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1 Introduction

A recent survey of the scientific literature found a nearly 100% consensus on human-caused climate
change (Lynas et al., 2021), and a large number of countries have now committed to reducing
carbon emissions. The European Union is a pioneer in this effort. In 2005, it set a cap on CO2
emissions and established the EU Emissions Trading System (ETS) which was the world’s first
international emissions trading scheme. In December 2020, EU leaders committed to a European
Green Deal which, among other things, aims at a 55% reduction in greenhouse gas emissions by
2030 and climate neutrality by 2050. In June 2021, the European Council adopted the European
Climate Law which legally commits member countries to these goals.

Reaching these objectives will require redirecting financial resources towards sustainable projects
and activities. Policy actions aimed at diverting capital to support climate change mitigation are
only effective if they raise the cost of capital for firms with high carbon emissions with respect to
their greener counterparts. In this paper, we show that this is the case: we document that policies
that increase carbon prices have an impact on stock prices and raise the cost of equity capital for
firms with high carbon emissions.

We use firm-level data for a large sample of European companies to study how the impact of
carbon policy on stock returns varies with company-level carbon emissions. After accounting for
the endogeneity of the relationship between carbon prices and stock returns, we find that regulatory
actions which result in positive carbon policy surprises (i.e., higher carbon prices) lead to negative
abnormal returns which increase with carbon emissions. We explore whether our findings are driven
by increased carbon risk or by the effect of an increase in the cost of carbon for firms that need
to surrender carbon emission allowances under the EU ETS. The fact that our results are robust
to dropping firms that participate in the Trading System suggests that carbon transition risk does
matter. We conclude that regulation is effective in increasing the cost of equity capital for high-
emission companies. Our results are thus consistent with existing work that has found that investors
demand compensation for their exposure to carbon transition risk (Bolton and Kacperczyk, 2021b,
2022)—and even more so when tighter policies lead to higher carbon prices.

Our paper also contributes to identifying events that lead to a repricing of carbon risk (Känzig,
2022) and provides a test for the role of a key potential driver of this risk. Specifically, we provide
firm-level evidence for the hypothesis that climate policy tightness is an important driver of carbon
transition risk. This result is in line with the findings of Bolton and Kacperczyk (2022) who, using
a different approach, find that domestic policy tightening is a driver of the relationship between
stock returns and firm-level carbon emissions.

We start by sourcing firm-year level data on carbon emissions from Urgentem for 2,149 listed
firms in the EU over 2011–21 and merge them with daily data on stock returns. We then show that
our data corroborate existing evidence that carbon emissions are associated with a higher cost of
capital. Instead, our results are not in line with studies that find that low carbon emission intensity
is associated with higher returns, such as In et al. (2019) and Garveya et al. (2018). Note, however,
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that these studies use a smaller sample of companies and focus on portfolios instead of firm-level
returns.

While our results on the link between carbon emissions and average returns are similar to those
of Bolton and Kacperczyk (2021b, 2022), there are two notable differences between their empirical
approach and ours. First, we focus on emission intensity (i.e., total emissions scaled by revenues).
We do this because our ultimate objective is to estimate the relationship between policy shocks
and stock returns and, as discussed by Bolton and Kacperczyk (2021b, p.519): “emission-intensive
firms might well be the first to become unprofitable should the carbon price rise.” Second, we use
daily stock returns. Again, this choice is linked to our objective of estimating the effect of carbon
policy surprises which are defined at daily frequency.1

Next, we interact firm-level carbon emissions with daily changes in EU ETS carbon prices to
study whether carbon emissions affect the relationship between carbon prices and stock returns.
Perhaps surprisingly, we find that companies that are more carbon intensive have abnormal re-
turns that are positively correlated with carbon prices. This result is robust to controlling for
both country-sector-time fixed effects and firm-year-quarter fixed effects. The positive correlation
between carbon prices and stock returns for high-emission firms is likely to be driven by endo-
geneity. Consider for instance an exogenous shock, such as unusually warm weather, that reduces
the demand for the products of some carbon-intensive companies. Since the shock would lead to
lower expected profits for those firms and lower demand for carbon emission allowances, it would
generate a positive correlation between carbon prices and stock returns of high-emission firms.

Finally, we move to our main question of interest and test how carbon policy affects the rela-
tionship between stock returns and company-level carbon emissions. To quantify the policy shock,
we follow Känzig (2022) and use a measure of carbon policy surprises. Specifically, we extend his
data to 2021 and use 98 regulatory events regarding the supply of EU carbon allowances (EUAs)
to identify a daily measure of carbon policy shocks—computed as the percentage change in the
EUA futures prices on the day of regulatory events. We find that carbon policy surprises have
a statistically significant negative impact on stock returns which increases with a firm’s carbon
intensity. This result is robust to jointly controlling for country-sector-time fixed effects and firm-
year-quarter fixed effects, and to a vast battery of robustness checks. Our point estimates imply
that a one standard deviation increase in the carbon price on regulatory event days (the carbon
policy surprise) lowers an average firm’s daily return by around 7%.

We also test for the presence of asymmetries between days when carbon prices increase and days
when carbon prices decrease. We find strong evidence of asymmetries on non-regulatory event days.
Specifically, we show that the the positive correlation between carbon prices and stock returns for
high-emission firms is driven by days when carbon prices decrease. Carbon emissions, instead, do
not matter (the coefficient is basically zero) on days when carbon prices increase. While there is
no statistically significant asymmetry for our main variable of interest—the carbon policy surprise

1We use the term “carbon policy” to refer to policy conducted in the EU through its ETS which aims at reducing
greenhouse gas emissions.
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—we do find that the effect is quantitatively larger in absolute value when a regulatory surprise
leads to an increase in carbon prices (the difference is about 25%). This result provides further
evidence that regulatory surprises which result in an increase in carbon prices are particularly
effective in increasing the cost of equity capital for carbon-intensive firms.

Related Literature

This paper contributes to a growing body of literature that studies the impact of climate risk
and policy on financial markets. As mentioned, Bolton and Kacperczyk (2021b, 2022) show that
company-level carbon emissions lead to higher stock returns in a cross-section of firms. They
describe two mechanisms that could lead to a positive link between carbon emissions and stock
returns: (i) carbon risk premium and (ii) disinvestment.2 According to the carbon risk premium
hypothesis, companies with high carbon emissions are exposed to carbon pricing and carbon regu-
lation risk. Hence, forward-looking investors will require higher returns to hold stocks that carry
these risks. According to the disinvestment hypothesis, instead, companies with high emissions are
equivalent to “sin stocks” (Hong and Kacperczyk, 2009): as socially responsible institutional in-
vestors turn away from high-emission stocks, their prices decrease and, for any given level of profits,
their returns increase. Bolton and Kacperczyk (2021b) conclude that there is no strong evidence
in support of the disinvestment hypothesis and that their results are in line with the carbon risk
premium hypothesis. In this paper, we provide further evidence in this direction.

Two other papers that are closely related to our work are Bolton et al. (2022) and Millischer
et al. (2022). One key difference between our work and theirs is that, while we use all listed firms for
which we have data on carbon emissions, Bolton et al. (2022) and Millischer et al. (2022) focus on
firms that participate in the EU ETS and study how carbon prices affect stock returns conditional
on the share of firm emissions covered by freely allocated allowances. For instance, Bolton et al.
(2022) find that for firms that have shortfalls in freely allocated emission allowances, higher carbon
prices translate to lower returns, while the opposite is true for firms that have free allowances that
exceed their emissions. They also find that firms with a shortfall of allowances tend to reduce
emissions within the EU but not globally. These results are consistent with the idea that, within
the EU ETS, the cost channel dominates the risk compensation channel.

