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Abstract

Recent technological developments in ICT and Artificial Intelligence allow extracting valuable
information from data that machines generate with production, machine data (MD). Although
possibly more valuable than personal data, the growing market for MD and its analytics may suffer
from several issues, such as datasets fragmented into many small data-producers, externalities as
with non-rival information and fuzzy property rights. We combine these market elements with
critical properties that we derive from actual Machine Learning algorithms for analytics. We
explore how and to what extent a data aggregator can operate, contracting with different data
producers to share data and analytics. We identify conditions that impact the market organization
for MD, such as producers' heterogeneity, their preference for anonymity, and the intensity of
competition in final markets.

JEL Classification: N/A

Keywords: N/A

Giacomo Calzolari - giacomo.calzolari@eui.eu
Department Of Economics, European University Institute and CEPR

Anatole Cheysson - anatole.cheysson@eui.eu
Department Of Economics, European University Institute

Riccardo Rovatti - riccardo.rovatti@unibo.it
University Of Bologna

Acknowledgements
We are grateful for detailed comments to Jens Prüfer, Peerawat Samranchit, Xavier Lambin, Vincenzo Denicolò, Nicolas Petit,
Philip Hanspach, Natalie Kessler, Alexandre de Cornière, Linus Hoffmann, Luca Tomesani, Giusella Finocchiaro and Enrico Al
Mureden. We thank seminars participants at several institutions, the EUI Artificial Intelligence group, the Competition Law Working
Group, 2022 MaCCI Conference, Paris 13th Conference on Digital Economics 2022, and EARIE conference 2022.

Powered by TCPDF (www.tcpdf.org)



Machine Data: market and analytics *

Giacomo Calzolari †

European University Institute

CEPR

Anatole Cheysson

European University Institute

Riccardo Rovatti

University of Bologna

January 23, 2023

Abstract

Recent technological developments in ICT and Artificial Intelligence allow extracting valuable information from

data that machines generate with production, machine data (MD). Although possibly more valuable than personal

data, the growing market for MD and its analytics may suffer from several issues, such as datasets fragmented into

many small data-producers, externalities as with non-rival information and fuzzy property rights. We combine these
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1 Introduction

Machines and industrial equipment, e.g. in manufacturing and agriculture, continuously produce a vast amount of

machine data (MD hereafter), also known as non-personal or industrial data. These data have an enormous potential

for more efficient production and management, new and high-performance machines design, and, ultimately, cheaper

and better products for final consumers. Recent technological developments, namely the Internet of Things (IoT), 5G

transmissions, and Artificial Intelligence (AI), are now putting MD at the forefront, surpassing in terms of size and

economic value the very much debated personal data. In this paper, we provide a first detailed and formal analysis of

MD and discuss how the development of a market for MD and MD analytics should not be taken for granted. Our

analysis can help explaining why only a limited amount of MD is currently used with an untapped potential.1 We

also clarify the implications of what AI experts (e.g. Andrew Ng in Hao (2021)) now consider the main difficulty in

the next frontier of AI, AI-for-industry, that is the difficulty of dealing with relatively small and dispersed industrial

datasets.

Industrial activities generate MD as a byproduct, such as the data generated by an electric motor or a welding

machine. Collecting these data requires sensors that monitor several parameters and the transmission and storage of

these data. The raw data can then be transformed into useful information for prediction and decision-making with data

analytics, i.e., mathematical methods leveraging statistics and, more recently, Machine Learning tools. For example,

with data from the electric motors, one could identify and avoid the working conditions of a similar motor that generate

the highest stress and increase failure probability, provide precise predictions to optimize maintenance, and even design

more robust motors. However, transforming raw data into valuable information requires a (i) sufficiently large amount

of data and (ii) data possibly collected under diverse conditions covering multiple working configurations. The first

element refers to a Scale property of Machine Learning tools that typically show increasing returns at low levels of

data, followed by decreasing returns and saturation with a large amount of data. The second element instead refers to

a Scope property, or synergy of data sources, according to which the value of data increases when relying on different

data sources. Although there is commonly accepted consensus about these two properties in the computer science

literature, we provide novel evidence with Machine Learning classifiers, which could be of value per-se (section 1.1).

We investigate and combine these technical properties of data analytics, Scale and Scope, with three critical economic

and organizational characteristics.

First, as with any other type of information, MD and analytics are a semi-public good: they are non-rival (they can

be re-utilized with no deterioration of information content) and excludable (one can grant access to some users and

exclude others). For example, the analytics that a firm uses to manage its electric motors could benefit from the data

of the electric motors of other firms, which in turn could benefit from the same analytics as it would be with “enabling

1For example, in 2022 the European Commission estimated that only 20% of industrial data was currently used, and helping the development of
a market for MD may create value for C270 billion of additional GDP by 2028.
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technologies” (Gambardella et al., 2021). Since individual firms may fail to account for the positive externality of

their MD for other producers, data production and sharing can be suboptimal. In the case of MD, this is even more

problematic because, for the Scope property, the value of MD is further enhanced when they originate from different

sources.

Second, large amounts of raw data are currently fragmented into a myriad of machines located in equally many

firms, some of which are small and medium enterprises. Data fragmentation is a significant problem when combined

with externalities and Scale and Scope. In addition, data analytics implies non-negligible fixed costs, which can

make in-house analytics too expensive, especially for small producers. With increasing returns to scale at a low

scale, a market for MD may end up with large amounts of stranded data and, at the same time, very high levels of

concentration, possibly replicating the lock-in and market tipping currently observed with personal data.

Third, there is presently no clear assignment of property rights of MD. Different subjects could claim ownership

of MD: the firms using the machines, the machine manufacturers, the “retrofitters” placing sensors on machines, or the

data aggregators that collect data from different sources and run the analytics (such as the company Machinemetrics).2

In this situation, firms rely on bilateral agreements that reflect relative bargaining power and significant transaction

costs. Contracts for sharing MD and analytics may be incomplete, exposing parties to excessive risks and unforeseen

contingencies, limiting their potential, as we discuss in this paper.

Combining Scale and Scope with MD externalities, fragmentation, and lack of ownership makes for a rich and

novel environment.3 Our analysis provides what is, to our knowledge, the first detailed and formalized investigation

of the organization of a market for MD. At the same time, we show how one can effectively study this market and

its complexity by combining traditional tools of the managerial and economics literature. In particular, we consider

a scenario with data producers, i.e. companies that generate MD with their production, and a data aggregator that

collects the data and provides data analytics valuable to producers. Although data producers are de-facto owners of

MD (they can exclude others from access to their MD), they may be too small to extract information profitably due to

varying returns to scale and fixed costs. Instead, a data aggregator can pool MD from several data producers and profit

from the combination of Scale and Scope. To do so, the aggregator must convince producers to accept a contractual

offer contemplating the sharing of MD, a data analytics service that increases producers’ profitability, and a monetary

transfer. Relying on shared data and analytics, we dub this endeavor “cooperative analytics for MD”.

We address several important and new questions. In particular, we identify market features that may facilitate or

hinder the development of MD analytics. Even if the analytics were offered free of any access charges (being thus

2So far the European Parliament (2018) refrained from assigning (in rem) property rights, and instead focused on the possibility that firms
would share MD. The European Commission recently proposed a new regulation (the Data Act, February 2022) on industrial data. It prescribes
that primary data holders (e.g. machine manufacturers) have no exclusive right to MD and must grant adequate access to MD if requested (e.g., by
producers using the manufacturers’ machines), with compensation that may cover the cost incurred for making the data.

3The combination of these elements makes MD different from personal data (as recognized, for example, in European Parliament (2018)),
although in some cases this distinction is blurred (Graef et al. (2018)), such as with data from human-machines interaction such as with data from
batteries of electric cars.
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subsidized), data producers would fail to internalize the external value of their data, resulting in underprovision of data.

A data aggregator can redress this classic public-good issue by incentivizing data provision, running the analytics for

profit or breaking even. We show that data producers paying a fee to join the cooperative analytics are those with high

value for it, while those with relatively small value are subsidized because their data have a sizeable collective value

for other producers. Moreover, when producers can run their analytics in-house, the aggregator may profitably operate

by collecting data from a selected group of small and more homogeneous producers, disregarding larger companies.

We investigate the consequences of imprecise allocation of ownership rights. When joining the analytics and

sharing their data, producers may risk that critical information concerning production leaks out, possibly to rivals (or

suppliers who could exploit it). This risk and the associated costs are especially relevant when property rights are

not well-allocated, as with MD.4 To limit this risk, producers may require anonymity the contractual offer for the

cooperative analytics and MD sharing. We show that anonymity seriously constrains the value of the analytics, and in

some cases, it may even lead to a complete market breakdown. Even if this does not occur, we show that, accounting

for anonimity, the data aggregator prefers avoiding pooling data from dissimilar data producers.

We then consider producers that compete in related markets. We allow the degree of competition to vary in terms

of final-product substitutability, and we study the implications for the market of MD. We show that the aggregator

can end up playing the role of coordination device among competing data-producers with an inefficient analytics and

product markets. Moreover, too-intense competition leads to the breakdown of the analytics or the exclusion of some

producers. The aggregator thus prefers running a cooperative analytics with firms that are not too close competitors

but also not in entirely unrelated markets, with a preferred intensity of competition that systematically diverges from

the (socially) efficient one.

Overall, these results provide a rich picture of the possibility of obtaining a market solution to analytics for MD.

Although with careful contracting, an aggregator could address some of the issues with MD and offer valuable analytics

services to producers, some significant inefficiencies emerge. We think these results could also help inform a policy

agenda on how to support a market for MD and analytics.

A specificity and novelty of our paper is that we combine market analysis with a modelling of Machine Learning

and its properties that closely reflects actual AI algorithms. Methodologically, we think this approach is valuable

per-se as we can rely on detailed properties of AI algorithms that are realistic and yet tractable with a combination of

theory and simulations.5

4As a part of the European Strategy for Data, a recent regulation (the Data Governance Act, approved in May 2022) sets the duties of data
intermediary services, such as our data aggregators, including the obligations for ex-ante compliance and transparency. This regulation was intended
to limit the risks of misuse and loss of competitive advantage, thus reducing firms’ worries when sharing their data.

5The benefits of this novel approach of studying the impact of actual AI algorithms in markets with simulations have been popularized by
Calvano et al. (2020) and, more recently, Johnson et al. (2023).
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1.1 Literature

Although the policy debate around MD analytics is quite active (e.g. European Commission (2017), and Duch-Brown

et al. (2017)), the academic literature is scant. In economics, Farboodi et al. (2019) studies an environment where

production generates data, but producers can only rely on internal analytics. We differ from this approach focusing on

the market for MD and analytics, where an aggregator can offer analytics services but must convince data producers to

join. Considering data about consumers’ preferences, other papers have investigated how these data affect production.

Prüfer and Schottmüller (2020) studies a dynamic model where the quality-cost of products reduces with the amount

of data about consumers’ preferences, as with learning-by-doing. Jones and Tonetti (2020) studies the sharing of

personal-data in a macroeconomic growth model with innovation and studies the role of privacy regulations. Our

analysis differs because we consider MD and we focus on market organization.6

The semi-public good characteristic of MD relates our analysis to the economics and managerial literature on

excludable public goods (or “club goods”), e.g. Anderson et al. (2004) and Cornes and Hartley (2007). When con-

sidering data producers that are competitors in related markets, our model shares similarities with competition models

with R&D spillovers and research joint ventures (see Amir et al. (2019) for a recent account). Beside the loose

connection, and unlike these two strands of literature, we focus on the possibility of providing MD analytics with

a market-based solution and identify market characteristics that facilitate or hinder the provision of MD analytics.

Related issues for innovators of “enabling technologies”, such as MD analytics, have been recently discussed in Gam-

bardella et al. (2021). We complement their approach with a formal analytical framework, considering a technology

(i.e. the analytics) that is available but must be fed with data.

Some scholars, mainly in the legal literature, have recently discussed (often against) an assignment of property

rights of MD that would lead to the rights to exclude others in using MD (e.g. Zech (2016), Kerber (2016), and

Drexl (2016)). It has been argued that adapting existing approaches, such as intellectual property rights, to MD would

be either inappropriate or ineffective.7 Thus, MD are currently managed with contractual agreements and technical

measures against misappropriation. In this paper, we rely on this status-quo, with de-facto property rights of MD to

data producers. We contribute to this debate by studying the market for MD analytics and explicitly accounting for the

costs that data producers and aggregators face in litigations.

Finally, the implications (advantages and difficulties) of combining large amounts of data and from multiple

sources have been investigated in the Computer Science literature, e.g. Mitchell (1999), and the recent surveys Alam

et al. (2017) and Meng et al. (2020). Although there is consensus in this literature about Scale and Scope (on this

6Bergemann et al. (2019) and Ichihashi (2020) have studied competition between brokers reselling consumer data to downstream competitors.
7For example, this would be the case for the difficulty of proving novelty and originality using IPR. Other approaches seem ineffective too. The

copyright protection of databases (e.g. European Parliament and Council of the European Union (1995) in the EU) cannot protect the data but only
the investments to aggregate pre-existing data. Leakage of MD would also not be protected under trade secret law, which does not grant exclusive
property rights and would require proving effort in keeping MD secret).
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see also Duch-Brown et al. (2017) and Schaefer and Sapi (2022) in economics), precise and neat accounts of these

properties are scant. In the paper, we show how to combine the value of information from different sources coherently

in a model for the analytics and we illustrate common classification algorithms in Machine Learning that exhibit these

properties (Appendix B1).

The paper is organized as follows. Section 2 lays out the baseline model. In Section 3 we discuss some benchmarks.

The market-based analytics with the organization of an aggregator is in Section 4. In Section 5 we show the difficulties

in dealing with anonymity. Section 6 discusses cooperative analytic with producers that compete for consumers and

Section 7 concludes with a discussion of developments and future research. In the text we summarize simple but

relevant observations with Remarks. The proofs of Lemmas and Propositions are in the Appendix, where we also

discuss and illustrate the properties of Machine Learning algorithms for data analytics that we use in the analysis.

