions. We thus recompute the occupation-specific shifts by further excluding information on the difficulty of filling vacancies from firms in upstream and downstream industries, and re-run our baseline specification in order to addresses the concern that our results could spuriously reflect demand or productivity shocks hitting connected sectors in the supply chain, rather than the causal impact of hiring frictions on firms' outcomes. We find that our results are remarkably consistent across these different robustness checks.

Building on standard models of frictional labor markets, we then provide a decomposition of shocks to our measure of hiring frictions into shocks to local labor market tightness and shocks to local matching inefficiency. Indeed, firms might face higher hiring frictions on certain occupations for instance because the current number of potential applicants declines (and therefore labor tightness increases), or because there is a higher mismatch between the skills of applicants and the skill requirements of vacancies (and therefore matching inefficiency increases). We find that both labor tightness and matching inefficiency shocks have significant negative effects on employment.

We then consider the effect of hiring frictions on other corporate outcomes. On the one hand, the lack of suitable workers might lead firm to operate below potential. Moreover, higher hiring frictions might also be associated with lower production efficiency if they lead firms to hire low-quality workers. On the other hand, firms might be flexible enough to adapt to hiring frictions, for instance by asking incumbents to work more hours, in which case the impact of their profits might be limited. Overall, we find empirical support for a negative effect on firm scale of production. In fact, hiring frictions are associated with a decline in sales, capital, value-added, and profits, of a similar magnitude than the effect on employment.

We then exploit the richness of our micro data to investigate the adjustment margins of firms facing higher hiring frictions. We do not find that these firms increase yearly hours per worker, not even for incumbent workers. Thus, firms do not seem to compensate for hiring frictions by adjusting hours worked at the intensive margin. Instead, we find that yearly wages per worker increase, but mainly for incumbents. Moreover, for incumbents, we find a decrease in separation rates, consistent with the idea that firms adjust at least partly to hiring frictions internally. On the external market, we find that firms lower their hiring standards when workers are more difficult to find.

In the last section of the paper, we look at heterogeneous effects of hiring frictions on firms' employment and performance, depending on industry, area, firm, and occupation characteristics. First, we check and confirm that the negative effects of hiring frictions on firms' outcomes are stronger in expanding sectors and areas, and in labor-intensive firms. Second, we find that hiring frictions tend to have smaller effects for firms that can be classified as financially-constrained – small firms, firms that do not pay dividends, high credit-risk, and high-leverage firms. Finally, we isolate in the cross-section of occupations the ones for which hiring frictions are likely to have the highest impact on firms' outcomes. We find that firm employment and performance is less sensitive to hiring frictions in manual occupations, and more sensitive to hiring frictions in non-routine cognitive, highwage, high-skill, and specialized occupations.

Our main contribution is to provide causal evidence showing that hiring frictions are an important driver of hiring outcomes, firm employment, and performance. In doing so, we build on existing papers documenting, either with survey measures or with indirect estimates, that hiring is costly and takes time (Abowd and Kramarz, 2003; Blatter et al., 2012; Rothwell, 2014; Cahuc et al., 2018). We also build on previous studies using vacancy-level data to provide evidence on firm's recruitment intensity and hiring behavior (Davis et al., 2013; Mueller et al., 2018; Bagger et al., 2021; Carrillo-Tudela et al., 2020). Compared to these papers, we shift the focus on how exogenous variations in the difficulty of filling vacancies affect firms' outcomes. In that respect, and for what concerns our results on employment, our work contributes to the labor demand literature (Hamermesh, 1993; Beaudry et al., 2018) by documenting how a direct measure of hiring frictions affect firm decisions. Our paper also relates to previous work studying the effects of labor supply shocks on firms and workers. Earlier studies focus on large, market-wide labor supply shocks, e.g., due to immigration or changes in the college graduation rate, and their aggregate impact on employment and wages (Katz and Murphy, 1992; Card, 2009; Dustmann et al., 2009). A large body of recent work add micro evidence on the impact of specific labor supply shocks, such as the inflows of workers with particular skills, on a series of firms' outcomes (see e.g. Moretti, 2004; Paserman, 2013; Dustmann and Glitz, 2015; Mitaritonna et al., 2017; Dustmann et al., 2017; Beerli et al., 2021; Doran et al., 2022; D'Acunto et al., 2020; Sauvagnat and Schivardi, 2020). Finally, a number of empirical studies have relied on labor supply shocks induced by the Great Recession or immigration to study how local labor market tightness affects firms' demand for skills and the quality of worker-firm matching (Hershbein and Kahn, 2018; Modestino et al., 2020; Orefice and Peri, 2020). Compared to these papers, our analysis relies on a direct and more comprehensive measure of hiring frictions which is based on vacancy-level data. Thanks to this unique measure, we can provide novel evidence on the effects of different types of shocks that make hiring more difficult, that is not only shocks to local labor tightness but also shocks to local matching inefficiency. Moreover, we can study the effect of hiring frictions on different dimensions of corporate behavior, as well as document their heterogeneous impact across different types of firms and occupations.

More broadly, our results highlight the role of local hiring frictions as an important determinant of the growth and profitability of firms across time and space. Our work has important implications for the design of policies aiming at reducing the mismatch between firms' needs and the skills available in the local workforce (such as targeted education and training, relocation assistance, immigration policy), and more generally for the design of location-based policies to foster growth (see e.g. Glaeser and Gottlieb, 2008; Kline, 2010).

The remainder of this paper proceeds as follows. Section 2 presents the data and Section 3 describes our empirical strategy. Section 4 presents our main results on firm employment and performance, while Section 5 provides evidence on firms' adjustment margins to hiring frictions. Section 6 documents the heterogeneous effects of hiring frictions across industries, areas, firm characteristics, and occupation characteristics. Section 7 concludes.

2 Data

In what follows, we separately describe our three main administrative data sources: the vacancy-level dataset from the French Public Employment Service (PES), the employment registers covering the universe of the French workforce, and the financial statements covering the universe of private firms, both from the French Statistical Office (INSEE). These datasets are merged together using a unique firm identifier.⁴ Our sample period starts in 2010 and ends in 2017, which are respectively the first and last year for which the vacancy-level dataset is available. We include in the sample all non-financial firms that were active in France in 2009, the year used for the construction of firms' pre-sample employment shares in each occupation (the *shares* below). We discuss the external validity of our data at the end of the section, and presents summary statistics in Table 1.

2.1 Vacancy-level data

To construct measures of hiring frictions that vary by occupation and commuting zones, we exploit vacancy-level data from the French Public Employment Service (PES). The PES provides intermediation services on the French labor market. Specifically, the PES maintains an online job board *pole-emploi.fr*, where firms post their job ads, and workers search for employment opportunities. Any firm may post on the website (private, public firms) and the service is free of charge. The French PES provides the largest online job board of the French labor market.⁵

For every vacancy posted, we observe the occupation code, the workplace location, the number of position offered, and the firm identifier. One unique advantage of the data is that we can observe whether a given vacancy has led to recruitment or has been delisted without recruitment success, as well as the posting date and the delisting date, which we use to calculate the time it takes for firms to fill up their vacancies.⁶ We also observe for each vacancy a series of job characteristics on the type of contract, as well as on education and experience requirements, if any.

⁴The employment registers and firms' financial statements are not publicly available, but are available for academic research through a procedure similar to accessing Census data in the U.S.

⁵According to a survey conducted by the French Ministry of Labor in 2016 (the OFER survey), around 50% of firms declare using pole-emploi.fr for posting job offers online

⁶When firms post vacancies, they are assigned to a local public employment agency. The information on hiring success is then collected by the PES employees of the local agency, who, as part of their jobs, are in charge of monitoring vacancies, and checking their status.

Measuring hiring frictions. Formally, we measure hiring frictions in a given occupation k, commuting zone cz, and year t, using data on the recruitment success and time-to-fill across all vacancies v posted in that occupation, commuting zone and year, as:

$$HiringFrictions_{k,cz,t} = \frac{\sum_{v \in k,cz,t} Unfilled_v + \sum_{v \in k,cz,t} Filled_v \cdot max(DaysToFill_v, 365)/365}{\sum_{v \in k,cz,t} Unfilled_v + \sum_{v \in k,cz,t} Filled_v}$$
(1)

By construction, $HiringFrictions_{k,cz,t}$ is an index taking values between 0 and 1, and combines information on both the probability of filling a vacancy (through the numbers of vacancies Filled and Unfilled), and conditional on filling it, the observed time it takes (through *DaysToFill*). *HiringFrictions*_{k,cz,t} is equal to zero in the counterfactual case in which the observed probability of filling a vacancy is 100%and vacancies are filled immediately. At the other extreme, $HiringFrictions_{k,cz,t}$ is equal to one when the observed probability of filling a vacancy is either 0%, or alternatively it takes more than 1 year to fill vacancies.⁷

In our empirical analysis, we also use the vacancy-level data to measure the number of job postings for each firm and year, as well as different proxies for changes in hiring standards in terms of experience required, education required, whether the vacancy has been opened for an open ended contract or a temporary contract, and whether the contract is full time or not.

Occupation-level statistics. First, we present for each occupation, the sample average probability of not filling vacancies, and when filled, the time it takes to fill them, the two components of our measure of hiring frictions in Equation (1). As shown in Online Figure A1 and A2, we find substantial heterogeneity in both the share of unfilled vacancies and the time it takes to fill them (conditional on being filled) across occupations. The average share of unfilled vacancies is 15.9%, with a standard deviation of 3.5%, and the average time-to-till is 39.6 days, with a standard deviation of 4.6 days, across the 84 occupations in our data.

Importantly for our identification strategy, we report year-by-year changes in hiring

⁷We set the cutoff of 365 days to match the annual frequency of our data. In Table 3, We also present our results when simply using the share of unfilled vacancies: $ShareUnfilled_{k,cz,t} =$ $\frac{\sum_{v \in k, cz, t} \textit{Unfilled}_v}{\sum_{v \in k, cz, t} \textit{Unfilled}_v + \sum_{v \in k, cz, t} \textit{Filled}_v}.$

frictions across the 322 commuting zones in France for each occupation, the underlying source of identification in our empirical strategy (the *shifts* in our shift-share instrument presented below). As shown in Figure 1, there is substantial variation in year-by-year changes in hiring frictions for a given occupation across commuting zones and time. In particular, for all occupations, there are periods and areas in which hiring becomes more difficult (the expected probability of filling a vacancies declines or time it takes to fill them increases) and periods and areas in which hiring becomes easier.