However, the cost channel should not be at play for firms that do not participate in the EU
ETS. Given that our sample is dominated by firms that do not participate in the ETS, our finding
of a negative relationship between stock returns and policy shocks that increase carbon prices for
high-emission firms suggests that carbon transition risk also plays a role. In fact, we find that when
we exclude firms that participate in the EU ETS our results become stronger.

Related work also includes Hsu et al. (2022) who show that the cross-sectional variation in stock
returns is linked to industrial pollution and Faccini et al. (2021) who find that climate risk associated
with government interventions is priced in US stocks and that firm exposure to regulatory shocks is
negatively associated with valuation changes. Sautner et al. (2021) apply text analysis to earning

2They also discuss a third possible mechanism (carbon alpha). However, this mechanism is not consistent with
the observed positive cross-sectional correlation between carbon emissions and stock returns.
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calls transcripts to build a firm-level time-varying measures of market participants’ perception of
firm exposures to climate change for firms in 34 countries. They find that exposure to regulatory
events has a negative effect on stock valuations. Engle et al. (2020) also use text analysis but focus
on news and show how to build portfolios that can hedge climate news.

Seltzer et al. (2022) use the Paris Agreement of December 2015 as a natural experiment to
show that bonds issued by listed US non-financial companies with poor environmental profiles or
high carbon footprints tend to have lower credit ratings and face higher yield spreads and that
this is particularly the case if they have plants in US states with stricter regulatory enforcement.
Monasterolo and de Angelis (2020) also focus on the Paris Agreement and, using data on EU, US
and global stock indices, show that the Agreement has led to an increase of systematic risk and a
decrease of the portfolio weights of carbon-intensive indices. In a survey of institutional investors,
Krueger et al. (2020) find that these investors worry about climate and regulatory risks but that
these risks are not fully reflected in equity valuations.

Other relevant papers include Veith et al. (2009) and Jong et al. (2014) who found a positive
correlation between stock returns of electricity producers and carbon prices. The main explanation
for this finding is that these authors used data for the first phase of the EU ETS (2005-07), a
period in which emission allowances were freely allocated. Studies that focus on the second phase
of the EU ETS tend to find either a negative or not statistically significant relationship between
carbon prices and stock returns of electricity producers (da Silva et al., 2016; Mo et al., 2012;
Tian et al., 2016). Focusing on Germany, Oestreich and Tsiakas (2015) find a premium before
2009 and no significant relationship between stock returns and carbon prices in more recent years.
Using data on European companies, Ryszka and Rösler (2020) also find no significant relationship
between carbon emissions and stock prices, but Dutta et al. (2018) find that carbon emissions
increase the volatility of European electricity producers. Witkowski et al. (2021) also emphasize
the time-varying nature of the relationship between carbon prices and stock returns in energy and
energy-intensive sectors. They find that the carbon premium in energy-intensive sectors relative to
greener firms was positive and statistically significant before the introduction of the EU ETS, then
turned negative, and surprisingly became insignificant after 2016.

Focusing on US firms, Matsumura et al. (2014) find that carbon emissions reduce firm value
but that there is a mitigating effect of voluntary disclosure. Along similar lines, Chava (2014)
finds that stocks excluded by environmental screens have a higher implied cost of capital and face
higher interest rates with respect to firms that do not face such environmental concerns. Likewise,
Bolton and Kacperczyk (2021a) show that voluntary disclosure of carbon emissions lowers the cost
of capital for firms in 77 countries.

There is also a literature that focuses on climate events and climate news. Bansal et al. (2016)
use data for US and global equity markets and find that higher temperature lowers equity valuations.
Along similar lines, Painter (2020) find that US counties that are more likely to be affected by
climate change face higher interest and underwriting costs when they issue municipal bonds.

The remainder of the paper is organized as follows. Section 2 describes our data. Section 3

4



presents our empirical strategy with a special focus on how we estimate the causal effect of carbon
policy shocks. Section 4 presents our baseline results, together with a set of extensions focusing on
potential asymmetries and a battery of robustness checks. Section 5 concludes.

2 Data

Our analysis brings together information on firm-level carbon emissions, the EU carbon futures
market—which is a cornerstone of the EU’s climate change mitigation policy—and firms’ stock
market performance. Our baseline dataset spans 2,149 firms across 38 sectors in 23 EU countries
over January 2011–December 2021.3

We obtain annual data on Greenhouse Gas Protocol defined emissions (referred to as carbon
emissions in this paper) from Urgentem.4 The database reports absolute emissions (tCO2e) and
emission intensity (tCO2e/$m revenue) for scope 1, scope 2, and scope 3 emissions. Scope 1
emissions are direct emissions by each firm. Scope 2 emissions are indirect emissions from the
purchase of electricity, steam, heating, or cooling for own use. Scope 3 emissions are all indirect
emissions (not included in scope 2 emissions) that occur in the upstream and downstream value
chain of the firm. Due to challenges in establishing scope 3 emissions (see, for example, Kruse et al.,
2020), our analysis concentrates on scope 1 and 2 emissions. As we are interested in the response
of stock returns to carbon policy shocks, we focus on emission intensity.

Table 1 reports the summary statistics for the firms in our baseline sample. The average firm
emits around 170 tCO2e per US$ million revenue. The median emission intensity is considerably
smaller, indicating that the distribution of carbon emission intensity is skewed to the right. We
observe that both the average and median cross-section emission intensity have declined over time
(see Table A.1). As noted in Bolton and Kacperczyk (2021b), declining firm-level emissions over
time are expected as a result of innovations and energy efficiency gains as well as the increasing
reliance on renewable energy.

Zooming in on emission intensities across sectors shows that energy producers, utilities, and
mining are the most carbon-intensive sectors. Firms in these sectors account for 58.4% of total
emissions and roughly 6% of total observations in our sample. Firms in the financial and insurance
sector are on the other end of the spectrum, accounting for 0.4% of total emissions and about 15%
of observations (Figure 1).

We complement our firm-level dataset with information on the EU ETS carbon market. The
EU ETS was launched in 2005 and relies on a cap and trade principle. Firms participating in the
scheme need to surrender a quantity of EUAs (carbon allowances) equivalent to their emissions

3In a robustness check, we also include data for the UK until December 2020 when it ended its participation in
the EU ETS. Including the UK increases the sample of firms to 2,502. Our sectoral classification is based on ICB
sectors available on Refinitiv Datastream.

4Greenhouse Gas Protocol is a non-profit organization convened in 1998 by World Business Council for Sustainable
Development (WBCSD) and World Resources Institute (WRI) with the aim of establishing a comprehensive global
standardized frameworks to measure and manage greenhouse gas (GHG) emissions. See Greenhouse Gas Protocol.
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Table 1: Summary Statistics

This table reports summary statistics for our baseline sample which consists of 2,149 firms across 38 sectors in 23 EU
countries over the period from January 2011–December 2021. The sample excludes observations with daily returns
greater than 100%.