2 The Baseline Model

Each of P producers obtains a value from a data-analytics, paying access fees and contributing with own data. The

payoff of producer i when providing ni units of data is,

Bi = αiη (n)− γini −Qi, (1)

where η (n) is the value of the analytics that relies on data n = (n1, . . . , nP ) from (up to P ) distinct sources that we

discuss below. Parameter αi ≥ 0 measures the ability of the i-th producer in transforming the analytics into profits,

γini is a cost for handling and sharing own data ni, and Qi is a transfer payment for the analytics and the data, which

can be negative in case producer i receives a net contribution for the data. Producer i is willing to participate in the

data-aggregation agreement if Bi is higher than an alternative payoff obtained with no participation, Bmin
i ≥ 0. In the

first part of the paper, we consider producers that operate in different final product markets such that Bi and Bmin
i do

not depend on other producers’ analytics and data. In section 6, we will instead consider competitors in the related

markets.

A single data aggregator collects data and fees from producers, performs an analytics incurring operating costs and

obtains a payoff,

Bagg =

P∑
j=1

Qj − δ̄ − δ
P∑
j=1

ni − εη (n) (2)

where δ̄ + δ
∑P
j=1 ni is the fixed and variable cost to produce the analytics and εη (n) is a cost related to managing

the analytics of a given value η (n). The aggregator is willing to operate on producers’ data and provide the analytics
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only if his payoff is larger than some minimum value, i.e. Bmin
agg ≥ 0.8

We consider the following sequence of events:

1. The aggregator proposes the contract for the analytics and the payment Qi with each producer i.

2. Each producer i refuses or accepts the contract, in which case he provides ni units of data to the aggregator.

3. The aggregator receives the data, generates the analytics with value η(n) and provides it to the accepting pro-

ducers.

4. Contracts and payments are executed, costs and payoffs realized.

We will illustrate some of the results with a running Example where there are two producers (P = 2), producer 1

having a higher value for the analytics, in the Example (the code to reproduce all figures and simulations is available).

Assumptions and Interpretations.

The value of the analytics. We rely on features of common classification and prediction algorithms in Machine

Learning and obtain the value of the analytics η(n) and its properties in two steps. First, the gain obtained processing

data from a single producer is represented with a non-decreasing function υ : R+ 7→ [0, ηmax], where ηmax is the

maximum value attainable with a single data source. Then we combine data from different producers.

We assume that for large values of its argument υ(.) is concave to model that when most of the data space has been

sampled, the marginal gain of further data lots decreases, as with standard classifiers. For small values of its argument,

υ(0) = 0 and υ(.) is convex modelling that the marginal gain of the very first data lots is smaller than the marginal

gain of the subsequent ones. In fact in Machine Learning the very first data slots are used to tune the parameters of the

algorithm, with very limited value. Subsequent slots allow then to produce predictions, thus significantly increasing the

gain (up to the concave region discussed above). Furthermore, data augmentation techniques (Mumuni and Mumuni,

2022) with small data allow to obtain a value form the analytics also at very low levels of data, thus implying υ′(0) > 0.

When P = 1, simply have η(n1) = υ(n1). When instead P > 1, the interaction between different datasets becomes

relevant. To account for this new element we consider a monotonically increasing convex function Υ : R+ 7→ R+

such that Υ(0) = 0 and define the commutative and associative aggregating operation ⊕ : R+ ×R+ 7→ R+ such that,

υ′ ⊕ υ′′ = Υ
(
Υ−1(υ′) + Υ−1(υ′′)

)
.

The total gain associated to a set of data contributions is thus,

η (n1, . . . , nP ) =

P⊕
j=1

υ (ni) =

P⊕
j=1

η (ni) (3)

8We will also discuss the case in which the analytics is designed to maximize welfare, the sum of the aggregator’s and the producers’ payoffs.
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This two-steps procedure delivers a number of important properties of the analytics’ value that we discuss next. In

Appendix B1 we instead rely on a theoretical analysis and numerical simulations showing that standard classification

algorithms do feature these key properties.9

Clearly, there is no value with no data, η(n) = 0 for n = (0, . . . , 0). All else equal, more data from a given

dataset increases the analytics’ value: η(n) is increasing in ni, and, (assuming differentiability for ease of notation)

∂η(0,n−i)
∂ni

> 0 for any n−i. The function η(n) is also convex with small amounts of data and asymptotically concave

for large n, which we dub the Scale property of the analytics. It also features a Scope property which combines

increasing difference and superadditivity (formally stated in Appendix A2). The former means that the higher value

obtained from more data of a given dataset is enhanced when it is combined with more data from another dataset.

The latter means that joining two (or more) datasets into single analytics provides a higher value than the sum of the

values of separate analytics (i.e. relying on different datasets generates economies of scope). In other terms, the Scope

property states that more data diversity maps the data space more effectively.

Data and analytics costs. The producer’s cost for handling own data γini contemplates both industrial costs for

acquiring and transmitting data and indirect costs associated with the risks of sharing data outside the firm. Since MD

are only de-facto protected, producers face the risk that information about their production process leaks from shared

data and must put some effort into limiting litigation issues over data. Overall, the weaker is de-facto protection of

MD, the higher the anonymity cost γ.

The aggregator’s (marginal) cost of handling data from different datasets is δ, which refers to industrial costs and

legal litigation costs for weak protection (proportional to the size of the dataset). Setting up an analytics involves a

fixed cost δ̄, which may be large enough to make in-house analytics unprofitable when relying only on internal data.

For most of the analysis, we assume δ̄ is large enough so no producer can independently operate its own analytics.

The aggregator also faces costs for managing the analytics, proportional to its underlying value εη (n). For exam-

ple, with valuable analytics, the aggregator may face high (expected) costs for legal disputes concerning its ownership,

especially in a weak property-rights environment. Similarly, the higher the analytics’ value, the stronger the risk that

the aggregator faces cyber-attacks, and the data and the analytics may become public.10

Each producer is endowed with a certain (large) amount of data. We will discuss later on the possibility to associ-

ated data with actual production.

Analytics appropriability, contracts and market structure. The analytics is a semi-public good (or club good),

being excludable but non-rival. The aggregator can exclude producers from the benefits and value of the analytics

(e.g. if they do not provide data), and each joining producer benefits from the analytics without degrading its value

9Although there is consensus about these properties for Machine Learning classifiers, this appendix provides practical and direct illustrations
that we think are of interest per-se.

10With an alternative interpretation, the aggregator may directly benefit from the analytics, in which case ε < 0, for example, when the aggregator
manufactures and sells machines that produce the data.
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Figure 1: Value of analytics η(n1, n2) in the Example (details in Appendix A2.1) showing Scale and Scope.

for other joining producers. Since we focus on relatively small producers, we consider a monopolistic aggregator with

bargaining power to design the contractual offers for data-sharing and analytics. On the other hand, our producers

are de-facto owners of the data, they are free to refuse the aggregator’s offer and make data ni unavailable for the

analytics.

The model is flexible enough to account for different market structures. For example, we could consider the

manufacturers of the machines. These players would directly access the producers’ data to whom they sell machines. A

manufacturer that sells machines to all producers would act as the data aggregator described above, with the difference

that he would not need the consent of producers to access the data. We will discuss these possibilities and their

implications.

We assume payoffs are common knowledge.11 Since third parties typically observe the realized value of the

analytics to a given producer i with some error, we assume that producers and the aggregator cannot rely on contracts

and payments that explicitly depend upon the realized value of the analytics.12 We begin assuming that the contracts

offered by the aggregator are publicly observable. We then investigate the case in which producers require contractual

contractual anonymity to join the analytics.

The running “Example”. To illustrate some of the results we will rely on an example of the model that accom-

modates all its key elements. The Example contemplates two producers (P = 2), producer 1 having a higher value

for the analytics, i.e. α1 > α2, but also a higher cost for handling data, i.e. γ1 > γ2. We dub producer 1 (2) as the

strong (weak) producer. All other details and parameters of the Example are in Appendix A2.1. All figures refer to the

Example and, in particular, Figure 1 illustrates the associated value of the analytics η(n1, n2).13

11We leave for future research the interesting case in which αi is producer i’s private information.
12See Dosis and Sand-Zantman (2019) for a theory of personal data sharing with incomplete contracts and the hold-up problem.
13The code to replicate all the figures and numerical results is available upon request.
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Figure 2: Feasible analytics (i.e. combinations of n1, n2 s.t. W (n) ≥ Bmin
agg +

∑P
j=1B

min
j ) with thicker lines

associated with lower (symmetric) marginal costs.

3 Benchmarks

For future reference, we discuss some useful benchmarks.

Feasible and efficient analytics. For given data n = (n1, . . . , nP ), the surplus of the analytics is:

W (n) = Bagg +

P∑
j=1

Bj = η (n) (

P∑
j=1

αj − ε)− δ̄ −
P∑
j=1

(δ + γj)nj (4)

We define an feasible analytics as the combination of n such that W (n) ≥ Bmin
agg +

∑P
j=1B

min
j . In the Example

with identical marginal costs, Figure 2 shows the combinations of n such that the surplus is equal to the outside

options of producers and the aggregator for several values of the analytics’ marginal costs (lower marginal costs in

thicker lines).

The properties of the analytics imply the following.

Remark 1. A feasible analytics requires (i) a minimal size of data, (ii) not too many data, (iii) balanced datasets when

many date are available, (iv) unbalanced datasets with few data.

Conditions (i) and (ii) are direct consequence of Scale: the marginal benefits are smaller than marginal costs with

little or too many data. Condition (iii) follows from Scope. It can be seen with the increasing boundaries in the

northwest/southeast parts of the Figure where further increases of the “over-represented” dataset makes the analyitcs

not feasible, as well as in the northeast declining boundary when slightly unbalancing large datasets. Condition (iv)
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Figure 3: Efficient data when costs γ1 and γ2 respectively decrease and increase by a same amount.

shows up in the southwest portion of the figure, where increasing one of the small datasets grants higher marginal

benefits than costs at least with one source of data.

We indicate the amount of data that maximizesW (n) with nw = (nw
1 , . . . , n

w
P ) and the associated maximal surplus

with Wmax. At an interior solution, nw is implicitly identified by,14

∂η(n)

∂ni

(
P∑
i=1

αi − ε

)
= δ + γi, i = 1, . . . , P. (5)

The cost of procuring and handling the marginal unit of data of producer i (the r.h.s. in condition (5)) is equal to its

value (the l.h.s.). The latter accounts for its positive impact for all producers due to the public-good nature of data.

A relevant implication of this property is that the efficient amount of data nw
i that satisfies the internal solution of

(5) is the same for any producer i whenever γi = γ for any i. Hence, despite extracting less value from analytics,

a producer with a low αi but also a low cost for data should contribute with relative large amount of data. Also, the

optimal amount of data from two producers can only differ if their costs do so. The Example shows the implications

of asymmetric costs configurations with the Scale and Scope properties. Perturbing the (initially) symmetric marginal

costs of the producers with γ1 = 3/4 − ∆, γ2 = 3/4 + ∆ and 0 ≤ ∆ ≤ 3/4 we obtain the locus of optimal nw as in

Figure 3.

The following summarizes these simple but remarkable properties of the efficient amount of data.

Remark 2. For interior solutions, i.e. ni > 0 for any i, the efficient amount of data does not depend on the distri-

bution of the producers’ value of the analytics, αi, i = 1, ..., P . Producers with lower costs γi, contribute more data
14Given the properties of η(n), condition (5) can realize when η(n) is convex in ni, or when it is concave in ni. However, the former case would

correspond to a minimum of W .
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independently of their value of the analytics.

Figure 3 shows another interesting property, unbalancing marginal costs may cause the optimal solution to be non-

internal, and the producer with the higher marginal cost does not to provide data (while still enjoying the analytics).

The discrete drop in data of producer 2 in the figure is a remarkable and general outcome of the Scale and Scope

properties, that we will further discuss. When γ2 increases, the reduction of n2 is smooth, up to the region in which

the value of analytics η(.) becomes convex for low n2. At that point, with further increases of γ2 condition (5) would

identify a minimum due to the convexity of η(.). When the data of producer 2 drop to zero, also nw
1 reduces discretely

(with n2 = 0 the marginal value of n1 reduces since the synergy between datasets is lost).

The convexity of the value of the analytics at a small amount of data also implies that relatively inefficient producers

do not provide data, even if they benefit from the analytics. Relatedly, active producers must provide relatively large

batches of data. This is stated in the following Lemma which is general and does not only apply to the efficient

analytics.

Lemma 1. When a producer is active with the analytics, i.e. it provides data to the analytics (ni > 0), the efficient

amount of data is bounded away from zero.

Free analytics. Assuming the analytics is freely available, each producer i would decide the amount of data to

share solving the following problem,

max
ni

Bi (6a)

s.t. Bi −Bmin
i ≥ 0 (6b)

(where we set the payment Qi = 0). Expecting n̂−i data from other producers, producer i would choose ni satisfying

the following optimality (interior) condition,

∂η(ni, n̂−i)

∂ni
αi − γi = 0. (7)

This condition implicitly defines the best response for producer i, the optimal amount of data ni in response to the

expectation of some n̂−i. The Nash equilibrium of the game between producers that independently decide how much

data to share with the free-of-charge analytics is an n0 such that for any producer i, (7) is satisfied at ni = n0
i and

n̂−i = n0
−i.

Comparing the optimality conditions (7) with those that guarantee the efficient analytics (5), independent producers

fail to consider the positive effect that their own data have on the value of the analytics to all other producers, i.e.,

∂η(n)
∂ni

∑P
j 6=i αj . Since the analytics is free, they also fail to internalize the cost of processing data and handling the

12
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Figure 4: Combinations of data such that Wmax ≥ Bmin
agg +Bmin

1 +Bmin
2 (and heat-map) with the two best response

curves for free analytics (asymmetric case).

analytics ∂η(n)
∂ni

ε+ δ. Whether independent producers provide more or less data than what would be efficient depends

on the composition of these two elements and the sign of

∆0
i =

∂η(n0)

∂ni

P∑
j 6=i

αj −
(
δ +

∂η(n0)

∂ni
ε

)
(8)

As η is concave and saturating, its derivative eventually vanishes so that, if n0
i is large enough, ∆0

i → −δ < 0,

causing over-provision of data, n0
i ≥ nw

i . This latter case is likely to happen when the distribution of the producers’

value of the analytics αi, i = 1, ..., P is particularly unbalanced. Figure 4 shows these possibilities depicting the best

response curves, the Nash equilibrium and the efficient data. In the Example, the ability of extracting value from

analytics of producer 1 (α1 = 1) is larger than that of producer 2 (α2 = 1/4). For producer 1, the balance between

the non-internalized value of the analytics and costs depends on the feature α2 of the other producer 2 and is negative

∆0
1 ' −0.542 < 0, causing n0

1 to be larger than nw
1 . Vice-versa, for producer 2 we have ∆0

2 ' 0.167, causing n0
2 to

be smaller than nw
2 .