Correlation with survey data. Finally, we merge our data with two surveys of stated hiring difficulties by firms in order to validate our vacancy-based measure. As discussed in more details in Appendix B, we find a strong and robust correlation between our vacancy-based measures of hiring frictions - namely, time-to-fill and probabilities of unsuccessful recruitment - and the survey-based measures - namely, the share of establishments reporting hiring difficulties at the industry × commuting-zone level in the Business Tendency Survey of the French Statistical Institute, and the fraction of difficult recruiting searches aggregated at the occupation × department level in the manpower survey from the French Public Employment Service.

2.2 Employment registers

We also rely on matched employer-employee data (the *déclarations administratives de données sociales*, DADS) built by INSEE from social security contribution declarations of firms. Each year, firms declare the employment spells, the occupation code, the number of hours worked, and the associated wages for each worker. The occupations codes of each employee of each firm are crucial for our analysis, as we use them to construct the *shares* in our shift-share empirical approach presented below. From the employment registers, we also compute the following outcome variables: end-of-year firm employment, the number of new hires and total separations, as well as wages and hours worked separately for new hires and incumbents.

2.3 Firm-level tax filings

The third main administrative micro data we use is extracted from tax files. The data includes balance sheets as well as profit and loss statements for the universe of

French firms. We track firms through time using their unique identifying number ascribed by INSEE, and retrieve their three-digit level industry classification using an industry code ascribed to each firm by INSEE itself.

If hiring frictions prevent firms from growing or reduce their productive efficiency, we expect this to show up in terms of sales and profits. We therefore construct from this data the following firms' outcome variables: total sales, value added, gross profits (earnings before interest, depreciation, and taxes, EBITDA), and capital (defined as the stock of tangible assets net of accumulated depreciation). We compute return on assets (ROA) as gross profits over assets. As shown in Table 1, firms in our sample have on average 14 employees and ROA for the average firm is around 6.6%.

2.4 External validity

One may wonder whether our empirical analysis using French data will be informative for the impact of hiring frictions on firms' outcomes beyond the case of France. Is France an outlier in terms of the recruitment frictions faced by firms on the labor market? Surveys about stated hiring difficulties are available in other countries. In the 2017 wave of the U.S. National Federation of Independent Business survey, around 30% of small businesses reported that they had jobs they could not fill. This compares well with the 30% of firms declaring that they encountered recruitment difficulties in the business tendency surveys run by the French Statistical Office in 2017. Similarly, Eurostat provides information on the fraction of firms that report having hard-to-fill vacancies for jobs requiring relevant ICT skills:⁸ in France, over half (54%) of all enterprises that recruited or tried to recruit ICT specialists had difficulties in filling these vacancies, a number that overlaps with the EU average (54%). Even though the survey covers only ICT occupations, the evidence suggests that France is similar to other developed countries in terms of the degree of hiring frictions faced by firms.

⁸For more details, see https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20190327-1

3 Empirical Strategy

Our objective is to estimate the causal effect of hiring frictions on firm outcomes. However, because firm-level shocks to demand or productivity might affect both corporate performance and hiring effort establishing a causal link between these two variables is challenging. To address this problem, we predict hiring frictions at the firm-level using a shift-share instrument, also called Bartik instrument, which, in general terms, can be seen as a weighted average of a common set of shocks (*shifts*) with weights reflecting heterogeneity in shock exposure (*shares*).

In practice, we follow this empirical strategy by interacting time-varying shocks to hiring frictions that are specific to each occupation \times local labor market, with the occupation-mix of a given firm. The basic intuition behind this approach is that while local variations in hiring frictions are plausibly exogenous to any given firm, their impact may vary significantly across firms precisely because each of them - even within the same industry and local labor market - has a different occupational structure. More specifically, we measure shocks to hiring frictions using variation in both the probability and the time it takes to fill a vacancy in a given 2-digit occupation \times commuting zone level. To make sure that these shocks are indeed "exogenous" to the firm, we apply a leave-one-out correction at the industry level and include only information on hiring success and time-to-fill from vacancies posted by firms in the same commuting zone, but operating in other 3-digit industries.⁹

The shares instead are specific to each firm and consist in the proportion of a firm total workforce employed in each 2-digit occupation. To avoid that shocks affecting both a firm occupational structure and firm outcomes bias our estimates, we pre-sample information on the occupation-mix and construct time-invariant shares using 2009 information on firm-level employment by occupation.¹⁰

Finally, to obtain our firm-level measure of hiring frictions, we first multiply for each firm the shift component with the corresponding occupation share, and then

⁹There are 84 distinct 2-digit occupations, 270 distinct 3-digit industries, and 322 distinct commuting zones. In robustness tests, we further exclude observations from local firms in connected industries, namely operating in upstream and downstream sectors.

¹⁰Unfortunately, we cannot use information pre-dating 2009, as the classification of occupation codes was different in earlier years. As shown in Table 3, our results are robust to using shares in 2010.

we aggregate these occupation-specific products at the firm-level.¹¹

Formally, denoting by $HiringFrictions_{k,cz,-j,t}$, our measure defined in Equation (1) computed across all vacancies for occupation k in commuting-zone cz and year t, but excluding those posted by firms operating in industry j, and by $s_{i,k,09}$ the share of firm i workforce employed in occupation k in year 2009 (with $\sum_k s_{i,k,09} = 1$), our baseline firm-level shift-share measure of hiring frictions (with the subscript ss in Expression (2) below) reads as follows:

$$HiringFrictions_{ss,i,cz,j,t} = \sum_{k} s_{i,k,09} HiringFrictions_{k,cz,-j,t}$$
(2)

Importantly, note that we can compute our shift-share measure of hiring frictions for the universe of firms, including those that do not post vacancies on the French PES online job board. Each firm *i* operating in industry *j* and located in the local labor market *cz* is characterized, at baseline, by a specific production function, which is reflected by a particular occupation-mix. While "shocks" to hiring frictions, which vary across narrowly defined occupations \times commuting zone, are plausibly exogenous to any given firm *i* (once we remove from their computations information from job vacancies posted by firm *i* and all other firms operating in the same industry as firm *i*), their impact may still significantly vary across firms because each of them - even within the same local labor market and industry - has a different occupational structure.

Our identification strategy closely approximates the following example. Take two otherwise identical firms, A and B, located in the same commuting-zone *cz* and operating in the same industry *j* (say the car industry), with two types of occupations, mechanical engineers (k="MECH") and IT engineers (k="IT"), with however different pre-determined occupation shares (s_{MECH}^A, s_{IT}^A) and (s_{MECH}^B, s_{IT}^B) (with $s_{MECH}^i + s_{IT}^i = 1$ for i = A, B). We will compute *HiringFrictions* defined in Equation (1) across vacancies for both occupations "MECH" and "IT" posted by firms operating in all industries different than *j*, but in the same labor market *cz* as firms A and B, in order to construct our shift-share instrument for local hiring frictions faced by firm A and firm B, defined as:

$$HiringFrictions_{ss,A,cz,j,t} = s^{A}_{MECH} \times HiringFrictions_{MECH,cz,-j,t} + s^{A}_{IT} \times HiringFrictions_{IT,cz,-j,t}$$

¹¹When the shift for a given occupation \times local labor market \times year cell is missing, we adjust firms' employment by re-calculating the total number of employees over the cells with non-missing shifts and by consequentially re-calculating occupation shares over the adjusted total employment.

$$HiringFrictions_{ss,B,cz,j,t} = s^B_{MECH} \times HiringFrictions_{MECH,cz,-j,t} + s^B_{IT} \times HiringFrictions_{IT,cz,-j,t} + s^B_{IT} \times HiringFrictions_{IT,cz,$$

Suppose that firm A relies more on occupation *IT* than firm B, $s_{IT}^A > s_{IT}^B$ in the presample period, and that it becomes more difficult to hire workers for occupation *IT* in commuting zone *cz*. We will estimate whether this shock had a larger impact on the employment of firm A than firm B in a specification in which we control for any other confounding shocks that could occur at the narrowly defined market level, by including industry × commuting-zone × year fixed effects.

Specifically, we run the following OLS specification at the firm-year level:

$$Y_{i,cz,j,t} = \alpha_i + \beta HiringFrictions_{ss,i,cz,j,t} + \mu_{cz,j,t} + \epsilon_{i,cz,j,t}$$
(3)

where $Y_{i,cz,j,t}$ is a given outcome variable of firm *i* (which operates in commuting zone *cz* and industry *j*) in year *t*, and *HiringFrictions*_{*ss*,*i*,*cz*,*j*,*t*} is the firm-level shift-share measure for hiring frictions defined in Equation (2) above. We include industry × commuting zone × year fixed effects ($\mu_{cz,j,t}$). Standard errors are clustered at the commuting zone level.¹²

Formally, identification rests on the assumption that shocks to hiring frictions observed in other industries of the same commuting zone are orthogonal to the error term. Next, we discuss potential threats to this assumption and how to address them.¹³ First, there might be local (or industry-specific) shocks that simultaneously affect firm outcomes and the hiring frictions that they face in their local labor market.¹⁴ Importantly, our specifications include industry × commuting zone × year fixed effects ($\mu_{cz,j,t}$ in Equation (3)) which allows us to absorb any potentially confounding product market-level shocks that could drive both changes in time-tofill and say firm employment. In other words, in Equation (3), identification comes from comparing performance of two firms within the same market and year, based only on differences in their pre-determined occupation mix. One could still argue

¹²This choice is more conservative than clustering standard errors at the commuting zone × industry level, and takes into account that hiring shocks for some occupations in a given commuting zone are likely to affect several industries in the same location simultaneously.

¹³See Borusyak et al. (2021) for a formal discussion. We do not implement the shock-level representation of Borusyak et al. (2021), as it explicitly excludes leave-one-out (LOO) shocks, which our empirical design relies on.