Variable Mean Median SD
Daily stock return (percent) R 0.048 0.000 2.364
Scope 1 + 2 carbon emissions intensity (tCO2e/$m revenue) CE 169.24 26.26 503.96
Daily change in EUA futures price (percent) ∆CP 0.24 0.28 2.97
Daily change in EUA futures price on event days (percent) ∆CP × EV -0.01 0.00 0.67

Figure 1: Carbon emission intensity across sectors

This figure shows the median scope 1 and scope 2 carbon emission intensity across sectors.
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on an annual basis.5 EUAs are traded on several spot and futures markets. In line with Känzig
(2022), we focus on EUA futures data from the Intercontinental Exchange (ICE) which dominate
the price discovery in the EU ETS.

Figure 2 illustrates the evolution of the EUA futures price over our sample period. The EU
carbon price has increased over time, with the average daily change amounting to 0.24% between
2011–21 (Table 1). Demand side factors as well as regulation are key drivers of the EUA price.
The substantial increase in the EUA price in 2018 and 2019 is linked to more stringent EU climate
policies and to changes to the EU ETS design. In 2021, the price accelerated further partly because
of cold weather which led to higher demand for energy but also because of legislation which affirmed
the role of the EU ETS and changes to the supply of EUAs (Ampudia et al., 2022). The figure also
shows that, on average, prices have been particularly volatile over 2020-21, but that there have also
been volatility spikes in 2013 and 2016.

Figure 2: EU ETS carbon price

This figure shows the evolution of the EUA futures price and daily price change (RHS) over 2011–21.
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To measure firms’ stock market returns, we collect data on daily stock prices for active listed
firms from Refinitiv Datastream. Table 1 shows that the firms in our sample have an average daily
return of 0.05% with a standard deviation of 2.36%.6

5Each EUA entitles the holder to emit one tonne of carbon dioxide or carbon-equivalent greenhouse gas (tCO2e).
6We exclude observations with daily returns greater than 100% to limit the impact of outliers.
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3 Conceptual Framework and Empirical Strategy

There is evidence that carbon emissions affect the cross section of stock returns both in the US
and globally (Bolton and Kacperczyk, 2021b, 2022). To describe the link between what we do and
existing cross-sectional analyses it us useful to consider two firms that produce at no cost one asset
which will have value C at time T and assume that the firms are identical except for the fact that
firm A produces a “green” asset (imagine the patent for a new type of solar panel) and firm B a
“brown” asset (for instance, a new oil field).7 Further assume that at time t investors do not know
that there is a risk associated with the brown asset produced by firm B (or they do not know that
B is brown) and that the required daily (without loss of generality) rate of return for both firms is
r. Firm value at time t is then given by:

V A
t = V B

t = C

(1 + r)T −t

Let us now assume that at time t′ > t there is a policy shock that reveals that the value of
the asset produced by firm B is subject to carbon risk. To fix ideas, consider the following three
scenarios for a carbon shock:

1. Investors think that the expected value of the asset produced by firm B is still C. However,
this value is no longer certain. This could be because the time t′ shock has revealed the
“browness” of firm B. Alternatively, the shock might have convinced investors that there is
now a risk of future regulatory actions that could affect the value of the asset produced by
firm B. If investors are risk averse, B’s stocks need to be repriced to reflect the increased risk.
If we assume that the relevant risk premium is ρ > 0, on day t′ the price of stock B will drop
from V B

t = C
(1+r)T −t′ to V B

t′ = C
(1+r+ρ)T −t′ . After t′, the daily return increases to r + ρ > r. In

this set up, ρ measures the difference in cross sectional returns after the carbon shock. The
black solid line in Figure 3 plots the value of firm B under this scenario (the thick green line
plots the value of firm A which does not change across scenarios).

2. Investors think that at time T the asset produced by firm B will be δC (with δ < 1) with
certainty. Under this scenario, on day t′ the price of stock B drops from V B

t = C
(1+r)T −t′ to

V B
t′ = δC

(1+r)T −t′ . After t′, the daily return goes back to r. The gray solid line in Figure 3 plots
the value of firm B under this scenario.

3. Investor think that at time T the asset produced by firm B will have an expected but uncertain
value δC (with δ < 1) and want to be compensated for the risk associated with holding B

stocks. The relevant risk premium is ρ > 0. Under this scenario, on day t′ the price of stock
B drops from V B

t = C
(1+r)T −t′ to V B

t′ = δC
(1+r+ρ)T −t′ . After t′, the daily return increases to

r + ρ > r. The black dashed line plots the value of firm B under this scenario.

7Alternatively, we could assume that the “green” asset is produced with low-carbon emitting technologies whereas
the production of the “brown” asset is carbon intensive.
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Figure 3: Simulation

This figure simulates the evolution of the values of firm A (the thick green line) and firm B under three scenarios: 1.
investors think that the expected value of the asset produced by firm B is unchanged but that the value is no longer
certain (the black solid line); 2. investors think that the expected value of the asset produced by firm B will be lower
with certainty (the gray solid line); and 3. investors think that the expected value of the asset produced by firm B
is lower but uncertain (the black dashed line). The simulations assume that C = 1, T = 5000, t′ = 500, r = 0.0001,
ρ = 0.00005, and δ = 0.9.
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In this example, the carbon shock always reduces the firm value on impact and therefore leads
to negative returns on day t′. Shocks that increase carbon risk also lead to higher cross-sectional
returns. However, this is not the case for the shock under the second scenario. In this case there is
a drop in the value of the firm but no increase in risk because the future value of the asset is now
lower but not uncertain. Our empirical strategy uses multiple shocks and therefore does not allow
to directly test the three scenarios described above. However, the fact that there was no significant
carbon premium prior to the Paris Agreement of December 2015 (Bolton and Kacperczyk, 2022)
does not seem consistent with the second scenario.8

In our sample of European listed firms, a policy shock that increases carbon prices could have
a direct effect on firm profitability for companies that participate in the EU ETS. As highlighted
by Bolton et al. (2022), this effect will be positive for firms that are long in emission allowances
and negative for firms that are short in emission allowances. There could also be an indirect effect
through transition risk. The relevant scenario for these firms would thus either be one one in which
δ ̸= 1 and ρ = 0 or one in which δ ̸= 1 and ρ > 0.

However, for firms that do not participate in the EU ETS there should be no direct effect
on profitability and changes in cross-sectional returns should be driven by ρ. Finding that high-
emission firms have higher average returns and negative abnormal returns on impact when there
is a policy action that leads to higher carbon prices would be consistent with the joint hypothesis

8The fact that the premium increased after the Paris Agreement is also inconsistent with a fourth possible scenario
in which a policy shock reduces uncertainty about future policies and thus leads to lower cross sectional stock returns.
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that investors price in carbon risk and that policy tightenings are a key driver of carbon risk. The
objective of our empirical strategy is to test this joint hypothesis.

As mentioned, the purpose of the simulation described above is to illustrate the difference
between the literature aimed at estimating how carbon emissions affect cross-sectional returns and
our objective of estimating how carbon policy affects stock returns on impact. If we only had one
shock, we could discriminate among the three scenarios and assess the impact of a carbon shock
by estimating the following model:

Ri,t = CEi (α1 + α2POSTt + βSHOCKt) (1)

where Ri,t measures daily returns for firm i on day t, CEi is a firm-level measure of carbon emissions,
POSTt is a dummy that takes value one after the day of the shock (t′ in our simulation above),
and SHOCKt is the carbon shock which takes a nonzero value on t′ (Equation 1 abstracts from
other control variables and fixed effects).