Free analytics suffers from another critical problem in addition to inefficient data provision: multiple equilibria.

Expecting no other producers to provide data, a producer may prefer not to confer any data as well. Hence, expectations

about other producers’ data provision matter dramatically with free analytics or with analytics where an aggregator

does not control data producers’ incentives: pessimistic beliefs can drive a free analytics to complete breakdown.

The following summarizes these observations.15

15In the appendix we provide the proof of equilibrium existence of the free analyitcs. The proof can be easily adapted to prove existence for all
other cases in the paper.
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Proposition 1. With free-analytics, (i) at least one equilibrium exists; (ii) producers that value the analytics less

(more) under-provide (over-provide) data with respect to the efficient analytics; (iii) with sufficiently high costs for

data producers, multiple equilibria exist, including one where the analytics does not operate.

4 Market-based analytics

A data aggregator may step in, motivated by own or producers’ profits. This aggregator could be an independent actor

or it could be the manufacturer of the machines used by producers. We first consider a profit-maximizing aggregator

that can instruct each producer i the amount of data ni to provide. Although this possibility may seem unrealistic, we

next show how its outcome can be replicated with producers free to decide ni and the aggregator incentivizing their

choice. The aggregator offers a personalized contract to each producer i, (Qi, ni), with a monetary transfer and an

amount of data, that the producer can accept or refuse.

The aggregator solves the following program,

max
(Q1,n1),...,(QP ,nP )

Bagg =

P∑
j=1

Qj − δ̄ − δ
P∑
j=1

nj − εη (n) (9a)

s.t. Bagg −Bmin
agg ≥ 0, (9b)

Bi −Bmin
i ≥ 0 i = 1, . . . , P (9c)

Since Bagg increases and Bi decreases in Qi, at the optimum the transfer Qi is set so that constraint (9c) binds,

i.e.,

Qi = αiη(n)− γini −Bmin
i . (10)

Substituting this payment into Bagg, the aggregator’s profit rewrites as the right-hand side of (4), that is the social

surplus. Hence, the data na that maximizes the aggregator’s profit is precisely nw. In fact, by appropriating the

value of the analytics to each producer (up to the payoff that induces them to participate, i.e., Bmin
i ), the aggregator

maximizes the analytics’ total surplus.

Clearly, the same result would occur when the aggregator’s mandate was to run the analytics to maximize produc-

ers’ payoffs
∑P
j=1Bj , subject to a break-even constraint, as it could be the case with a not-for-profit incorporation

organized by the producers. Since the objective would decrease in
∑P
j=1Qj , the aggregator would set the total transfer

so that its participation condition Bagg ≥ Bmin
agg just binds. Substituting for

∑P
j=1Qj from the binding constraint, the

program becomes one of maximizing welfare W subject to the participation constraints of producers, Bi ≥ Bmin
i .16

16Given the optimal analytics na = nw, sinceWmax ≥ Bmin
agg +

∑P
j=1B

min
j , there exist payments (Qi, . . . , QP ) that guarantee all producers’
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Remark 3. The aggregator induces the efficient analytics with personalized take-it-or-leave-it offers (Qi, ni) to data

producers.

4.1 Delegation and in-house analytics

The aggregator does not need to impose the amount of data to producers. We briefly show that the same outcome of

the previous section can be obtained with personalized affine monetary transfers for data and delegating to producers

the amount of data to contribute. Consider a data-payment schedule for producer i, Qi = q̄i + qini, where q̄i is a fixed

payment and qi is a monetary transfer per-unit of data. Given the aggregator’s contractual offers, producer, producer

i chooses ni to maximize its payoff, with a program similar to the free-analytics program (6) except that here the

transfer to the aggregator is not nil. Assuming that each producer i wants to participate, at an interior solution the

optimal ni will satisfy the following (necessary) condition:

∂η(ni, n̂−i)

∂ni
αi − γi − qi = 0 (11)

where n̂−i are the data contributions that the i-th producer expects from the other producers.

With an appropriate choice of qi the aggregator can control producers’ incentives to provide data and with the

fixed component q̄i of the tariff, it can appropriate the producers’ value of the analytics. In particular, the optimality

condition of each producer (11) becomes equivalent to the condition for efficient data (5) whenever,

qi =
αi(δ + γi)∑P
j=1 αj − ε

− γi. (12)

The fixed fee q̄i can then be set so that Bi = αiη(n∗) − (γi + qi)n
∗
i − q̄i = Bmin

i . By doings so, the aggregator

can delegate the choice of data and induce efficient analytics, nw, by offering and disclosing to all producers these

personalized price schedules. Observing these transfers, each producer correctly anticipates the data provided in

equilibrium by other producers and optimally chooses the amount of data ni = nwi .17

With an appropriate choice of the data-price schedule, the aggregator makes each producer internalize the positive

externality that the data of each of them has on the payoff of the others. This is optimal for the aggregator because it

can then extract this individual surplus (net of the outside option) with the fixed fees q̄i.18

Figure 5 shows how with variable parts as in (12), the aggregator modifies the best responses of producers and

participation constraints. The solution for these payments is typically not unique, and some of the solutions may favor some producers, leaving
them a payoff higher than Bmin

i and disfavor others granting exactly Bmin
i .

17The same approach shows that the efficient analytics also realizes when the aggregator maximizes producers’ payoff subject to a break-even
constraint. In section 5.2 we discuss the role of private contracting where the aggregator cannot disclose the contracts offered to each producer.

18If producers expect the others to procure little or no data, then the left-hand side in (11) may be negative at ni = 0, implying that ni = 0
would be optimal, a break-down as with the free analytics. Since slightly more flexible payments Qi(ni) would allow the aggregator to eliminate
this outcome, we disregard this possibility.
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Figure 5: A for-profit aggregator modifies producers’ best responses to maximize their own profit and replicates the
efficient outcome.

induces the efficient analytics. In particular, to obtain this outcome the aggregator here sets q1 = 0.59 and q2 = −0.05.

The analytics involves a variable payment with the strong producer 1 benefiting the most from the analytics, that is

increasing in own data, and a payment decreasing in own data for the weak producer 2.19 Notably, these properties

of the data-payment schedules follow from a general property, as it can be seen in (12). In fact, qi is high (small and

possibly negative) when the contribution αi to the total value extracted by producers from the analytics
∑
j αj is high

(small).

When a producer values the analytics sufficiently low relatively to other producers, it can also be the case that it

is subsidized entirely with a negative total price Qi, while the aggregator profits with other producers. This case is

reported in Figure 6, where we consider symmetric costs but we increase continuously the difference between α1 and

α2 keeping constant
∑
j αj . Although this change leaves the optimal amount of data n∗ unaffected, as seen in (5),

producer 2 is remunerated for its data. Instead, producer 1 provides data but pays for the analytics.

19In the Example, both producers end up paying an overall transfer to the aggregator with q̄1 ' 0.75 and q̄2 ' 0.19.
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Figure 6: Transfer as a function of the difference in the abilities to gain from the analytics (with identical costs).

Remark 4. (i) A data aggregator can replicate the maximal profit and efficient outcome with personalized data-

payments. (ii) When some transfer for data are negative (implying subsidy instead of payments to join the analytics),

subsidies are offered to producers with a relatively small value from the analytics and high costs for sharing data.

Producers’ in-house analytics.

Some producers may have the possibility to run their analytics, relying on own data exclusively. By doing so, the

payoff of producer i would be

Bself
i = max

ni
αiη (ni, 0, ..., 0)− δ̄ − δni (13)

where the producer faces the same processing cost of the aggregator. Since the analytics is run independently and

in-house, the producer does not face the legal risks of handling its data externally (i.e. to ease notation we consider

the case where this cost reduction is such that γi = 0), nor the costs associated with the risk of litigation about the

analytics (i.e. we set ε = 0). With this option available to producer i, the aggregator must now adjust the fee Qi to

leave a payoff Bmin
i = Bself

i > 0. Whenever Bself
i > 0 is large enough, the aggregator may fail to find the analytics

profitable when transfers are such that Bagg ≥ Bmin
agg or may prefer not to run the analytics with all producers.

Proposition 2. (i) When data producers can independently run their analytics, the aggregator may not operate prof-

itably with all producers unless the synergy between different datasets is sufficiently strong. (ii) When exclusion of

some producers is optimal, the aggregator tends to exclude producer(s) with the most significant in-house value for

the analytics Bself
i .
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5 Analytics with Anonymity

We have seen that the possibility of implementing profitable and efficient analytics requires personalized and publicly

observable contracts so that producers can decide joining the analytics with a precise expectation of the identity and

the data provided by other producers. However, producers may prefer to keep their decision to join the analytics and

the contractual details private. They may fear that details of their production strategies become publicly known via

the analytics, a case that we dub as loss of anonymity.20 This loss of anonymity could be even more relevant when

producers are competitors in related markets (as in Section 6). Preserving anonymity can thus be an important element

of an effective analytics.

Since the profitability of a shared analytics may clash with anonymity, in this section we consider contractual

offers that are constrained to preserve anonymity. We first evaluate the possibility that the aggregator offers the same

public and uniform contract to all producers, thus forfeiting the personalization of the arrangements. We then allow

for contracts that are personalized but also secret and unobservable to third parties, so that anonymity is preserved by

secrecy.21

5.1 Analytics with uniform contracts

Assume the aggregator is bound to offer an unique and undifferentiated contract to all producers, Q(ni).22 Without

loss of generality, instead of dealing with Q(ni) we allow the aggregator to offer a (finite) set of alternatives (n∗k, Qk)

with k = 1, . . . ,K, the same set for all producers, where n∗k is an amount of data and Qk is the associated monetary

transfer. These pairs are designed so that each producer i prefers to join the analytics and autonomously selects its

optimal choice. For this to be the case, we need that for any producer i there is an alternative i in the aggregator’s offer

so that for any other alternative j 6= i in the offer (with j = 1, . . . ,K),

αiη
(
n∗i , n

∗
−i
)
− γin∗i −Qi ≥ αiη

(
n∗j , n

∗
−i
)
− γin∗j −Qj . (14)

This constraint guarantees that for each producer there is an entry in the set of alternatives (n∗k, Qk) that the producer

prefers to the other. In addition, that alternative is designed to also guarantee participation of producer i,

αiη
(
n∗i , n

∗
−i
)
− γin∗i −Qi ≥ Bmin

i i = 1, . . . , P.

The following proposition illustrates the relevant implications of an anonymous analytics.

20Anonymity would also be violated when the aggregator discloses the structure and content of the dataset.
21As an interesting alternative, the aggregator may merge and mix the data into the same dataset, de-facto anonymizing them. However, in this

case, the value of the analytics would be η(
∑
i ni, 0, ..., 0), and the Scope property would be lost, significantly reducing the value of the analytics.

22Here we assume that parties do not renegotiate the public contract secretly. We address this possibility in the next subsection.
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Proposition 3. (i) When the costs of data-sharing and the producer’s value of the analytics are positively related,

efficient analytics is unattainable with anonymity. (ii) In this case, combining more diverse producers into the same

analytics reduces the analytics’ value.

To grasp the intuition of the proposition, consider any two specific producers that, without loss of generality, may

be indicated as producer 1 and 2, and define η′(n1, n2) = η
(
n1, n2, n

∗
−{1,2}

)
. Writing (14) for i = 1, j = 2 as well

as for i = 2 and j = 1 to yield the conditions

α1η
′(n∗1, n

∗
2)− γ1n

∗
1 −Q1 ≥ α1η

′(n∗2, n
∗
2)− γ1n

∗
2 −Q2 (15)

α2η
′(n∗1, n

∗
2)− γ2n

∗
2 −Q2 ≥ α2η

′(n∗1, n
∗
1)− γ2n

∗
1 −Q1 (16)

that can be satisfied if and only if,

α1 [η′(n∗2, n
∗
2)− η′(n∗1, n∗2)]− γ1 (n∗2 − n∗1) ≤ Q2 −Q1 ≤ α2 [η′(n∗1, n

∗
2)− η′(n∗1, n∗1)]− γ2 (n∗2 − n∗1) .

A necessary condition for this is,

C(γ1, γ2) := α2 [η′(n∗1, n
∗
2)− η′(n∗1, n∗1)]− α1 [η′(n∗2, n

∗
2)− η′(n∗1, n∗2)]− (γ2 − γ1) (n∗2 − n∗1) ≥ 0. (17)

where we have highlighted that the optimal amount of data depends on the costs γ1, γ2. In the proof of Proposition 3)

we show that starting from a symmetric cost environment where γ1 = γ̄ + dγ, γ2 = γ̄ with dγ = 0, and introducing a

(small) asymmetry in the costs with dγ > 0, we obtain,

C(γ̄ + dγ, γ̄) ' −Ψ(α1 − α2)dγ (18)

where Ψ > 0. Equation (18) implies that if producers also differ in their values of the analytics in the same direction as

with costs, i.e. α1 > α2 with γ1 > γ2, then it is impossible to induce different producers to select different alternatives

from an anonymous contract of alternatives.

For point (ii) in the proposition note that it is reasonable that a producer extracting a significant value from the

analytics also faces higher costs for data-sharing. When this occurs, the only possibility for the aggregator is to offer

a unique data and payment pair (n,Q) to all producers. Since producers differs, it thus is impossible to replicate the

necessary condition for an efficient analytics (5), and the data provided are necessarily suboptimal and the more so the

more diverse are the data producers.

The Example allows to assess how the loss of value of the analytics increases with the differences in the producers.
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Figure 7: The cost of anonymity: welfare reduction with different producers (parameterized with ∆ = α1 − α2 =
γ1 − γ2 ≥ 0), with anonymity preserved with a unique contract for all producers.

We set α1 = γ1 = 3/4 − ∆ and α2 = γ2 = 3/4 + ∆. For each value of the perturbation 0 ≤ ∆ ≤ 3
4 we compute

the efficient data nw
1 and nw

2 and the associated surplus maximum surplus Wmax. It can be checked that (17) is never

satisfied with these parameters, so that to preserve anonymity, the aggregator must offer a unique (optimally chosen)

option (n,Q) to all producers. Figure 7 shows the percentage loss of efficiency of this anonymous analytics as a

function of the perturbation parameter ∆.