¹⁴Consider for instance a positive local productivity shock driving both an increase in recruiting intensity per vacancy for local firms and an increase in their employment.

that the negative effect of higher hiring frictions for the same occupations in other industries of the same local labor market on firms' employment is biased by the presence of inter-industry linkages between local firms.¹⁵ To address this concern, in a robustness check presented in Table 3 we remove all information on the hiring success and time-to-fill of any firm located in both upstream and downstream industries with respect to firm *i* when constructing the shift-share variable (using a 1% cutoff on input-output linkages at the sectoral level), and find very similar results.

Second, idiosyncratic shocks hitting large firms on their local labor markets might drive both their employment outcomes and variations in their own shift-share variable for hiring frictions through their potential impact on market tightness for some occupations, an example of the reflection problem in our setting. To address this concern, in a robustness check presented in Table 3 we remove all firms that represent a sizeable fraction of the local labor market for any occupation, and find virtually identical results.

Finally, one might worry that firms endogenously select their location by taking into account that hiring frictions in their most important occupations might have a negative impact on their performance. This is not a threat to the identification strategy: if anything, this should bias the results against finding any effect of hiring frictions on firm performance, given that the most vulnerable firms to hiring frictions are likely to endogenously select their location where for instance, there is a large supply of suitable workers in the occupations for which they have a high demand.

4 The Effect of Hiring Frictions on Firm Outcomes

In this Section, we first present our results on the effects of hiring frictions on firms' employment, we then decompose this effect by breaking-down shocks to our measure of hiring frictions into shocks to local labor market tightness and shocks to local matching inefficiency. Finally, we turn to the effect of hiring frictions on other corporate outcomes.

¹⁵Consider for instance a positive productivity shock in upstream sectors driving both an increase in recruiting intensity per vacancy in upstream sectors and an increase in employment in downstream sectors. This could lead to a spurious association between our shift-share variable and employment, even in the absence of any causal effect of hiring frictions on employment.

4.1 Baseline results on employment

We start by assessing the internal validity of our empirical setting, and check whether there is a strong relationship between the shift-share prediction of hiring frictions, $HiringFrictions_{ss,i}$, and the actual hiring difficulties faced by firms on their posted vacancies, $HiringFrictions_i$. By construction, in this first-stage specification, the sample is restricted to firms posting at least one vacancy in year *t*. Column (1) of Table 2 presents the result in our baseline specification with firm fixed effects and industry × commuting zone × year fixed effects. The coefficient is positive and statistically significant at the one percent level, indicating that our shift-share instrument has predictive power for firms' hiring difficulties. In Column (2) of Table 2, we then run Equation (3) where the dependent variable is the logarithm of firm employment. We find a negative relationship between the shift-share variable and log employment, statistically significant at the one percent level. This is consistent with the view that hiring frictions have a significant adverse impact on firms' employment.

In order to interpret the magnitude of the effect of hiring frictions on firms' employment, we perform an instrumental variable (IV) analysis, where realized hiring frictions at the firm level (*HiringFrictions*_i) are instrumented with the shift-share variable. To maximize statistical power, we directly compute the Wald estimator, i.e. the ratio of the reduced-form estimate to the first stage coefficient. This allows us to use the whole sample for the reduced form, even if we can compute the first stage on the subsample of posting firms only.¹⁶ As shown in Column (3) of Table 2, the result indicates that a firm facing the average degree of hiring frictions in our sample (0.217, see Table 1) would experience a drop of around 7% in firms' employment, compared to a counterfactual firm in the same industry and local labor market that could hire workers in a frictionless way.

¹⁶The IV estimator can be computed as the Wald ratio of the reduced-form estimate (\hat{r} , Column (2) of Table 2) and of the first-stage estimate (\hat{f} , Column (1) of Table 2). Let us denote se(r) (resp. se(f)) the standard errors of \hat{r} (resp. \hat{f}). Then using the delta method, we obtain the standard errors of the Wald ratio ($\hat{w} = \hat{r}/\hat{f}$) as: $se(w) = \left(\frac{se(r)^2}{(\hat{f})^2} + \frac{se(f)^2(\hat{r})^2}{(\hat{f})^4}\right)^{1/2}$.

4.2 Robustness checks

We now explore in detail the robustness of the baseline result on employment, and presents the findings in Table 3.

Alternative shift. Our main measure of hiring frictions combines information on the probability of filling vacancies and, when filled, the time it takes to fill them. In Column (1), we check the robustness of our baseline finding to using only information on the probability of filling vacancies for a given occupation in the same area (using the same leave-one-out correction at the industry level). The estimate is very similar to the baseline result.

Occupation shares in 2010. The year in which we measure the occupation mix of firms is the end of 2009. While occupation shares are sticky over time, one concern is that we measure them at the end of the financial crisis. We therefore check whether we find the same results when computing the shares at the end of 2010. The estimate, presented in Column (2), remains similar.

Firm characteristics. One may worry that firms' occupation mix in 2009 (the *shares*) correlate in a systematic way with some initial firm characteristics that in turn, could explain the differences in employment trends that we observe over the sample period. For example, ex-ante more productive firms might initially employ more workers in skilled occupations, and grow faster over the sample period. If this is true, and hiring frictions decrease relatively more for skilled occupations than for unskilled occupations over the sample period, this could lead us to observe a negative relationship between hiring frictions and employment, even in the absence of any causal relationship. To control for this possibility, we augment our specification with firm characteristics (terciles of firm size, age, and ROA, all measured pre-sample), interacted with year fixed effects. Including these controls ensures that the estimates are not driven by heterogeneous trends among large, old, or profitable firms. The result of this augmented specification is reported in Column (3). The estimate on the variable of interest remains stable, which largely mitigates the concern that potential differences in firm characteristics that correlate with their pre-sampled occupation mix could confound our findings.

Local spillovers. Another concern is that hiring frictions by disrupting some firms might benefit other less-affected firms in the same industry and area if they are competitors in local product markets, leading us to overestimate the causal impact

of hiring frictions on firm employment in our baseline specification. To directly address this concern, we remove non-tradable industries from our sample (e.g. restaurants), where local demand spillovers could bias our estimates upward, and present the results in Column (4). The estimate is virtually unchanged compared to our baseline result, and compared to the estimate in the subsample of non-tradable industries shown in Column (5), indicating that business-stealing effects have, if anything, only a negligible impact on our findings.

Sample selection on vacancy data. One strength of our approach is that we estimate the effects of hiring difficulties on employment for the universe of firms in the French economy. Still, a potential concern with our analysis is the selected nature of our vacancy level data, which comes from the French job center. Even though a large fraction of French firms use the *pole-emploi.fr* online job board to post their vacancies, the fact that we do not observe the universe of job postings might introduce noise in our occupation-level measures of hiring frictions, and generate an attenuation bias in our results.

One could also argue that there are systematic differences in time-to-fill for a given occupation between the French job center and alternative venues for hiring workers. For instance, the French job center might be less efficient than specialized online platforms for certain types of occupation, in which case the time-to-fill we observe in the data of the French job center could be on average larger than for the rest of the market. If this is the case, this should also lead us to underestimate the true elasticity of employment to hiring frictions.¹⁷

To gauge the severity of this concern, we run our baseline specification separately for the sample of firms posting vacancies on the French job center, and for other firms (those that never posted a vacancy on the French job center, and presumably use alternative means to hire workers). As shown in Columns (6) and (7), the estimates are virtually identical in both sub-samples, which largely addresses the concern that systematic differences in hiring difficulties across matching platforms could bias our estimates.

Input-output linkages. One may also be concerned that our results could spuriously reflect demand or productivity shocks hitting connected sectors in the supply

¹⁷Alternatively, matching efficiency for some occupations might be better on the French job center than on other venues, in which case our measure underestimates the true degree of hiring frictions on the market (and overestimates the true sensitivity of employment to hiring frictions).

chain, rather than the causal impact of recruiting frictions on firms' outcomes. We thus check whether our estimates are robust to removing information on time-tofill from upstream and downstream industries when computing our shift-share instrument. For this, we use sector-level information from the input-output matrix to compute for each industry the share of inputs that come from other industries (upstream) and the share of output bought by other industries (downstream). We tag as connected any industry that represents 1% of either the upstream or downstream flows. We recompute the occupation-specific shifts, excluding not only the firms' industry but also all other industries tagged as connected. Column (8) presents the results with this more conservative shift-share instrument. The coefficient on employment is slightly smaller, but remains highly statistically significant. This alleviates the concern that our result is driven by demand or productivity shocks propagating through input-output linkages in production networks.

Reflection problem. One could argue that the identifying assumption is likely to be violated for large firms on the local labor market through a reflection problem. Consider for instance a positive demand shock that leads a large firm to hire a large number of IT engineers in a given commuting zone. To the extent that this firm represents a large share of the local market for IT engineers, that demand shock might increase hiring frictions for other firms hiring IT engineers in other sectors of the same commuting zone (through an increase in local market tightness for IT engineers), and in turn lead us, through a reflection problem, to observe an increase in the shift-share measure of hiring frictions for the large firm. Even though one can argue that examples along this line are likely to lead us to underestimate the causal impact of hiring frictions on firm employment, we can also address the reflection problem directly. For this, we re-run our main specification after removing from the sample any firm that represents more than 1% of the local market for a given occupation in a given commuting zone, and presents the result in Column (9). The coefficient of interest remains unchanged.

Occupation-specific productivity shocks. Finally, one may worry that our underlying sources of variation, changes in vacancy filling probabilities and time-to-fill for a given occupation in a given commuting zone, might not capture hiring frictions per se, but instead reflect other hiring-unrelated shocks. For instance, the quality of IT engineers might increase in a given commuting zone, say due to an increase in the quality of the local engineering school, and lead to both higher employment for local firms hiring IT engineers and changes in local market tightness for IT engineers. To mitigate the concern that occupation-specific productivity shocks in a given commuting zone could confound the interpretation of our estimates, we add firm-level average wages as a control in our baseline specifications. While in principle wages are also endogenous to hiring frictions, our objective here is to check whether we still observe a negative and significant effect of hiring frictions on employment, even after controlling for changes in wages induced by occupation-specific productivity shocks. As shown in Column (10), the coefficient of interest remains large and statistically significant in this augmented specification, indicating that variations in our main variable of interest indeed reflect changes in hiring frictions, rather than the indirect effects of occupation-specific productivity shocks.