In Equation 1, α2 measures the impact of the carbon shock on cross-sectional returns (ρ in our
example; as in our example carbon emissions do not affect returns before the shock, we expect
α1 = 0) and β measures the impact on the day of the shock (V B

t′ − V B
t , in our example).

There are two challenges related to estimating Equation 1. The first challenge has to do with
the presence of multiple shocks. In our example we only have one shock and the difference in
returns before and after the shock is captured by α2. Keeping track of a large number of shocks
would require a model with innumerable interactive dummies. One way to address this issue is to
estimate the model without the CEi × POSTt interaction:

Ri,t = CEi (α + βSHOCKt) (2)

and use α as a measure of the impact of carbon emissions on cross-sectional stock returns (again,
we abstract from other control variables and fixed effects). Equation 2 will underestimate the true
value of the impact of carbon emissions on stock returns in the post shock period (because α is a
weighted average of α1 and α2). Yet, a positive value of α would still be consistent with the idea
that investors price carbon risk and that this leads to higher cross-sectional returns for firms with
high carbon emissions.9

The second challenge relates to quantifying the carbon shock. While we do not directly observe
the policy shock, Känzig (2022) suggests that we can measure it through its effect on the price of
carbon allowances. Specifically, he builds a carbon policy surprise by interacting percentage changes
in carbon prices with EU ETS regulatory events regarding the supply of EUAs. These events may
concern the auctioning and allocation of EUAs or the overall EU ETS cap, for example. EU ETS
regulatory events occur frequently in our sample period as the EU has continuously adjusted the

9Another advantage of Equation 2 is that we do not need to worry about possible anticipation effects for the t′

event. Such anticipation effects are potentially important because if the event that takes place at t′ is not a pure
shock, forward-looking investors will price carbon risk before t′. In this case, we should find that α1 > 0. In fact, if
the event is fully anticipated (i.e., it is not a shock), we would get α1 > 0 and α2 = β = 0.
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novel scheme to increase its perimeter and address shortcomings, such as market distortions (see
Känzig, 2022).

We thus take 81 regulatory events over January 2011–December 2018 from Känzig (2022) and
extend his list with 15 events over January 2019–December 2021 (see Table A.2) which we identify
based on the European Commission Climate Action news archive.10 We then compute the carbon
policy surprise CPSd(y) on day d in year y as the percentage change in the EUA futures price on
the day of regulatory events EVd(y) relative to the previous day:

CPSd(y) = (Fd(y)/Fd−1(y) − 1) ∗ 100︸ ︷︷ ︸
∆CPd(y)

×EVd(y) (3)

where Fd(y) is the price of the EUA futures contract and EVd(y) is a dummy that takes value one
on days of regulatory events and zero otherwise. Based on the assumption that risk premia do
not vary over the one-day event window and that regulatory actions are not correlated with other
shocks at daily frequency, this high-frequency series represents carbon policy surprises caused by
EU ETS regulatory events.11

Figure 4 depicts the daily carbon policy surprise series. Carbon policy surprises are relatively
frequent and take both positive and negative values (Table 1 shows that the mean of the carbon
policy surprise series is -0.01%). Regulatory news resulting in large carbon policy surprises relate,
for example, to a vote by the European Parliament against an EUA back-loading proposal (April
2013) and a decision on industrial free allocations (September 2013). During the period for which
we extended the series, events that had a sizeable impact were the decision on free EUA allocations
from the New Entrants’ Reserve (July 2019) and updated information on the use of international
credits (May 2021), among others.

Having identified a proxy for regulatory shocks, we could replace SHOCKt in Equation (2)
with the daily carbon policy surprise CPSt and estimate the following model:

Ri,t = CEi (α + βCPSt) (4)

However, our proxy for the policy surprise CPS is potentially contaminated by other shocks
because it is built using carbon prices data. Formally, let us assume that the change in the price of
carbon depends on three uncorrelated shocks: ∆CP = f(D, P, U), where D is a demand shock,12

10We identified 16 events over 2019–21. However, since two events occurred on the same day, we classified them as
one event.

11Känzig (2022) explains that risk premia of futures prices vary primarily at lower frequencies and that focusing
on the front contract mitigates potential concerns about variation in risk premia. To further affirm the exogeneity of
the carbon policy surprises, he shows that the series is not correlated with other structural shocks and that it is not
autocorrelated or forecastable.

12Assume that, for exogenous reasons, there is an increase in the demand for goods produced by carbon-intensive
companies (perhaps a particularly cold winter or high demand for certain chemical products). Such a shock is
likely to increase the profits of high-carbon emission companies that produce these goods while also increasing the
prices of carbon emission allowances because these companies (or their suppliers) need to buy allowances to scale up
production. This mechanism can lead to a positive correlation between carbon prices and firm profits which, in turn,
results in an upward bias in the estimate of β.
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Figure 4: Carbon policy surprises

This figure shows the daily series of carbon policy surprises for the EU ETS.
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P is the policy shock we care about, and U is a residual shock. The Directed Acyclic Graph (DAG)
of Figure 5 illustrates the role of these shocks. If we could directly control for the demand shock
(D) and for the policy shock (P ), we could estimate the causal effect of the policy shock (i.e., the
link of P → R) by simply regressing stock returns on these two shocks without controlling for ∆CP

(controlling for ∆CP would lead to “collider bias”, see Pearl, 2009 and VanderWeele, 2014). In
fact, if we could observe P we could estimate the causal effect of the policy shock even if we did
not observe the demand shock, by simply regressing returns on P (this is because we are assuming
that P is uncorrelated with the demand shock and the exogenous residual shock). The problem is
that we do not observe P , but only a proxy that also includes D and U

Nevertheless, we can achieve our objective of estimating the effect of carbon policy on stock
returns (i.e., the causal link P → R) by estimating a model that includes both carbon prices and
the carbon policy shock:

Ri,t = CEi(α + βa∆CPt + βbCPSt) (5)

As CPS is equal to the change in carbon price on event days, this is equivalent to estimating the
following interactive model:

Ri,t = CEi (α + β1∆CPt + EVt(β2 + β3∆CPt)) (6)

where EV is a dummy that takes value 1 on regulatory event days.
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Figure 5: Endogeneity Associated with an Unobserved Demand Shock

This figure shows two Directed Acyclic Graphs (DAGs) that illustrate how an unobserved demand shock D leads to
an endogeneity bias by directly affecting the carbon price ∆CP and stock returns R (top panel). The policy shock
P also has a direct effect on carbon price and on stock returns.

∆CP R

D

P

In the set-up of equation 6, β3 measures the difference between the correlation between ∆CP

and R on event days and the correlation between ∆CP and R on non-event days. If we assume
that both (i) the effect of the demand shock on carbon prices (D → ∆CP ) and stock returns
(D → R) and (ii) the effect of carbon price on stock returns (∆CP → R) are not influenced by the
presence of a regulatory event, then β3 will measure the effect of the policy shock on stock returns
(P → R). This is exactly what we want to estimate. Note, however, that β1 does not measure
the causal effect of carbon prices on stock returns as we cannot separate D → R from ∆CP → R

because we do not observe D. Also note that our estimation strategy only allows to estimate the
direct effect of the policy shock on stock returns (P → R). Figure 5 shows that there is also an
indirect effect that goes through carbon prices (P → ∆CP → R). However, we cannot estimate
this indirect effect because, as mentioned, we cannot estimate the causal effect of carbon prices on
stock returns.