An interesting implication of Proposition 3 is that, instead of insisting on anonymous but distorted analytics that

involves all producers, the aggregator may prefer to exclude some producers and form analytics between more homo-

geneous ones.

5.2 Analytics with secret contracts

The aggregator could preserve anonymity using secret contracts, so that the details of a contract with a producer are

only known by that producer and the aggregator. With secrecy, the aggregator can still rely on personalized contracts,

and preserve anonymity.23 However, as we discuss next, this comes with possibly strong limitations on the amount of

data that producers are willing to share.

We first consider the more straightforward case where the aggregator faces zero cost for managing the analytics,

i.e. ε = 0, as it is the case when there are no legal risks nor costs with sharing the analytics. For simplicity, we discuss

the case of two producers (P = 2) and affine payments (Qi = q̄i + qi + ni), but the results generalize.

Since other producers’ contracts are not observable, each producer must form beliefs about the actual data provided

23Clearly, producers can guess other producers’ participation decisions.
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by other producers, n̂−i, for whatever (not observed) contract they were offered. Given this expectation, the first-order

condition for data of producer i is,
∂η(ni, n̂−i)

∂ni
=
γi + qi
αi

, (19)

which implicitly defines the optimal amount of data ni(qi, n̂−i) that producer i is willing to share. Note that, differently

from section 4.1, here producer i holds some fixed beliefs about others’ data n̂−i which cannot change with the

contractual conditions offered to other producers which are not observed.24

The aggregator in this case solves the following problem,

max
{q̄i,qi}i

Bagg =
∑
i=1

[(qi − δ)ni(qi, n̂−i) + q̄i]− δ̄ (20a)

s.t. Bagg ≥ 0, (20b)

Bi(ni(qi, n̂−i), n̂−i) ≥ Bmin
i for any i. (20c)

As in section 4.1, the aggregator controls the level of data ni ≥ 0 with the per-unit fee qi and appropriates profits

(or absorb losses) with q̄i. Also in this case, the aggregator problem is best understood as directly choosing the

optimal level of data rather than transfer. Substituting the fix component q̄i from the (optimally) binding participation

constraints (20c), the program becomes,

max
{ni}i

∑
i=1

[αiη(ni, n̂−i)− (γi + δ)ni]− δ̄ (21a)

s.t. Bagg ≥ 0 (21b)

This program shows an interesting property. Since each producer optimizes its level of data provision given its expec-

tation about the data provided by other producers, the problem of identifying the optimal amount of data from each

producer is separable from the analogous program for the others. Producers do not care about the actual contracts

offered to one another but only about expectations on the data, expectations which the aggregator cannot not influence.

The optimal data provision that solves the above program is given by:25

∂η(ni, n̂−i)

∂ni
αi = γi + δ. (22)

The difference between (22) and condition (5) for efficient data is consequential: the amount of data under secrecy

is lower than when anonymity is not a concern. In fact, the optimality condition with secret contracts (22) does not

24We consider passive beliefs, that is, when observing the aggregator offering unexpected (off-equilibrium) contracts, each producer i thinks that
the aggregator is not changing other producers’ offers.

25One can then recover the price per-unit of data for each producer by combining equations (19) and (22).
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account for the effect of data ni on the benefit of the analytics for other producers. In other terms, the aggregator

cannot make producers internalize the positive externality of their data on other producers. With secret contracts, the

optimality conditions (22) are, in fact, very similar to the case of free analytics (7).26

Imagine the aggregator tried to convince producer i that the efficient data nw would be shared instead, so that

producer i expects n̂−i = nwi . The aggregator would then prefer to approach any another producer j and propose to

share data nj that maximize the bilateral surplus αjη(nj , n̂−j) − (γi + δ)nj (the rest of the surplus does not depend

on nj but on producers’ expectations about it). This clearly undermines the possibility that producer i can reasonably

expect that the data of producers j 6= i are efficient, i.e. n̂j = nwj .27

The outcome with the optimality conditions (22) is thus strongly inefficient and, as with a free-analytics, contem-

plates a substantial loss of value of the analytics. The next Proposition shows that the inefficiency with secrecy can be

even deeper when the aggregator faces a cost ε > 0 to manage the analytics.

Proposition 4. (i) When the aggregator preserves producers’ anonymity with secret contracts, data sharing is ineffi-

ciently low. (ii) If the cost for managing the analytics is positive and the synergy among datasets sufficiently strong,

the aggregator must exclude some of the data producers from the analytics.

The reason why with a cost for managing the data the aggregator may prefer to exclude some producer is related

to its objective function, which in this case writes as,

2∑
j=1

[αjη(nj , n̂−j)− (γi + δ)nj ]− δ̄ − εη(n1, n2).

This shows that when ε > 0, the decisions concerning any two data ni and nj are no longer separable. When

the aggregator considers maximizing the bilateral surplus with any producer j, it realizes that the bilateral decision to

reduce nj now directly affects and compounds with any other data via the new term εη(n). The proof of the Proposition

shows that when this is the case, and if the Scope between datasets is sufficiently large (so that the compounding effect

is strong), the second order conditions of the aggregator’s problem are violated when ni > 0 for all producers. The

optimum must thus involve ni = 0 for some of them. Interestingly, when cooperative analytics shows its highest

potential, i.e. when the Scope between datasets is strong, the aggregator may have to do without it.

6 Analytics with competing producers

When producers share their data but also compete for buyers, the producer’ specific value of the analytics αi may well

be endogenous and depend on other producers’ decisions. In this section we study this important case with producers
26A relatively small difference is that here the aggregator accounts for the cost δ of managing the data for the analytics.
27The reasoning developed here is similar to that in the economic literature on vertical contracting. Other types of beliefs may limit the inefficiency

of secret contracting, although not eliminating it (Rey and Verge, 2004).
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that compete for final consumers and choose prices of differentiated products.28

The value η(ni, n−i) of the analytics here reduces the per-unit cost of production of each joining producer. The

analytics benefits producers that decide to join by reducing their unitary cost:

ci(ni, n−i) = c̄− η(ni, n−i), (23)

where c̄ is the baseline per-unit cost of a producer that does not join the analytics.29 Each producer i then sets the

final-consumers’ price pi of its product and consumers decide how much to buy of each product.30

Let xi(pi, p−i) be the demand of producer i that is decreasing in the producer’s own price pi and (weakly) increas-

ing in any price in the vector p−i of the other producers’ prices. The payoff of producer i is,

Bi = (pi − ci(ni, n−i))xi(pi, p−i)− γini −Qi,

In terms of our previous notation, here we have αi = xi(pi, p−i), so that a producer’s ability to extract value from

the analytics is now endogenously determined by product-market competition.31 Although we will provide a general

formulation, we further specify this otherwise complex environment considering two producers (i.e. P = 2).

To identify the intensity of competition with a single exogenous parameter, we further specify the model assuming

quasi-linear utility so that the representative consumer’ problem is

max(x1,...,xP )U(x1, ..., xP )−
∑
i

pixi. (24)

where the consumer’s preferences U(.) are,

U(x1, x2) = θ(x1 + x2)− 1− ρ
2

(x2
1 + x2

2)− ρx1x2 (25)

Parameter θ > 0 is a demand shifter and ρ ∈ [0, 1/2] is our key parameter that measures product differentiation, and

thus the intensity of competition. With ρ = 0 products are independent as with separate monopolies. With ρ = 1/2

competition is instead maximal for perfectly substitutable products.32 With an interior solution (consumers demand a

28To focus on competition, we abstract from issues with anonymity. Contracts are public and non (secretly) renegotiable. We initially consider
data that are available independently from actual production, and then discuss the possibility that they are a by-product of the production process.

29The per-unit cost with analytics is similar to cost-reducing R&D with spillovers, as in López and Vives (2019).
30The alternative timing (prices decided first and then data) would deliver results qualitatively similar to the analysis in the previous sections with

exogenous αi. For more on this see also footnote 31.
31 In a different timing where producers first set pi and then decide ni, we would have αi = xi where the quantity xi would be exogenous when

producers decide about data, exactly as in the previous sections.
32The formulation of 25 guarantees that when increasing ρ the market size is kept constant. This implies that, in general, the consumer’ surplus

increases in ρ.
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positive quantity of both goods), the demand function for each producer i = 1, 2 is,

xi(pi, p−i) =
θ(1− 2ρ) + ρp−i − (1− ρ)pi

1− 2ρ
. (26)

Free analytics.

For given data (n1, ..., nP ) and analytics η(n1, ..., nP ), when active in the final consumer markets competing

producers independently set prices according to the following optimality conditions,33

xi(pi, p−i) + (pi − c̄+ η(ni, n−i))
∂xi(pi, p−i)

∂pi
= 0, i = 1, ..., P (27)

Solving this system gives the Bertrand-Nash equilibrium prices pi(η(ni, n−i)) and producers’ profits,

Bi(ni, n−i) = (pi(η(ni, n−i))− c̄)xi(η(ni, n−i)) + xi(η(ni, n−i))η(ni, n−i)− γini

where with a slight abuse of notation we indicate xi(η(ni, n−i)) = xi[pi(η(ni, n−i)), p−i(η(ni, n−i))].

Anticipating these prices (and assuming an interior solution), the necessary optimality condition for the data of

producer i is,34

xi(ni, n−i)
∂η

∂ni
− γi+

+ [pi(η(ni, n−i))− c̄+ η(ni, n−i)]×
∂η

∂ni

∑
j 6=i

∂pj(η(ni, n−i))

∂η

∂xi(η(ni, n−i))

∂pj
= 0

(28)

The first line is equivalent to the optimality condition for the free analytics and non-competing producers, i.e. (7),

where the producer-specific value of the analytics is αi = xi, i.e. the units of outputs (on which the analytics guaran-

tees a unitary cost reduction). The second line instead shows a novel impact of market competition and accounts for

a series of reactions induced by the data of producer i. In particular, more data ni increase the value of the analytics,

∂η
∂ni

, which affects rivals’ equilibrium prices, ∂pj∂η , which in turn affect the firm’s demand, ∂xi∂pj
. Eventually, this demand

change is valued according to the price-cost margin (the square parenthesis).

Clearly when ρ = 0, products are independent and the entire expression in the second line of (28) is nil because

∂xi(η(ni,n−i))
∂pj

= 0. This case corresponds to the case of producers operating in separate markets of the previous

sections. When instead ρ = 0, since η(.) is a common cost shifter reducing costs to all firms, a more valuable

33In the proofs we also consider the possibility that prices significantly differ, so that a producer i is not active, that is it does not sell any unit,
when pi ≥ 1−ρ

ρ
p−i − 1−2ρ

ρ
θ.

34For the Envelope Theorem, the impact of own data on profits via the producer’s price change ∂pi(η(ni,n−i))
∂η

∂η
∂ni

, is nil in view of (27). We
discuss the case of non-interior solutions later on.
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analytics reduces the equilibrium price of any firm, i.e. ∂pj
∂η ≤ 0. A relevant implication is that the entire second line

in (28) is non positive, and competition necessarily implies a reduction of shared data ni. The intuition is simple: with

the second line each competing producer i accounts for the fact that fewer data ni increase rivals’ prices, relaxing the

intensity of competition. In general, the more intensively producers compete, the lower is the amount of data they

are willing to share. In the limit, when competition is maximal, i.e. ρ → 1/2, the expression ∂xi(η(ni,n−i))
∂pj

becomes

exceedingly large so that each producer i sets ni = 0. In fact, this occurs already for high but lower intensity of

competition, because the marginal benefits of the analytics decline with ρ and the cost of providing the data γi is

instead positive and constant. The dashed line in panel (a) of Figure 8 illustrates that this competitive-effect of data

similarly operate when comparing with the (socially) efficient amount of data.

Proposition 5. With competing producers and free analytics:

(i) More intense competition reduces the amount of data that producers share.

(ii) The analytics breaks down if competition is sufficiently intense: competing producers share no data.

(iii) With respect to the social optimum, realized consumers’ surplus and welfare does not necessarily increase

with the intensity of competition.

Result (iii) is remarkable and shown in panels (b) and (c) of Figure 8. In a standard environment with no analytics,

more intense competition, i.e. higher ρ, would normally reduce the distortion on the consumers’ surplus and welfare

induced by producers’ market power relative to the social optimum. This is because more intense competition reduces

prices which are inefficiently high when firms have market power. With the analytics, instead, more intense competi-

tion induces firms to limit the amount of shared data (as discussed above), increasing the firms’ costs and with a net

negative effect on consumers and efficiency. Although the effect is not very pronounced initially in the Figure (con-

sumer welfare and aggregate welfare reduce slightly for low ρ as a percentage of the social optimum), one should note

that, absent the analytics, these variables would increase with the intensity of competition. Also, when competition

becomes very intense, the free-analytics simply becomes non-viable (result (ii) in the proposition) because producers

prefer not to share data. In this case, the consumers’ surplus and welfare drop.

Data aggregator.

Consider now an aggregator that offers to joining producers simple contracts of the type (Qi, ni), with the amount

of data ni that producer i must provide for a transfer Qi. The program of the aggregator is similar to (9)-(9c), with

two notable differences. First, as discussed above, Bi(ni, n−i) is now a more complex object that accounts for market

profits and competition. Second, the payoff when refusing the aggregator’s offer Bmin
i is no more an exogenous

element as it depends on the analytics available to the rivals. Even if producer i rejects the aggregator’s offer, other

producers may still accept it. In this event, competition occurs with cost c̄ for producer i, while the other firms have a
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lower cost because of the analytics. The profit of firm i when refusing the analytics contract is now,

Bmin
i = max{0, Bi(0, n−i)} = max{0, [pi(η(0, n−i))− c̄]xi(η(0, n−i))}

This shows that when other producers provide more data, the outside option of producer i, Bmin
i , is accordingly

reduced. Since, as seen in previous cases with the payment Qi the aggregator extracts producers’ surplus up to Bmin
i ,

more rivals’ data allow the aggregator to reduce the transfer that it must grant to convince producer i to join the

analytics.35

At the optimum, the aggregator makes the producers’ participation constraints bind and, substituting, it chooses

data n to maximize:

∑
i

{[pi(η(n))− c̄+ η(n)]xi(η(n))− εη(n)− (γi + δ)ni} − [pi(η(0, n−i))− c̄]xi(η(0, n−i)),

where, for clarity, we have identified the data provided by a generic producer i and the others, i.e. n = (ni, n−i).