4.3 Labor market tightness and matching efficiency

Building on standard models of frictional labor markets, we turn to providing a decomposition of shocks to hiring frictions into shocks to labor market tightness and shocks to matching efficiency. We then estimate the separate effects of tightness and matching inefficiency shocks on firm employment.

For this, we first define the vacancy filling rate, $m_{k,cz,t}$, at the local labor market level (occupation k, commuting zone cz and year t), as being the product of two components in the following expression:

$$m_{k,cz,t} = m_{k,cz,t}^0 \theta_{k,cz,t}^{-\gamma} , \qquad (4)$$

where $m_{k,cz,t}^0$ is the local matching efficiency, $\theta_{k,cz,t} = V_{k,cz,t}/U_{k,cz,t}$ is the local labor market tightness – i.e the ratio between the number of vacancy $V_{k,cz,t}$ posted within year *t* and the number of unemployed $U_{k,cz,t}$ for a given occupation *k*, and γ is the elasticity of the matching function (between 0 and 1). Holding local matching efficiency constant, hiring becomes more difficult as local competition for workers increases in certain occupations, either because other employers increase their labor demand (increase in $V_{k,cz,t}$), or because there are fewer workers supplying labor (decrease in $U_{k,cz,t}$). Matching efficiency shocks make hiring easier holding constant the competition. They can be thought as technology shocks that reduce the information asymmetries in the labor market, or mitigate coordination failures. For example, an innovation in workers' screening technology allows to increase realized matches per period, holding constant tightness.

We use the vacancy data and the unemployment registers of the French Public Employment Service, to obtain empirical counterparts for respectively the number of vacancies, $V_{k,cz,t}$, and for the number of unemployed $U_{k,cz,t}$, and compute local labor market tightness $\theta_{k,cz,t}$ as the ratio between the two variables in each occupation × commuting zone × year.¹⁸ We then regress our measure of hiring frictions on local market tightness in the following specification with both occupation, commuting-zone, and year fixed effects:

$$\log HiringFrictions_{k,cz,t} = \alpha + \gamma \theta_{k,cz,t} + \mu_k + \mu_{cz} + \mu_t + \nu_{k,cz,t}.$$
(5)

As our measure of hiring frictions (which captures variations in time-to-fill) can be seen as the inverse of the job filling rate $m_{k,cz,t}$, this regression provides us with an estimate for the matching elasticity γ in Equation (4). In order to address the potential endogeneity of labor market tightness, we follow Borowczyk-Martins et al. (2013) and instrument the local labor market tightness with its lagged value.

Given our estimate $\hat{\gamma} = 0.09^{19}$, we obtain matching efficiency in baseline year 2010, as $m_{k,cz,2010}^0 = \theta_{k,cz,2010}^{\hat{\gamma}} / HiringFrictions_{k,cz,t}$. This allows us to compute hiring frictions due to changes in tightness for each occupation x commuting zone x year, as: $\mathcal{T}_{k,cz,t} = \theta_{k,cz,t}^{\hat{\gamma}} / m_{k,cz,2010}^0$, and matching inefficiency shocks as the residual part $\mathcal{M}_{k,cz,t} = HiringFrictions_{k,cz,t} - \mathcal{T}_{k,cz,t}$.

Finally, we construct the firm-level shift-share labor tightness and matching inefficiency variables as: $\mathcal{T}_{ss,i,cz,t} = \sum_k s_{i,k,2009} \mathcal{T}_{k,cz,t}$ and $\mathcal{M}_{ss,i,cz,t} = \sum_k s_{i,k,2009} \mathcal{M}_{k,cz,t}$, and run a similar equation as Equation (3) where the baseline shift-share variable is replaced by $\mathcal{T}_{ss,i,cz,t}$ and $\mathcal{M}_{ss,i,cz,t}$:

$$Y_{i,cz,j,t} = \alpha_i + \beta_T \mathcal{T}_{ss,i,cz,t} + \beta_M \mathcal{M}_{ss,i,cz,t} + \mu_{cz,j,t} + \epsilon_{i,cz,j,t}.$$
(6)

We present the results in Column (1) of Table 4. we find that both β_T and β_M are negative and statistically significant. If anything, matching inefficiency shocks tend

¹⁸In the unemployment registers, unemployed declare their preferred occupation and the local area in which they search for jobs. We do not have similar data on the industry they are searching into, which prevents us from making the same leave-one-out correction at the industry level as we do for the baseline shift-share variable.

¹⁹This estimate of 0.09 is consistent with the numbers reported in Borowczyk-Martins et al. (2013), though slightly lower.

to have larger effects on employment than tightness shocks. One concern for the interpretation of these estimates is that matching inefficiency shocks might simply reflect composition effects in the pool of workers within 2-digit occupations (see for instance Barnichon and Figura (2015)).²⁰ To shed light on this issue, we recompute the tightness and matching inefficiency shocks using more granular occupation codes from Pole Emploi, and then aggregate them at the 2-digit occupation level when recomputing the shift-share variables at the firm level. As shown in Column (2) of Table 4, we obtain virtually identical estimates, indicating that composition effects within 2-digit occupation codes are unlikely to explain the negative effects of matching inefficiency on employment. Finally, in Column (3), we re-run Equation (6) after recomputing tightness and matching inefficiency shocks using occupation-specific estimates for the matching function elasticity γ . Again, the estimates are similar to those presented in Column (1).

We conclude that both changes in labor market tightness (for instance driven by increases in labor supply for a given occupation) and in matching inefficiency (for instance driven by higher skill mismatch between unemployed workers and firm requirements within a given occupation) matter in explaining the negative effects of hiring frictions on firm employment.

4.4 Other corporate outcomes

We turn to the effect of hiring frictions on other corporate outcomes. By inducing a lack of suitable workers, hiring frictions might lead firm to operate below potential. If hiring frictions lead firms to lower the quality of their hires in order to keep hiring, a lower-quality workforce might also be associated with lower production efficiency. At the same time, firms might be flexible enough to adapt to hiring frictions, for instance by automating some tasks, in which case the impact on their profits might be limited. To shed light on these questions, we run the specification in Equation (3) where the dependent variable is respectively firm capital, sales, value-added, and profits. Table 5 presents the results.

In Column (1), we find a negative effect on firm capital, of similar magnitude than the effect on firm employment. This is consistent with hiring frictions having a

²⁰If we assume that within 2-digit occupations, there are heterogeneous sub-occupations (a) and (b), changes in sub-occupational tightness (a) and (b) might show up as changes in matching efficiency.

large negative impact on firm scale of production, and very low degree of substitution between labor and capital. This could be due to the fact that occupations for which hiring frictions matter for firm growth are complements rather than substitutes with capital. We shed more light on this point in Section 6.

In Columns (2-5), the estimates on sales, value-added, and profits, are collectively consistent with the notion that hiring frictions lead firms to scale down their production, which in turn leads to a reduction in value-added and profits. Given that profits might be negative for some firms, we check the robustness of the result on the logarithm of profits using instead ROA as an alternative measure, and find consistent effects.

5 Mechanisms and Adjustment Margins

We now exploit the richness of our micro data to investigate the adjustment margins of firms facing hiring difficulties. Specifically, we look at hours worked and wages for both new hires and incumbents in employment registers, and at changes in job posting decisions.

5.1 Wages, hours worked, and retention of the workforce

Wages and hours worked. We start by investigate how firms adjust their wages when facing hiring frictions, and present the results in Table 6. In particular, firms may increase hiring wages to attract the few suitable workers available on the labor market, and/or increase wages internally to retain their existing workforce. Before looking specifically at the effect on new hires versus incumbents, we first study the effect of hiring frictions on total payroll: as shown in Panel A, Column (1), we find a negative and statistically significant effect, but smaller in magnitude compared to the baseline effect on employment (-0.015 versus -0.029 in Column 4 of Table 2). Consistent with this result, we find a positive effect on yearly wages per worker in Column (2), significant at the 1 percent level. In Columns (3) and (4), we decompose the yearly wages into its two components: yearly hours and hourly wages. We do not find evidence that firms compensate for their lower number of employees by increasing the hours worked by each worker. Instead, an increase in hiring frictions is associated with an increase in hourly wages.

We then study the effects of hiring frictions on the wages and hours worked by incumbents and new hires separately, and present the results in Panel B of Table 6.²¹ As shown in Columns (1) and (2), we do not find significant effects on yearly hours for either incumbents or new hires. However, we find different effects for wages. The effect on hourly wages is concentrated among incumbent workers, with a magnitude four times larger than the wage effect for new hires, which is still positive but not statistically significant at conventional levels. Taken collectively, we find only weak support for a competition channel on external labor markets, where firms increase hiring wages to attract new hires. Instead, firms seem to significantly adjust wages internally, which is consistent with an increase in firms' effort for retaining their incumbent workers. We shed more light on this channel in the next subsection.²²

Workforce turnover. Finally, in Panel C of Table 6, we look directly at hiring (in Column 1) and separation rates (Column 2), as a fraction of total employment. We find that hiring frictions are associated with both negative effects on hiring rates and separation rates. Whereas the negative effect on hiring rates provide direct evidence that hiring frictions lead firms to cut on hiring, the negative effect on separation rates highlights an important adjustment margin to hiring frictions through firms' internal labor markets which is consistent with the positive effect on the wages of incumbents we have previously documented.

5.2 Job postings and hiring standards

We turn to the effects of hiring frictions on job postings and hiring standards, using information in the vacancy-level data.

Job postings. We first investigate whether firms open more or less vacancies following an increase in hiring frictions. In standard search and matching models, hiring frictions have an effect on vacancy posting through at least two channels.

²¹We isolate incumbents based on information in the short-panel structure of the French matched employer-employee data, where we can observe whether a given worker was employed in the same firm on the last day of the previous calendar year. New hires are the complement group in the firm workforce.

²²We do not know the exact (and potentially multiple) channels through which firms increase the retention rates of incumbent workers. In particular, the positive wage effects could reflect an increase in bargaining power for incumbents, or an increase in incumbents' productivity through training. Unfortunately, we do not have firm-level information on training expenses to provide direct evidence on this question.