Finally, while we control for the regulatory event dummy, we only do so for completeness. We do
not have a prior for its effect on stock returns because regulatory events have an ambiguous effect
on carbon prices as shown by the direction of carbon policy surprises (see Figure 4). Moreover,
regulatory events that do not affect carbon prices cannot be considered as a surprise. Therefore
they should not affect stock returns.
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4 Results

In this section, we test whether carbon policy has an impact on the cost of equity capital and
whether this relationship depends on carbon intensity.

4.1 Baseline Estimations

Before moving to our main result, we follow Bolton and Kacperczyk (2021b, 2022) and test whether
carbon emissions affect the cross section of stock returns in our daily sample of European firms.
Formally, we start by estimating the following model:

Ri,d(y) = αCEi,y−1 + ϕi + τd(y) + εi,d(y) (7)

where Ri,d(y) measures the stock return of company i on day d in year y, CEi,y−1 measures carbon
intensity (defined as scope 1 plus scope 2 carbon emissions over revenues) of company i in year
y −1, ϕi are firm fixed effects, τd(y) are time fixed effects which implicitly control for market returns
plus all possible factors and shocks that may effect daily returns, and εi,d(y) is the error term. Our
variable of interest is α.

Column 1 of Table 2 shows that there is a positive and statistically significant relationship
between carbon emissions and stock returns. This result is robust to replacing the time fixed
effects with country-sector-time fixed effects τc,s,d(y) (column 2). Controlling for firm fixed effects
and for all possible shocks that are specific to a given sector in a given country on a given day,
we find that a one standard deviation increase in carbon intensity is associated with a 0.6 basis
point increase in daily returns, or 3.9% compounded at the annual frequency. This suggests that
investors in European stocks demand a carbon risk premium and confirms the findings in Bolton
and Kacperczyk (2021b, 2022).

Having corroborated the existing evidence that support the presence of a carbon premium in the
cross section of stock returns, we now study how carbon emission intensity affects the relationship
between stock returns and carbon prices in the EU futures market by estimating the following
model:

Ri,d(y) = CEi,y−1
(
α + β1∆CPd(y)

)
+ ϕi + τc,s,d(y) + εi,d(y) (8)

where ∆CPd(y) measures the daily change in the carbon price in the EU futures market and all
other variables are defined as in Equation 7.13

In the set up of Equation 8, α measures the correlation between carbon emission intensity and
stock returns on days when the carbon price does not change (∆CPd(y) = 0) and β1 measures how
carbon emission intensity affects the relationship between carbon prices and stock returns. Column

13As our main variable of interest (the interaction between day-level carbon prices and firm-year level carbon
intensity) varies at the firm and day level, we double cluster our standard errors at the firm and day level. Our
results are robust to alternative clustering strategies.
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Table 2: Baseline Estimations

This table reports a set of regressions where the dependent variable is daily stock returns (scaled by 105) and the
explanatory variables are: firm-year carbon emission intensity (CE); the interaction between CE and percentage
change in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value 1 on key
regulatory event days (EV); and the interaction between CE and a carbon policy surprise obtained by interacting
∆CP and EV. Column 1 controls for firm and time fixed effects and columns 2-6 control for firm and country-sector-
time fixed effects (time fixed effects absorb the main effects of ∆CP and EV). All regressions are estimated with
robust standard errors clustered at firm and day level. Regression results exclude observations with daily returns
greater than 100%.

(1) (2) (3) (4) (5) (6)
CE 2.27*** 1.27** 1.17** 1.35*** 1.27** 1.24**

[0.606] [0.501] [0.507] [0.505] [0.502] [0.512]
CE × ∆CP 0.58*** 0.63***

[0.213] [0.220]
CE × EV -3.36 -3.61

[2.224] [2.207]
CE × ∆CP × EV -1.08* -1.81***

[0.621] [0.647]
Observations 1,247,870 1,247,870 1,247,870 1,247,870 1,247,870 1,247,870
R-squared 0.16 0.4 0.4 0.4 0.4 0.4
Firm FE Yes Yes Yes Yes Yes Yes
Time FE Yes No No No No No
Country-Sector-Time FE No Yes Yes Yes Yes Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

3 of Table 2 shows that β1 is positive and statistically significant: carbon-intensive companies tend
to have higher returns when the price of carbon increases. The point estimates suggest that when
the price of carbon increases by one standard deviation, the daily return of a company with an
average carbon emission intensity will be about 4.2% above average.14

There are two possible explanations for this result. The first has to do with the fact that firms
that receive free allowances within the EU ETS could benefit from the increased value of these
allowances associated with higher carbon prices. However, this is an unlikely explanation for two
reasons. First, the share of free allowances has been decreasing with time and we find a positive
correlation between carbon prices and stock returns for high-emission firms also when we focus on
post phase 2 of the EU ETS. Second, our sample includes a large number of firms that do not
receive free allowances. In fact, this result is robust to dropping firms that participate in the EU
ETS as further elaborated on below.

A more likely explanation for the positive correlation between carbon prices and stock returns
for high-carbon intensity companies has to do with the presence of an unobserved demand shock
(see the discussion in Section 3). Consider, for instance, the case of an exogenous increase in
the demand of electricity. Such exogenous shock is likely to increase both the profit (and hence
the returns) of electricity generation companies and the production of electricity. The increase in
electricity production will, in turn, lead to a higher demand of emission allowances and a higher

14An increase of carbon prices by one standard deviation results in a 0.2 basis points increase in daily returns,
equivalent to about 4.2% of the average daily return of 0.048% in our sample.
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carbon price. In this example, and as illustrated in Figure 5, the positive correlation between
carbon prices and stock returns of carbon-intensive companies is caused by an unobserved third
variable.

Next, to estimate how the causal effect of carbon policy on stock returns varies with company-
level carbon emissions, we need an exogenous shock. As discussed in Section 3, we follow Känzig
(2022) who suggests to build a series of carbon policy surprises by interacting the change in carbon
price with a set of dummy variables that take the value one during EU ETS regulatory events.

Formally, we estimate the following model:

Ri,d(y) = CEi,y−1
(
α + β1∆CPd(y) + β2EVd(y) + β3∆CPd(y) × EVd(y)

)
+ ϕi + τc,s,d(y) + εi,d(y) (9)

where EVd(y) is a dummy variable that takes value one on days of the regulatory events identified
by Känzig (2022) and extended in this paper. All other variables are as in Equation 8.

Equation 9 implies that:
∂R

∂(∆CP ) = CE(β1 + β3EV )

Hence, β1 measures how the correlation between carbon prices and stock returns varies with carbon
intensity on non-regulatory event days and β3 measures the difference in this correlation between
event and non-event days. Thus, β1 + β3 measures how the correlation between carbon prices and
stock return varies with carbon intensity on regulatory event days. A negative and statistically
significant value of β1 + β3 would indicate that on days of regulatory actions which result in
positive carbon policy surprises there is a negative correlation between the carbon price and stock
returns which increases with carbon intensity. Note that we used the word “correlation” because,
as discussed in Section 3, our estimate of β1 cannot be interpreted as the causal effect of carbon
price on stock returns of carbon-intensive firms. Hence, β1 + β3 does not measure a causal effect,
either. However, if the assumptions of Section 3 hold, β3 is the direct causal effect of the carbon
policy shock on stock returns of carbon-intensive firms.