At an interior solution, the optimality condition for ni can be written as,

∂η(n)

∂ni

 P∑
j=1

xj − ε

− (δ + γi)

+
∂η(n)

∂ni

∑
j=1

∑
k 6=j

[pk − c̄+ η(n)]
∂xk
∂pj

∂pj
∂η

=

=
∑
j 6=i

∑
k 6=j

(
prj − c̄

) ∂xrj
∂prk

∂pk
∂η

∂η−j
∂ni

(29)

where prj and xrj are short-hands respectively for the equilibrium price and quantity of producer j when it rejected the

aggregator’s offer, and η−j is the associated value of the analytics.

The first term on the left-hand side corresponds to the the optimality condition (5) with non-competing producers

and accounts for the internalization of the analytics’ positive externality across all producers. All other terms in (29)

account for product market competition. In particular, the second term on the left-hand side is the price-effect we

have seen for the free analytics in equation (28). It is negative as with the free analytics, but it is now much higher

(in absolute terms) because it accounts for the effect of ni on prices and profits of all producers. This strong price-

effect tends to reduce the optimal amount of data significantly: the aggregator reduces the analytics’ data and quality

to dampen market competition (reducing prices) and thus extract higher profits, to the detriment of final consumers.

Interestingly, for this effect the aggregator plays a coordination role allowing producers to partially collude (only

partially because it does not directly control prices), a possibility that was informally mentioned in Lundqvist (2018)

35A subtle difference emerges here when the aggregator decides the data or when it delegates this choice to producers. In the former case, the
aggregator may adjust the data of other producers when producer i does not join, e.g. it may further increase others’ data to punish that decision. In
the latter and with bilateral contracts, producer i not joining leaves others’ data unaffected (it would be an unexpected, or off-equilibrium decision).
Since the decisions on data are most likely delegated to producers, we follow this latter approach here.
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and that our analysis substantiates.36 The last term, on the right-hand side of (29), accounts for the fact that other

producers’ data ni affect the profits of a producer deciding not to join the analytics. Since more data ni reduce the

gain that the aggregator must leave to each producer, this participation-effect pushes towards more data ni.

A simple but useful observation is also that the aggregator cannot reproduce the efficient amount of data that

maximizes welfare, even if contracting is unrestricted (e.g. there are no anonymity issues). As seen, the aggregator

cannot control producers’ prices and, although it appropriates producers’ profits, this gain now differs from total

welfare, which also accounts for consumers’ payoff. Hence, for a more apt comparison, we consider here an analytics

that would maximize welfare where producers would be still free to optimally set their prices (27). Comparing with

this social optimum, the solid lines of panel (a) in Figure 8 shows a case where the price-effect prevails over the

participation-effect and the aggregator induces an inefficient analytics that relies on too little data.

Point (i) of the following Proposition shows that inefficient analytics is a general result under mild conditions. One

may also expect that more intense competition (i.e. higher ρ) reduces this inefficiency. However, panels (b) and (c)

of Figure 8 show that this need not to be the case. When the price and participation effects play a role, more intense

competition may well adversely affect the size of the analytics with respect to the socially optimal one.

Proposition 6. With competing producers and a data aggregator, if the value of the analytics is sufficiently concave

in data,

(i) the analytics is (generically) inefficient with respect to the socially optimal analytics, with too little shared data,

and the inefficiency may not reduce with the intensity of competition;

(ii) past a certain level of competition (ρ sufficiently high), some producer is inefficiently excluded from the ana-

lytics, and not necessarily the least productive one;

(iii) the aggregator optimally combines data of producers and products associated with an intensity of competition

that (generically) differs from that yielding maximal welfare or consumers’ surplus.

Point (ii) shows a strong version of inefficiency. When competition is very intense, the aggregator prefers to deal

with data of a subset of producers, excluding others. Although this may look benign compared to free analytics, where

the analytics may simply break down, the overall effect is less so. In fact, the ensuing asymmetric costs may induce

exclusion of some producers from the final-product market itself.

A general comparison with the case of a free analytics is also instructive. On one hand the aggregator internalizes

the benefits of all producers, with an higher (marginal) value of any data. On the other hand the “collusive” price-effect

commands a reduction in the data. Panel (a) of Figure 8 shows that, although the aggregator relies on more data than

with free analytics, the difference can be quite small.

36The environment shares similarities with competing firms that cooperate at the R&D phase, as in the Research Joint-venture case in Amir
(2000), with two significant differences. The analytics reduces all producers’ costs by the same token and independently of the–possibly different–
amount of provided data. Second, the aggregator must convince producers to join the analytics, with rivals’ data affecting their outside option.
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Figure 8: Competition between data producers: Market-based Aggregator (solid line) and Free-analytics (dashed line)
on the the intensity of competition ρ (horizontal axis).

(a) Data Provision (relative to social optimum)

0%

25%

50%

75%

100%

0.0 0.1 0.2 0.3 0.4 0.5
ρ

n 1
+

n 2

(b) Consumer Welfare (relative to social optimum)

0%

25%

50%

75%

100%

0.0 0.1 0.2 0.3 0.4 0.5
ρ

C
on

su
m

er
 W

el
fa

re

(c) Aggregate Welfare (Relative to social optimum)

0%

25%

50%

75%

100%

0.0 0.1 0.2 0.3 0.4 0.5
ρ

W
el

fa
re

(d) Aggregator’s profits

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5
ρ

A
gg

re
ga

to
r's

 p
ro

fit
s

Aggregator

Free Analytics

28



Point (iii) of Proposition 6 illustrates another interesting fact. Imagine the aggregator could choose the firms

joining the analytics, i.e. choosing two firms whose products are characterized by a given intensity of competition

parameter ρ ∈ [0, 1/2]. What would be the optimal combination of these firms, i.e. the optimal ρ? Starting from

unrelated products (ρ = 0), it can be shown that the aggregator’s optimal amount of data is first increasing in ρ, up

to a threshold and then it decreases. This in turn reflects into an hump-shaped aggregator’s profit as a function of ρ,

as in panel (d) of Figure 8. In other terms, the aggregator would prefer to select and admit to the analytics firms that

are competing although moderately. Since welfare (and consumers’ surplus) is instead increasing in the intensity of

competition, point (iii) of the proposition shows that the aggregator inefficiently combines producers.37

We conclude this section considering the possibility that data are a by-product of actual production. Suppose, for

simplicity, that there is a one-to-one mapping between data and production so that the data that producer i can provide

cannot be larger than the amount produced, i.e. ni ≤ xi.38 If this constraint is not binding, then the analysis would be

as in the previous paragraphs. If it binds, we have an additional effect on the analytics. As usual with competing firms,

each producer faces an incentive to reduce its price to steal demand from rivals. However, when ni = xi by doing

so, the producer also increases its data and reduces that of the rivals. Since, as discussed in the previous sections, the

value of analytics is degraded with unbalanced data sources, a producer may refrain from lowering its price. We thus

have that the presence of the analytics further limits the intensity of competition.

7 Conclusions

Machine Data (MD), i.e. data that machines generate with production, have received much less attention than personal

data. However, with recent technological developments (such as IoT, G5, and AI tools such as Machine Learning),

these data have the potential to provide enormous value for production and, ultimately, for consumers.

This paper shows that a well-functioning market for MD cannot be taken for granted. MD are parcelized into a

myriad of machines of many, possibly small, firms/data producers. Collecting and analyzing these data contemplate

costs and require knowledge that may make these activities non-profitable for some firms, especially when facing risks

with ill-defined ownership of MD and analytics. With the public-good nature of MD, data producers may also fail to

realize and monetize the effective value of their data.

We have developed a first formal study of the market for MD and the associated analytics when pooling different

data sources, i.e. a cooperative analytics for MD. We introduced two critical properties of MD analytics, Scale

and Scope. We have investigated the implications of these properties accounting for relevant characteristics of MD

producers such as the heterogeneity of data producers, their value for anonymity, and product market competition.

37This result is consistent with previous works discussing a tension between product-substitutability and personal-consumer data sharing, see
Zhu et al. (2008) and Jones and Tonetti (2020).

38We consider here a simultaneous production of data and commodities.
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As a first step into the organization of this novel market for MD, our analysis can be extended in several directions,

possibly attracting considerable attention for future research. For example, we have only considered the possibility of

a unique data aggregator. Although socially suboptimal, we have identified several cases in which the data aggregator

prefers to exclude some MD producers from the analytics. This outcome may spur entry and competition in the

data-analytics market that we are investigating in ongoing research.

We have assumed that all subjects are fully informed about the details of this market. However, producers may

have private information about how much they value the analytics. Introducing this element of incomplete information

may have some relevant implications that can be identified using a mechanism design approach.39

Although our model is static, some dimensions in the market for MD may require a dynamic perspective. For

example, effective analytics may help to fine-tune the production process over time and, to the extent this knowledge

is shared with cooperative analytics, induce homogenization of production and products. The implications of this

homogenization are unclear. The lack of diversity may reduce the value of cooperative analytics, and innovators may

face limited incentives to join it.40 We have taken the analytics technology as given, emphasizing dispersed MD’s

bottleneck. However, Machine Learning tools are the subject of intense R&D, with long-run implications for market

structure (Gambardella et al., 2021). Ultimately, the analytics of MD may be a source of cycles between innovation

and standardization.

Since the seminal work of Ronald Coase, we know that with transaction costs, the allocation of property rights

plays a vital role in market efficiency. In this paper, we have investigated a status quo where producers de-facto

own MD. Other players may be relevant, though, and claim MD ownership. This could be the case with machine

manufacturers or companies specialized in monitoring machines and transmitting data (e.g. retrofitting machines

with sensors). In agriculture, for example, some machine manufacturers have started to impose technical design and

contractual clauses allowing them to appropriate MD, notwithstanding common codes of conduct attribute to farmers

inalienable ownership of MD (Atik and Martens, 2020). Building on the environment developed in this paper, one can

analyze different MD ownership arrangements and how they affect market outcomes.

39If producers can run their in-house analytics, one obtains a challenging multi-agent environment with type-dependent outside options.
40Relatedly, it is unclear to what extent the synergy embedded in the analytics varies with product differentiation. Addressing this interesting

point should rely on an investigation at the intersection of industrial organization and computer science.
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A1 Proofs
This sections contains proofs that are omitted from the text. To make the reading of these profs more agile, we confine
some self-contained results in specific additional appendices.

Proof of Lemma 1. The result follows from the fact that at low ni the function η(.) is convex. Here we prove in
the case of the efficient analytics, but the proof can be clearly adapted to other environments discussed in the paper.
Two cases are possible. (i) First,

∂η(0, n−i)

∂ni

(
P∑
i=1

αi − ε

)
> δ + γi,

in which case condition (5) is uniquely satisfied for relatively large ni > 0 so that η(n) is concave and it corresponds
to the maximum of the total surplus W (n).

(ii) Second, ∂η(0,n−i)
∂ni

(∑P
i=1 αi − ε

)
< δ + γi, in which case condition (5) can be satisfied at two values of ni, a

small one which however corresponds to the region where η(n) is convex and it is thus a minimum of W (n), or at a
large ni > 0 so that η(n) is concave. In either case, the efficient ni is bounded away from zero. �

Proof of Proposition 1. Part (i) on equilibrium existence is lengthier and proven in a separate Section A3. Part
(ii) follows from the discussion in the text. Part (iii) relies on the same reasoning followed in case (ii) analyzed in the
proof of Lemma 1. When costs are sufficiently high, we have ∂η(0,n̂−i)

∂ni
αi < γi when n̂−i = 0, so that, anticipating

that the other producers will not provide data, the optimal ni is nil. �

Proof of Proposition 2. Let n∗ be the data provision profile that maximizes the aggregator’s payoff and let

B∗agg =

P∑
j=1

[
αjη(n∗)− (γi + δ)n∗i −B

self
i

]
− εη(n∗), (30)

be the maximum payoff the aggregator can obtain. If one ore more Bselfi are sufficiently high then the optimal data
profile contemplates that one or more of the producers are excluded. Since the synergy between datasets positively
affects the value of the analytics relying on data aggregated from different datasets, it clearly does not affect any of the
Bselfi .41 Result (i) then follows.