On the one hand, they may induce firms to post less vacancies as targeted employment decreases (similar to a scale effect). On the other hand, as it takes more time to replace workers who separated, firms facing hiring difficulties may need to post more vacancies to reach a given employment level (vacancy yield effect). Overall, the sign of the overall effect is ex-ante ambiguous, and depends on the relative strength of the scale effect and the vacancy yield effect. We provide evidence on the overall effect in Panel A of Table 7, where we consider both a vacancy dummy that equals one if the firm opens at least one vacancy in year t, and the vacancy (respectively jobs) rate defined as in Davis et al. (2013), namely the number of vacancies (jobs) reported in year t divided by the sum of vacancies (jobs) and the simple average of employment in t-1 and t. The estimates in Columns (1-3) indicate that hiring frictions are associated with a decline in the number of vacancies posted by firms. This result highlights that the negative effect of hiring frictions on employment documented in Section 4 goes beyond the direct impact of lower vacancy filling rates on employment (holding constant firms' hiring decisions), and also reflects declines in job postings by firms.

Hiring standards. In panel B of Table 7, we turn to the effect of hiring frictions on hiring standards and job contract quality, by looking at the change in the average experience required (in months) across all posted vacancies in a given occupation, in the average number of years of education required, the share of vacancies for open ended contracts (as opposed to temporary contracts), and for full-time contracts (as opposed to part-time contracts). While we do not find evidence that hiring frictions have any effect on education requirements, or changes in the type of job contract offered, there is a negative and statistically significant effect of hiring difficulties on experience requirements. This result is consistent with the idea that, when facing difficulties in finding potentially suitable workers in their local markets, firms adjust downward their hiring standards in terms of experience requirements.

6 Heterogeneity Analysis

In this Section, we investigate the heterogeneity of the effects of hiring frictions on firms' employment and performance depending on firms' industry, location, and characteristics, and then turn to the heterogeneity of the effects depending on occupation characteristics and task content.

6.1 Industry and firm characteristics

Expanding versus declining sectors/areas. Presumably, the negative effects of hiring difficulties on firms' employment should be stronger in expanding sectors or areas. After all, in declining sectors/areas, firms are less likely to hire new workers, and should therefore be less sensitive to hiring frictions on the labor market. To test whether this is true, we sort sectors and areas into those in expansion and in decline, depending on their overall employment growth over our sample period (based on a median split). The results are presented in Columns (1) and (2) of Table 8 for sectors, and in Columns (3) and (4) of Table 8 for commuting zones. Overall, the sensitivity of employment to hiring frictions is indeed larger for expanding sectors and expanding areas, than declining and declining sectors.

Low versus high labor share. The effects should also be stronger for labor-intensive firms, whose larger weight in labor inputs make them more sensitive to hiring frictions. To check whether this is true, we sort firms into those with low and high labor-intensity, based on their ratio of employees over assets measured at baseline (i.e. 2009). The results are presented in Columns (5) and (6). The negative effect of hiring frictions on employment is indeed significantly stronger for labor-intensive firms (Column 5) than for not labor-intensive firms (Column 6). By showing that hiring frictions have a larger effects on firms' employment precisely for those firms relying more on labor in their production function, these results make us confident that our baseline estimates indeed reflect the true causal impact of hiring frictions on firms' outcomes.

Other firm characteristics. One may wonder whether hiring frictions have differential effects on firm employment depending on standard firm characteristics, such as firm size, firm age, and standard measures of firm performance and financial constraints. For instance, large firms might have more flexibility to use internal labor markets to reshuffle their workforce in order to address hiring frictions on a given set of occupations. Young firms might need to respond to fast-changing economic opportunities by hiring quickly suitable workers in specific occupations, whereas old firms might simply postpone hiring when frictions on the labor market are less severe. The returns to hiring might be larger for more productive firms, and therefore in turn the sensitivity of their performance to hiring frictions. Alternatively, for not losing highly profitable matches, more productive firms might respond to hiring frictions by increasing their recruiting efforts. Finally, financiallyconstrained firms might not have enough internal funds to hire workers regardless of circumstance, and therefore shows a lower sensitivity of their employment to hiring frictions. To shed light on these issues, we run our baseline specifications in sub-samples based on firm size, firm age, firm profitability, TFP, dividend payer status, credit risk, and leverage, and report the results in Table 8.

As shown in Columns (7) and (8) the sensitivity of firm employment to hiring frictions is significantly larger in bigger firms, maybe because small firms face financial constraints restricting their capacity to hire and grow, irrespective of the degree of hiring frictions on external labor markets. Columns (9-14) show that hiring difficulties have a similar effect on firms employment, irrespective of firm age and productivity. Instead, when we split the sample of firms in Columns (15-20) into those that are more versus less likely to be financially constrained (those paying no dividends, with high credit risk, and high leverage versus paying dividends, with low credit risk, and low leverage), we find some evidence that financially constrained firms display a lower sensitivity of their employment to hiring frictions.

We present in Figure 2 the results of the same heterogeneity analysis by industry, geography, and firm characteristics for the other firm outcome variables presented in Table 5, namely sales, value-added profits, and capital. Overall, the differences in the sensitivity of sales and profits to hiring frictions in each sub-sample reproduce the patterns in the sensitivity of employment to hiring frictions discussed above, and confirm that the effects of hiring frictions are heterogeneous across firms depending on the growth of their industry and location, their size, labor-intensity, and degree of financial constraints.

6.2 Occupation and task characteristics

One advantage of our data is that we can identify the occupation of each worker, which allows us to examine whether firms' employment and profitability are especially sensitive to hiring frictions on occupations characterized by specific features. For this, we augment our baseline specification at the firm-year level with an interaction term representing the firm-level shift-share variable based only on a subset of occupations of a given type \mathcal{K} :

$$Y_{i,cz,j,t} = \alpha_i + \beta HiringFrictions_{ss,i,cz,j,t} + \beta_{\mathcal{K}} \sum_{k \in \mathcal{K}} s_{i,k,09} HiringFrictions_{k,cz,-j,t} + \mu_{cz,j,t} + \epsilon_{i,cz,j,t}.$$
(7)

We consider below a large set of different types of occupations, and present the results in Table 9.

Routine, manual, cognitive and interpersonal tasks. We start by categorizing occupations into different types depending on the occupation-specific classification of tasks initially developed in Autor et al. (2003). Specifically, we assign to each occupation a relative score depending on their relative intensity in five different tasks: routine manual, routine cognitive, non-routine manual, non-routine cognitive and non-routine interpersonal tasks. Based on this score, we then classify occupations as being routine manual intensive, routine cognitive intensive, non-routine manual intensive, non-routine interpersonal intensive intensive, and non-routine interpersonal intensive if they are in the top tercile of their respective scores.²³

As shown in Columns (1-5) of Table 9, we find that firm employment is more sensitive to hiring frictions in non-routine cognitive occupations (such as IT engineers), less sensitive to hiring frictions in non-routine manual (such as vehicle drivers) and routine manual occupations (such as unskilled workers in construction), whereas the sensitivity of firm employment to hiring frictions in non-routine interpersonal occupations (such as sales executives) and routine cognitive occupations (such as accountants) is virtually the same than for the other occupations.

High-skill and high-wage occupations. Similarly, we use information in our vacancy-level data to isolate occupations with skill requirements, and information in the employment registers to classify occupations as high-wage. High-skill occupations and high-wage occupations are those in the top tercile of their respective distribution. We then re-run the same regression as the one presented in Equation (7). As shown in Columns (8) and (9), we find that the sensitivity of firm

²³Specifically, we use the mapping between tasks and occupation defined in O*NET (available for the US). We then aggregate ONET task measures originally available for the Standard Occupational Classification 2010 (SOC2010) at 6-digit level as in Acemoglu and Autor (2011). We then convert occupations in the SOC2010 into the French occupation classification at the 2-digit level using aggregate employment in each occupation as weights.

employment to hiring frictions is larger for high-skill and high-wage occupations.

Specialized occupations. Finally, we construct a new, and arguably direct measure of hard-to-substitute occupations based on the full matrix of labor flows across occupations. For this, we compute in the sample of all workers switching employers over the sample period the number of transitions from occupation O ("origin") to occupation D ("destination"). Then, for each occupation D, we compute the share of firm-to-firm transitions in which the worker was employed in their previous firm in the same occupation (O = D), and classify as specialized occupations those ranked in the top tercile. We re-estimate Equation (7) for specialized occupations and present the results in Column (7). The interaction term *Hiring Frictions_{ss} × Specialized* is negative and statistically significant at the 1 percent level, consistent with the idea that it is harder for firms to redirect their hiring on other types of workers when facing hiring frictions on specialized occupations.

One may wonder whether there is a strong overlap between our measure of specialized occupations and the other characteristics considered above. We thus present in Online Appendix Figure A3 the list of specialized occupations as well as the list of routine manual intensive occupations, routine cognitive intensive occupations, non-routine manual intensive occupations, non-routine cognitive intensive occupations, non-routine interpersonal tasks intensive occupations, high-skill occupations, and high-wage occupations. Overall, the ranking of specialized occupations is only weakly correlated with the characteristics considered above. For instance, specialized occupations include high-wage/high-skill/non-routine analytic occupations such as IT engineers and doctors, but also low-wage/low-skill/manual occupations such as cooks or skilled workers in construction. Finally, we also directly test and confirm that the higher sensitivity of firm employment to hiring frictions on specialized occupations is not explained by other occupation characteristics. For this, we re-estimate Equation (7) with the interaction term *Hiring Frictions*_{ss} \times Specialized, together with each interaction term considered above separately, and present the results in Appendix Table A1. As shown in Columns (1-7), the negative coefficient on *Hiring Frictions*_{ss} \times *Specialized* remains stable across specifications and statistically significant at the 1 percent level.

Finally, we present in Figure 3 the results of the same heterogeneity analysis by task and occupation characteristics for the other firm outcome variables namely sales, value-added, profits, and capital. As shown in Figure 3, the differences in the sensitivity of sales and profits to hiring frictions across occupation characteristics reproduce the patterns in the sensitivity of employment to hiring frictions that we discussed above, and confirm that the effects of hiring frictions are stronger for non-routine cognitive, high-skill, high-wage, and specialized occupations.