When we estimate Equation 9, we find that β1 remains positive and statistically significant and
that the carbon policy surprise has a negative coefficient which is about three times (in absolute
value) β1 (column 6 of Table 2). The point estimates imply that, for a firm with an average
carbon emission intensity, a one standard deviation increase in the carbon price is associated with
a daily return which is 4.2% above average on non-regulatory event day and 7.3% below average
on regulatory event days.

Figure 6 shows the correlation between stock returns and carbon prices at different levels of the
distribution of carbon emission intensity for regulatory event days and non-event days. The slope
of the line in the upper part of the graph depicts β1. It visually confirms the results of column
6 of Table 2 by showing that there is a positive and statistically significant relationship, which
is increasing in carbon emission intensity, between stock returns and carbon prices on non-event
days. The figure also shows that there is a negative and statistically significant relationship between
carbon prices and stock returns on event days. Moreover, this negative relationship strengthens
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with increases in carbon emission intensity. The slope of the relationship between carbon emissions
and policy surprises on event days (β1 + β3) is negative and about twice (in absolute value) the
slope on non-event days.

Figure 6: Carbon Price and Stock Returns

This figure plots the marginal effect of carbon prices on stock returns at various levels of the distribution of carbon
emission intensity during non-regulatory event days (the upper line) and regulatory event days (the upper plus the
lower line). The figure is based on the estimation in column 6 in Table 2.
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While our main variable of interest is β3, we also control for the components of the triple
interaction separately. We find that the interaction between carbon emissions and the regulatory
event dummy is negative but not statistically significant (this is also the case in column 4 of Table
2, where the event dummy is the only variable interacted with carbon emission intensity). This
is not surprising given that this dummy does not capture the intensity of regulatory actions and
does not separate between measures that tighten and measures that relax environmental standards.
The triple interaction is instead negative and statistically significant even when do not include its
components (column 5). Note that a model that only includes the triple interaction and does not
control for the main effect of carbon price implicitly assumes that on regulatory event days the
endogenous component of the carbon price (D in ∆CP = f(D, U, P )) is either zero or very small
compared to the policy shock P . The fact that the coefficient of the triple interaction in column 5
is about 60% (1.08 versus 1.81) that of column 6 suggests that this assumption might not hold.

While the regressions of Table 2 control for firm fixed effects, they do not control for time-varying
firm characteristics such as size, profitability, book-to-market value, leverage, plant property and
equipment, sales growth, and a host of other variables which are likely to be correlated with stock
returns. Rather than controlling for these variables individually, we re-estimate Equation 9 by
including firm-year-quarter fixed effects. This set of fixed effects controls for all possible firm-
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Table 3: Baseline with firm-year-quarter fixed effects

This table reports a set of regressions where the dependent variable is daily stock returns (scaled by 105) and the
explanatory variables are: the interaction between firm-year carbon emission intensity (CE) and percentage change
in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value 1 on key regulatory
event days (EV); and the interaction between CE and a carbon policy surprise obtained by interacting ∆CP and
EV. All regressions control for country-sector-time fixed effects (which absorb the main effects of ∆CP and EV)
and firm-year-quarter fixed effects (which absorb the main effect of CE). All regressions are estimated with robust
standard errors clustered at firm and day level. Regression results exclude observations with daily returns greater
than 100%.

(1) (2) (3) (4)
CE × ∆CP 0.58*** 0.63***

[0.210] [0.217]
CE × EV -3.29 -3.54

[2.184] [2.209]
CE × ∆CP × EV -1.06* -1.79***

[0.560] [0.591]
Observations 1,247,870 1,247,870 1,247,870 1,247,870
R-squared 0.41 0.41 0.41 0.41
Country-Sector-Time FE Yes Yes Yes Yes
Firm-Year-Quarter FE Yes Yes Yes Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

specific shocks at quarterly frequency (we use quarterly fixed effects as this coincides with the
highest frequency at which firms report financial information). While the inclusion of firm-year-
quarter fixed effects does not allow estimating the main effect of carbon emission intensity which
only varies at annual frequency, it does allow us to estimate our parameters of interest β1 and β3.

When we estimate Equations 8 and 9 with firm-year-quarter fixed effects, we obtain results that
are essentially identical to those of our baseline regressions (compare column 3 and 6 of Table 2
with columns 1 and 4 of Table 3). This result confirms that our baseline results of Table 2 are not
driven by time-varying firm-level unobserved heterogeneity.

One important question is whether our results are driven by the direct effect of the price of
carbon emission allowances on firm profitability or by an increase in the risk premium associated
with transition risk. Focusing on a sample of firms that participate in the EU ETS, Bolton et al.
(2022) find strong evidence in support of the idea that the increase in the cost of carbon for firms
that need to buy carbon allowances is the dominant element. However, the fact that we find an
effect in our sample dominated by companies that do not participate in the EU ETS suggests that
transition risk might also play a role.

To probe further, we re-estimate our baseline models by dropping all firms that belong to sectors
covered by EU ETS. Specifically, we exclude the following sectors: (i) Chemicals; (ii) Construction
and Materials; (iii) Electricity, Gas, Water and Multiutilities; (iv) Industrial Metals and Mining;
(v) Mining, Oil and Gas Producers; and (vi) Travel and Leisure.15

15The EU ETS covers the following gases: (i) carbon dioxide (CO2) from electricity and heat generation, energy-
intensive industry sectors including oil refineries, steel works, and production of iron, aluminium, metals, cement,
lime, glass, ceramics, pulp, paper, cardboard, acids and bulk organic chemicals, commercial aviation within the
European Economic Area; (ii) nitrous oxide (N2O) from production of nitric, adipic and glyoxylic acids and glyoxal;
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When we exclude companies that participate in the EU ETS our results become stronger. The
point estimate of our coefficient of interest (the triple interaction CE × ∆CP × EV) increases from
approximately 1.8 to about 2.4 (compare column 4 of Tables 2 and Table 3 with columns 4 and 5
of Table 4) and the interaction between the regulatory event dummy and carbon emissions is now
statistically significant.

The fact that excluding sectors that participate in the EU ETS strengthens the negative rela-
tionship between carbon prices and stock returns for high-emission firms, is in line with the results
of Bolton et al. (2022) who find that for EU ETS firms, the relationship between carbon prices and
stock returns depends on whether firms are long or short in carbon allowances.

Table 4: Excluding EU ETS Sectors

This table reports the models of columns 3-6 in Table 2 and column 4 of Table 3 by dropping the stocks of firms
in sectors that participate in the EU ETS. The dependent variable is daily stock returns (scaled by 105) and the
explanatory variables are: firm-year carbon emission intensity (CE); the interaction between CE and percentage
change in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value 1 on key
regulatory event days (EV); and the interaction between CE and a carbon policy surprise obtained by interacting
∆CP and EV. Columns 1-4 control for firm and country-sector-time fixed effects (which absorb the main effects
of ∆CP and EV). Column 5 controls for country-sector-time fixed effects and firm-year-quarter fixed effects (which
absorb the main effect of CE). All regressions are estimated with robust standard errors clustered at firm and day
level. Regression results exclude observations with daily returns greater than 100%.