To see why the aggregator may prefer to exclude the producer with the highest Bselfi consider three producers
indexed 1,2,3, with equal costs γi but valuing the analytics differently: α1 >> α2 = α3. Consider the case in which
having all producers joining the analytics is not optimal for the producer that would obtain a profit W (n∗)− (Bmin

agg +∑P
j=1B

min
j ) < 0 (recall the aggregator extracts all the surplus up to the producers outside options). Ceteris paribus

the value of the analytics η(.) is higher with more equally sized dataset, i.e. including producers 2 and 3 and excluding
the large-value producer 1, rather than sharing data from producer 1 and one of the other producers 2 or 3, especially
so if the synergy is large enough. In addition, since Bself

1 > Bself
2 = Bself

3 , the transfer to convince-in producer 1 is
higher than that to either of producers 2 and 3. �

Proof of Proposition 3. Point (i). We study to what extent the aggregator can obtain the data that maximize
surplus, i.e. n∗ = nw. Condition (5) implies that these data depend (also) on the costs, nw

i = nw
i (γi) for i = 1, . . . , P ,

so that C(.) in (17) is a function of γ1 and γ2. For producers with identical costs γ1 = γ2 = γ̄, we would have
nw

1 (γ1) = nw
2 (γ2) = n̄. Clearly C(γ̄, γ̄) = 0 so that the sign of C(.) in that neighborhood depends on its derivative

41In appendix A2.1 we show how the level of the synergy can be parameterized in the Example.
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with respect to the parameter that changes. In the following we will assume that γ1 varies and thus we have to compute

∂C(γ̄, γ̄)

∂γ1
= α2

[
∂η′(n̄)

∂n1

∂nw
1 (γ̄)

∂γ1
+
∂η′(n̄)

∂n2

∂nw
2 (γ̄)

∂γ1
− ∂η′(n̄)

∂n1

∂nw
1 (γ̄)

∂γ1
− ∂η′(n̄)

∂n2

∂nw
1 (γ̄)

∂γ1

]
−α1

[
∂η′(n̄)

∂n1

∂nw
2 (γ̄)

∂γ1
+
∂η′(n̄)

∂n2

∂nw
2 (γ̄)

∂γ1
− ∂η′(n̄)

∂n1

∂nw
1 (γ̄)

∂γ1
− ∂η′(n̄)

∂n2

∂nw
2 (γ̄)

∂γ1

]
= α2

∂η′(n̄)

∂n2

[
∂nw

2 (γ̄)

∂γ1
− ∂nw

1 (γ̄)

∂γ1

]
− α1

∂η′(n̄)

∂n1

[
∂nw

2 (γ̄)

∂γ1
− ∂nw

1 (γ̄)

∂γ1

]
= (α2 − α1)

∂η′(n̄)

∂n1

[
∂nw

2 (γ̄)

∂γ1
− ∂nw

1 (γ̄)

∂γ1

]
(31)

where we have exploited the fact that, due to the symmetry of η, ∂η
′(n̄)
∂n1

= ∂η′(n̄)
∂n2

.
Now recall the necessary conditions (5) and derive them with respect to γ1 to obtain,

P∑
j=1

∂2η(n̄)

∂n1∂nj

∂nw
j (n̄)

∂γ1
= 1 (32)

P∑
j=1

∂2η(n̄)

∂ni∂nj

∂nw
j (n̄)

∂γ1
= 0, i = 2, . . . , P (33)

The variations of nw
i with respect to γ1 can be derived by considering (32) and (33) as a linear system and solve

it for
∂nw

j (n̄)

∂γ1
for j = 1, . . . , P . Due to the symmetry of η we have ∂2η(n̄)

∂n2
i

= a ≤ 0 (assuming that the equilibrium

localized in the convex part of η) and ∂2η(n̄)
∂ni∂nj

= b ≥ 0, both independently of i and j. Now note that if the P -

dimensional vector x is such that xj =
∂nw

j (n̄)

∂γ1
, y is the P -dimensional vector with y1 = 1 and yi = 0 for i > 1, I is

the P × P identity, and U is the P × P constant unit matrix, for (32) and (33) we have to solve a system Ax = y for
x, with a coefficient matrix

A = (a− b)I + bU

The matrices A, I and U are symmetric and, since I and U commute, they all have the same eigenvectors that we
collect as columns in the following P × P matrix

E =


1 1 1 . . . 1
1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1


whose inverse is

E−1 =
1

P



1 −1 −1 . . . −1 −1
1 −1 −1 . . . −1 P − 1
1 −1 −1 . . . P − 1 −1
...

...
...

. . .
...

...
1 −1 P − 1 . . . −1 −1
1 P − 1 −1 . . . −1 −1


The only non-null eigenvalues of U is P , and thus one of the eigenvalues of A is a + b(P − 1) while the other
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P − 1 eigenvalues of A are equal to a− b. Hence, defining

D =


a+ b(P − 1) 0 0 . . . 0

0 a− b 0 . . . 0
0 0 a− b . . . 0
...

...
...

. . .
...

0 0 0 . . . a− b


we can solve Ax = EDE−1x = y to obtain

x = ED−1E−1y

Note now that E−1y = 1
P

1
...
1

 and thus D−1E−1y = 1
P


1/[a+b(P−1)]

1/a−b
...

1/a−b

 and, finally,

x =
1

P


1

a+b(P−1) + P−1
a−b

1
a+b(P−1) −

1
a−b

...
1

a+b(P−1) −
1
a−b


from which, recalling the components of x, we get

∂nw
1 (n̄)

∂γ1
=

(P − 2)b+ a

(a− b)[(P − 1)b+ a]
(34)

∂nw
i (n̄)

∂γ1
=

b

(b− a)[(P − 1)b+ a]
i = 2, . . . , P (35)

and thus

∂nw
2 (γ̄)

∂γ1
− ∂nw

1 (γ̄)

∂γ1
=

1

b− a
(36)

Finally, this can be plugged into (31) to obtain (37) with (38), as in the main text:

∂C(γ̄, γ̄)

∂γ1
= K (α2 − α1) (37)

with

K =

∂η′(n̄)
∂n1

∂2η′(n̄)
∂n1∂n2

− ∂2η′(n̄)
∂n2

1

≥ 0. (38)

With this and the discussion in the main text, point (i) follows.
For point (ii) note first that with a unique contract (n,Q) condition (5) is unattainable. In particular, assume

first that the aggregator includes all producers in the analytics. It must then choose Q so that, for given n, Q =
mini{αiη(n, ..., n)− γin−Bmin

i }. Substituting, the aggregator’s objective function becomes

−η (n, ..., n) ε− δ̄ − Pδn+ P ×mini{αiη(n, ..., n)− γin−Bmin
i }

Clearly if producers are identical, this expression is equivalent to W (n, ..., n) and there is no loss in value. When
this is not the case, the more producers differ in terms of γi or αi, the larger are the distortions in the equilibrium
dataset (n∗, ..., n∗) with respect to efficient analytics nw. Clearly, if mini{αiη(n, ..., n) − γin − Bmin

i } is very low,
the aggregator may prefer to exclude some of the producers with very low value thus increasing the transfer Q. �
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Proof of Proposition 4. The first order condition for ni is,

αi
∂η(ni, n̂−i)

∂ni
− ε∂η(ni, n−i)

∂ni
= γi + δ. (39)

The second order conditions can be rewritten as

(αi − ε)ηii ≤ 0 (40)

where ηii =
∂2η(ni,n̂j)

∂n2
i

and
(α1 − ε)(α2 − ε)

ε2
> σ̄ (41)

where

σ̄ =
η2

12

η11η22
(42)

measures the (relative) strength of the positive externality of data. The higher the σ̄, the more the analytics benefits
from data variety. However, if σ̄ is high, then (41) fails. In fact, it must be ε < αi and ηii < 0. In this case, the optimal
analytics cannot have all producers providing data and exclusion must occur. �

Proof of Proposition 5 The program of each individual producer writes:

max
ni

(1− 2ρ)(1− ρ)

(2− 3ρ)2
(θ − c̄+ η(n))2 − γini

(ii) The marginal gain of providing an additional unit of data (1−2ρ)(1−ρ)
(2−3ρ)2 is a decreasing function of ρ. As the

marginal cost is constant, it follows than an increase in ρ implies a reduction of the level of data provision that
maximizes producers’ profits.

(ii) The marginal gain of providing one additional unit of data tends to zero for as ρ tends to 1/2. Since the
marginal cost of data γi is constant, there exists a ρ̂ such that ∀ρ > ρ̂, the optimal level of data provision is 0. In
addition, ∀ρ > ρ̂ a single producer that decided contributing strictly positive amount of data would, a fortiori (being
the only contributor), would be better off contributing no data.

(iii) This possibility is directly shown with the Example. �

Proof of Proposition 6 We separately prove the different points in the Proposition.
(i) Consider two identical producers that are both contributing with their data in equilibrium, then we consider the

case where only one producer contributes. The problem of the aggregator writes,

max
n1,n2

2
(1− 2ρ)(1− ρ)

(2− 3ρ)
(θ − c̄+ η(n1, n2))2 − (γ + δ)(n1 + n2)− εη(n1, n2) (43)

+

2∑
i=1

[
ρ(1− ρ)

(2− 3ρ)(2− ρ)
η(ni, 0)(θ − c̄)−

(
ρ(1− ρ)

(2− 3ρ)(2− ρ)

)2

(η(ni, 0))2

]
,

where the first term represents producers’ profits (net of the aggregator’s costs), and the term in the second line
describes the producers’ outside options. The optimal amount of data n∗agg satisfy, for any i,

[
4

(1− 2ρ)(1− ρ)

(2− 3ρ)
(θ − γ + η(n))− ε

]
∂η(n∗agg)

∂ni
(44)

−2

(
ρ(1− ρ)

(2− 3ρ)(2− ρ)

)2 ∂η(n∗i,agg, 0)

∂ni
η(n∗i,agg, 0)

+
ρ(1− ρ)

(2− 3ρ)(2− ρ)

∂η(n∗i,agg, 0)

∂ni
(θ − γ) = γ + δ, ∀i,
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We now assume that η(n) is sufficiently concave at the optimal amount of data, in particular that its concavity is such
that (η(n))2 is concave too.

Consider the solution n∗∗ of the following equation,

[
4

(1− 2ρ)(1− ρ)

(2− 3ρ)
(θ − γ + η(n))− ε

]
∂η(n∗∗)

∂ni
(45)

+
ρ(1− ρ)

(2− 3ρ)(2− ρ)

∂η(n∗∗i , 0)

∂ni
(θ − γ) = γ + δ,

then n∗∗ ≥ n∗agg . By the same token, consider the solution n∗∗∗ of,

[
4

(1− 2ρ)(1− ρ)

(2− 3ρ)
(θ − γ + η(n))− ε

]
∂η(n∗∗∗)

∂ni
(46)

+
ρ(1− ρ)

(2− 3ρ)(2− ρ)

∂η(n∗∗∗)

∂ni
(θ − γ + η(n∗∗∗)) = γ + δ,

then n∗∗∗ ≥ n∗∗. This follows from the following observations: from the Scope property of η(n), ∂η(n)
∂ni

≥ ∂η(ni,0)
∂ni

;
second, including η(n) in the parenthesis increases the solution n∗∗∗ of the equation with respect to n∗∗.

Finally, note that the efficient amount of data that solve the social planner’s problem,

max
n1,n2

(1− ρ)(3− 5ρ)

(2− 3ρ)2
(θ − c̄+ η(n))2 − (γ + δ)(n1 + n2)− εη(n) (47)

are determined by the following condition,[
(1− ρ)(3− 5ρ)

(2− 3ρ)2
(θ − γ + η(n∗))− ε

]
∂η(n∗)

∂ni
= γ + δ. (48)

Since it is always the case (∀ρ ∈ [0, 1/2]) that:

(1− ρ)(3− 5ρ)

(2− 3ρ)2
≥ 4

(1− 2ρ)(1− ρ)

(2− 3ρ)
+

ρ(1− ρ)

(2− 3ρ)(2− ρ)
, (49)

it follows that n∗ > n∗∗∗ and, finally, n∗ > n∗agg .
In the case where one producer only contributes, the maximum amount of data the aggregator might asks corre-

sponds to the scenario where the one producer chosen finds itself in a monopoly. The aggregator solves:

max
n1

1

4(1− ρ)
(θ − c+ η(n1, 0))2 − (γ + δ)n1 − εη(n1, 0) (50)

Which always yields a lower amount of data than the resolution of problem (47).

(ii) Let n∗(ρ) be the solution of problem (29). Maximized profits of the aggregator when contracting with both
producers write:

πagg(n∗(ρ), ρ) = 2
(1− ρ)(1− 2ρ)

(2− 3ρ)2
(θ − c+ η(n∗(ρ)))2 − γ1n1 − γ2n2 − εη(n∗(ρ))

−
2∑
i=1

(1− ρ)(1− 2ρ)

(2− 3ρ)2

[
θ − c− ρ(1− ρ)

(2− ρ)(1− 2ρ)
η(n∗i (ρ), 0)

]2

Using the enveloppe theorem we differentiate this function with respect to ρ (Denote η(n1, n2) = η(n1, 0)+η(n2, 0)+
η12):
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∂πagg(n∗(ρ), ρ)

∂ρ
=

2∑
i=1

(θ − c)η(ni, 0)
4(2− 9ρ+ 9ρ2 − 3ρ3)

(2− ρ)2(2− 3ρ)3

+

2∑
i=1

η(ni, 0)2 ρ(−24 + 132ρ− 270ρ2 + 259ρ3 − 124ρ4 + 25ρ5)

(1− 2ρ)2(2− 3ρ)3(2− ρ)3

− 2ρ

(2− 3ρ)3

(
2(θ − c)η12 + 2

∑
η(ni, 0)η12 + 2η(n1, 0)η(n2, 0) + η2

12

)
(51)

The above can only be positive if the first line is positive. For ρ ≈ 0.307 the first line equals 0. Hence, we know that
∀ρ > 0.307 profits are decreasing.

Consider the profits of the aggregator when contracting with only one producer:

πagg(n∗(ρ), ρ) =
(ρ2 − 4ρ+ 2)(1− ρ)

(2− 3ρ)2(2− ρ)
η(n∗i (ρ), 0)

(
2(θ − c) +

ρ2 − 4ρ+ 2

(1− 2ρ)(2− ρ)
η(n∗i (ρ), 0)

)
− γini − εη(n∗i (ρ), 0)

If the analytics costs reduction is not too small relative to the size of the market (η(n∗i (ρ), 0) ≥ (θ−c)
150 ), profits are

growing with ρ.
Profits when contracting with both producers are decreasing for ρ ≥ .307 and tend to 0 as ρ tends to 1/2. Profits

when excluding one producer are always positive and growing with ρ. There must exist ρ̂ such that ∀ρ ≥ ρ̂ the profits
made by excluding one producer are higher than the profits of contracting with all producers.