7 Conclusion

This paper studies the causal effect of hiring frictions on firms' outcomes. We use a shift-share identification strategy combining occupation-specific changes in the difficulty of filling job vacancies within a local labor market (the *shifts*) and variation across firms in their pre-sampled occupation mix (the *shares*). We show that hiring frictions have negative effects on firms' employment, capital, sales and profits. Firms partially adjust to hiring frictions by increasing the wages and retention rates of incumbent workers, and by lowering their hiring standards. We then document larger effects of hiring frictions in expanding sectors and areas, for labor-intensive firms, and for non-routine cognitive, high-skill, high-wage, and specialized occupations.

Taken together, our findings indicate that hiring frictions are an important determinant of the growth and profitability of firms across time and space and they corroborate claims of business leaders that hiring difficulties represent one of their major concerns. Our findings suggest that policies aimed at reducing labor market tightness (such as encouraging female labor supply) or at improving matching efficiency (such as training programs targeted at some specific professions) can significantly increase economic growth at the local level. Our results are also useful for future structural analyses relying on estimates of key hiring frictions parameters of firm labor demand.

References

- ABOWD, J. M. AND F. KRAMARZ (2003): "The costs of hiring and separations," *Labour Economics*, 10, 499–530.
- ACEMOGLU, D. AND D. AUTOR (2011): "Skills, Tasks and Technologies: Implications for Employment and Earnings," in *Handbook of labor economics*, Elsevier, vol. 4, 1043–1171.
- AUTOR, D. (2021): "Good News: There's a Labor Shortage," New York Times.
- AUTOR, D. H., F. LEVY, AND R. J. MURNANE (2003): "The Skill Content of Recent Technological Change: An Empirical Exploration," *The Quarterly Journal of Economics*, 118, 1279–1333.
- BAGGER, J., F. FONTAINE, M. GALENIANOS, AND I. TRAPEZNIKOVA (2021): "Vacancies, Employment Outcomes and Firm Growth: Evidence from Denmark," *Working Paper*.
- BARNICHON, R. AND A. FIGURA (2015): "Labor Market Heterogeneity and the Aggregate Matching Function," *American Economic Journal: Macroeconomics*, 7, 222– 49.
- BEAUDRY, P., D. A. GREEN, AND B. M. SAND (2018): "In Search of Labor Demand," American Economic Review, 108, 2714–57.
- BEERLI, A., J. RUFFNER, M. SIEGENTHALER, AND G. PERI (2021): "The Abolition of Immigration Restrictions and the Performance of Firms and Workers: Evidence from Switzerland," *American Economic Review*, 111, 976–1012.
- BLATTER, M., S. MUEHLEMANN, AND S. SCHENKER (2012): "The costs of hiring skilled workers," *European Economic Review*, 56, 20–35.
- BOROWCZYK-MARTINS, D., G. JOLIVET, AND F. POSTEL-VINAY (2013): "Accounting for Endogeneity in Matching Function Estimation," *Review of Economic Dynamics*, 16, 440–451.
- BORUSYAK, K., P. HULL, AND X. JARAVEL (2021): "Quasi-Experimental Shift-Share Research Designs," *The Review of Economic Studies*, 89, 181–213.
- CAHUC, P., S. CARCILLO, AND T. LE BARBANCHON (2018): "The Effectiveness of Hiring Credits," *The Review of Economic Studies*, 86, 593–626.
- CARD, D. (2009): "Immigration and Inequality," American Economic Review, 99, 1–21.
- CARRILLO-TUDELA, C., H. GARTNER, AND L. KAAS (2020): "Recruiting Policies, Job-Filling Rates and Matching Efficiency," *Working Paper*.

- D'ACUNTO, F., M. WEBER, AND S. YANG (2020): "Manpower Constraints and Corporate Policies," *Working Paper*.
- DAVIS, S. J., R. J. FABERMAN, AND J. C. HALTIWANGER (2013): "The Establishmentlevel Behavior of Vacancies and Hiring," *The Quarterly Journal of Economics*, 128, 581–622.
- DORAN, K., A. GELBER, AND A. ISEN (2022): "The effects of high-skilled immigration policy on firms: Evidence from visa lotteries," *Journal of Political Economy*, 130, 2501–2533.
- DUSTMANN, C. AND A. GLITZ (2015): "How Do Industries and Firms Respond to Changes in Local Labor Supply?" *Journal of Labor Economics*, 33, 711–750.
- DUSTMANN, C., J. LUDSTECK, AND U. SCHÖNBERG (2009): "Revisiting the German Wage Structure," *The Quarterly Journal of Economics*, 124, 843–881.
- DUSTMANN, C., U. SCHÖNBERG, AND J. STUHLER (2017): "Labor Supply Shocks, Native Wages, and the Adjustment of Local Employment," *The Quarterly Journal of Economics*, 132, 435–483.
- GLAESER, E. L. AND J. D. GOTTLIEB (2008): "The Economics of Place-Making Policies," *Brookings Papers on Economic Activity*, 1, 155–253.
- GOLDSMITH-PINKHAM, P., I. SORKIN, AND H. SWIFT (2020): "Bartik Instruments: What, When, Why, and How," *American Economic Review*, 110, 2586–2624.
- HAMERMESH, D. S. (1993): Labor Demand, Princeton University Press.
- HASKEL, J. AND C. MARTIN (1993): "The Causes of Skill Shortages in Britain," Oxford *Economic Papers*, 45, 573–588.
- ——— (2001): "Technology, Wages, and Skill Shortages: Evidence from UK Micro Data," Oxford Economic Papers, 53, 642–658.
- HERSHBEIN, B. AND L. B. KAHN (2018): "Do Recessions Accelerate Routine-Biased Technological Change? Evidence from Vacancy Postings," *American Economic Review*, 108, 1737–72.
- KATZ, L. F. AND K. M. MURPHY (1992): "Changes in Relative Wages, 1963-1987: Supply and Demand Factors," *The Quarterly Journal of Economics*, 107, 35–78.
- KERR, S. P., W. KERR, Ç. ÖZDEN, AND C. PARSONS (2016): "Global Talent Flows," Journal of Economic Perspectives, 30, 83–106.
- KLINE, P. (2010): "Place Based Policies, Heterogeneity, and Agglomeration," *American Economic Review*, 100, 383–87.

- MITARITONNA, C., G. OREFICE, AND G. PERI (2017): "Immigrants and firms' outcomes: Evidence from France," *European Economic Review*, 96, 62–82.
- MODESTINO, A. S., D. SHOAG, AND J. BALLANCE (2020): "Upskilling: Do Employers Demand Greater Skill When Workers Are Plentiful?" *The Review of Economics and Statistics*, 102, 793–805.
- MORETTI, E. (2004): "Workers' education, spillovers, and productivity: evidence from plant-level production functions," *American Economic Review*, 94, 656–690.
- MUELLER, A. I., D. OSTERWALDER, J. ZWEIMÜLLER, AND A. KETTEMANN (2018): "Vacancy Durations and Entry Wages: Evidence from Linked Vacancy-Employer-Employee Data,".
- OREFICE, G. AND G. PERI (2020): "Immigration and worker-firm matching," *Working Paper*.
- PASERMAN, M. D. (2013): "Do high-skill immigrants raise productivity? Evidence from Israeli manufacturing firms, 1990-1999," *IZA Journal of Migration*, 2, 1–31.
- ROTHWELL, J. (2014): "Still Searching: Job Vacancies and STEM Skills," *Metropolitan Policy Program at Brookings Institution*.
- SAUVAGNAT, J. AND F. SCHIVARDI (2020): "Are Executives in Short Supply? Evidence from Death Events," *Working Paper*.
- TERRY, E. AND M. DE ZEEUW (2020): "How Do Firms Respond to Hiring Difficulties? Evidence from the Federal Reserve Banks' Small Business Credit Survey," *Federal Reserve Bank of Atlanta Discussion Paper*.
- WEAVER, A. (2021): "Who Has Trouble Hiring? Evidence from a National IT Survey," *ILR Review*.

Figures and Tables

Figure 1: Changes in Hiring Frictions at the Occupation Level

This figure presents the 25^{th} and 75^{th} percentiles of the distribution of the year-by-year changes in hiring frictions across the 322 commuting zones in France for each 2-digit occupation. *HiringFrictions*_{k,cz,t} at the occupation X commuting-zone X year level is defined in Equation (1).

Figure 2: Effects on Firm Outcomes By Industry, Geography and Firm Characteristics - Subsample Analysis

This figure presents the coefficient on the shift-share variable $HiringFrictions_{ss,i,cz,j,t}$ in regressions of respectively log employment, log sales, log value-added, log profits, and log capital in the same sub-sample analysis presented in Table 8. Intervals centered around each dot correspond to 95% confidence intervals. The first dot in black corresponds to the coefficients on log employment presented in Table 8. Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level.

Figure 3: Effects on Firm Outcomes By Task and Occupation Characteristics

This figure presents the total effect of hiring frictions on respectively log employment, log sales, log value-added, log profits, and log capital, for specific subset of occupations, namely the sum of coefficient on the shift-share variable $HiringFrictions_{ss,i,cz,j,t}$ and $\sum_{k \in \mathcal{K}} s_{i,k,09} HiringFrictions_{k,cz,-j,t}$ for different set of occupations \mathcal{K} in the specification presented in Equation (7). Intervals centered around each dot correspond to 95% confidence intervals. The first dot in black corresponds to the coefficient on log employment presented in the last row of Table 9, under the label "Total Effect". Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level.