(1) (2) (3) (4) (5)
CE 0.86 1.02 0.90 0.93

[0.744] [0.738] [0.724] [0.750]
CE × ∆CP 0.36 0.44* 0.45*

[0.236] [0.246] [0.249]
CE × EV -4.22** -5.09*** -5.05***

[2.047] [1.953] [1.950]
CE × ∆CP × EV -1.76** -2.37*** -2.40***

[0.829] [0.840] [0.778]
Observations 1,025,509 1,025,509 1,025,509 1,025,509 1,025,509
R-squared 0.38 0.38 0.38 0.38 0.39
Firm FE Yes Yes Yes Yes No
Country-Sector-Time FE Yes Yes Yes Yes Yes
Firm-Year-Quarter FE No No No No Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

4.2 Asymmetries

It is possible that positive and negative carbon price surprises have different effects on stock returns
of carbon emission intensive companies.

We test for the possible presence of such asymmetries by allowing our coefficients of interest to
vary between days in which carbon prices increase and days when carbon prices decrease. Formally,

and (iii) perfluorocarbons (PFCs) from production of aluminium. We do not exclude “General Industrial.” While
this sector includes “glass” which is one of the industries covered by the EU ETS, it also includes several industries
not covered by the ETS. Our results are robust to also excluding this sector.
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we estimate the following equation:

Ri,d(y) = CEi,y−1
(
α + β1∆CPd(y) + β2EVd(y) + β3∆CPd(y) × EVd(y)

)
+

+CEi,y−1 × ∆CPd(y) × Dd(y)
(
β4 + β5EVd(y)

)
+ ϕi + τc,s,d(y) + εi,d(y)

(10)

where Dd(y) is a dummy variable that takes value one when ∆CPd(y) > 0 and all other variables
are as in Equation 9.

Equation 10 implies that:

∂R

∂(∆CP ) = CE (β1 + β3EV + D(β4 + β5EV ))

Hence, β1 measures how the correlation between carbon prices and stock returns varies with carbon
intensity on non-regulatory event days when ∆CPd(y) < 0; β1 + β3 measures how the correlation
between carbon prices and stock return varies with carbon intensity on regulatory event days when
CPd(y) < 0; β1 + β4 measures how the correlation between carbon prices and stock return varies
with carbon intensity on non-regulatory event days when ∆CPd(y) > 0; and β1 + β3 + β4 + β5

measures how the correlation between carbon prices and stock return varies with carbon intensity
on regulatory event days when ∆CPd(y) > 0.

We estimate Equation 10 with firm fixed effects and country-sector-time fixed effects (column
1 of Table 5) and with firm-year-quarter fixed effects and country-sector-time fixed effects (column
2 of Table 5) and obtain almost identical results. We find that β1 is positive and statistically
significant and β4 is negative and statistically significant with approximately the same magnitude
(in absolute value) of β1 (thus, β1 + β4 ≈ 0). There are thus substantial asymmetries in the
relationship between carbon prices and stock returns on non-regulatory event days. Our baseline
result of a positive correlation between carbon price and stock returns for high-carbon emission
firms on non-event days is driven by days when the carbon price decreases.16 On non-event days
characterized by increases in carbon prices, carbon emissions do not affect the correlation between
carbon prices and stock returns.

There are instead no significant asymmetries during regulatory event days; both β1 + β3 and
β1 + β3 + β4 + β5 are negative and β5 is not statistically significant. This results is consistent with
the idea that policy surprises lead to a negative correlation between carbon prices and stock returns
of more carbon-intensive firms. However, while the difference is not statistically significant, we find
that the effect is about three times as large for policy surprises that lead to an increase in carbon
prices than for policy surprises that lead to a decrease in carbon prices. This result indicates that
regulatory surprises which lead to an increase in carbon prices are especially effective in raising the
equity cost of capital for carbon-intensive firms.

16Days characterized by a decrease in carbon prices are associated with lower returns for more carbon-intensive
companies.
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Table 5: Testing for Asymmetries

This table reports a set of regressions where the dependent variable is daily stock returns (scaled by 105) and the
explanatory variables are: firm-year carbon emission intensity (CE), the interaction between (CE) and and percentage
change in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value 1 on key regulatory
event days (EV); the interaction between CE and a carbon policy surprise obtained by interacting ∆CP and EV;
the interaction between CE, ∆CP, and a dummy variable D that takes value one on days on which ∆CP>0; and the
interaction between CE, the carbon policy surprise, and D. Column 1 controls for firm fixed effects and country-sector-
time fixed effects (which absorb the main effects of ∆CP, EV, and D) and column 2 controls for country-sector-time
fixed effects and firm-year-quarter fixed effects (which absorb the main effect of CE). All regressions are estimated
with robust standard errors clustered at firm and day level. Regression results exclude observations with daily returns
greater than 100%.

(1) (2)
CE 2.37***

[0.696]
CE × ∆CP 1.19*** 1.23***

[0.395] [0.414]
CE × EV -3.13 -2.92

[3.590] [3.668]
CE × ∆CP × EV -1.88** -1.82**

[0.932] [0.866]
CE × ∆CP × D -1.09** -1.16*

[0.550] [0.601]
CE × ∆CP × EV × D -0.44 -0.54

[2.432] [2.441]
Observations 1,247,870 1,247,870
R-squared 0.40 0.41
Firm FE Yes No
Country-Sector-Time FE Yes Yes
Firm-Year-Quarter FE No Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

4.3 Robustness Checks

We now subject our results to a battery of robustness checks.
As a first step, we test whether our results are driven by a specific country by estimating our

model dropping one country at a time. Appendix Figure B.1 plots the coefficient of our main
variable of interest (β3) with its 90% confidence interval. It shows that our results are not driven
by any particular country and that when we drop one country at a time we obtain coefficients that
range between -1.7 and -2.1 (in our baseline estimates of Table 2 we find that β3 = −1.8) and are
always statistically significant.

Next, we test whether there are differences between Advanced and Emerging Europe.17 Column
2 of Appendix Table B.3 shows that our results are robust to limiting the sample to Advanced
Europe, while our results no longer hold if we concentrate on Emerging Europe (column 3). It is,
however, worth noting that Emerging Europe represents less than 10% of our sample (216 firms
over a total of 2,149).

17Advanced Europe includes: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Ireland, Italy, Lithuania, Luxembourg, Malta, Netherlands, Portugal, Slovakia, Slovenia, Spain,and
Sweden. Emerging Europe includes Bulgaria, Croatia, Hungary, Poland, and Romania.
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Our baseline sample does not include the UK as the country ended its participation in the EU
ETS in December 2020, and its exit from the ETS was already anticipated by the time of the
Brexit referendum of June 2016. However, we have data for 353 UK firms, increasing the sample
of firms to 2,502—a total of nearly 500,000 observations at daily frequency. We thus test whether
our results are robust to including UK companies for the period during which they were part of
the EU ETS. We find that there is essentially no difference between our sample of EU companies
(column 1 of Appendix Table B.3) and a sample that also includes UK companies (column 4).

As a final robustness check, we estimate our baseline regressions by dropping financial institu-
tions. Appendix Table B.4 shows that the results are unchanged. All of the robustness exercises
discussed above hold when we include firm-year-quarter fixed effects.