(iii) Ex-post overall welfare, in the case where both producers contract with the aggregator, is given by:

(1− ρ)(3− 5ρ)

(2− 3ρ)2
(θ − c+ η(n1, n2))2

The level of competition that maximizes overall welfare is implicitly defined by the following equation:

∂η(n1, n2)

∂ρ
= − (1− 2ρ)

(1− ρ)(3− 5ρ)
(θ − c+ η(n1, n2))

Assuming symmetry, and using the implicit function theorem, we can analytically define ∂η(n1,n2)
∂ρ , the above equation

is equivalent to:

− 2
∂η(n1, n2)

∂ni

∂Πi
∂ρ

∂Πi
∂ni

+ ∂Πi
∂n−i

= − (1− 2ρ)

(1− ρ)(3− 5ρ)
(θ − c+ η(n1, n2)) (52)

where:

∂Πi

∂ni
=
∂2η(n1, n2)

∂n2
i

[
4

(1− ρ)(1− 2ρ)

(2− 3ρ)2
(θ − c+ η(n1, n2)− ε

]
+

(
∂η(n1, n2)

∂ni

)2

4
(1− ρ)(1− 2ρ)

(2− 3ρ)2

+2
ρ(1− ρ)2

(2− ρ)(2− 3ρ)2

∂2η(ni, 0)

∂n2
i

[
θ − c− ρ(1− ρ)

(2− ρ)(1− 2ρ)
η(ni, 0)

]
−2

(
∂η(ni, 0)

∂ni

)2
ρ2(1− ρ)3

(1− 2ρ)(2− ρ)2(2− 3ρ)2

∂Πi

∂n−i
=
∂2η(n1, n2)

∂n1∂n2

[
4

(1− ρ)(1− 2ρ)

(2− 3ρ)2
(θ − c+ η(n1, n2)− ε

]
+
∂η(n1, n2)

∂n1

∂η(n1, n2)

∂n2
4

(1− ρ)(1− 2ρ)

(2− 3ρ)2

∂Πi

∂ρ
=− ∂η(n1, n2)

∂ni

4ρ(θ − c+ η(n1, n2))

(2− 3ρ)3
− ∂η(ni, 0)

∂ni

4(−2 + 5ρ− 5ρ2 + 2ρ3)

(2− ρ)2(2− 3ρ)3
(θ − c)

+ 2
∂η(ni, 0)

∂ni
η(ni, 0)

(1− ρ)2ρ(−8 + 28ρ− 34ρ2 + 17ρ3)

(1− 2ρ)2(2− ρ)3(2− 3ρ)3
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Substituting for these expressions, the solution to equation (52) must not coincide with the aggregator’s profit maxi-
mizing ρ, i.e.s such that ∂π(n∗(ρ),ρ)

∂ρ = 0. Hence, the level of competition that would maximize overall welfare will
not, in general, be chosen by the aggregator. The running Example presented in this paper is such a case where we
can show that the preferred level of competition for the aggregator is too low with respect to level of competition that
would maximize welfare.

A2 The value of data
As illustrated in the text, the value of data is modelled in two steps. The value of data from a single dataset is
υ : R+ 7→ [0, ηmax], where ηmax is the maximum value attainable. Data from different producers are combined with
the monotonically increasing convex function Υ : R+ 7→ R+ such that Υ(0) = 0, endowed with the commutative and
associative aggregating operation ⊕ : R+ × R+ 7→ R+ such that,

υ′ ⊕ υ′′ = Υ
(
Υ−1(υ′) + Υ−1(υ′′)

)
The value of a set of data contributions is thus,

η (n1, . . . , nP ) =

P⊕
j=1

υ (ni) =

P⊕
j=1

η (ni) (53)

Since Υ is convex, we have that ⊕ is superadditive, Bruckner and Ostrow (1962). This implies that, for any
1 ≤ p ≤ P , we have

η (n1, . . . , nP ) ≥ η (n1, . . . , np−1) + η (np, np+1, . . . , nP ) (54)

With the invariance of η with respect to permutations of its arguments, this definition implies that the best way of
extracting value from multiple data sets is not to keep them partitioned into different algorithms but to accumulate
them within the one of the aggregator. Note that with P producers the maximum gain from the aggregate of all data is
Υ
(
PΥ−1 (ηmax)

)
≥ Pηmax.

From the convexity of the function Υ we obtain that the function of the value of data has the increasing difference
property. In fact, assume n′1 ≥ n1 and n′2 ≥ n2 and set ∆1 = Υ−1(υ(n′1))−Υ−1(υ(n1)), and ∆2 = Υ−1(υ(n′2))−
Υ−1(υ(n2)). Since Υ and υ are non-decreasing we have ∆1,∆2 ≥ 0 and

∆η′ = η(n′1, n
′
2)− η(n1, n

′
2)

= Υ
(
∆1 + ∆2 + Υ−1(υ(n1)) + Υ−1(υ(n2))

)
−Υ

(
∆2 + Υ−1(υ(n1)) + Υ−1(υ(n2))

)
as well as

∆η = η(n′1, n2)− η(n1, n2)

= Υ
(
∆1 + Υ−1(υ(n1)) + Υ−1(υ(n2))

)
−Υ

(
Υ−1(υ(n1)) + Υ−1(υ(n2))

)
Finally, the convexity of Υ implies ∆η′ ≥ ∆η and thus the increasing difference property for η when P = 2. The

same property for P > 2 descends from the associativity of η.

A2.1 Functions and parameters for the running Example
Following the approach to obtain η(.) in the previous section, here we specify the functions and parameters we use for
the running “Example” we use throughout the paper.

The individual data-value function υ(.) is defined from its derivative in 0 (υ′0), and the amount of data (n̄) beyond
which the convex region becomes concave with the asymptotic maximum (υmax). The data-value function at such a
flex values υn̄ = υ(n̄). We use the following expression:

υ(n) = υmax

{
an+ bn2 for n ≤ n̄
1− ce−d(n−n̄) for n > n̄
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with a =
υ′0
υmax , b = υn̄−an̄

n̄2 , c = 1− υn̄, d = an̄−2υn̄
n̄(υn̄−1) .

The function Υ aggregating the different contributions and accounting for their positive heterogeneity, is modelled
with

Υ(υ) = (υ + 1)
1+σ − 1

in which σ = 0 corresponds to no synergy while increasing σ > 0 generates the super-additive effect in (54). In fact,
such an Υ implies

P∑
i=1

υi ≤
P⊕
i=1

υi ≤ −1 +

P∏
i=1

(υi + 1)

where the lower bound is attained for σ = 0 while the upper bound is asymptotically achieved for σ →∞.
With this, it is convenient to measure the amount of positive interaction between databases in the [0, 1] range with

a Scope index,

s =
υmax ⊕ υmax − 2υmax

(υmax)2

In the Example, we use the following parameters: υ′0 = 3/4, n̄ = 1/4, υmax = 1, υn̄ = 1/4 and σ = 2. For the
aggregator, we set δ̄ = 0, δ = 1/2, ε = 1/3, and Bmin

agg = 0. For the producers we assume P = 2 with Bmin
1 = Bmin

2 =
0, and we consider two configurations:

• The symmetric configuration, with α1 = α2 = 3/4, and γ1 = γ2 = 3/4.

• The asymmetric configuration, with α1 = 1, α2 = 1/4, γ1 = 1/2, and γ2 = 1/4.

A3 Equilibrium existence
In this appendix we prove the existence of a Nash equilibrium in the case of the free-analytics. The existence in the
other cases discussed in the paper follows similar arguments. The proof requires three preliminary Lemmas. In the
case of free analytics, producers maximize the following problem:

max
ni

αiη(n)− γini (55)

Lemma 2. If a data profile n∗ = (n∗1, ..., n
∗
j ) is solution to the maximization then ∀i, ni is either such that

1. ∂2η(ni,n−i)
∂n2

i
≤ 0

2. ni = 0

Proof. Let n∗i be such that n∗i > 0 and ∂2η(ni,n−i)
∂n2

i
> 0. Then, either:

1. αi
∂η(ni,n−i)

∂ni
≥ γi. Then n∗i is not a solution because profits increases when increasing data provision. It is

beneficial to increase data provision until αi
∂η(ni,n−i)

∂ni
= γi which implies ∂2η(ni,n−i)

∂n2
i

≤ 0 by the properties of
η.

2. αi
∂η(ni,n−i)

∂ni
< γi. Then profits can be increased by decreasing data provision until it reaches ni = 0.

Hence it cannot be that n∗i be such that n∗i > 0 and ∂2η(ni,n−i)
∂n2

i
> 0.

Lemma 3. For each producer i, there are only two candidate best-responses to each data profile n−i, either ni = 0

or ni s.t αi
∂η(ni,n−i)

∂ni
= γi

Proof. Either the equilibrium lies in the concave space of η or at ni = 0. If the candidate equilibrium lies in the
concave space, it should be such that the first derivative of the objective function is equal to 0.

Denote as Bri(n−i) the positive response of i to n−i. Additionally, denote nalt−i < n−i when each data in nalt−i is
at least weakly inferior to those in n−i and one is strictly inferior.
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Lemma 4. If

Bi(0, n−i) ≥ Bi(Bri(n−i), n−i) (56)

Then, ∀nalt−i < n−i and ∀ni:

Bi(0, n
alt
−i ) > Bi(ni, n

alt
−i ) (57)

Proof. Let B(0, n−i) ≥ B(Bri(n−i), n−i), then:

αiη(0, n−i) ≥ αiη(Bri(n−i), n−i)− γin∗i > αiη(Bri(n
alt
−i ), n−i)− γiBri(nalt−i ) =⇒ (58)

αiη(0, nalt−i ) > αiη(Bri(n
alt
−i ), n−i)− γiBri(nalt−i ). (59)

In other terms moving from n−i to nalt−i implies a stronger reduction of η(0, n−i) than of η(Bri(n
alt
−i ), n−i) because

of the positive cross-derivative of the function η.

Lemma 4 states the continuity of the best response of producers when not providing any data: a reduction in other
players’ data provisions does not change the best response of a producer not providing any data.

We now combine these results and show that there always exists an equilibrium with a free-analytics. Given
Lemma 2 and 3, we know that a producer is either providing a level of data such that ∂η(ni,n−i)

∂ni
= γi

αi
or is not

providing any data. With P ∈ N producers, in any equilibrium, each producer belongs to one of two possible sets. Set
I is the set of producers not providing any data. Set J is the set of producers providing strictly positive amount of
data.
Consider the candidate equilibrium n∗ such that ∀i, n∗i is such that ∂η(ni,n−i)

∂ni
= γi

αi
. Then either (i) each producer i

is playing its best response, which implies n∗ is an equilibrium, (ii) or some producers would be better off providing
no data.
If n∗ is not an equilibrium, some producers of set J move to set I. Data provision in set J are re-adjusted and n∗∗ is
the new candidate equilibrium. Then as before, either (i) each producer i is playing its best response, so that n∗∗ is an
equilibrium, (ii) or some producers would be better off providing no data. If n∗∗ is not an equilibrium, some producers
of set J move to set I. Importantly, by continuity of the best response function when not providing any data (Lemma
4), the movement of producers from set J to set I does not change the best response of producers in set I.
This method can be iterated until either (ii) all producers are in set I, (ii) no producer in set J would be better off not
providing any data. After a finite number of iterations, one of these two cases will be reached. In both cases, Lemma
3 ensures that all producers in set I are playing their best responses. In the former case it ensures a Nash equilibrium
is reached since all players are in set I. In the latter case, as no producer in set J would be better off not providing
any data, all producers are playing their best responses. �

A4 Secret contracts
A necessary (but not sufficient) condition such that the results of the FOCs corresponds to an equilibrium is that the
Hessian is negative semi-definite in the solution. Hence the first minor must be negative and the second positive. The
first is given by:

∂2Bagg(n1, n2)

∂n2
1

= α1
∂2η(n1, n

e
2)

∂n2
1

− ε∂
2η(n1, n2)

∂n2
1

(60)

It is negative in solution if:

(α1 − ε)
∂2η(n1, n2)

∂n2
1

≤ 0 (61)

To compute the second minor we start by computing the cross-derivative of the objective function:
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∂2Bagg(n1, n2)

∂n1∂n2
= −ε∂

2η(n1, n2)

∂n1∂n2
(62)

The Hessian is negative semi-definite if the following condition holds:

Bagg11Bagg22 > Bagg
2
12 (63)

Which corresponds to:

(α1 − ε)(α2 − ε)
ε2

>
η2

12

η11η22
(64)

The right hand side of the equation is bounded between 0 and 1 provided η(.) has a negative semi-definite Hessian
itself. So we know that any combination such that the left hand side is superior to 1 verifies the necessary condition.
More interestingly, if the condition is not verified (meaning ε is high) the solution fails.
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B1 On the properties of the analytics’ value
When discussing properties of Machine Learning tools, the features of Scale and Scope (embedded in our function
Υ discusses in section A2) are usually assumed with generic reference to common practitioners’ experience (e.g.
Duch-Brown et al. (2017) and the recent surveys in Computer Science Meng et al. (2020)). However, it is difficult
to find neat accounts of these intuitive properties. The problem in developing a complete theory of these feature is
that nowadays machine learning models are highly non-linear and are the result of complicated and expensive training
procedure that are often designed by trial and error. Nevertheless, in this section we provide a direct account of these
important properties. We think that, although specific, the analysis contained in this appendix provides some useful
insights in its own.

In a first subsection we show the Scale property, and the fact that the function υ in section A2 is, first convex, then
concave and bounded. We also show that aggregating data and making the resulting analytics available to producers
results in an higher utility with respect to a situation in which each producers uses local data to compute a local
analytics.

In a second subsection, the Scope property so that when multiple producers contribute data with a sufficient
diversity, the value of the analytics is larger than what can be obtained from the same aggregated amount of data
coming from a single producer. This gives ground to the features of the aggregating operator ⊕ in appendix A2.

We also obtain a byproduct from this analysis, which is of value even if we do not directly exploit is in the paper
(at least so far). In particular, we define the notion of complexity that is the number of scalar quantities (e.g., sensor
readings, configuration settings, etc.) used to characterize each single piece of data, in other terms the dimensionality
of each data point in the data sets. We show that, once the number of features in data is enough to allow classification,
increasing the complexity of the data negatively affects the value that one can squeeze out of a given amount of data.

The approach that we use in the following two subsections is to define suitably simplified classification models on
which the effect of training can be theoretically anticipated, either exactly or for the worst-case scenarios.

Then, when we want to assess the effect of statistically diverse contributions to the data set, we run Monte Carlo
simulations varying the actual data points to see how performance varies with the characteristics of the data set.

B1.1 Scale Property
We assume that producers’ goods come in units and that due to the fabrication process there is a certain probability
that a unit is defective. For simplicity’s sake we assume that defective units cannot be sold nor repaired, and must be
identified and discarded as the cost of selling a potentially defective unit is too high for the producers. To be on the
safe side, each producer will inevitably discard some good units, thus waiving to part of its revenues.

The purpose of the analytics is to maximize revenues and thus to minimize the number of good units that are not
sold. It does so by exploiting that fact that the producers have a common technological basis (e.g, manufacturing
machines employ the same kind of electrical motor, units are assembled by means of the same welding process, etc.)
and thus, even though the final products may be different, each unit is characterized by the same D numerical features
(e.g., sensor readings acquired during production, measurements from final quality inspection, etc.) that we will
indicate with x1, . . . , xD and compound into the D-dimensional vector x ∈ X ⊂ RD, where X indicates the whole
range that we assume to be uniformly spanned by the production.

Difference between producers is modelled by assuming that the i-th one produces units corresponding to a proper
subset Xi ⊂ X . We do not require Xi ∩Xj = ∅ for i 6= j, though it may be the case. To each data point x there is a
label y ∈ {−1,+1} whose negative value indicates a defective unit.