	Mean	Sd	Min	Max	Ν
Hiring Difficulties					
Hiring Frictions	0.217	0.252	0.000	1.000	776497
Hiring Frictions _{ss}	0.237	0.071	0.000	1.000	3130014
Employment-Related Outcomes					
Employment	14.638	76.207	1.000	20350	3130014
Yearly Wages per worker (K€)	35.308	24.922	4.919	175.498	3130014
Yearly Hours per workers	1381	385	380	2090	3130014
Vacancy Dummy	0.248	0.432	0.000	1.000	3130014
Vacancy Rate	0.055	0.128	0.000	0.999	3104404
Jobs Rate	0.057	0.133	0.000	0.999	3104404
Experience Required (months)	18.239	19.165	0.000	90.000	769810
Education Required (years)	11.653	1.163	11.000	17.000	769810
Offered Contract is Open End	0.523	0.448	0.000	1.000	769810
Offered Contract is Full-Time	0.878	0.291	0.000	1.000	769810
Other Firm-Level Outcomes					
Log Capital	4.323	2.027	0.000	9.582	3130014
Log Sales	6.569	1.430	0.000	10.188	3130014
Log Value-Added	5.638	1.301	-0.916	8.977	3081961
Log Profits	3.910	1.617	-1.406	7.871	2495490
ROA	0.066	0.254	-3.461	1.093	3061732

Table 1: Descriptive Statistics

This table presents summary statistics for our sample, which consists of 3,130,014 firm-year observations between 2010 and 2017. There are 475,697 firms in this sample for which we observe the occupation-mix in 2009. *Hiring Frictions*_{ss} is the firm-level shift-share prediction of hiring frictions defined in Equation (2) and *Hiring Frictions* is the actual hiring difficulties faced by firms on their posted vacancies. Firms' employment is defined as the number of full-time employees at the end of the fiscal year. The vacancy (jobs) rate is computed as in Davis et al. (2013), namely as the number of vacancies (jobs) reported in year *t* divided by a measure of total jobs, defined as the sum of vacancies (jobs) and the simple average of employment in *t*-1 and *t*. Experience required, education required, the share of vacancies for open ended contracts, and the share of vacancies for full-time contracts, are computed across all vacancies posted by each sample firm in each year. Capital is defined as the stock of tangible assets net of accumulated depreciation. Profits are earnings before interest, depreciation, and taxes (EBITDA). ROA is return on assets, defined as earnings before interest, depreciation, and taxes over assets.

	(1)	(2)	(3)
	First Stage	Reduced Form	IV
	Hiring Frictions	Log Employ	vment
Hiring Frictions _{ss}	0.078***	-0.029***	
0	(0.013)	(0.005)	
Hiring Frictions			-0.366***
			(.087)
Firm FE	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes
Observations	647800	3130014	647800
R-Sq	0.452	0.954	

Table 2: Hiring Frictions and Firm Employment

This table presents the baseline results on firm employment. Column (1) shows the results obtained from estimating Equation (3) on the sub-sample of firms posting at least one vacancy on *pole*-*emploi.fr* where the dependent variable is the actual hiring difficulties faced by firms on their posted vacancies (*HiringFrictions*_{*i*,*cz*,*j*,*t*}). Column (2) shows the results obtained from estimating Equation (3) on the entire sample of firms where the dependent variable is the logarithm of the number of full-time employees at the end of the fiscal year. Column (3) presents an instrumental variable (IV) specification, where realized hiring frictions at the firm level is instrumented with the shift-share variable. Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
					Log Emp	loyment				
	Share Unfilled	Shares in 2010	Control For Firm Charact	Tradable Industries	Non-Tradable Industries	Posting Firms	Not Posting Firms	Exclude I-O Links	Exclude	Control For Wages
Hiring Frictions _{ss}	-0.021*** (0.005)	-0.024***	-0.034*** (0.006)	-0.030**	-0.028***	-0.031***	-0.028*** (0.006)	-0.018***	-0.031*** (0.005)	-0.021***
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age, Size, ROA x Year FE	No	No	Yes	No	No	No	No	No	No	No
Control for Wages	No	No	No	No	No	No	No	No	No	Yes
Observations	3130014	3113662	2905005	312942	2814321	1762615	1307301	3126891	3063116	3128702
R-Sq	0.954	0.954	0.956	0.969	0.952	0.953	0.932	0.954	0.951	0.954

Table 3: Hiring Frictions and Firm Employment - Robustness

This table presents variants of the specification presented in Column (2) of Table 2. Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. In Column (1), we replace the baseline firm-level shift-share variable by the same measure using only information on the probability of filling vacancies (that is replacing *DaysToFill* by 0 in Equation (1)). In Column (2), we re-compute the firm-level shift-share variable using occupation shares in 2010, instead of 2009. In Column (3), we augment our specification with firm characteristics (terciles of firm size, age, and ROA, all measured pre-sample), inter-acted with year fixed effects. Columns (4) (respectively Column 5) restricts the sample to tradable industries (non-tradable industries). Tradable industries are agriculture, forestry, and fishing; mining and quarrying; manufacturing; and information and communication. Columns (6) (respectively Column 7) restricts the sample to firms that posted at least one vacancy on *Pole-emploi.fr* (respectively never posted a vacancy on *Pole-emploi.fr*). In Column (8), we re-compute the firm-level shift-share variable also applying the leave-one-out correction to upstream and downstream sectors with respect to each firm (using a 1% cutoff on input-output linkages at the industry level). Column (9) re-run the baseline specification after removing from the sample any firm that represents more than 1% of the total local market for any occupation in any year. In Column (10) we add average wages as control. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

	(1)	(2) Log Employment	(3)
	2-digits Occupation	5-digits Occupation	Occ-specific elasticity
Tightness Frictions _{ss}	-0.015**	-0.016***	-0.014*
	(0.007)	(0.005)	(0.007)
Matching Inefficiency Frictions _{ss}	-0.028***	-0.020***	-0.028***
	(0.007)	(0.004)	(0.007)
Firm FE	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes
Observations	3058786	3063142	3058786
R-Sq	0.965	0.965	0.965

Table 4: Market Tightness vs. Matching Efficiency

This table presents the results obtained from estimating Equation (6) in specifications in which the dependent variable is the logarithm of firm employment. Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

	(1) Log Capital	(2) Log Sales	(3) Log Value-Added	(4) Log Profits	(5) ROA
Hiring Frictions _s s	-0.029**	-0.019***	-0.025***	-0.031**	-0.009***
	(0.013)	(0.007)	(0.007)	(0.016)	(0.003)
Firm FE	Yes	Yes	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes	Yes	Yes
Observations	3130014	3130014	3077525	2455320	3059473
R-Sq	0.927	0.940	0.927	0.819	0.533

Table 5: Hiring Frictions and Other Firm Outcomes

This table presents the results obtained from estimating Equation (3) in specifications in which the dependent variable is respectively the logarithm of capital, the logarithm of sales, the logarithm of value-added, the logarithm of profits, and return on assets. Each regression includes firm fixed effects and industry \times commuting zone \times year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

	(1)	(2)	(3)	(4)
Panel A:	Log Total	Log Yearly	Log Yearly	Log Hourly
Hours and Wages	Payroll	Wages p.w.	Hours p.w.	Wages
Llivin a Eviationa	0.015**	0.010***	0.005	0.020***
HIFING Frictions _{ss}	-0.015	(0.019^{-11})	(0.005)	(0.00()
	(0.006)	(0.005)	(0.005)	(0.006)
Firm FE	Yes	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes	Yes
Observations	3130014	3130014	3130014	3130014
R-Sq	0.941	0.810	0.683	0.890
	(1)	(2)	(3)	(4)
Panel B:	Log Yea	rly Hours	Log Hou	rly Wages
New Hires vs Incumbents	New Hires	Incumbents	New Hires	Incumbents
Hiring Frictions _{ss}	0.015	-0.004	0.011	0.034***
-	(0.015)	(0.005)	(0.009)	(0.006)
Firm FE	Yes	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes	Yes
Observations	1959616	3017697	1959616	3017697
R-Sq	0.423	0.656	0.619	0.876
	(1)	(2)		
Panel C:	Workforc	e Turnover		
Hiring vs Separation Rates	New Hires (%)	Separations (%)		
Hiring Frictions _{ss}	-0.048**	-0.029*		
-	(0.022)	(0.016)		
Firm FE	Yes	Yes		
Ind-Cz-Year FE	Yes	Yes		
Observations	3130014	3100276		
R-Sq	0.844	0.836		

Table 6: Wages, Hours Worked, and Turnover

This table presents the results obtained from estimating Equation (3) in specifications where the dependent variable is respectively total payroll (Column 1 of Panel A), yearly wages per worker (Column 2 of Panel A), yearly hours per worker (Column 3 of Panel A), hourly wages (Column 4 of Panel A), yearly hours per worker within the subset of new hires (Column 1 of Panel B), yearly hours per worker within the subset of incumbents (Column 2 of Panel B), hourly wages within the subset of new hires (Column 3 of Panel B), hourly wages within the subset of new hires (Column 3 of Panel B), hourly wages within the subset of new hires (Column 4 of Panel B), the ratio of new hires over the number of firm employees (Column 1 of Panel C), and the ratio of separations over the number of firm employees (Column 2 of Panel C). Each regression includes firm fixed effects and industry \times commuting zone \times year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	Panel A:	Vacancy Posting	g	Panel B: Vacancy Standards					
	Vacancy Dummy	Vacancy Rate	Jobs Rate	Experience	Education	Open End Contract	Full-Time Contract		
Hiring Frictions _{ss}	-0.013**	-0.004**	-0.005***	-1.963**	0.061	-0.008	-0.011		
-	(0.006)	(0.002)	(0.002)	(0.828)	(0.059)	(0.019)	(0.011)		
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Ind-Cz-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	3130014	3100276	3100276	640889	640889	640889	640889		
R-Sq	0.543	0.571	0.575	0.635	0.698	0.638	0.667		