5 Conclusions

There is now near unanimity on human-caused climate change and a large number of countries are
implementing policies aimed at promoting the transition to a low-carbon economy. The European
Union has been at the forefront of this effort with the creation of the EU Emissions Trading System
(ETS) in 2005. This “cap and trade” scheme places a limit on the right to emit greenhouse gases
and allows companies to trade emission allowances. The EU has also implemented a series of actions
aimed at directing investment toward green activities.

In this paper, we test if such initiatives have the potential of affecting the cost of equity of
high-emission companies. Once we account for the endogeneity of the relationship between carbon
prices and stock returns, we show that regulatory surprises that result in an increase in carbon
prices have a negative and statistically significant impact on stock returns, which increases with a
firm’s carbon intensity. This negative relationship becomes even stronger when we drop firms in
sectors which participate in the EU ETS, suggesting that investors price in transition risk stemming
from the shift towards a low-carbon economy.

Our findings support the view that regulation which increases the cost of carbon has an impor-
tant role to play in the transition towards a low-carbon economy. As investors demand compensa-
tion for their exposure to transition risk, EU ETS regulatory events might also affect stock returns
for firms in third countries to the extent that tighter EU climate mitigation policy is a driver of
transition risk globally. Exploring global spillovers of EU ETS regulatory actions to non-European
firms’ stock performance could be an interesting avenue for future research.
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Appendix to Carbon Policy Surprises and Stock Returns

A Data

Table A.1: Carbon emissions intensity over time

This table reports the cross-sectional average and median of scope 1 + 2 carbon emissions intensity over the period
2010–2020 which we use in our baseline regressions.

Mean Median
2010 174.99 37.26
2011 172.34 33.24
2012 123.76 30.37
2013 130.89 27.44
2014 188.78 28.66
2015 162.14 25.96
2016 168.20 25.44
2017 181.51 27.66
2018 164.92 23.19
2019 160.43 26.01
2020 108.25 27.43
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Table A.2: Regulatory events

This table lists the events we identified over 2019–2021 to extend the carbon policy surprise series by Känzig (2022).

Date Event Type
1 Jan 15, 2019 Commission publishes status update for New Entrants’ Reserve Free alloc.
2 April 23, 2019 EU Emissions Trading System: Iceland, Liechtenstein and Norway to start auctions on the common auction platform soon Auction
3 May 15, 2019 ETS Market Stability Reserve to reduce auction volume by almost 400 million allowances between September 2019 and August 2020 Auction
4 June 12, 2019 Poland’s 2020 auction volume to include allowances not used for power sector modernisation Auction
5 June 19, 2019 Updated information on exchange and international credit use in the EU ETS Intl. credits
6 July 15, 2019 Commission publishes status update for New Entrants’ Reserve Free alloc.
7 October 31, 2019 Adoption of the Regulation on adjustments to free allocation of emission allowances due to activity level changes Free alloc.
8 December 12, 2019 The start of auctioning for the Innovation Fund slightly postponed but no delay to the launch of the Innovation Fund Auction
9 January 15, 2020 Commission publishes status update for New Entrants’ Reserve Free alloc.
10a May 8, 2020 Updated information on exchange and international credit use in the EU ETS Intl. credits
10b May 8, 2020 ETS Market Stability Reserve to reduce auction volume by over 330 million allowances between September 2020 and August 2021 Auction
11 December 11, 2020 Further information on the start of phase 4 of the EU ETS in 2021: emission allowances to be issued for aircraft operators and the Market Stability Reserve Cap
12 March 15, 2021 Adoption of the Regulation determining benchmark values for free allocation for the period 2021-2025 Free alloc.
13 May 12, 2021 ETS Market Stability Reserve to reduce auction volume by over 378 million allowances between September 2021 and August 2022 Auction
14 May 25, 2021 Updated information on exchange and international credits’ use in the EU ETS Intl. credits
15 May 31, 2021 Commission adopts the uniform cross-sectoral correction factor to be applied to free allocation for 2021 to 2025 in EU ETS Free alloc.
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B Robustness Checks

Figure B.1: The Effect of the Carbon Policy Shock by Dropping one Country at a Time

This figure plots the β3 coefficient with its 90% confidence interval of from Equation 9 obtained by estimating the
model of Table 2 column 6 by dropping one country at a time (the column on the right reports the ISO code of the
dropped country).
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Table B.3: Heterogeneity across Regions

This table reports the model of column 6 in Table 2 for regional subsamples and the baseline sample plus the UK.
Column 2 shows results for a sub sample of advanced European economies; column 3 focuses on economies in emerging
Europe; and column 4 uses all EU countries plus the UK (column 4). For convenience, column 1 reproduces the
estimations of column 6 in Table 2. The dependent variable is daily stock returns (scaled by 105) and the explanatory
variables are: firm-year carbon emission intensity (CE); the interaction between CE and percentage change in the
EUA futures price (∆CP); the interaction between CE and a dummy that takes value 1 on key regulatory event
days (EV); and the interaction between CE and a carbon policy surprise obtained by interacting ∆CP and EV. All
regressions control for firm and country-sector-time fixed effects (which absorb the main effects of ∆CP and EV) and
are estimated with robust standard errors clustered at firm and day level. Regression results exclude observations
with daily returns greater than 100%.

(1) (2) (3) (4)
CE 1.24** 1.29** 0.93 0.77

[0.512] [0.528] [2.477] [0.597]
CE × ∆CP 0.63*** 0.65*** -0.12 0.65***

[0.220] [0.222] [1.211] [0.192]
CE × EV -3.61 -3.20 -14.72 -2.81

[2.207] [2.257] [12.623] [2.060]
CE × ∆CP × EV -1.81*** -1.91*** 4.27 -1.85***

[0.647] [0.687] [8.043] [0.479]
Observations 1,247,870 1,172,947 74,923 1,745,630
R-squared 0.4 0.41 0.34 0.39
Firm FE Yes Yes Yes Yes
Country-Sector-Time FE Yes Yes Yes Yes
Sample All AEs EMs All + UK
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

Table B.4: Excluding Financial Institutions

This table estimate the models of columns 3-6 in Table 2 by dropping the stocks of financial institutions. The
dependent variable is daily stock returns (scaled by 105) and the explanatory variables are: firm-year carbon emission
intensity (CE); the interaction between CE and percentage change in the EUA futures price (∆CP); the interaction
between CE and a dummy that takes value 1 on key regulatory event days (EV); and the interaction between CE and
a carbon policy surprise obtained by interacting ∆CP and EV. All regressions control for firm and country-sector-time
fixed effects (which absorb the main effects of ∆CP and EV) and are estimated with robust standard errors clustered
at firm and day level. Regression results exclude observations with daily returns greater than 100%.

(1) (2) (3) (4)
CE 1.20** 1.38*** 1.30*** 1.27**

[0.510] [0.509] [0.505] [0.515]
CE × ∆CP 0.60*** 0.65***

[0.216] [0.224]
CE × EV -3.35 -3.59

[2.210] [2.195]
CE × ∆CP × EV -1.06* -1.82***

[0.619] [0.647]
Observations 1,056,020 1,056,020 1,056,020 1,056,020
R-squared 0.37 0.37 0.37 0.37
Firm FE Yes Yes Yes Yes
Country-Sector-Time FE Yes Yes Yes Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1
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