Assume also that the features are sufficient to tell defectives units from good ones by simple monotonic discrim-
ination, i.e., there is a function f : Rd 7→ R such that units for which f(x) ≥ τ are defective, while those for which
f(x) < τ are non-defective, where τ is some unknown threshold.

Each producer collects a finite number ni of data x ∈ X̂i ⊂ Xi and associated label y assessing their defectiveness.
Information is extracted from these data in the form of an estimation τ̂i of τ that is then used in a straightforward binary
classifier to assess new units in the same Xi.

To be on the safe side (no false negative), the i-th producer estimates

τ̂i = max
x

{
f(x)

∣∣∣∣∣x ∈ X̂i ∧ y > 0

}
≤ τ (65)
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With this, the i-th producer sells the units whose features satisfy f(x) ≤ τ̂i that, in our uniform setting, generate a
revenue proportional to the n-dimensional volume V (Xi ∩ Ĥi) of the intersection between Zi and the set Ĥi defined
by the above discriminating inequality.

Alternatively, the producers may give their data to the aggregator and let it perform the estimation

τ̂ = max
x

f(x)

∣∣∣∣∣x ∈
P⋃
j=1

X̂j ∧ y > 0

 = max
j=1,...,P

{τ̂j} ≤ τ (66)

defining the set Ĥ such that f(x) ≤ τ̂ that is nothing but Ĥ =
⋃P
j=1 Ĥj and may be used by the i-th producer to sell

its units falling into Xi ∩ Ĥ and generate a revenue proportional to V (Xi ∩ Ĥ).
Clearly, since τ̂i ≤ τ̂ for every i = 1, . . . , P we have Ĥi ⊆ Ĥ and thus V (Xi ∩ Ĥi) ≤ V (Xi ∩ Ĥ). Hence, the

total revenue of all producers satisfy

P∑
i=1

V (Xi ∩ Ĥ) ≥
P∑
i=1

V (Xi ∩ Ĥi) (67)

that is equivalent to say that the value of the analytics based on the aggregated data (left-hand side of (67)) is larger
than the sum of the values of the analytics based on separate datasets (right-hand side of (67)).

In this toy case, concavity is also very easy to see if we assume that all the Xi are compact subsets of Rn within
which sampled units are independent and uniformly distributed.

Consider a sequence of datasets X̂(t) of increasing size, such that X̂(1) ⊂ X̂(2) ⊂ · · · ⊂ X . From (65) and (66)
we get that the corresponding estimates τ̂ (t) are such that τ̂ (1) ≤ τ̂ (2) ≤ · · · ≤ τ and that limt→∞ τ̂ (t) = τ and thus
that V (X ∩ Ĥ(1)) ≤ V (X ∩ Ĥ(2)) ≤ · · · ≤ V (X ∩H) but limt→∞ V (X ∩ Ĥ(t)) = V (X ∩H).

Hence, data-dependent revenues are increasing with the number of samples and have an upper bound that is also
their limit. This implies that their trend mus be asymptotically convex.

For the sake of clarity we consider a particular simplified setting in which f(x) =
∑D
j=1 x

2
j , X = {x|f(x) ≤ 1},

with τ < 1.
Given n samples allowing an estimation τ̂(n), the probability that an additional sample produces an estimation

that is larger than a certain ξ is

Z(n, ξ) =


1 if ξ < τ̂(n)
W (τ)−W (ξ)

W (τ)−W (τ̂(n)) = τD−ξD
τD−τ̂(n)D

if τ̂(n) ≤ ξ ≤ τ
0 if ξ > τ

where W (r) = πD/2Γ−1(D/2 + 1)rD is the volume of the D-dimensional sphere with radius r. Hence, the average of
the estimation with n+ 1 samples is

E[τ̂(n+ 1)] =

∫ ∞
0

Z(n, ξ)d ξ =
D

D + 1

τD+1 − τ̂(n)D+1

τD − τ̂(n)D
(68)

while the variance is E
[
τ̂(n+ 1)2

]
−E[τ̂(n+ 1)]2 with

E
[
τ̂(n+ 1)2

]
=

∫ ∞
0

ξ2 ∂(1− Z)

∂ξ
d ξ =

∫ ∞
0

2ξZ(n, ξ)d ξ =
D

D + 2

τD+2 − τ̂(n)D+2

τD − τ̂(n)D

Since limn→∞E[τ̂(n+ 1)] = τ and limn→∞E
[
τ̂(n+ 1)2

]
= τ2 the variance of τ̂(n+ 1) vanishes and we may

assume that it coincides with its average. With this, (68) reads

τ̂(n+ 1)

τ
=

D

D + 1

1−
(
τ̂(n)
τ

)D+1

1−
(
τ̂(n)
τ

)D
To compare such a trend with what is commonly observed in machine learning applications, we may concentrate

on the relative loss ε(n) = 1 − τ̂(n+1)
τ that is always non-negative and pushed to zero by the training. The above
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relationship yields

ε(n+ 1) = 1− D

D + 1

1− (1− ε(n))D+1

1− (1− ε(n))D

= 1− D

D + 1

1− e(D+1) ln(1−ε(n))

1− eD ln(1−ε(n))

' 1− D

D + 1

1− e−(D+1)ε(n)

1− e−Dε(n)

= 1− D

D + 1
e−

ε(n)/2 sinh
(
D+1

2 ε(n)
)

sinh
(
D
2 ε(n)

)
' 1− e−ε(n)/2 ' 1

2
ε(n)

whose exponentially vanishing trend is coherent with common observations on state-of-the-art deep learning algo-
rithms Hestness et al. (2017).

All the above shows that global utility increases when producers cooperate but it is ultimately concave and
bounded.

A further piece of information can be obtained by noting that the above calculations are based on the a priori avail-
ability of a model and of its training strategy. Hence, they fail to take into account what happens at the very beginning
of the design of a data-driven application. In real-world applications, the first available data lots are commonly used
to set up and tune the ingestion stage (i.e., the data processing pipeline that acquires and transforms raw, incomplete,
possibly incoherent data into normalized quantities that can be fed into machine learning blocks), the architecture of
the trainable blocks (layers, connections, substructure, etc.) and the training strategy (algorithm, losses, etc.). True,
valuable information is obtained from data only after this set up phase is over, and thus the first data lots have an
(apparent) marginal utility that is much lower than the marginal utility of data lots that enter a smoothed processing
pipeline. This causes the function υ to be convex for small arguments, i.e., when the first data are acquired and used
to set up the analytics.

B1.2 Scope Property
To study the Scope Property we may set X = [0, 1]D and assume that the truth is y = sgn (xD − 1/2). This is clearly
an abstract setting and assumes that some change of coordinates has been performed to transform the original data into
this domain X in which discriminating between the two classes is trivial.

Trivial as it may be, discrimination must be learnt from samples and thus we have to define a model with some
adjustable parameters and identify how these parameters may be set by training.

We use a simple 1-neuron piece-wise linear model

y = sgn

(
xD − max

k=1,...,D−1
{αkxk} − max

k=1,...,D−1
{βkxk} −

1

2

)
that mimics the behaviour of a neuron with excitation and inhibition weights aggregated with a max instead of a
sum, as it has been recently proposed to allow efficient complexity reduction of complex neural networks Prono et al.
(2022a)Prono et al. (2022b).

Once set, the parameters identify a piecewise-affine manifold

xD = gα,β(x2, . . . , xD−1) = max
k=1,...,D−1

{αkxk}+ max
k=1,...,D−1

{βkxk} −
1

2

that separates the points that the model marks as positive (above the manifold) from the points that the model marks
as negative (below the manifold). Clearly, the optimum value for the parameters is αk = βk = 0.

If this is not the case, all the data points such that 1/2 ≤ xD ≤ gα,β(x1, . . . , xD−1) are false negatives, while all
the data points such that gα,β(x1, . . . , xD−1) ≤ xD ≤ 1/2 are false negatives.

Hence, given data points in X̂ ⊂ X , the worst possible model from the point of view of the false negatives is
characterized by the parameters
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α̂′k = min
x∈X̂∧y>0

{
xD − 1/2

xk

}
β̂′k = 0

while the worst possible model from the point of view of the false positives is characterized by the parameters

α̂′′k = 0

β̂′′k = min
x∈X̂∧y<0

{
1/2− xD
xk

}
Since data are uniformly distributed in X = [0, 1]D the worst-case false negative rate is the volume of the set

P ′ ⊂ X of points satisfying

0 ≤ xk ≤ 1 k = 1, . . . , D − 1
1

2
≤ xD ≤ gα̂′,β̂′(x1, . . . , xD−1)

that is V (P ′) = 1
2 − V (Q′) where Q′ ⊂ X is the convex polytope defined by

0 ≤ xk ≤ 1 k = 1, . . . , D − 1

α̂′kxk ≤ xD ≤ 1 k = 1, . . . , D − 1

In an analogous way, the false positive rate is 1
2 − V (Q′′) where Q′′ ⊂ [0, 1]D is the convex polytope defined by

0 ≤ xk ≤ 1 k = 1, . . . , D − 1

0 ≤ xD ≤ β̂′kxk k = 1, . . . , D − 1

Since Q′ and Q′′ are convex, we may rely on standard algorithms for the computation of their volume starting
from their definition by means of inequalities Barber et al. (1996)

B1.2.1 Producers and diversity

We assume that the subsets Xi in which the producers generate data are such that V (Xi) = v for some v such that
∆ = D−1

√
v has an integer inverse 1/∆

Xi =

[
D−1×
k=1

[(ξi,k − 1) ∆, ξi,k∆]

]
× [0, 1]

for some choice of the D − 1 integers 1 ≤ ξi,1, ξi,2, . . . , ξi,D−1 ≤ 1/∆.
Figure 9 shows an example of the setting for D = 3 and P = 3 producers.

B1.2.2 Empirical evidence and emerging properties

Consider D = 2, 3, 4, n = 10, 15, . . . , 300, v = 1/64, P = 4 producers, and different values for the data contributions
n1, n2, n3, n4.

Different data contributions are obtained by dividing the dataset into ` = n/5 lots of 5 data points each. These lots
are then assigned to the P producers considering all possible distinguished partition of `, i.e., all the set of integers
`1 ≥ · · · ≥ `P ≥ 0 such that `1 + · · ·+ `P = `, and then setting ni = 5`i for i = 1, . . . , P .
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Figure 9: An example of the simplified setting with D = 3, v = 1/64 and P = 3 producers of data. Positive (blue)
data points and negative (red) data points determine the separation manifold (in yellow) of the worst-false-negative
classifier and the separation manifold (in green) of the worst-false-positive classifier. The ideal separation plane is also
shown along with the subregions Xi (dashed parallelepipeds) within which each of the three producers generates its
data points.

For each of the resulting P -tuple, n1, . . . , nP , the training and performance evaluation of our worst-case classifier
is repeated for 105 trials. In each trial, P random sets of indexes 0 ≤ ξi,1, . . . ξi,D−1 ≤ M identifying Xi are
generated. In each Xi, ni labelled samples are drawn at random. Based on all the generated samples, the worst-false-
negative and worst-false-positive classifiers are computed along wit their error rate. The largest between the maximum
false negative rate and the maximum false positive rate is used to quantify the absolute worst-case performance.

The logarithm of the empirical average over the 105 trials of such absolute worst case performance is used in the
following plots. This is not an utility function. Yet, it can be safely assumed that error and utility are linked by a
monotonic non-increasing function and thus that error reductions correspond to utility increases.

Figure 10 is obtained selecting the P -tuples in which only n1 and n2 are positive. This allows to plot the logarith-
mic worst-case error against n1, n2 in the P = 2 case as a sub-case of the P = 4 case.

The scale effect manifests as the fact that any straight line passing through the origin (along which one sees
contributions with a constant ratio n1/n2 with increasing size of the overall dataset N = n1 + n2) intersect iso-
performance lines with progressively lower worst-case error.

Yet, the convexity of the same iso-performance lines reveals the effect of scope. In fact, moving along an iso-
scale line n1 + n2 = n = constant, the worst-case performance consistently improves as one approaches the even
distribution of the data set between the two producers n1 = n2 = n/2.

To assess whether this scope effect holds with P > 2 we should agree on how to measure the evenness of a
partition of n among more than 2 producer. Among the many ways of measuring evenness we choose scaled Shannon
entropy, i.e., in the case of P producers

E(n1, . . . , nP ) = − 1

logP

P∑
i=1

ni
n

log
ni
n

whatever the basis of the logarithm.
The scaled entropy is minimum for E(n, 0, . . . , 0) = 0 and is is maximum for E(n/P , . . . , n/P) = 1. This is

clearly what we want, though the behaviour in intermediate configurations depends on that fact that Shannon devised
his entropy to quantify the amount of information emitted by a source with P symbols each with probability ni/n.

Despite this somehow unrelated origin, scaled entropy seems to interpret quite well the evenness on which the
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a) b) c)

Figure 10: Contour plots of the relationship between the contributions n1 and n2 of two producers and the (logarithm
of the) worst average performance of the toy classifier for D = 2 (a), D = 3 (b), D = 4 (c). The convexity of the
contours quantifies the scope effect.

scope effect hinges. In fact, Figure 11 shows that the logarithmic worst-case error correlates negatively with scale
entropy (and, of course, with n due to the scale effect). Hence, data sets aggregating a substantially equal number of
data from each producer yield more utility than equivalent-scale datasets in which most of the data are contributed by
few producers.

Finally, Figure 12 shows the effect of data dimensionality by plotting the logarithm of the worst-case error against
the data contribution of P = 2 producers working with data of increasing dimensionality D = 2, 3, 4.

Note that, given a certain n1 and n2 (and thus fixing the effect of scope and scale), as D increases also the worst-
case error increases showing that higher dimensional models are harder to train.

Hence, in our simple model, the scale property is confirmed while the positive effect of aggregating a data set from
(possibly evenly contributing) sources exhibiting diversity emerges naturally, as well as the effect of using a fixed size
data set to train models in high dimensional settings.
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Figure 11: Logarithmic worst-case performance plotted against the scaled entropy of the distribution of n data points
among P = 4 producers.

Figure 12: The logarithmic worst-case error plotted against the contributions of P = 2 producers working with data
in a D-dimensional space.
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