Table 7: Job Posting and Hiring Standards

This table presents the results obtained from estimating Equation (3) on the entire sample of firms for measures of vacancy posting (Panel A) and on the sample of firms that have posted at least one vacancy in a given year for vacancy standards (Panel B). The dependent variable is the probability of opening at least one vacancy in Column (1), the vacancy rate in Column (2) and the jobs rate in Column (3). We measure the vacancy (jobs) rate at *t* as in Davis et al. (2013), namely as the number of vacancies (jobs) reported in year *t* divided by a measure of total jobs, defined as the sum of vacancies (jobs) and the simple average of employment in *t*-1 and *t*. The dependent variable is the average experience required expressed in months computed over all vacancies for open end contracts in Column (6) and the fraction of vacancies for full-time contracts in Column (7). Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				L	og Employ	ment				
	Sec	tor	Ar	ea	Labor Intensive		Size		Age	
	Expanding	Declining	Expanding	Declining	Yes	No	Large	Small	Old	Young
Hiring Frictions _{ss}	-0.041*** (0.006)	-0.010* (0.006)	-0.038*** (0.006)	-0.013* (0.008)	-0.037*** (0.007)	-0.014** (0.006)	-0.055*** (0.012)	-0.025*** (0.005)	-0.021*** (0.006)	-0.030*** (0.007)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1742397	1381914	2264603	865411	1468744	1487611	1390436	1682279	1523121	1546086
R-Sq	0.958	0.951	0.953	0.958	0.958	0.954	0.943	0.833	0.967	0.935
	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
				L	og Employ	ment				
	RC)A	TF	P	Pay Dividend		Credit Risk		Leverage	
	High	Low	High	Low	Yes	No	High	Low	Low	High
Hiring Frictions _{ss}	-0.027***	-0.035***	-0.024***	-0.021***	-0.041***	-0.029***	-0.033***	-0.050***	-0.046***	-0.017***
0 00	(0.006)	(0.008)	(0.006)	(0.007)	(0.008)	(0.006)	(0.010)	(0.008)	(0.007)	(0.006)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ind-Cz-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1438137	1405957	1425925	1351034	703943	2253368	837442	1020037	1414925	1429075
R-Sq	0.957	0.956	0.954	0.960	0.966	0.948	0.956	0.961	0.953	0.959

Table 8: Heterogeneity by Industry, Geography, and Firm Characteristics

This table presents the results obtained from estimating Equation (3) in specifications in which the dependent variable is the logarithm of firm employment for different sub-samples. The sample is restricted to expanding versus declining industries (Columns 1 and 2), expanding versus declining areas (Columns 3 and 4), low versus high labor share firms (Columns 5 and 6), large versus small firms (Columns 7 and 8), old versus young firms (Columns 9 and 10), low versus high ROA firms (Columns 11 and 12), low versus high TFP firms (Columns 13 and 14), firms paying versus not paying dividends (Columns 15 and 16), high versus low credit risk firms (Columns 17 and 18), low versus leverage firms (Columns 19 and 20). Firm size, firm age, ROA, TFP, dividend payments, credit risk - defined as the inverse of the coverage ratio - and leverage - defined as total debt over total assets - are all measured in 2009. Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
				Log Emp	oloyment			
Hiring Frictions _{ss}	0.008 (0.005)	-0.030*** (0.006)	-0.047*** (0.007)	-0.025*** (0.006)	-0.041*** (0.006)	-0.016*** (0.006)	-0.006 (0.006)	-0.012** (0.005)
Hiring Frictions _{ss} \times NR Cognitive	-0.085*** (0.009)	~ /	()	~ /	()	~ /	~ /	~ /
Hiring Frictions _{ss} \times NR Interpersonal	. ,	0.004 (0.008)						
Hiring Frictions _{ss} \times NR Manual			0.050*** (0.010)					
Hiring Frictions _{ss} \times R Cognitive			. ,	-0.012 (0.009)				
Hiring Frictions _{ss} \times R Manual				× ,	0.043*** (0.008)			
Hiring Frictions _{ss} \times High Wage						-0.032*** (0.011)		
Hiring Frictions _{ss} \times High Skill						, , ,	-0.052*** (0.010)	
Hiring Frictions _{ss} \times Specialized							~ /	-0.041*** (0.009)
Firm FE	Yes							
Ind-Cz-Year FE	Yes							
Observations	3130014	3130014	3130014	3130014	3130014	3130014	3130014	3130014
R-Sq	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954
Total Effect	-0.077***	-0.026***	0.003	-0.037***	0.002	-0.049***	-0.059***	-0.052***
	(0.008)	(0.007)	(0.007)	(0.008)	(0.007)	(0.009)	(0.008)	(0.008)

Table 9: Heterogeneity by Task and Occupation Characteristics

This table show the results obtained from estimating Equation (7) in specifications in which the dependent variable is the logarithm of firm employment. Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

Online Appendix Hiring Frictions and Firms' Growth Thomas Le Barbanchon (Bocconi) Maddalena Ronchi (IFS) Julien Sauvagnat (Bocconi)

The online appendix has two parts. Appendix A includes additional figures and tables. In Appendix B, we correlate our measure of hiring frictions based on vacancy data with survey answers by firms on hiring difficulties.

A Appendix Figures and Tables

Figure A1: Share of Unfilled Vacancies by Occupation

This figure presents the share of unfilled vacancies by 2-digit occupation across all vacancies posted on the online job board *pole-emploi.fr* over the sample period.

Figure A2: Average Time-to-fill Vacancies by Occupation

This figure presents average time-to-fill, measured in days, for each 2-digit occupation, across all vacancies eventually filled posted on the online job board *pole-emploi.fr* over the sample period

Figure A3: Ranking of Occupations by Type

R Manual Index

Figure A3 (Continued)

This figure presents the respective scores of the set of occupations defined as respectively nonroutine cognitive intensive, non-routine interpersonal intensive, non-routine manual intensive, routine manual intensive, routine cognitive intensive, high-skill, high-wage, specialized.

loyment
06 -0.024*** 0.002 0.003
06) (0.006) (0.007) (0.007)
2^{***} -0.040*** -0.042*** -0.029***
(0.009) (0.009) (0.009) (0.009)
17*
10)
0.042***
(0.009)
(0.011)
-0.045***
(0.010)
es Yes Yes Yes
es Yes Yes Yes Yes
014 3130014 3130014 3130014 54 0.954 0.954 0.954
0.704 0.704 0.704

Table A1: Employment Effects: Specialized Occupations

This table presents the results obtained from estimating variants of Equation (7) in specifications with three firm-level shift-share variables in which the dependent variable is the logarithm of firm employment. Each regression includes firm fixed effects and industry × commuting zone × year fixed effects. Standard errors are clustered at the commuting-zone level. The sample period is 2010-2017. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.

B Hiring Difficulties Measured in Vacancy Data vs. Firm Surveys

In this section, we correlate the two components of our measure of hiring frictions from vacancy data, share unfilled and time-to-fill, with survey answers from firms on the hiring difficulties they face. We use firm answers in two surveys: the Business Tendency Survey (BTS) from the French Statistical Institute (Insee) and the Workforce Firm Survey from the French Public Employment Service (Pole Emploi). The BTS surveys a panel of French establishments every month in order to forecast economic growth (*Enquête de conjoncture*). The Workforce survey also surveys firms to assess manpower needs in the French labor market (*Besoin de Main d'oeuvre*).

In the BTS, firms are asked whether they currently encounter recruiting difficulties (yes/no question). The question is ventilated across three types of labor: executives, skilled workers, and unskilled workers. We have access to the BTS data covering manufacturing firms. We aggregate their answers at the year X industry level, where industries are within the 5-digit classification (NAF-5d). We restrict the period to 2010-2017 over which we have the vacancy data. Similarly, we collapse the share of unfilled vacancies and time-to-fill at the same year X 5-digit industry level, both across all vacancies, and separately for the sub-samples of vacancies for executives, for skilled workers and for unskilled workers. Figure A5 (resp. A6) plots binscatters of share of unfilled vacancies (resp. time-to-fill) against the average share of establishments reporting hiring difficulties. Each Year X Industry cell is weighted by the number of firms surveyed. We find a positive and significant correlation between the survey measures and our measures of hiring time / share of unfilled vacancies. The slope of each binscatter plot is statistically significant at the one percent level.

The PES manpower survey is instead available at the occupation level, and covers firms in all industries. It asks every firm in which occupation(s) they intend to hire, and for each of these occupations, the number of workers to be hired, and the number of difficult searches. We have access to aggregate counts by occupation (5-digit level, denoted FAP-5d), year and department for the period 2015-2017. The French metropolitan territory is partitioned in 100 departments. This geographical unit is less disaggregated than the set of commuting zones used in the main analysis. We collapse the vacancy data at the same level (occupation X department X year)

and over the same period. Figure A7 reports binscatters of share unfilled and timeto-fill against the reported share of difficult recruiting processes. We weight cells by the overall number of intended hires. Again, we find a significant and positive correlation between the survey-based measures and the vacancy-based measures of hiring difficulties. The slope of each binscatter plot is statistically significant at the one percent level.

We conclude that our main measure of hiring frictions based on the expected probability of filling a vacancy and the average time it takes to hire a worker indeed strongly correlates with firms' own-assessment in surveys of the difficulty they face for finding suitable workers on the labor market.

Figure A5: Time-To-Fill vs. Hiring Difficulties in Business Tendency Survey

(b) Executives

(a) All occupations

This figure presents scatter plot of the relationship between average time-to-fill (respectively across all vacancies in Panel A, for the sub-samples of vacancies for executives in Panel B, for skilled workers in Panel C, and low-skill workers in Panel B) expressed in number of days and respectively the share of firms reporting that they faced hiring difficulties in the Business Tendency Survey (across all occupations (respectively across all vacancies in Panel A, for the sub-samples of vacancies for executives in Panel B, for skilled workers in Panel C, and low-skill workers in Panel D) across each industry X year cell. Each cell is weighted by the number of firms surveyed. The sample period is 2010-2017.

Figure A6: Share of Unfilled Vacancies vs. Hiring Difficulties in Business Tendency Survey

This figure presents scatter plot of the relationship between the share of unfilled vacancies (respectively across all vacancies in Panel A, for the sub-samples of vacancies for executives in Panel B, for skilled workers in Panel C, and low-skill workers in Panel B) expressed in number of days and respectively the share of firms reporting that they faced hiring difficulties in the Business Tendency Survey (across all occupations (respectively across all vacancies in Panel A, for the sub-samples of vacancies for executives in Panel B, for skilled workers in Panel C, and low-skill workers in Panel D) across each industry X year cell. Each cell is weighted by the number of firms surveyed. The sample period is 2010-2017.

Figure A7: Time-to-fill and Share Unfilled vs. Hiring Difficulties in *Pole Emploi* Firm Survey

This figure presents scatter plot of the relationship between the average time-to-fill expressed in number of days (respectively share of unfilled vacancies) and the share of difficult recruitments in the Pole Emploi survey across each occupation X department X year cell. Each cell is weighted by the number of firms surveyed. The sample period is 2010-2017.